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Abstract

The introduction of smart meter technology has been central to recent innovations

in energy provision for the UK residential sector. Smart meters have the poten-

tial to give greater insight into energy consumption behaviour for energy providers

and researchers alike. For example, they may aid our understanding of how the

consumption of gas and electricity may be replaced by the energy from renewable

sources, or how consumer behaviours can be changed to reduce overall energy con-

sumption, increase efficiency, and lessen the pressure on the national grid networks.

The advantage of a thorough understanding of the insights generated from smart

meter data for policy issues may sound obvious at a first glance. However, there

are significant challenges associated with the availability of methods and compu-

tation necessary to perform a complete analysis of the available data. The thesis

provides an in depth look at the nature of energy consumption through an analysis

of big data that is recorded by around 400,000 smart meters installed at residential

properties across the UK. It further discusses how this data is different from perhaps

more conventionally collected retail consumer data, and in what way does the tem-

poral nature of these data reveal information about the customers dynamics without

compromising their anonymity. Various machine learning methods are applied and

surveyed against more conventional methods often used by researchers and industry

practitioners. Some extensions to improve the accuracy and reliability of methods

for both segmentation of the behaviour, and prediction are also suggested. Lastly, a

case study looking at identifying the fuel poor from smart meter data is presented as

an illustrative example of potential research questions one may answer with smart

meter data records.





Impact Statement

Since 2005, demands to reduce the CO2 emissions nationally and internationally are

growing, and thus the need to replace current gas and electricity energy resources

by renewables. Consequently, the global investment in energy research has seen

a rise (Skea, 2014). Smart meter data is the first resort for exploitation to make

the sustainable energy goals achievable. The work in this thesis, in partnership

with a UK-based domestic energy provider, focuses extensively on the analysis of

spatiotemporal Big Data of UK residential energy consumption, constructed from

thousands of smart meters and constitutes the most extensive data set of smart me-

ters available to date. The findings of this research were shared and communicated

with the industry partner who provided the data, and the methodology used in the

thesis was attempted on energy company premises. The thesis thus shares emerging

industry and academic research impact. The thesis provides a survey of methods

and offers a toolkit to anyone who may hold smart meter data and wants to make

sense of it. The main contribution of the work in a broader sense is a provision of a

comprehensive guide that researchers and industry practitioners may refer to when

smart meter data arrives at their hands in nearest future. It is the first attempt to

combine together a step by step strategy for data analysis that allows for building

a holistic picture of what insights these data may provide for various tasks that are

associated with description and visualisations, segmentations and data organisation,

forecasting, and data reduction. Smart meter data is an example of a complex time

series data structure that holds information on the dynamics of individual activities.

Given the rise of big data and devices that collect information of similar type in real

time, methods and analysis presented in the thesis may be well transformed to other
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datasets that may have a similar structure. This thesis suggests that smart meter

data cannot be looked at solely through a social science lens, neither can it be com-

pletely understood by computer science and statistics approach. The marriage of

two is necessary for a complete explanation of variation among smart meter users,

areas where they live and the variation within individual users energy consumption.

This thesis is the first attempt to bring these two together in application to smart

meter data and suggest ideas for data interpretation and detailed exploration.
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Chapter 1

Introductory Material

‘If you torture the data long enough, it will confess’

- Ronald Coase in Tullock (2001),

The field of energy research, whether it is household energy consumption, de-

cision making on renewable sources, energy supply or energy economics, is becom-

ing of growing importance for both academic and industry communities. Censoring

energy by using smart meters and the ability to quantify energy use at high tempo-

ral granularity offers numerous opportunities for research communities that focus

on policy, economics, resource management, geography, the built environment, and

statistics. Other research domains choose to focus on the sensitivity of energy con-

sumption to prices of electricity and gas, customer habits and weather, using these

to better understand how consumption varies from one user to another.

Over the last two decades, a vast amount of research has aimed to show the

relationship between energy variation and factors such as property and household

characteristics, with the end goal of guiding policymakers and energy suppliers

in their delivery of efficient and fair provision of resources (Beckel et al., 2014;

Kavousian et al., 2013; Albert and Rajagopal, 2013; McLoughlin et al., 2012b) .

Despite this body of research, the dynamic nature of energy use and often high vari-

ation among users means there is still a range of research needed, with unexplained

variation in energy consumption being on average about 54 percent, according to

Huebner et al. (2015), even when considering a sample with a sufficient amount of

additional variables on housing and sociodemographic characteristics. Samples of
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energy data may differ as may levels of aggregation. Samples of energy data may

differ, levels of aggregation may differ and different types of predictors occur, de-

pending on which behaviour researchers are interested in observing. All of which

can lead to the use of different methods and thus, differing results. This thesis will

show that there is, as yet, little agreement on which methods are optimal for classi-

fying or predicting consumer energy usage using smart meter data as the field is still

underdevelopment and a vast amount of experiments need to be performed before

research in this highly interdisciplinary area can be considered state of the art.

In this thesis, an attempt to unlock some of these issues is presented through

surveying the various methods a researcher considers using, taking into considera-

tion that these decisions often depend on data resolution and the final research aims.

It is highly important to reach an understanding of how much energy is being

consumed by UK residents, and how much of their current consumption of gas and

electricity may be replaced by energy from renewable sources. It is equally impor-

tant to understand how consumer behaviours can be changed nationally to reduce

energy consumption overall, lessen the pressure on the national grid networks and

thereby increase energy efficiency.

The advantages of a thorough understanding of the insights generated from

smart meter data for policy issues may appear obvious at first glance. However, the

respective challenges and disadvantages associated with the computational power

necessary to perform a complete analysis is a major obstacle that needs to first be

overcome. This thesis aims to address these obstacles and present some of the

possible ways in which they may be tackled.

1.1 Big data and new forms of data in social science

research
Not just the energy research was expanding over past decade, but other phenomena

have entered the stage, namely Big Data. The emergence of big data1 and its associ-

1Please note that the term ’Big Data’ is capitalised only in cases when referring to the phenomena
as in Boyd and Crawford (2012). More often the term ’big data’ used as it refers directly to the data
of characteristics that are associated with the phenomena
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ated potential disruptions to traditional methods used in social science research was

acknowledged by Kitchin (2013) and Barnes and Wilson (2014). Kitchin (2013) has

largely warned the field about the important changes and adaptations social science

methodology will face after the arrival of big data, while the latter has provided a

rather optimistic vision of the future of social science in the light of big data. Barnes

and Wilson (2014) looked primarily at how social scientists, to be more specific, so-

cial physicists such as George Zipf and William Warntz, unlocked the lid of large

datasets potential for the social science field putting themselves forward among the

researchers who could make sense of big data to study society. Overall, it is still

hard to say whether big data is a curse or blessing for the social science field. The

attempt to analyse big data on energy consumption and study of the potential in-

sights that can be observed about the social dynamics from this data can let this

thesis to take a stance in the debate.

Some of the most obvious challenges associated with this emerging notion

is certainly the definition. There is still no defined description of big data due to

the novelty of the phenomena and associated with it concept. Some may suggest

that term ’big data’ is rather vague and used so widely in different domains and

applications that it became rather meaningless (Goes, 2014). Some may say that

in a nutshell it is the complexity and the size what defines big data and separate it

from other more conventional forms of data (Taylor et al., 2014). One of the most

famous and widely used definitions of big data is that of Laney (2001) who uses

the concepts of volume, variety and velocity as main ingredients of the big data.

The recent literature takes this definition further by introducing key characteristics

of big data as exhaustive, relational, flexible and high in resolution. These are the

features that makes these data not just a unique form of data but an innovation

which is highly disruptive in nature. Smart meter data is not an exception as the

arrival of smart meter data has changed fundamentally how energy consumption

can be studied by moving away from energy consumption estimate at monthly or

annual level, we are now dealing with highly granular temporal dynamics and able

to study consumption behaviour throughout the day during any month, any season
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of year. Below, smart meter data is described with respect to each of the big data

characteristics that are available to date (Boyd and Crawford, 2012; Dodge and

Kitchin, 2005; Mayer-Schönberger and Cukier, 2013)

• Volumous: the data source is large in volume as each smart meter user annu-

ally would have around 17, 520 readings.

• Variable: the data tends to come in various forms. For instance, it may be

described by time series that reflect the energy use over time together with

the data of categorical nature that describe different type of energy source

(i.e. electricity, gas) and geographical locations of the users. Where more

detailed data on smart meter users is available , more variety in data structure

can be expected.

• High Velocity: smart meter data is recorded automatically and offers real-

time updates, typically recorded at half hourly intervals;

• Exhaustive : the data coverage is striving to include as much as possible

of the population and aims to cover the whole country, this is different from

traditional sample collection tailored for small sample case studies (Kitchin,

2014)

• Relational: having various geographical reference for smart meter data

makes it suitable for co-joining with other datasets

• Flexible and Scalable: new data can be added easily to smart meter data as

well as smart meter data available from different source can easily be joined

together due to homogeneous nature of the way this data is recorded.

• High in resolution: in principle, smart meter data readings provide a de-

tailed picture on consumption behaviour compared to conventional ways to

record energy consumption. Half-hourly resolution can be considered as high

enough. Besides, it is anticipated, that the resolution of minutes or even sec-

onds will be available in the future to governments and energy companies.



1.1. Big data and new forms of data in social science research 31

1.1.1 End of Theory?

A debate on whether big data brought ’the end of theory’ remain relevant for this

thesis as once again, so far the available research have seen times of trial and error,

experiments and constant exploration. Anderson (2008) has dedicated his book to

discussion of how the correlation analysis in big data may replace the theoretical

and scientific approach to the relationships observed in the data. Kitchin (2013,

2014) discussed extensively how big data gives a rise to the new epistemological

standpoint that social science researchers need to take. Mainly, to embrace the

paradigm shifts that result from the need of rethinking how new forms of data could

be incorporated into the existing methodologies. In this thesis, the attempt to take

a very exploratory approach is taken to study smart meter data. There is no defined

methodology to analyse these data yet, likewise there is no defined state of the art

strategy to evaluate the big data recorded by smart meter data due to unavailability

of datasets of such magnitude in the past.

Fortunately, we are living in the age of a significant expansion of the applied

data science field that allow the social science researchers interested in big data

to borrow valuable techniques that may help them in tackling some of the most

pressing challenges associated with smart meter data. For example, data mining

and the field of knowledge discovery from large databases have become popular in

terms of the technology useful for analysing smart meter data. This is in part due

to both researchers and industry practitioners being attracted to big data, data that

have transformed largely how the individual behaviour and decision making can be

studied given the various forms of the digital footprints produced by the individuals

each day.

At this current moment, data mining in the energy sphere is considered mostly

for its utility for decision making in business strategy research, whilst other forms of

big data has spread out to other disciplines such as the biomedical science, physics,

engineering and various behavioural research fields within economics and political

science (Wu et al., 2014; Swan and Ugursal, 2009).

Big Data is certainly everywhere, with both business and universities seeking
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to create departments dedicates to its analysis and use (Hand, 2016). According to

Hand (2016), big data-based research aims can be associated with two streams of

tasks. One of these is data management and data manipulation such as matching

data, sorting it, cleaning it and perhaps, also, linking it with other datasets. Another

type of big data exercise is concerned primarily with determining what big data can

tell us about the future. This is where prediction tasks for various scenarios can be

considered.

This thesis will thus look in more depth at the nature of energy consumption

by analysing big data recorded by the smart meters at residential properties across

the UK. It will further look at how this data differs from any other retail collected

consumer data. In what way does the temporal nature of this data, which records

timed responses, reveal information about the customer without compromising their

anonymity? This may mean inferring working hours or the hours someone spends

at home, or studying the seasonal responses of households on their energy loads.

Machine learning, computational statistics and artificial intelligence (AI) are

growing in popularity as common streams of approaches for tackling big data sets

that have similar granularity as energy consumption readings. This thesis is not an

exception as some of the machine learning methods will be adapted for smart me-

ter data segmentation later on in the thesis. To give a brief idea, machine learning

is characterised by automated methods which can perform statistical tasks. Some

examples may include applications in healthcare as well as remote sensing tech-

nologies often using in geo sciences to study satellite images of the Earth. De-

veloped primarily by academic researchers, these methods are used in services that

rely largely on the extensive collection, processing of data records and computation.

They have also been widely adapted in those private sectors that use the data for de-

livery of services (i.e. Amazon, etc.). However, when considering the provision of

services within the public sector, such as essential energy resources, artificial in-

telligence still seems quite a long way from replacing traditional methods of data

analysis. Not because they may be less useful, it is in fact driven primarily by the

limitations in access to advanced computing technologies as well as the need to
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train energy companies analysts to be able to use these new novel methodologies.

This thesis aim to address this by providing a detailed step by step guide on how

some examples of such advanced methods can be used and will survey some of

these methods to identify those that can be useful for energy consumption analysis.

They will also be discussed in the comparison to more conventional methods often

used by social science researchers.

1.2 Data Collection

The introduction of smart meter technology has been central to recent innovations

in energy provision in the UK residential sector. Smart meter data has the poten-

tial to give greater insight into energy consumption behaviour, not just for energy

providers, but also for the wider research community. The data generated by smart

meters is an example of the emerging concept of Big Data. This concept started to

gain popularity during the last decade as a revolutionary source of streaming infor-

mation on people and objects which negated the need for routine survey collections,

such as censuses. Smart meters offer a temporal breakdown of energy consumption

data and therefore offer immediate advantages for research in terms of increased

temporal granularity and sample size of data. However, as this data is new to both

the research community and industry analysts, there is a need for a greater aware-

ness of certain aspects that require caution during both data collection and analysis.

The way this data is recorded and transmitted can be considered pretty straight-

forward. The user, which is a household or a mix of households, receives a meter

that is connected to their traditional meter systems. Gas and electricity are now un-

der the same umbrella of the smart meter. The interface of the meter is now in real

time and users can see how much energy has been consumed in the past half hour or

past day, month or year. An illustration of a device prototype is presented in Figure

1.1. It is about the size of a standard digital e-reader, and it can immediately show

the consumer the cost of the energy they use during the day. Each company may

have their own variation on the smart meter, with some offering more functionalities

than others.
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In a nutshell, smart meters are expected to bring an end to energy bill esti-

mation, used widely in the past, so that both customers and suppliers can have a

more accurate understanding of how much energy is consumed or saved through

various short-term alternations in energy use. It also offers greater precision in re-

gards to how much customers pay for their energy usage and avoids issues such as

overpayment or overestimation of associated costs.

Like any digital device, there may be both anticipated and unanticipated issues

with smart meters such as missing recordings or faults of the meter that may mis-

count the actual energy use. While these are rare, they are still under discovery by

energy supplier analysts and some examples of these (i.e. missing reading or smart

meter sudden turn off) can be easily seen from smart meter records and detected

where necessary.

Figure 1.1: Example of a smart meter display Source: Smart Energy GB

1.2.1 Nature of the Data

As was shown earlier, smart meter data are commonly assessed using the big data

characteristics - volume, velocity and variety - and which effectively characterise

its nature.

While there are challenges with smart meter data for both energy company

analysts and researchers, it has opened up new possibilities to analyse residential

energy consumption. It has been suggested by Swan and Ugursal (2009) that pre-

vious research involving energy consumption analysis had tended to focus more on

major private sectors that had more incentive and expertise for consumption reduc-

tion, as well as operating under tougher regulatory requirements. This may become
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less of a problem, with growing numbers of initiatives aiming to bring academia and

industry together, such as the Consumer Data Research Centre that sponsored this

project. Indeed, motivations for various research projects are expanding to include

long term gains for societal wellbeing brought by this or similar research using

smart meter data.

Another reason for the smaller proportion of developments dedicated to under-

standing household energy consumption was the issue of privacy associated with

the collection and distribution of detailed data on households (Swan and Ugursal,

2009). In the UK, after installation of smart meters in 2015, energy customers

agree by default that their data may be accessed by their energy supplier 2. How-

ever, they retain the right to opt out of their data being shared with energy providers

or government agencies. Smart meter users can decide themselves which temporal

granularity of data they want to be shared with the energy provider. If they are not

happy with detailed information about their consumption being shared, they can

choose whether they prefer daily, weekly, monthly or even only annual figures to

arrive straight into the hands of energy company analysts.

The UK Government aims to ensure that every domestic and non-domestic

property will have been offered a smart meter by 2020. The regulatory environment

encourages providers to roll out installation as quickly as possible to meet the obli-

gation of complete installation by 2020. By the first quarter of 2017 there were a

total of 6.78 million smart meters installed by energy suppliers across residential

and business addresses in the UK; of which six million had been installed in do-

mestic properties by the Big Six energy providers (EON, British Gas, EDF Energy,

Scottish Power, SSE and npower). Smart electricity meters account for more than

half of the total of these installations due to electricity being more widely avail-

able than gas. The Department for Business, Energy and Industrial Strategy (BEIS)

(2017) reports that despite an acceleration of smart meter rollout, most domestic

properties nevertheless still have traditional meters.

2This was true for 2015, year that corresponds to the time frame of the data collected and the
time when this research project was initiated.
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Figure 1.2: The speed of the smart meters roll out by last quarter of 2015Source: Smart
Energy GB

Figure 1.2 illustrates the speed with which smart meters have been installed

in domestic properties by large energy suppliers in the UK and the break down

of meter type (electricity or gas) reported by the beginning of 2015. Traditional

meters remain a dominant technology for gas (97% of meters) and slightly less for

electricity (95.9%.). By the first quarter of 2015 there were only around 250,500

smart meters installed since the start of the rollout. In general, a survey conducted

by BEIS (2015) found that the immediate perception of smart meter installations

and user experiences was quite positive; with an average of about 80 per cent of the

circa 2,000 surveyed customers expressing satisfaction and a sense of being well

informed on how to use and benefit from the technology.

Smart meter introduction may be promising in enriching the analysis of energy

consumption in the UK and acknowledgement of this can be clearly seen from the

statistics of the Smart Meter roll out. However, it may still be a long wait before

smart meters replace conventional technology for energy use recordings. This is

driven by the fact that some properties may not be suitable for smart meter instal-

lations and by the fact that there is a number of vulnerable customers who may

need extra support in getting the value out of this technology (i.e. visually impaired
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customers or customers with lower mobility). Nevertheless, where data from smart

meters is available, greater consideration must be given to analysis. This will be

explored in more detail in the rest of the thesis.

1.3 The Thesis Aims and Data

The aims of this thesis are threefold. Firstly, it assesses the methods that are suitable

for grouping patterns of energy consumption to provide a better metric for describ-

ing the temporal profile variability among energy customers. Secondly, once the

patterns that consumers form are understood, these are extrapolated to create tem-

poral profiles to further discuss whether the dynamics of energy consumption can

be predicted given the periodicity of past consumption. Lastly, the thesis looks

largely at issues of spatial heterogeneity, the uncertainty that may arise from sam-

ple selections and aggregation levels of energy data which then can be categorised

as external bias (i.e. the data source) and internal bias (i.e. heterogeneity among

individual records). The issues of selection bias, data quality and the usefulness for

answering various research questions are discussed throughout each chapter so as to

remain critical and cautious of many issues, the size of which may grow in parallel

with data magnitude.

The data analysed in this thesis fall into five groups. The first group of data cor-

respond to the largest dataset that was available for this research. It consists of about

400,000 meters that have annual records for gas and electricity and are available

at high temporal resolution (half-hourly readings) but low geographical resolution

(Postcode Sector). The second group of data consists of the Bristol dataset that has

records for about 2,000 meters at similar temporal resolution but slightly narrowed

geographical resolution (Census Output Area). The third group of data consists of

aggregated data derived from a large sample in order to reduce the magnitude of

the raw data. For more than 8,000 postcode sector levels, half-hourly averages are

used to determine the spatial distribution of the smart meters and then to investi-

gate any variations that might be associated with the geographical locations of the

customers. This data is also used for clustering of energy use and the thesis will
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look at the effects of such aggregation for final differentiation of energy use. The

fourth group of data consists of individual smart meter users picked up from the

Bristol sample, which are used for more detailed analysis of yearly consumption

through regression analysis. For this group, a number of feature transformations

are also used to carry out a spectral analysis. Lastly, the fifth group of data con-

stitutes a sample on customers that have additional qualitative labels . Available at

limited resolution due to privacy concerns, this data is used for experiments that de-

termine whether smart meter data alone may predict customer characteristics such

as financial vulnerability with respect to the costs of energy.

It is important to note the time period over which the data used in this work

was collected, mainly from the years 2014-2015. Relevant government reports and

population characteristics are selected from a similar time frame to minimise bias

that may arise from any subsequent changes in population or smart meter rollout

figures. The main data is described in more detail in Chapter 3, while samples that

are used for more specific experiments, such as the third, fourth and fifth groups of

data, are discussed in the chapters that focus on their analysis.

1.4 Applications

It is important to note that work in this thesis is driven by the nature of the data

rather than by particular research questions. Social science research often starts

with a question in mind. Given that question, the researcher then collects the data

that can answer it. The primary task of this thesis is to define which kinds of ques-

tions can be answered with smart meter data or, in other words, what the data may

be used for? Given the novelty and very recent availability of this data, one can see

how critical assessment of the usability of this data for researchers may serve as a

contribution to the energy and social science research fields in its own right. A num-

ber of possible applications associated with the analysis of energy consumption in

the thesis are suggested below. For instance, the results presented in this thesis work

towards increasing understandings of how stable or predictable British consumers’

behaviours, on average, are in terms of their energy consumption. Understanding
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predictability on an individual level may improve the forecasting of national con-

sumption as well as give a more precise idea of the confidence intervals from which

uncertainty is derived when it comes to energy consumption estimates. The thesis

further looked at whether consumption profiling may be achievable with this data.

The remaining part of the thesis is centred around forecasting methodology and

data reduction techniques. All of these may play an important role in the research

agendas that focus on the tasks such as :

• a) lending an insight into national energy consumption volume and scale;

• b) contributing towards an understanding of the energy resources required for

moving towards renewable pathways for energy provision;

• c) gauging the scale of the differences among energy customers;

• d) providing a framework of for studying how much pressure the average en-

ergy consumer puts on the national grid, or in other words, how much energy

is needed to supply the average UK consumer every day at peak hour;

• e) identifying energy customers who consume less than expected on average

so as to provide a necessary support ;

• d) designing strategies that can help study the periodicity of energy consump-

tion to gain an insight into how predictable smart meter users are.

1.5 Thesis overview
The thesis is organised into eight chapters in total with Chapter 1 being an introduc-

tion followed by the seven chapters outlined below.

• Chapter 2 (Literature Review): An overview of the energy consumption

pre determinants and associated with these uncertainties are presented in this

chapter. These are further complemented an account of the research which

has been done, up to date, on understanding energy consumption variation

using both smart meter data and data from other sources. One of the most



1.5. Thesis overview 40

pressing and challenging issues that current research attempts to address with

energy data is fuel poverty. Current research in the area of fuel poverty and

debates around its definition and measurement are also discussed. The litera-

ture on methodology and analytical strategies previously used to study energy

use is presented along with a discussion of which methods can, in fact, be bor-

rowed from other disciplines (i.e. computer science).

• Chapter 3 (Data): The data available at the national scale is introduced in this

chapter, together with the sample on Bristol from the Census Output Area and

the National Data aggregates at a Postcode Sector level. A third, experimental

sample that used in the thesis to study fuel poverty is also presented briefly in

this chapter. Basic visualisations and descriptive statistics are provided with

the reference to official statistics. Discussion on what this data may be used

for and its possible limitations are given in this chapter. In addition, this thesis

section looks at the issues of aggregation for energy data and selection of unit

of analysis is discussed along with an introduction to some other approaches

that may help us to describe the data while avoiding excessive generalisations.

• Chapter 4 (Methodology : Clustering/Load Profiling): This chapter looks

at the various methods and metrics available for grouping temporal profiles.

The suitability and limitations of both are discussed and the methods are com-

pared in terms of their accuracy and reliability. The chapter concludes with

a treatment of the issues of heterogeneity, bias and uncertainty that are asso-

ciated with different types of analyses when applied to energy data. At this

stage preliminaries on probability, Gaussian processes and smart meter data

as a time series process are introduced.

• Chapter 5 (Methodology: Regression Analysis of Smart Meter Data and

Forecasting): This chapter looks more closely at energy dynamics and how

they can be described using generalised additive models. Various subsamples

of data were selected for regression analysis and studying the periodicity of

energy consumption. Such patterns are associated with the relationship be-
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tween certain hours of the day and regular or cyclic behaviour. Consideration

is given to the potential to rebuild the data, thereby undermining the data se-

ries structure. Additionally, this chapter addresses the issue of seasonality in

the data and attempts to recover the estimated time of consumption by looking

solely at the variation.

• Chapter 6 (Methodology: Label Prediction): In this chapter, the incorpo-

ration of other variables is examined to define how useful they may be in

understanding what contributes to differences in energy consumption among

individuals. The chapter attempts to answer a very specific question: can en-

ergy consumption vulnerability be identified using smart meter data? If this

is not so, then which additional data is required and which methods may be

useful in answering this or similar questions? This chapter looks at defined

customer label prediction using solely smart meter data. Limitations and op-

portunities associated with such prediction are discussed in a wider context

of operational and public policy research.

• Chapter 7 (Scaling Up: Data Reduction and Transformations Techniques

for Smart Meter Data): The issues of scaling up analysis are addressed

through an introduction of methods from the area of signal processing known

as spectral analysis. Examples of such analysis include Fourier and Wavelet

transformations. As will be seen from the thesis, while one may be lucky

enough to have big data on smart meters, processing and analysing this data

in one turn is quite challenging, if not impossible at this stage. Data reduction

and compression of the series such that it can be presented with fewer features

yet can still hold all the vital information about the uniqueness of the pattern

will be presented in this chapter.

• Chapter 8 (Conclusions):This thesis concludes by investigating future re-

search paths where smart meter data research design may target consumers

and survey their behavioural habits rather than details on who they are or

where they live so as to understand what drives the residual or uncommon
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behaviour in the data that cannot be possibly captured by the quantitative ap-

proaches presented in this thesis. The methodology is summarised and an

overview of the observed results and possible contributions is given.
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Appendix: Note on Terms and Definitions

Pattern

The word ‘pattern’ is used in the thesis to refer to the pattern of consumption that is

represented by the sequence of half-hour readings. Such is different from the use of

word ‘pattern’ when referred to the behavioural patterns used in statistical literature

that can be found across and within readings over time using solely statistical and

pattern recognition methodologies.

Behaviour

The term ‘behaviour’ used throughout the thesis is a primary tool to describe tem-

poral behaviour that is presented by energy consumption records. It is therefore

subjective to only one dimension which is available from smart meter’s records and

can suffer from biases when used to describe household behaviour and their activ-

ities as there may be way more going on behind the scenes in the household or at

the address to which smart meter is attached.

Segmentation

’Segmentation’ is used as another way to represent the ways in which energy con-

sumption readings can be split into distinct groups using clustering or classification

methodologies. The word ’segmentation’ used here to highlight another type of

grouping that can be applied to units of analysis such as those that refer to their

socio and economic characteristics. This is different from relying solely on a statis-

tical algorithm.

Random

The word ’random’ is used fairly frequently in this thesis to define the selected

readings for visualisation and analysis. Definition of ’random’ needs to be nar-

rowed to that fact that the sample of data we are dealing with may be non-random

on a population scale, but the random selection of energy readings are taken from

this non-random sample. Given the magnitude of the dataset, it may be fair to as-

sume that random selection of patterns may be fairly representative of larger sample
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diversity, yet this is something that will be challenged in the subsequent sections of

the thesis.

Fuel Poverty and Vulnerability

‘Fuel poverty’ is perhaps the most challenging concept to define in the current en-

ergy research literature given the disparities of definition among academics looking

at the concept from various angles and disciplines. More details on the use of the

concept will be given in Chapter 2 (Literature Review) and Chapter 6 (Classifica-

tion). In this thesis, there is a number of obvious limitations on how fuel poverty and

vulnerability could be quantified. These arise primarily due to data quality reasons

as well as ethical considerations that are associated with preserving the anonymity

of individual users.



Chapter 2

Literature Review

‘...those of us who call ourselves energy analysts have made a mis-

take . . . we have analyzed energy. We should have analyzed human

behavior’

- Schipper in Cherfas (1991),

2.1 Introduction
Energy may be compared to economic wealth when thinking of its pre-determinants

and variations. As an important aspect of the subsistence of human beings it can

be used differently depending on the overall wealth and economic preferences that

individuals may have. Furthermore, energy product value, such as the price of gas

or energy tariff, may have a similar effect on the quantity of resource consumed.

This chapter looks in more detail at the various factors that could contribute to

variations in energy consumption. They include household socio-economic char-

acteristics and various property attributes. Cultural (Lutzenhiser, 1992) and social

environments that may affect consumption intensities are also touched up briefly.

that may affect consumption intensities are also touched upon briefly. Empirical

studies of the connection between energy consumption and peoples lifestyles also

deserve consideration (Druckman and Jackson, 2008; Druckman et al., 2011). All

of this is presented with the aim of describing energy consumption as highly com-

plex and integrated from various factors and processes that go well beyond simple

smart meter readings. As an introductory visualisation, in a broader sense the dia-
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Figure 2.1: Disciplines involved in the study of human/ environment and hu-
man/technology relations (Lutzenhiser, 1992)

grams constructed by Lutzenhiser (1992) and Lutzenhiser et al. (1997) give an idea

of the interconnectedness among disciplines that may be useful in attempting to

understand energy consumer behaviour Figure 2.1 presents a number of disciplines

that are involved in the investigation of human vs environment and human vs tech-

nology relationships. With engineering and physics undoubtedly being central and

essential to energy production and supply, the use of resource is determined by eco-

nomics (decision-making process) , psychology (environmental awareness as well

as consumer attitudes and beliefs towards risk and behavioural norms), sociology

(material cultures and technology awareness) and lastly, architecture (human use of

buildings and how properties are designed).

The importance of the interdisciplinary approach, which this thesis cannot em-

phasise enough, when dealing with energy data is driven by the heterogeneity of

the consumption that is observed when looking at different smart meter users. As

will be shown throughout the remainder of the thesis, a large amount of the resi-

dential variation that would not meet the criteria of the expected or typical temporal
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profile remains ambiguous, unexplained and in need of more interdisciplinary re-

search analysis that could integrate spatial, temporal and social components. With

an aim to find a middle ground for generalisation and interpretation of the temporal

differences, this chapter reviews the literature that analysed energy expenditure and

consumption pre-determinants in the past and looks briefly at consumption trends

described in the UK government overview reports to provide an idea of the context

in which smart meter users analysed in the thesis may reside and be shaped by.

The first part of the chapter will thus be dedicated to mainly pre-determinants

of energy consumption variation previously found by researchers across various

disciplines including public policy and engineering. Starting with the discussion

of typical or expected profiles of energy consumption, the chapter then moves on

to discuss how various socio-economic characteristics of smart meter users and at-

tributes of the properties in which they reside can shape the dynamic and magnitude

of residential energy load. Fuel poverty identification as one of the prevalent issues

arising from slight outlier behaviour and ways in which energy is consumed is fur-

ther discussed to provide a background for the case study the thesis will return to

in Chapter 5. The second part of the chapter is dedicated primarily to methodolog-

ical advances in the energy research that uses smart meter data. Some examples of

methodology from other disciplines that were designed for similar types of data will

also be reviewed. The methodology review will have a more centralised focus on

various strategies that were developed and surveyed with an end goal of customer

characterisation, outlier detection and effective forecasting of energy use. These

sections will set a preliminary stage of the analysis in the remainder of the thesis

which is, as will be observed, primarily methodological.

2.2 Typical Profile

The availability of smart meter data may give a greater precision for understanding

the differences in temporal patterns for households that may have similar total en-

ergy consumption but a very different way of consuming. However, it also creates

further challenges when it comes to the generalisation of temporal profiles. How
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can one know what is the average or expected energy consumption profile? Would

it depend on location of consumers or their property or household characteristics?

‘The variability in residential consumption reported in the literature sug-

gests that there is hardly a ‘typical’ level of consumption for any energy end-use”

(Lutzenhiser, 1993). Nevertheless, a typical behaviour derived from the data is often

assumed for benchmarking and anomaly detection. This behaviour also underpins

the design of energy efficiency measures. An example of a double-peaked temporal

profile is shown in Figure 2.4. Often, to derive such a shape and to represent the

most common trend in the consumption of an individual or a group: mean or me-

dian consumption are used. The profile below can often be described as a full time

employed smart meter user, leaving home early in the morning to come back around

5-6pm and resume activities in the household that are associated with energy use.

Figure 2.2: Example of median consumption derived from the smart meter data This shape
was derived using a sample of data available for this research

The UK Housing Energy Fact File 2012 produced by DECC (2012) reports

average electricity use broken down for appliances that represent quite a similar to

above shape. Besides, on the individual household level variations are expected to

be more heterogeneous even when ‘typical’ shapes of consumption are observed.

DECC (2012) further has classified the factors that may affect household energy

use as: (a) related to investment decision making ( for example home upgrades or

purchase of new appliances); (b) infrequent actions (for example temperatures to

be set in the rooms or settings for running the appliances); (c) repeated actions (for

example taking a shower or standby appliances use) and (d) spontaneous reactions
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to the events (for example reactions to extreme weather events or using lights in the

rooms).

Property type, household income and tenure have been reported as being able

to explain only forty per cent of the variation in the gas consumption among house-

holds in the UK (DECC, 2012). Extreme cases of very high and very low consump-

tion profiles are not easily identifiable. These extreme behaviours, as suggested by

DECC (2012), could be classified using the following clusters - physical properties

of the houses such as additional extensions, conservatories, open plan spaces, con-

sideration of how the temperature is managed, and by looking at people at home.

Further to that analysing who is present, and when and which types of activities

are predominant in the house may help to understand a bit more about outlier be-

haviours present in various consumption readings.

One may think of some further classifications of energy usage such as heat-

ing, lighting, entertainment or comfort. Furthermore, the minimum and maximum

expected energy use could be observed for different types of households, living in

various property types. To highlight the broader research that investigated most

of these factors, the next sections overview some of the major pre determinants of

diversity in energy use.

2.3 Spatial, Temporal and Social Determinants of

Energy Use
Figure 2.3 provides a useful overview of the collection of research that has at-

tempted to explain energy consumption. As may be seen, historically, dwelling

type, appliances holdings, household size and income tend to dominate in terms of

the attention that they receive as pre-determinants of energy consumption variation,

in particular, for electricity. United under the umbrella of the physical- technical

economic models (PTEM), physical attributes of buildings have been used exten-

sively in energy demand forecasts and policy in the past (McLoughlin et al., 2012a).

Through an understanding of how these dominant factors contribute to the intensity

of energy use, we may further inform the policy of the best strategies to alter con-
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sumer behaviour and increase energy savings. Besides, such a skewed distribution

of research focus (centred mostly around studying property attributes and household

income) may be driven not by the realisation that certain factors are less important

than originally thought but by unavailability of the data or limitations posed by the

covariates that are hard to quantify such as social environments, habits and culture.

Some of these factors are discussed below.

Figure 2.3: Number of citations looking at property attributes and household characteristics
as explanatory factors for domestic electricity consumption (McLoughlin et al.,
2012a)

2.3.1 Financial incentives

Perhaps one of the most straightforward factors affecting energy consumption is

the price of energy. Meier and Rehdanz (2010) 2005, and revealed that heating

behaviour is affected by energy price increases but may also be affected by policy

measures, such as those that target carbon emission reduction. To show this they

used a regression analysis with heating expenditure being the dependent variable.

They further tried to define how different household types would respond to price

and policy modifications (i.e. the elderly are associated with lower heating expen-
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ditures). Research has suggested that policy may consider focusing more on rural

households as they tend to spend more on heating. Nevertheless, lack of information

on dwelling and built environment characteristics was acknowledged by the authors

as a priority for further research. Price variables when considered as an influencing

factor also need to be studied alongside knowledge and information about pricing in

real costs and in regards to price elasticity. A study of consumer behaviour may be

performed at both individual and household level. However, depending on the type

of data that we are dealing with, the household level may be far more accessible,

especially when working with consumer data, which tends to be associated with one

registrant representing the household (i.e. the energy customer agreement). Thus

it may be more reasonable to take a household as a unit of collective consumption,

accounting for differences in how energy price may affect a consumption pattern

for the whole household rather than an individual. Information or knowledge about

the energy market that customers have may also play an important role for deter-

mining their behaviour (Lutzenhiser, 1993). Various studies further looked at the

effect of ‘feedback such as recent consumption for example, as well as the effect of

direct information delivery to the customers through their community role models

or local networks (Winett and Ester, 1983). Lastly, economic psychologists and

behavioural economists tend to omit further complications associated with the mar-

keting system, limiting their approach to the effects of price, while consideration of

the effects of non-price elements of the marketing mix such as advertising and sales

promotion is considered to be influential (Alhadeff, 1982; Herrnstein, 1988)). It has

been suggested by Bolton (1998) that apart from the price, satisfaction with the ser-

vice is no less powerful in altering consumer attitudes/beliefs, and as a consequence

may lead to certain home improvements that will affect the ways in which service

is used and have an impact on consumption continuity.

2.3.2 Consumption environments

In addition to associated costs, patterns of domestic gas and electricity consump-

tion may often be driven by constantly changing consumption environments such

as temporary guest visits, sickness, change of employment shifts or change in the
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size of the household. This would be particularly important when we consider the

dynamics of fuel poverty. An example of how such a change could be measured was

presented by Bernard et al. (1988) , who studied variations in natural gas consump-

tion introduced through occurrence of events or non-routine activities at the house-

hold property. They differentiated between the components of consumption that

sum to total consumption and suggested that each customers consumption has three

components: (a) structural consumption; (b) habitual consumption, which may fur-

ther be complemented by unconscious habits (Lutzenhiser et al., 1997; Wilhite and

Wilk, 1987; Hackett and Lutzenhiser, 1991) and (c) daily variation consumption

(i.e. holidays, sickness, having visitors).

They further suggested that to understand variations in consumption between

households with more variegated profiles, it is necessary to study not just daily

but also weekly patterns. This may inform us about the temporal pre-determinants

that could be inferred by studying a longer period of time. A simple example of

this could be the extensive use of energy for preparation of food a few days before

hosting visitors. Studying the time before and after an event taking place in the

household may give opportunities for a more accurate inference about the level of

change in energy use that occurred because of a particular event. As a consequence,

when modelling such behaviour, researchers may test a hypothesis where there is

a certain level of structural or fixed consumption for each household as well as a

component which is variable.

2.3.3 Dwelling characteristics

The effect of dwelling characteristics has been analysed in more detail by Nguyen

and Aiello (2013), who showed that occupancy activities and building characteris-

tics have an impact upon consumption in both residential and retail sectors. They

also looked more in depth into differences between household activities and how

those could affect households’ choices of appliances that seem to have a very direct

relationship with the dwelling type. Furthermore, Guerra-Santin and Itard (2010)

concluded that despite dwelling attributes, the temperature in the housing stock may

contribute to further diversity in the variation of consumption during the heating
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hours.

In the UK, to quantify the energy efficiency of domestic buildings, primarily

Energy Performance Certificates (EPC) are used together with the Standard Assess-

ment Procedure ( SAP) ratings. They provide an extensive overview of the property

with an attached rating which ranges from A (most efficient) to G (least efficient).

EPC data is quite a useful starting point for analysis of housing stock, as there is

quite a strong relationship between EPC band and both household energy efficiency

and the probability of being fuel poor, which will be discussed in more detail later.

The EPC band also helps to differentiate between rural and urban areas. Addition-

ally, there is also an interesting relationship between EPC band and health indica-

tors. For example, it has been suggested that the most inefficient and hard to warm

houses in the bands G and F also tend to be quite unhealthy for individuals (Board-

man, 2010). Interestingly, it appears that there is some kind of vicious circle for

inefficiency. Those who are likely to live in fuel inefficient houses are expected to

live in rural areas and to have old large properties that are the hardest to heat. More

efficient and healthy housing would be located rather in the city centres, would be

less affordable and may be associated with more intense energy consumption.

2.3.4 Income and wealth

Sovacool (2011) performed an extensive analysis of how urban households energy

consumption could be conceptualised using income divisions such as low, middle

and upper income groups. He further identified the differences that may be observed

in energy consumption due to the urbanisation and direct vs indirect uses. As may

be seen from Table 2.1, low income consumption tends to be associated with the

minimal levels of consumption that are necessary for subsistence energy use such

as cooking, heating and hot water. Middle income groups may have spend larger

proportions of their energy consumption using electrical appliances such as TVs,

computers, washing machines. High income groups have multiple appliances and

larger spaces for heating or cooling. This group may also have extra space , such as

gardens with lighting and heaters outside the property, that require further energy

consumption for use and maintenance.
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Table 2.1: The urban household energy services ladder. Adapted from Sovacool (2011)

Household
Type

Primary fuels Primary technologies Primary energy services Broader Driv-
ing Factors

Low
Income

Wood, dung,
kerosene, charcoal,
coal, biomass,
liquefied petroleum
gas, paraffin, can-
dle wax, bio gas,
agricultural waste,
diesel, coconut oil,
sunlight

Cook stoves, open
fires, candles, solar
cookers, small solar
home systems

Cooking and lighting,
occasionally television,
telephone, radio, mobile
phone charging, space,
heating, refrigeration
and hot water

Satisfying
subsistence
needs

Middle
income

electricity, natural
gas, coal, liquefied
petroleum gas,
kerosene, fuel oil

Large solar home
systems, televisions,
radios, DVD players,
air conditioners,
refrigerators, water
heaters, dishwashers,
clothes washing
machines, comput-
ers, printers, other
modern appliances

All low income services
plus some heating and
cooling, hot water, cook-
ing, entertainment, and
lighting, refrigeration
and freezing, clothes
washing and drying,
computing and surfing
the internet, watching
television, advanced
telecommunication

Convenience,
comfort and
cleanliness

High in-
come

Electricity, natural
gas, fuel oil

multiple air condi-
tioners, refrigerators,
water heaters, dish-
washers, clothes
washing machines,
other advanced
appliances

All of the middle income
services above plus lux-
ury practices such as
swimming in a heated
pool, going in the bath-
room with a heated toi-
let to the sound of mu-
sic, and watching televi-
sion while one cooks

Conspicuous
consumption
and social
signalling

2.3.5 Household type and size

While household type and size may influence consumption dynamics, energy con-

sumption may also be informative of the household size in samples where data is

lacking details about smart meter users or where there is a sudden household ex-

pansion. As was presented by Ushakova (2015) we may often observe differences

in yearly consumption patterns between families, single owners and young house

shares, with families being less variable and young house-shares being rather ran-

dom in the nature of their energy use. The study ofGuerra-Santin and Itard (2010)

also showed that the use of heating and ventilation might be different for different

household types. For instance, elderly customers may have longer hours of heating

with few hours of ventilation, while families with children are more likely to use
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longer hours for ventilation yet use less energy for heating.

2.3.6 Occupation

Sociological research has suggested that occupation, and more specifically special-

isation of the household, may have an impact on the energy consumption behaviour

and attitudes toward sustainability and efficiency. In the case of fuel poverty, it

was suggested that unemployment is one of the potential covariates of fuel poverty

(Boardman, 2010). To give an example of more trivial implication, working hours

may be inferred from visibly regular absence of the household. Employed house-

hold for instance was successfully inferred from the energy patterns in Beckel et al.

(2014) by using multiple linear regression.

2.3.7 Health

The relationship between energy and health is relevant when considering energy

vulnerability and winter cold-related diseases. While this is discussed more thor-

oughly in the section 2.4 , only some of the immediate relationship between energy

and health are considered in this subsection. These are differences in the health

of the population that may affect the ways in which energy is consumed. Yet, the

way energy is consumed may adversely affect health as was seen in the section that

discussed dwelling characteristics. For large energy companies, one of the obsta-

cles to smart meter roll-out is the health status of the households. If the customer

is blind for example, such a condition may bring complications for both marketing

campaigns as well as maximising the benefits that can be brought by smart meters,

including other energy services products that can be used at home.

2.3.8 Geography and culture

Bouzarovski et al. (2014) conclude that to date the academic literature has focused

little on understanding how domestic energy provision is regarded to be sufficient

in different cultural and geographical settings. Thus, these limitations may serve as

a potential fundament for this research as it attempts to address, for example, how

differences in geographical location may impact upon consumption classifications.

Adding the dimension of climate and weather would also offer us the potential to
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enrich explanatory power of the models we may use to describe energy consumption

variations. Later on it will be shown that geodemographic classification such as

Census Output Area Classification (OAC) may provide some guidance into why

consumption may differ across some areas of the UK. This relationship will be

rather suggestive as it is quite challenging to gauge any causal relationships given

the limitations of the sample and the bias which is inherited from the way smart

meters are being rolled out.

2.3.9 Society and behaviour

The final factor affecting the variability of energy use is concerned with uniqueness

of behavioural norms across countries and regions. As the UK Housing Energy Fact

File (2012) suggests over the past years, energy consumption in the UK has had a

tendency to be shaped more significantly by consumer habits and by lifestyle than

by household size or dwelling type.

Raaij and Verhallen (1982) pioneering study of a behavioural model of res-

idential energy use provided a basis for understanding energy consumption pre-

determinants. Their study was based on an investigation of energy demand in the

Netherlands. Consumer behaviour types associated with energy were outlined as

purchase related, maintenance and operating behaviour and usage related behaviour.

Purchase related behaviour has close links with the ways the heating equipment is

used by the households, and its relative importance in consumer budgeting. Such

usage is related to how households use their home and appliances. This can be

described using intensities and frequencies of usage over time. Maintenance be-

haviour is characterised by ways in which households tend to maintain their house-

hold equipment, including servicing and financing repairs and home improvements.

Attitudes formed through energy usage could be further aggregated into price

concerns, environmental concerns, health concerns and personal comfort(Raaij and

Verhallen, 1982). To look at this more broadly, philosophical perspective of Bour-

dieu (1984) may be considered. Bourdieu (1984) offers an interesting account of

how social practices of people are pre-determined by their environments and wealth.

He suggests the idea of habitus based on the theory that interaction with capital and
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field (i.e. a day to day environment of an individual) would determine the differ-

ences in various practices among the individuals in society, in the example of energy

use, this would be the variety of energy consumption behaviour.

2.3.10 Summary

This sections aim was to overview broadly the various factors that may contribute

to the variation in energy use. The secondary goal was to highlight the variety of

the research that has looked into energy consumption and used it as a proxy of

individual well-being. Lastly, this section was set up to draw on disciplines that

can contribute to a comprehensive understanding of why energy consumption can

vary so much, even in cases where the samples are drawn from the same region or

particular area of the country.

The research in this thesis aims to find and survey the approaches which may

help in segmenting different behaviours across energy customers such that they can

be grouped together based on the described earlier factors. It will further look at

predictability of these diverse behaviours using smart meter data readings. Given

the limitations associated with the sample of data available for this research, it was

challenging to explain why energy usage varied across the users in the UK. Nev-

ertheless, understanding of various reasons that contribute to these differences out-

lined in past research have allowed for some speculation as to why customers may

have shown certain patterns of usage. The next section, will specifically look at fuel

poor customers and various characteristics that may help in determining those smart

meter users that may need financial or social support to be provided by the energy

supplier. Being one of the most pressing issues on the UK energy policy agenda,

this issue is addressed later on in the thesis by introducing smart meter data as a

possible proxy of ones vulnerability.
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2.4 Who are the Fuel Poor and Why Do They Need

to be Found?
How the energy vulnerable and the customers that are at risk of becoming fuel poor

can be found and subsequently supported? This question has occupied UK govern-

ment and energy suppliers for the past twenty years and has thus been explicitly

stated by OFGEM in Energy Company Obligation under the Home Heat Cost Re-

duction Obligation component. With the pioneering research of Boardman (1998),

academics have also started to take fuel poverty under closer attention, making it

a separate area for energy research projects concerned with household energy con-

sumption. For this research the definition of vulnerability is aligned with the one

that is defined by the UK government and is based on income measures. These will

be discussed in more details later in the section. Nevertheless, it is important to

acknowledge that even within the UK the definition does vary across various gov-

ernment departments. This became an obstacle for fuel poverty elimination that was

targeted to be achieved by 2016 (Boardman, 2010).

This section looks at who the fuel poor energy customers are, how fuel poverty

may be defined and in what way fuel poverty is linked to energy consumption vul-

nerability. Fuel poverty or energy poverty impacts both individuals and the house-

hold as a whole when it comes to consuming energy collectively. The effect that

fuel poverty may bring on a households wellbeing may well manifest interaction be-

tween property attributes and household characteristics; it is also expected to vary

spatially. Furthermore, individuals that are considered vulnerable may experience

acute impacts of fuel poverty (e.g. customers with disabilities). This section re-

visits the concept of vulnerability in the UK and its primary characteristics, before

moving on to a discussion of vulnerability in the context of energy provision.

2.4.1 The concept of vulnerability

The following section addresses the concept of vulnerability with initial focus on

social vulnerability, before narrowing down to the specifics of energy consumption.

As was acknowledged in Kandt (2015) , conceptually focused geodemographic
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classifications may inform policy-making and interventions in a structured way, es-

pecially when it comes to targeting social groups in need of support. An example of

this could be the classification of social vulnerability. Kandt (2015) characterised

social vulnerability from a health perspective, and identified that preventive health

care is definitely one among many important pre-determinants for group or neigh-

bourhood vulnerability. Health tends to be one of the central determinants of social

vulnerability, yet the spatial context and area characteristics may have adverse ef-

fects on health and policy interventions.

Simultaneous causal relationships between health and social vulnerability are

not uncommon.To consider social vulnerability more broadly, Cutter et al. (2003)

underlined a definition of vulnerability as a potential for loss. In the context of

energy research, this definition may be transferred to the loss of resources that an

individual household may have used for adequate heating. The inherent difficulty

of quantifying social vulnerability is often ignored due to ambiguity associated with

calculating social costs. Nevertheless, this thesiss research may present an opportu-

nity to use energy as one, amongst many, ingredients of social well-being.

2.4.2 Fuel poverty and its causes

The definition of fuel poverty and the ambiguity that is associated with the concept

is considered to be an important aspect in policy formulation as well as policy eval-

uation, targeting and monitoring (Moore, 2012). According to Moore (2012), the

definition of fuel poverty may date back to the 1980s, Brenda Boardman’s defini-

tion (Boardman, 1998), which relates fuel poverty to the proportion of disposable

income that is devoted to energy expenditure. Fuel poverty as a concept was born

mainly in the UK and Ireland yet was subsequently considered in other European

countries as an indicator that contributes to the wealth of the countrys population.

A number of research papers have thus considered the relationship between energy

expenditure and the prevalence of low-income households (Foster et al., 2000; San-

tamouris et al., 2007; Roberts, 2008).

In the UK, a household is defined as fuel poor if spending on energy services

as a proportion of their incomes exceeds ten per cent. Severe energy poverty is
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attributed to households who spend more than twenty per cent of their respective

income. Such a definition may sound very straightforward, but one of the main

problems with this measure is the uncertainty in regards to quantifying the income

of households.

Income variables tend to be associated with measurement error and bias, often

due to common exclusion of other forms of capital held by an individual. These

can be reflected in terms of savings or inheritance, property ownerships to name

but a few (Boardman, 2010). Another factor which is complementary to energy

services spendings is an overall household expenditure that is composed of rent or

maintenance costs. Housing benefits may be able to soften the impact of these on

household risk of becoming fuel poor. Likewise, specific payments like winter fuel

amounts may improve the circumstances of potentially risky households.

To reduce the error associated with solely using income as an indicator, re-

search on fuel poverty has started to shift gradually towards more non-income iden-

tifiers of fuel poverty, greatly emphasising the fact that those who are income poor

are not necessarily fuel poor. However, low income remains an important ingredi-

ent in estimation, as the interaction of income for example with energy inefficient

housing will be a valuable pre-determinant of fuel poverty. Such a combination was

proposed in Boardman (2010) : Fuel poverty = inefficient housing + low income

+ high energy price.

For Boardmans formula, there is no need for smart meter data to be included

to reveal the probability of risk of becoming a fuel poor customer. Nevertheless, the

obvious issues is that the data on all three components is rarely available as a linked

combination at the level of the individual household and dwelling. It is possible to

observe the type of housing and income group of the household at the expense of

keeping their energy bill and pattern of consumption unknown. For energy compa-

nies, prior to installation of smart meters, keeping a record of household changes

was not as easy and it would normally be limited to the information received when

the household became a customer. Consequently, the customer databases available

to energy suppliers will lack an updated record of the changes that may have oc-
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curred over the customer journey, making it incredibly hard to find ways to identify

potentially vulnerable energy customers.

To address the issue above, some researchers have attempted to consider fac-

tors other than income. For instance, fuel poverty and energy customers vulner-

ability were addressed and discussed in Bouzarovski et al. (2014); Hills (2012a);

Legendre and Ricci (2015); Middlemiss and Gillard (2014); Sefton (2002); Board-

man (2010) and Rosenow et al. (2013). Rosenow et al. (2013) has provided a very

substantial and critical assessment of fuel poverty, as defined by policymakers in

the UK. The authors used various analytical frameworks provided by the UK gov-

ernment, and consultations and statements by energy suppliers, supplemented by

fifteen interviews with main representatives of governmental and non-governmental

energy organisations in the UK. A history of the framework as well as an assessment

that can be of use to energy suppliers were provided. Rosenow et al. (2013) have

also suggested various methods for estimation of fuel poverty using non-income

measures such as property characteristics. It was further concluded that measures

of fuel poverty would greatly benefit from the inclusion of customers geographic

location too.

In the study of Moore (2012), variables on tenancy have shown a correlation

with fuel poor indicators. It was observed that private rental sector or housing as-

sociations residents tenants are more likely to be fuel poor due to greater house in-

efficiency. Furthermore, it was reported that approximately fifty per cent of all fuel

poor households in England were elderly, singles and couples, while seventeen per

cent of the fuel poor are those with children. In addition to that, paper of Legendre

and Ricci (2015) estimated the scale of fuel poverty in France using different defi-

nitions of the phenomenon such as issues related to income or energy inefficiency.

Using various econometrics models authors have found that the greater probability

of being fuel poor highly related to customers being retired, living alone, rent their

home, cook with butane or propane or have poor roof insulation. These variables

may thus be no less important for designing a fuel poverty metric.

Middlemiss and Gillard (2014) have provided a further contribution to research
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on fuel poverty and understanding of what the main drivers of energy vulnerability

are, specifically for the UK population. They performed a qualitative study, results

of which have shown that among other factors, energy costs, health, social status

and income stability may impact the risk of being fuel-poor.

2.4.2.1 Urban and Rural

To add on this, work of Roberts et al. (2015) emphasised that the differences that

may be observed in fuel poverty across the UK can be explained using urban and

rural comparison. When looking into predictability of energy consumption in more

detail later in the thesis, this distinction will become more apparent. While research

often tends to suggest that rural areas are more associated with fuel poverty because

of the structure and the character of rural housing stocks or limited connection to

the grid, fuel poverty in urban areas tends to be more persistent and has lasts longer

on average than in rural areas. Often, this may be caused by the fact that rural fuel

poverty may be easily fixed with efficiency measures such as insulation or boiler

replacement. In urban areas, on the contrary, fuel poverty tends to be associated

with income which may be harder to modify at least in the short term, yet can be

somewhat addressed with the introduction of financial support by energy suppliers

(i.e. the Warm Home discount).Nevertheless, to support the claim that rural house-

holds are also likely to be fuel poor, researchers have shown that the fuel poor in

rural areas are more sensitive to changes in energy prices. The authors suggested

that monitoring how fuel poverty changes over time is vital if we are interested in

the effectiveness of targeting the fuel poor and ensuring that policy goals for fuel

poverty reduction are achieved (Roberts, 2008). To support Roberts (2008),Walker

et al. (2012) performed an area-based study on targeting fuel poverty in Northern

Ireland. Significantly clustered areas were recognised using the Moran’s I coeffi-

cient of spatial autocorrelation. The majority of those at high risk of fuel poverty

were identified, as may be expected, in rural areas (Walker et al., 2012). Besides, it

was noted that there is higher variability of risk of fuel poverty among smaller geo-

graphical areas (i.e. at neighbourhood level). Low risk neighbourhoods may be part

of a broader high risk area and vice versa. This could be due to there being different
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concentrations of households in adverse circumstances in smaller areas (e.g. a larger

number of the elderly in privately rented accommodation). The authors have thus

emphasised that it may be important to focus on studying the demographic outliers

as well as considering a more holistic methodology to study energy consumption.

Shared engagement in this process by different sectors may offer more possibilities

to aid the policy implementation strategies through data sharing, for examples see

Walker et al. (2012).

2.4.3 Summary

To summarise this rather brief but nevertheless relevant fuel poverty discussion, it

is important to consider a trade-off between understanding and modelling individ-

ual circumstances and the wider political implications of fuel poverty analysis. As

pointed out by Hills (2012a):

‘With any practical approach to tackling fuel poverty there will be some house-

holds who are assisted that do not come into a strict definition of what fuel poverty

means. In reality, policies have to have a broad spread and cannot be designed to

adhere narrowly to precisely drawn boundaries.’ (Hills, 2012b)

The above has been widely supported by current research findings. Moore

(2012) similarly contends that actual expenditure is a poor indicator to use. In order

to estimate the required expenditure one needs detailed knowledge of the housing

stock, and its energy efficiency, as much as these are needed for explaining any

pattern of energy use. Hills (2012a) argued in favour of collecting this informa-

tion, emphasising that it is important to ensure that all households are comparable.

Equalising households and standardising the data means putting energy users on

the same scale by taking into account the different energy service needs for differ-

ent household sizes 1. While sounds straightforward, to achieve such equalisations

is no less challenging than explaining what contributes to an individual energy use

patterns. This section and the preceding one aimed to highlight the overarching

1The OECD has a standard rule for equalisation, where the first adult in the household counts as
1, any additional adults count as 0.5 and children count as 0.3. This formula takes into account the
fact that there are economies of scale of having more than one person sharing a household. That is,
two people consume less than twice as much as one single person.
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complexity associated with classifying energy use and defining various customer

groups, for instance those who are fuel poor.

The next section will turn to the methodological debate. Given the pressing

issues presented by the field of energy research, the next question to ask is how

smart meter data can fill the gaps in the current research and give both governments

and energy company analysts more tools to analyse energy use with more certainty.

As will be shown, much of past research has dedicated attention to load profiling and

customer segmentation as a stepping stone for suggesting how various individual

circumstances may be explanatory of diversity in energy use.
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2.5 Methodology for Smart Meter Data

‘Life is really simple, but we insist on making it complicated.’

- Confucius,

The past decade has seen a notable expansion of smart meters across the Western

world. This has led many researchers and industry practitioners to develop and sur-

vey a vast number of analytical tools that could help in segmenting smart meter

big data; use it for forecasting of the energy load as well as for designing strate-

gies to compress the data so that larger amounts of real time data can be analysed.

The main target behind these methodological advances is certainly oriented around

leveraging as much value as possible from the available data, thus aiding demand

side management practices and assisting achievement of energy efficiency targets,

which include support for energy vulnerable customers. Smart meter data, when

available in large volumes, can be described as complex data, yet this does not

necessarily imply that the most complex and advanced methodology is required to

analyse it. This section will review the methods and techniques that are thought to

be useful or were applied in the past to generate insights from smart meters. It will

be argued that a compromise between advanced methodology and interpretability

needs to be taken into account when choosing the right approach to study this data
2.

To draw on widespread ambitions to analyse and produce value from smart

meter data, a summary of smart meter focused analytics initiatives from across the

world are presented in the Table 2.2, partially adapted from Wang et al. (2018).

2This part of the chapter mostly sets the background for Chapters 5,6 and 7. The overview of
applications directly related to the methodology used in the thesis will be presented in the corre-
sponding chapters
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What Where
National Science Foundation(NSF) USA
CITIES Innovation Center Denmark
The Bits to Energy Lab ETH Zurich, University of Bamburg,

University of St. Gallen
The Siebel Energy Institute Global
National Science Foundation of China
(NSFC)

China

Energy Institute UK
ESSnet Big Data Europe (Austria, Denmark, Estonia,

Sweden, Italy, Portugal)

Table 2.2: Smart Meter Data Analytics Initiatives Adapted from Wang et al. (2018)

The ‘elephant in the room with smart meter data research is the lack of attention

paid to processing the big data arriving from smart meters. Most of the studies,

as will be shown, base their work on small samples. In addition to that, the data

remains unintegrated with other time series data that could enrich the analysis of

spatiotemporal energy patterns (Wang et al., 2018).

Given the above, the analytical techniques that are developed to study smart

meter data as big data can be divided into the following streams: (a) outlier/missing

data detection ; (b) load profiling ; (c) load forecasting and (d) data reduction. This

chapter will revise each briefly. Some other, more narrowed streams of methodolog-

ical research on smart meter data consider issues such as uncertainty and variability

as well as understanding the nature of the data generation process that hides behind

smart meter data. More details on applications will be given in the subsequent chap-

ters when implementation of various load forecasting, profiling and data reduction

techniques will be applied to the data.

2.5.1 Clustering and load profiling

Clustering and data segmentation methods can be handy for reading energy load

when there are cases of missing data and where one is interested in identifying en-

ergy theft. Other and, perhaps, more common uses of clustering methods are mostly

dedicated to characterisation of the load profiles such that various energy consump-

tion behaviour can be segmented or classified. These methods can be further di-
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vided into directed and indirect clustering approaches. The latter refers to cases

where data reduction or transformation techniques are applied to the data prior to

clustering which can contribute to the reduction of overall complexity of the mod-

els used. Some common examples include Principal Component Analysis (PCA)

as in Koivisto et al. (2013). The former considers direct clustering of the data in its

raw form. This will be considered in Chapter 4, which focuses on direct clustering

analysis of smart meter data. The motivation behind the use of a direct clustering

approach is the importance of the ability to trace back easily to the raw data, espe-

cially if such analysis is performed on energy supplier premises. Some of the most

popular methods used for direct clustering are k-means, hierarchical clustering and

a Bayesian non-parametric approach, the Dirichlet Process Mixture Model. These

three were applied and evaluated in Granell et al. (2015) in the context of electricity

energy load.

Whilst direct clustering is considered more popular, some potential problems

associated with it were outlined by Wang et al. (2018). One of the most impor-

tant things to consider when deciding between a directed or indirected clustering

approach is the resolution of the smart meter data. For data that has a resolution

of minimum 30 minutes, a direct method approach may be appropriate. This may

also be because smaller activities over such a period (i.e. boiling a kettle) will be

summarised. For cases where more granular time intervals are present, say 1 minute

or even 15 seconds, an indirect approach may do a better job. Using various fea-

ture transformation techniques prior to clustering such as Fourier transformations

or simple PCA may help to reduce rather noisy information and focus on average

uniqueness of profiles whilst reducing the complexity of the overall dataset. An

alternative way of reducing data may be through splitting the data into chunks of

time periods that can then be analysed separately. For instance, a researcher may

look only at peak hours consumption.

Overall, while there is certainly a vast choice of methods to perform load pro-

filing, an important distinction needs to be made between stored and streamed smart

meter data. Most of the past work was performed on stored smart meter data and
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this applied to both academic and industry researchers. This also applies to the re-

search performed in this thesis. The reality is however, that for the best leveraging

of the data, streaming data analysis is far more in demand. Using distributed cluster-

ing and various incremental clustering methods may address this type of problem.

Clustering methods such as deep embedding clustering (Xie et al., 2016) may be

tried out on larger chunks of streaming data. This method can then compared to re-

sults of other clustering methods using various indicators such as Silhouette Index,

just to give an example of a few that were presented in paper by Zhang et al. (2012).

According to Wang et al. (2018), there is a still a large gap in the literature on how

to select the most useful features from data reduction tasks prior to any clustering

being carried out. An attempt to do just that will be presented later on in the thesis,

when it will be turned to the application of wavelet analysis on smart meter data.

Last but not least, an important area of methodology for smart meters is out-

lier data classification. Outlier and missing data detection or bad data detection is

certainly one of the preliminary stages of any data analysis that involves observa-

tional data. By grouping the patterns using various measures to minimise the simi-

larity within the group and maximise dissimilarity among the energy consumption

groups, one may identify such behaviours. An example of methods for both offline

and online data cleaning can be found in the work of Peppanen et al. (2016). They

perform their analysis under the assumption that the smart meter load data can be

characterised by the neighbourhood data points and their combination. This is sim-

ilar to the Autoregressive Moving Average Process (ARIMA) commonly used for

time series. Extensions of this such approach can be seen in Akouemo and Povinelli

(2017), Li et al. (2010) and LUO et al. (2018).

2.5.2 Recent applications

Examples of some current application of clustering used for smart meter data can

be found in Chicco (2012) who has provided a comprehensive summary and com-

parison of the clustering approaches that can be applied to smart meter data. These

applications targeted not just a group of customers, but thought to identify further

types of customers ( for instance customers that are suitable for tariff modifications).
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Such direct classifications may have a potential to contribute towards meeting en-

ergy efficiency goals. One of the most common suggestions is the segmentation of

customers by type of activity and commercial characteristics. It could be extended

to include some quantities of electricity measured by, for example, annual activ-

ity, power factor and utilisation level. Models that include weather characteristics

could also be included separately. Such was also considered in Beckel et al. (2014).

Their study provided an extensive analysis of smart meter data for 4,232 house-

holds in Ireland over 1.5 years. The feasibility to use combined supervised machine

learning and multiple regression analysis was shown in attempt to reveal various

energy customer characteristics. High prediction accuracy was achieved for more

than seventy per cent of the data. Beckel et al. (2014) main suggestion is that such

combined method may be transferable to all smart metering systems with similar

data magnitude and structure.

In addition to this, the work of McDonald et al. (2014) and Sánchez et al.

(2009) used half hourly smart meter data on electricity that have provided a good

foundation for the analysis of overall trends among different customers. They use

Fourier analysis, self-organising maps, and various clustering methods for overall

results comparison. A very clear customer segmentation was shown based using

the typologies of high usage customers, low usage customers, business customers

and minimal users. This confirmed the feasibility of observing expected trends in

peak hours and showed a clear differentiation in consumption patterns among seg-

mented types. Cao et al. (2013) for example, further used peak time classification

to define customers from 4,000 Irish households that were most suitable for energy

campaigns. According to the author, using k-means clustering was sufficient for

clear customer segmentation. Kwac et al. (2014) extended such analysis by us-

ing different feature extraction that served as a base for segmentation of customers

by lifestyle and consumption behaviour. They performed an extensive analysis by

using both k-means and hierarchical clustering which was further extended to mul-

tidimensional segmentation based on quantity and variability of consumption.

Silipo and Winters (2013) used electricity smart meter data, also from Irish
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households, and business recordings to provide a reliable prediction model of power

shortages and surpluses as well as contribute to targeting mechanisms for finding

customers who could be subject to different contract offers. Clustered data was

used in an autoregressive time series model to predict future consumption consider-

ing the past trend. Similar to McDonald et al. (2014) the authors showed the effects

of weekly and 24 hour seasonality. Most of the clusters showed significant differ-

ences in consumption during weekdays and weekends as well as for mornings and

evenings. This approach was further expanded in Oates (1999) and Liao (2005)

who showed the application of various time-series clustering techniques to smart

meter data. The work of Liao (2005) in fact will be crucial to set up the methodol-

ogy design in this thesis given the distinctive complexity of the time series structure

presented in the sample in this thesis compared to those that were seen in the past

work.

Figure 2.4: Energy load profiles of a UK average households Source: Yao and Steemers
(2005)

Yao and Steemers (2005)have further developed energy consumption profiling

by adding the dimension of UK housing typologies and household size. These are



2.5. Methodology for Smart Meter Data 71

flats, semi-detached, detached and mid-terraced properties. Controlling as well for

the type of the ownership and average of energy consumption loads they profiled

randomly generated data on daily energy consumption, using a hundred artificially

created households and providing the results on a regional level.

The validity of the results was confirmed through a comparison with national

statistical data. Six distinct profiles (Figure 2.4) were defined based on the occu-

pancy of the household space, from which researchers could further infer the em-

ployment characteristics of the members of household, such as full-time or part-time

work for example.

In addition to the above, a further contribution to clustering methods was pro-

vided in Oates (1999) and Liao (2005) , who considered surveying different time-

series clustering techniques applied to smart meter data. This was particularly use-

ful for identifying various groups of customers that could be targeted for efficiency

measures and also in our case, for the provision of support to vulnerable energy

customers. For energy suppliers, it is also important to understand the difference

in the services they may present to different customers, which could improve their

heating environment. For example, it is valuable to differentiate between the tar-

iffs that may be suggested for elderly and disable customers vs families or young

sharers.

2.5.3 Forecasting individual use and energy demand

Load prediction and forecasting are some of the most topical methodological appli-

cations being used on smart meter data, mainly in industry, and is being pushed to

the very cutting edge due to suppliers interests in becoming more efficient and more

competitive, whilst also meeting their regulatory requirements of accurate forecast-

ing of pressure on national grids. The importance of forecasting energy demand is

not underrated as it helps both suppliers and countries regulators manage their im-

ports and exports of energy resources effectively. The majority of the work available

to date considers high voltage forecasting (i.e. city, country or grid network levels).

The preference is given to high voltage level analysis due to lower volatility and

sensitivity of individual customer choice to overall load. This doesnt mean however
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that individual customers decisions arent important for accurate prediction of high

voltage energy load. It is the difficulty of modelling the uncertainties and volatil-

ity that is an obstacle. Each customer needs to be studied individually within any

methodological framework such that their personal shifts and energy consumption

behaviour are taken into account. As was seen from the first part of this chapter,

each energy customer may have a unique response to factors that include but are

not limited to weather change and electricity and gas price fluctuations.

Smart meter data, especially the data that is available at a resolution of half

hour or less, can push the accuracy of load forecasting much further, not just at the

aggregate and high voltage level but at a very granular, individual user level. This

can be useful for the alteration of energy consumption at the individual level (i.e.

reducing peak time load) and for alteration at national grid level (i.e. design of new

batteries to meet the peak times pressure). As was noted by Wang et al. (2018)

depending on which level the forecast in needed, different set of approaches may be

used.

Yet, it is important to note that prediction models based on machine learning

have received only limited attention in the literature on customer classification. No-

table exceptions are those that focused on using energy consumption data to classify

the types of appliances that are used by UK households Lines et al. (2011). Other

studies, for example those by Yu et al. (2010), Lee et al. (2012) and Haghi and

Toole (2013), looked instead at energy consumption point prediction using machine

learning methods. As an example, Haghi and Toole (2013) looked at 6,000 smart

meters in Ireland and showed the feasibility of using the Levenberg-Marquardt Neu-

ral Network algorithm with twenty hidden layers for time-series consumption pre-

diction. Lee et al. (2012) used thirty hidden nodes with five input nodes for one

output, which is the electricity consumption in the next period. With a prediction

error of less then 0.2 they were able to achieve high accuracy in prediction using a

neural network model. Lastly, Yu et al. (2010) compared neural networks and de-

cision trees in application to determine energy consumption in Japanese residential

data. They suggest that the decision trees may be a better predictive model from
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the point of view of interpretation when compared to neural network. Yu et al.

(2010) achieved around 94 and 92 per cent accuracy for the training and test subsets

respectively. This is something that will be aligned with the results presented in

the thesis. After surveying various predictive methods in Chapter 4, and also for

classification of patterns in Chapter 6, the tree methods significantly outperform a

number of other methods that were used in the experiments.

Some of the work that has been done on energy use point prediction offers a

useful variety of methods. One of them could be a Bayesian approach with prior

information. This was used by Hsiao et al. (1995) for a sample of 347 households,

in a study that demonstrated the possibility of using prior information formed from

the means and variance of past consumption to predict future energy consumption.

Some of the most recent applications that are available for energy consumption

prediction using smart meter data are available in Taieb et al. (2016),

2.6 Summary and Conclusions

This chapter has provided a detailed review on the research that is available to date

and that studied energy consumption from both causal and methodological perspec-

tives. The first section has reviewed the work that studied various factors that may

explain variability in energy consumption at a residential customer level. This sec-

tion highlighted how challenging it is to infer in practice why one customer may

differ from another in terms of their energy use. Some of the important impli-

cations for the public and social policy agenda in the UK, such as understanding

how fuel poor customers may possibly be identified from energy consumption, was

also reviewed. The second part of the chapter was dedicated to methodological

challenges and recent work that considered development of methods for identifying

outlier behaviours in smart meter data, load profiling and load forecasting as well

as various data reduction methods. As was shown, the past ten years have been

marked with the increasing availability of smart meter data to researchers in engi-

neering, computer science, statistics and operational research fields. This has led to

more than 200 academic papers in methodology and data analytics for smart meters
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being produced from 2010 to 2017 (Wang et al., 2018).

While this certainly shows a richness of work that has been done with smart

meter data, one of the immediate limitations and gaps remaining is the lack of stud-

ies that consider big data: most of the research available to date tends to be per-

formed on small samples. This creates limits on anticipation of variability in con-

sumption across populations as well as issues with missing data and outliers that

can be more variable once a larger dataset is taken into account.

2.6.1 Variability of energy use

The preceding discussion on factors that affect variability in residential consump-

tion has demonstrated that energy consumption may be affected by quite a few

determinants. Some of these can be easily quantified, such as weather, household

size, life stage or income. However, some of them, while they have the potential to

explain high heterogeneity in energy dynamics, are quite hard to present in numer-

ical form no matter how advanced the methodology used for energy data analysis

is. These are the cultural and social environments, lifestyles and habits of the cus-

tomers under consideration.

To complement the description provided in the chapter, one could also consider

a summary of the main variables involved in the energy consumption dynamics pre-

sented in Steemers and Yun (2009) (Figure 2.5) that usefully describes the interac-

tions and also potential channels for hidden causal mechanisms. . It also shows us

that it is the interactions between the various factors that result in unique tempo-

ral profiles; household characteristics in interaction with property types, appliances

used and weather tend to affect energy consumption dynamics.

From a methodological point of view, this chapter has shown that despite only

the recent and yet limited availability of smart meter data, the number of methods

in place to generate insightful findings appears to be quite overwhelming. Mostly

developed on rather smaller data samples or data of similar structure these methods

can offer both industry and academic analysts tools that can help classify the energy

load, forecast future energy use as well as provide a solid framework for finding bad,

outlier data as well as identifying energy theft. Some further developments are still
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required to be considered for big smart meter data and streaming data.

Figure 2.5: Path diagram and variables interactions in affecting energy consumption
(Steemers and Yun, 2009)

As was seen in this chapter, it became more and more apparent that the con-

sumption environment and the infrastructure for the energy services provision play

a very important role. This may also be particularly useful when one is attempting to

define the factors that may contribute to fuel poverty on an individual or household

level. Although, while this may sound straight forward at first, a number of method-

ological developments need to be considered for incorporation of multiple factors

simultaneously. For instance, one may consider graphical models. Due to limita-

tions with the data available for the work in this thesis, this can only be considered

as a direction for further work, hopefully to be picked up by other researchers.

In this thesis, the main contribution to the above gaps and challenges is given

through understanding how much the time can explain ones energy use. Smart

meter data, when available at high granularity (half hour) for a long enough time

period and with greater spatial diversity, may tell a story about energy consumers,

their unique habits, activities and even lifestyle. This thesis aims to investigate how
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much smart meter data can offer in cases where there is no additional information

about customers, something which can be quite common on both energy company

premises and within governmental bodies.



Chapter 3

Data

3.1 Introduction

Energy consumption data recorded by smart meters is an example of highly vari-

able spatiotemporal data that inherits not just the micro dynamics of an individual

consumer but also the macro affects that may correspond to patterns affecting the

countrys population at large, such as climate and weather as well as socio- eco-

nomic macro variables like the average income or proximity to large cities, to name

a few. Smart meter data can thus be treated as an important ingredient of any com-

plex system designed to manage micro and macro environments of not just energy

consumption but also those systems that support population dynamics as a whole.

Whether it is the design of more efficient batteries driven by an understanding of

the pressure on the national grid at peak hours, or an investigation of the inequali-

ties among individuals mirrored in their energy consumption load, smart meter data

offers tremendous opportunities to study individual variability of consumption in

depth on both a national and individual scale. There is a widespread optimism in

regards to the potential insights smart meter generated energy data may provide

among the research community and industry practitioners alike (Anderson et al.,

2017; Newing et al., 2016; McKenna et al., 2012; Hargreaves et al., 2010).How-

ever, one of the reasons why these advantages are still in the process of being oper-

ationalised is the complexity of the smart meter generated data, or big data, given its

nature and more obviously, its size. This chapter will look at the data and various
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ways in which to describe it, given its volume and its associated issues. Overall,

as it will be observed, the complexity that a researcher may be willing to accept or

sacrifice will largely depend on the research questions one has in hand and on the

desired level of generalisability an investigator would like to consider.

3.1.1 Structure of the chapter

Prior to proceeding to generation of any insights from the data, an important note

must be made on the distinction between data and information. It is useful to use

the Witten et al. (2016) definition which refers to data as being in large part the

information in its raw form, represented primarily by a set of facts. Information

in turn, can be characterised as a system of patterns, relationships and expectations

derived from the data. Accepting these definitions, the process of turning the raw

data of energy consumption into useful insights about energy consumers may not

necessarily produce one single answer. This chapter introduces simple data descrip-

tions and addresses their associated limitations. Both data samples analysed in the

thesis are presented along with descriptive statistic measures. The unit of analysis

and sample selection for the study will be discussed in more detail, mainly to ex-

plain the motivations for choosing various sub samples that can be used for further

exploration and the experiments in the remainder of the thesis.

The thesis is based at large on the analysis of two main datasets that are anal-

ysed more closely in this chapter and one supplementary one which will be de-

scribed in more detail in Chapter 6. The first dataset consists of aggregated readings

at the national level using postcode sector geography, while the second presents the

recordings at the individual level but uses only the City of Bristol region and Census

Output Area as a geographical reference. Time resolutions remain the same for both

datasets. There are 48 daily half hour readings that span across the years 2014 and

2015. In this chapter, a description of the national dataset is followed by contextual

motivations for sampling of big data and a discussion on how a smaller sample of

data from Bristol, for instance, may be used as a representative case of the wider

population. Various approaches to visualising smart meter data will also be pre-

sented. The main motivation of this thesis section is in fact to explore and exhaust
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as much as possible the opportunities that are available to describe the smart meter

data before moving on onto more advanced techniques that are designed primarily

to generate very narrow and specific insights from this data.

The chapter begins with a basic analysis using simple measures of variability

in the data such as average, standard deviation and range. The main reason for such

specific choices is that they can be mapped and compared on a national scale. In

fact, for the sake of interpretability, when using mapping as a tool for data descrip-

tion, simplicity may be preferred as there is a large amount of data and it would be

best to avoid overwhelming the reader with over complicated graphics. This chapter

will focus partly on how temporal data description using descriptive tables may be

complemented with the visualisation of the spatial distribution of the data points.

The remainder of this chapter is organised as follows. Some simple visual-

isation of smart meter data patterns will be presented in the next section where

examples of various approaches that can be taken to analyse smart meter data will

be provided. The national sample will then be discussed using spatial and tem-

poral dimensions in Section 3. Similar analysis will be performed for the Bristol

data case which is available at slightly greater geographical resolution although the

temporal granularity remains the same. In Section 4, each of the samples will be

further accessed for heterogeneity within and across the units of analysis. It may

appear that the analysis in this chapter is rather basic, yet it is important to remind

the reader that the purpose of this section is to determine how much insight the

conventional methods of data exploration may offer at this stage. A bottom up

approach will be used to assess the usability of descriptive measures of data such

as mean, standard deviation or geographical location. The aggregation of the data

points here is inevitable, either at geographical or temporal scale or both. This will

also be considered in more detail with additional attention given to the limitations

and advantages associated with different scales of aggregation. Opportunities for

linkage of smart meter data with administrative data sources will follow in Section

3.7. This will be complemented with a discussion of ethical and legal constraints

that significantly affect the resolution of datasets available for this research. As a
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reminder to the reader, that simplicity and interpretability are the ultimate goals of

any data analysis: the last section of this chapter will be dedicated to the evaluation

of the presented descriptive analysis , its usefulness, associated limitations and mo-

tivation for using slightly more advanced techniques that will be employed later in

the thesis.

3.2 Smart Meter Data

As was seen from the literature review, smart meter data has received attention from

various fields such as engineering, mathematics and statistics, geography and po-

litical science. What makes this data a distinct and rich source for social science

is the fact that is available at half hour temporal resolution, always presenting the

complete consumer records pertaining to fixed locations. Such data can be valu-

able for various applications that include analysis of social behaviours, activities,

economic well-being, effectiveness of policy intervention, the evaluation of effec-

tiveness of energy efficiency measures and many more. The granularity of data and

the completeness are quite unique features as generally consumer data is not avail-

able at such a continuous scale as consumers and individuals tend to move from

one supplier to another. With energy, unless the smart meter user has switched en-

ergy provider, the records of consumption will represent their journey through time

without any interruptions or temporal gaps.

Overall, smart meter data presents a fine temporal granularity. In this thesis,

half hourly readings are considered, yet smart meter data can also be available at

1 minute intervals or even a second. In terms of spatial granularity, data is in the

acceptable format to be linked to other administrative sources, be it the postcode

level or Census Output Area, depending on the granularity at the source there are

possibilities for linkage to study how representative smart meter data is in terms of

general population data.

Where readings are available , the researcher can be certain that those directly

represent the smart meter user and not anyone else. This is contrary to loyalty card

data for instance as those may be borrowed/lent. This thus makes smart meter data



3.2. Smart Meter Data 81

a major source for spatio-temporal data mining that may reveal valuable insights

into population dynamics and activities.

3.2.1 Unit of analysis

Change is always taking place - unnoticeable, rapid, large or small (Gibson, 1979).

However, most processes tend to exhibit controlled, rather than unstable, variation

across space and time. Understanding what is stable in terms of energy consump-

tion habits, for example, may enable us to see what is changing with respect to those

static elements. Smart meter data may offer the potential to track changes and infer

potential factors contributing to them. Unlike the positivist theories of spatiality,

such as those of Johnston et al. (1996) , where time is held constant and ratio-

nal individual behaviour assumed, smart meter data allows us to look more closely

at anomalies and incorporate more dimensions that may arise from various con-

sumption environments, which emerge due to unique characteristics of individuals

living in different places, different climates, housing conditions or having distinct

lifestyles. All of these will contribute to daily, weekly, monthly and seasonal varia-

tions in consumption. And it is with these other factors in mind, that the experiment

with samples of different temporal and spatial granularity are presented in the thesis.

As a consequence, in the case of smart meter data, the question of unit of

analysis may be posed in both temporal and spatial contexts. For instance, the time

interval chosen as a temporal unit may play as important a role in the final analysis.

One may consider to analyse separately daily and nightly consumption or focus only

on peaks in consumption. Readings of energy consumption aggregated spatially, for

instance at postcode level, will also imply a modification to the unit of analysis. This

is quite handy if the data needs to be reduced in size and more targeted insights can

be obtained. One way of addressing this, is to create chunks of time intervals that

reduce say, 48 dimensions to five by splitting the day into five components, one of

them being late night (after midnight) and the other four representing morning peak

hours, midday, evening peak hours and midnight.

Generally speaking, the choice of aggregation is largely driven by the use of

the output we are interested in. When looking at national patterns, units of analysis
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are usually aggregated at the postcode sector level and thus only associated with the

geographical reference of that sector. Similarly, when analysing differences in con-

sumption among Census Output Areas, Output Area is taken as the unit of analysis.

However, in order to understand individual dynamics and the uniqueness of energy

consumers behaviours on average, the individual smart meter data is used as the unit

under study. With the sample analysed in this thesis there is no available data on

the size of household or building type associated with smart meter users, there is an

associated uncertainty regarding whether the smart meter and its data correspond to

a single household or a number of households that reside within the same building

(i.e. student halls of residence). Furthermore, with obstacles arising from the sam-

ple size and spatial resolution, there are limitations with how this smart meter data

compares with recent census data. Thus, an additional degree of uncertainty about

the number of individuals living in a household exists when it comes to smart meter

data. This is what partly motivates the final definition of the unit being smart meter

user with all the uncertainties associated around this measure. Some assumptions

thus may need to be made when referring back to the consumer about the insights

generated from the data. To take an alternative view, the unit of analysis may also be

represented by a set of attributes of consumption. For instance, high consumption

or low consumption users defined by a specific numerical threshold can be grouped

together and studied as a unified object. Temporal dimensions can also be used as a

unit of analysis, for instance the data can be grouped by seasons. A spatial approach

can also group the patterns for instance using threshold of urban/rural regions. This

thesis will be looking at various ways to both group and desegregate smart meter

readings. It will be observed that depending on the choice of unit of analysis, very

different insights can be generated from the data.

3.2.2 Ecological fallacies

It is vital, at least briefly, to discuss the potential threat to validity of any inferences

that are made using spatio-temporal datasets such as smart meter readings. One of

the most common cases of ecological fallacy is to assume that a population average

holds information about the likelihood of an individual in that respect. For instance:
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if it is found that the average income in the UK is 20 thousand a year, it is wrong

to assume that each individual in the country has an equal chance of earning this

salary. This can similarly be observed when studying correlation on aggregated and

individual levels. More formally, it can be shown that correlation on an aggregated

level is different from the correlation observed on an individual level (Piantadosi

et al., 1988). The above is formally relevant when smart meter data is being stud-

ied at an aggregated level, for example in postcode sectors or various regions, or at

an individual smart meter user level. The inferences should be made accordingly.

Studying the population at large tells us little about unique variation of energy con-

sumption and, vice versa, a study based on individual smart meter users may not

necessarily inform us of general population trends.

3.3 Simple Smart Meter Data Visualisations

There are a number of ways in which smart meter data may be visualised and treated

with respect to its spatial and temporal dimensions. For instance, taking the exam-

ple of one single user, we may see that consumption may be either analysed using

one specific unit of time, say 6am consumption load across the whole year or, alter-

natively, by looking at subsequent readings instead. The motivation for which time

point to choose will be discussed in more detail when the methodology of this thesis

is considered. Examples of different lenses with which we can look at the data of

energy consumption records are presented in Figure 3.1. The figure illustrates the

two to represent the time series sequence for energy data: (a) the intra-day con-

sumption(i.e. how does energy usage depend on hour of day) ; (b)the inter-day

consumption (how does usage vary across days) .

If we take the intra-day consumption (red colour), it would tell us how energy

consumption varies across the day as times moves forward. This example is pre-

sented in the figures below. This is a conventional method to present energy use

using smart meter readings as it is highly intuitive and gives an overall idea of how

unique the consumption profile is. The example of profile that may be available at

half hourly resolution is presented in the Figure 3.2.
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Figure 3.1: Two ways to represent the time series sequence for energy data: (a) red colour;
(b) blue colour

This is an example of a rather typical profiles, double peaked at morning and

evening time intervals. Such a profile is highly likely for a smart user that can

be described using full time employment characteristics (i.e. someone who leaves

home in the morning and comes back around 5-6pm). To illustrate an alternative

example, with activities being present throughout the day, please see the Figure 3.3

The explanation for the difference using full time employment is suggested

only as an assumption. Most of the potential reasons that profiles may differ remain

inconclusive till validation can be performed using other data attached to the smart

meter. While this is something which may be achieved at energy supplier premises,

the ethical considerations of academic research ensure that such details cannot be

obtained for individual users. This certainly raises discussion about privacy and

confidentiality of smart meter users. More details on this will be given in the final

section of this chapter.
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Figure 3.2: Example 1: 48 half hourly profile of energy use
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Figure 3.3: Example 2: 48 half hourly profile of energy use

3.3.1 Importance of ’good’ visualisation

As was greatly acknowledged by Goodwin (2015); Jarrah Nezhad et al. (2014),

data visualisation tools hold significant potential for energy consumption analysis

for both energy providers and consumer households. Examples of such use could

include providing the consumer with a simple visualisation of daily consumption on
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the smart meter screen, known as consumption feedback, as well as offering energy

provider analysts a large aggregated dataset of regional energy consumption. The

power of visualisations of smart meter data should not be underestimated as they

can offer an efficient and quick way of presenting data as well as communicating

the information extracted to research communities in various fields without getting

into much technical detail. In terms of spatial data and public policy research, the

way in which data is visualised is vital as often the consumers under investigation

and the ways in which they are geographically clustered is key. Maps and geogra-

phy based visualisations of the smart meter data then provide policymakers with a

clearer idea of the areas that need to be targeted and their boundaries As was sug-

gested by Goodwin (2015), while visual technological improvements are evident

for individual users, for example in the case of the smart meter and various web ap-

plications that help consumers evaluate data on their energy usage, there is a lack of

visualisation tools that can be used by energy suppliers. This thesis seeks to fill this

gap and provides an overview of various techniques that may be useful in organising

and grouping the data from an energy provider perspective. As will be presented

in this chapter, more conventional methods such as deriving mean or median con-

sumption of energy consumers contain little representative power on a larger scale

and tell us only a fraction of the information collected on various energy consumer

groups. Smart meter data are highly variable and the coverage includes both data

of a high temporal resolution (half hour for each day of the year) and spatial reso-

lution (postcode sector). There are several ways in which the descriptive statistics

of these data can be presented. Depending on the question one aims to answer, and

the granularity of the outcomes under consideration, different angles can be used

to visualise the central tendency and variability measures in the dataset. Thanks

to developments in software such as QGIS and R, it is easy to provide quick and

reproducible research tools to visualise and analyse smart meter data. Such visuali-

sations will begin with a very simplified approach that allows one to look at annual

half hourly average consumption per postcode sector. Such an approach captures

the overall variability in the dataset and the range of the values one is dealing with,
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as well as considering any spatially dependent regions that share similar values.

Such a method, in general, is highly useful for initially, defining outliers as well as

motivating the detailed analysis of a particular case study sample. An example of

descriptive statistics for national scale aggregates are presented below. The mean,

standard deviation and range of data variation in each half hour are computed for

each postcode sector using data from the smart meters from households with a com-

plete annual record. Once the bounds of the data sample are defined, the variation at

each half hour at each postcode sector was aggregated and then the variation among

half hour aggregates is analysed. Both gas and electricity variability will be mea-

sured in the remainder of the chapter. Overall, the goal is to devise methodology

that can be easily applied to data arriving from both sources. Please note that mainly

different hues of red will be used to describe the magnitude of gas consumption and

hues of green to map the spread and intensity of electricity consumption. Neutral

maps, that describe the counts of smart meters for instance will be presented using

yellow-blue (national sample) and blue (Bristol sample) hue palettes.

3.4 National Sample
The first sample which will be considered for the analysis in this thesis is the na-

tional sample of smart meters available at the Postcode Sector level, year 2015. This

section will describe the dataset from both temporal and spatial perspectives. It is

important to remind the reader that this research is the first attempt to study smart

meter readings at such magnitude. Limitations and challenges associated with tem-

poral and spatial resolution in the dataset are still to be observed and found. Some

of them will be unlocked in the following sections 1.

3.4.1 Overview of the dataset

The national dataset of smart meter data that is used for the analysis in this chapter

is held by the Consumer Data Research Centre (CDRC) and was sourced from one

of the UK Big Six energy suppliers. The data contain details of around 1,080,000

1Some of the descriptive analysis presented in this Chapter have appeared in the book chapter co
authored with Roberto Murcio in Longley et al. (2018).
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added up electricity and gas domestic smart meters for the year 2015, which repre-

sents 43% of the 2.3 million smart meters installed by the end of December 2015

in the UK. The spatial granularity is at postcode sector. The broader figures are

shown in Table 3.1 It is important to note that throughout this section, individual

figures on numbers of smart meters and measures are rounded to the nearest hun-

dred. The number of energy users per month is constantly growing as the rollout of

smart meters is increasing from one month to another. For example, in the case of

electricity, 75% of the users were already present in the first quarter of 2015 mean-

ing that these will be the customers records with the full year coverage (Figure 3.4).

Between April and September, less than 5% of the total were enrolled. Finally, in

December around 50,000 users were added bringing the total to 600,000 users with

a smart meter by the end of 2015. We may conclude that the roll out of the elec-

tricity meters is gathering momentum. This was also confirmed by BEIS (2017). A

breakdown for the roll out by quarter of the year is shown below.

Gas

Gas Gas

Gas

Electricity Electricity Electricity Electricity

Jan-Mar Apr-Jun Jul-Sep Oct-Dec

Figure 3.4: Number of smart meters that we added at during Q2 to Q4 to baseline in Q1,
2015
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Type Number
of meters

Number of Postcode sectors
with at least 10 meters installed

Meters per
Postcode sector

Mean Median
Electricity 600,000 8,000 70 60
Gas 480,000 7,500 60 50

Table 3.1: Gas and electricity counts the number of postcode sectors with at least 10 smart
gas or electricity meters in Great Britain as of December 2015.

Descriptive Statistic Electricity Gas

Average 2,130 kWh 8,480 kWh
Median 1,820 kWh 7,105 kWh
Standard Deviation 1,680 kWh 6,510 kWh
Average (BEIS 2015) 3, 894 kWh 11,707kWh
Median (BEIS 2015) 3,148 kWh 13,202kWh

Table 3.2: Central tendency description The average annual household energy consump-
tion estimated using the national sample compared to BEIS 2015 national esti-
mates.

Region Electricity
meters
(thou-
sands)

% of all meters in
the region in 2015

Gas meters
(thousands)

% of all
meters in the

region in 2015

East Midlands 48.6 2.00% 40.3 2.00%
East Midlands 48.6 2.00% 40.3 2.00%
East of England 47 2.00% 38 2.00%
London 65.9 2.00% 54.6 2.00%
North East 24.7 2.00% 22.6 2.00%
North West 96.1 3.00% 76 3.00%
South East 57.1 1.30% 47.7 1.70%
South West 41.1 1.50% 31.6 2.20%
West Midlands 79.2 3.00% 64.8 4.00%
Yorkshire-Humber 58 2.00% 45.7 3.00%
Wales 28.1 1.80% 18.3 2.50%
Scotland 53.3 1.70% 40.4 2.60%
Total 600 480
% of total smart meters in-
stalled in GB by all suppli-
ers in Q4, 2015

69.00% 75.00%

Percentage of all domestic
meters in 20172

2.0% 2.0%

Table 3.3: Breakdown of smart gas and electricity meters by region.

The average annual consumption for gas and eletricity observed among the

smart meter users in the national sample are reported in the Table 3.2. These central
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tendency measures are compared to BEIS 2015 estimates. As may be note the

average user in the national sample consumes slightly less compared to the BEIS

mean and median.

0 50 100 km

Electricity
Meters per Postcode

Gas
Meters per Postcode

 1 - 24 

 24 - 47 

 47 - 71 

 71 - 97 

 97 - 127 

 127 - 162 

 162 - 205 

 205 - 268 

 268 - 393 

No data

Figure 3.5: Smart electricity and gas meters by postcode sector at the end of December,
2015. These maps show the distribution of smart meters across Great Britain
with the West Midlands and North West regions have the highest frequencies
of meters per postcode sector.

BEIS (2017) reports that despite an acceleration of smart meter roll out, most

domestic properties nevertheless still have traditional meters. It is unlikely to be

the case that roll out by any energy company thus far has been to a random se-

lection of addresses. For instance, some domestic properties can be unsuitable for

meter installation while the needs of disabled customers may pose challenges. The

perceived wisdom is that there is a bias in successful installations towards elderly

people or families. This is driven by the fact that when local installation campaigns

are mounted, representatives are more likely to find households from these groups

at home during normal working hours. It is also important to note that nationally,

around 70% of households will have electricity and gas supplied by the same com-

pany, with 17% having duel supplier, meaning they will have a separate supplier for
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Figure 3.6: Proportion of electricity and gas meters relative to the total number of house-
holds by postcode sector. These maps show the distribution of smart meters pro-
portionally to the total number of households that reside in the regions across
Great Britain

gas and electricity. The remaining 12 % of households will be connected to only

the electricity network (OFGEM, 2015). The geographical distribution of meters

(Figure 3.5 is slightly skewed towards the North West and West Midlands regions,

for both electricity and gas, where almost 30% of the smart meters are installed. In

contrast, Wales and North East regions are underrepresented, accounting for only

8% of the total of available smart meters (Table 3.3). Once the number of meters in

each region are related to the total number of domestic meters, we observe that the

national sample represents only about 2 percent of all domestic meters in the UK.

This is not unsurprising results, given that the years of 2015-2016 are still associated

with the emergent yet continuing roll out of the meters across Great Britain.

According to the Figure 3.5 and Table 3.3, in more than 80% of the Postcode

Sectors, smart meters were installed at between 1% and the 4.8% of the total number

of households. The higher percentages can be found at West Midlands, North West

and the North of Wales. North West, in fact, is second largest region by a number of
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all type meters present, while northern Wales is rather unusually overrepresented in

our sample. As in Figure 3.5, the grey areas represent the sectors with no available

data.

Please note that in these visualisations all the available smart meters are pre-

sented, regardless of the fact that some may not have an annual coverage of records.

For more in-depth analysis in this thesis only the meters with full coverage will be

used. This will slightly reduce the sample yet will ensure that the temporal granu-

larity is uniform across the units of analysis.

3.4.2 Descriptive analysis

The preliminary steps of data description in the previous section have shown how

powerful mapping can be when one is interested in presenting a descriptive sum-

mary of a large dataset such as smart meter data. Spatial dimension of energy con-

sumption and the ability of the researcher to map the descriptive statistics instead

of presenting a table alone, provide an intuitive way to access the variability in the

data to then guide the further choice of a case study that may be based on a specific

region. The illustration of the variation in the consumption using half hourly mean,

median and total range values associated with each source of energy are presented

below (Figures 3.7 and 3.8). The descriptive statistics are calculated by taking the

average across half hourly readings available at annual coverage. By doing so, it

is assumed that the effects of extreme weather in both summer and winter, differ-

ence between day and night, as well as effects of weekends and holidays can be

cancelled out once added together. Thus, the average estimate and the variation

around it measured by the standard deviation should represent an approximate true

central tendency measure for half hourly consumption given the size of the sample.

It is observed that electricity consumption exhibits much greater variability which

is recorded by standard deviation and mean values. However, in terms of the range

of values (the interval between the minimum and maximum consumption), gas con-

sumption is associated with greater overall magnitudes measured by kWh. This is

somewhat expected.
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Figure 3.7: Descriptive statistics for electricity half-hour measures
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Figure 3.8: Descriptive statistics for gas half-hour measures
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As was seen from the government figures and the comparison of the average

consumption for gas and electricity, on average there are higher levels of gas con-

sumed across the year due to excessive heating during winter. The other important

feature to note is that the range of consumption and central tendency measures do

not tend to cluster geographically. The figures ?? report a general description of the

dataset. There is no specific focus on individual regions at this stage. The main aim

is to gather how representative is the dataset of the UK population as whole. As was

observed, there is scope to explore further the temporal variation in the data. The

differences in the variation can be explored using the spatial locations, yet given the

possible bias and low representativeness of the data regarding the general popula-

tion, caution needs to be taken about any inference produced. This makes most of

these findings inconclusive and in need of further validation using other datasets.

3.5 Bristol Sample
This section will present and review the sample from Bristol that is used in the

thesis to complement the national sample. The Bristol sample is available at greater

geographical resolution (Census OA area) yet has much smaller quantity of smart

meters that can be analysed. Bristol enjoys characteristics of a cosmopolitan city

that embraces quite a diverse population. This feature allows for the generalisation

of results to larger populations of the UK. Compared, for instance, to a place like

London, which is shaped by constant change to inflow/outflow of people, Bristol

tends to have more stable overall characteristics over time.

3.5.1 Overview of the dataset

This sample will be used in this thesis mostly for temporal analysis. Given the fact

that data corresponds to a single region it becomes possible to generalise any results

obtained using this sample at least to the level of Bristol. These results can then be

connected to the national sample to see if there is any correspondence/similarity. As

can be seen from Figure 3.9 , each of the Census OA areas has very low represen-

tation (between 1-4 users per area). Such small representation make any inferences

based on the OA characteristics potentially invalid due to the threats to inference
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Electricity

Gas

Figure 3.9: Distribution of the meters by OA, Bristol

from ecological fallacies (i.e. the smart meter users in the sample may not be rep-

resentative of the average characteristics reflected in Census data aggregated to OA

level). The data grouped to the level of Bristol may serve as a better alternative.

The Table 3.4reports the total counts of smart meter users for Bristol area. Having

about 1200-1400 smart meter users per city can be a fairly good and representative

of the general population in the region.

Electricity Gas
Count of unique users 1214 1415
Count of unique Census OA in the sample 948 790

Table 3.4: Counts of smart meter users and unique OA identifiers in Bristol sample
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3.5.2 Descriptive analysis

The descriptive statistics for the Bristol sample (Table 3.5) appear quite representa-

tive of trends in average domestic consumption when compared to government fig-

ures. The mean and median consumptions are in fact closer to the national averages

reported by BEIS than the ones observed for the national sample in Table 3.2. Nev-

ertheless, what is evident is that the distribution of consumption for both electricity

and gas are skewed towards lower levels of consumption compared to measures re-

ported by BEIS. Gas consumption is associated with significant variation (standard

deviation of about 22,000 kWH a year) which may indicate the presence of outliers

or possible inclusion of non-residential type smart meter users 3.

Descriptive Statistic Electricity Gas

Average 3,372 kWh 13,641 kWh
Median 2,879 kWh 8, 825 kWh
Standard Deviation 2,230 kWh 21,563 kWh
Average (BEIS 2015) 3, 894 kWh 11,707kWh
Median (BEIS 2015) 3,148 kWh 13,202kWh

Table 3.5: Central tendency description The average annual household energy consump-
tion estimated using the Bristol sample compared to BEIS 2015 national esti-
mates.

As an extension of the descriptive analysis, Census 2011 Geo Demographic

Classification data was attached and used to study how representative the Bristol

sample is of geo demographic groups that are dominant in the region. The average

total consumption per day was selected as a measure of variability. Six subgroups

were then attached to the data, given the area of Bristol where smart meter user

reside. As may be seen from Figure 3.10 the relationship may appear as vague and

not definite as this stage. This may be due to low proportion of the meters com-

pared to total number of people reside in each of the OA (i.e. less then one percent

representation). Given the fact, that Census 2011 Classification is obtained using

the average characteristics of the residents in the area, having a representativeness
3 Please note that BEIS values are obtained for 2015 while Bristol sample data correspond to the

year of 2014. The reason why the BEIS 2015 values are chosen is due to the fact the the measure of
domestic energy use was updated by OFGEM (2015) to reflect a more inclusive average trend in the
consumption. This is used of course under the assumption that no significant difference in gas and
electricity can be observed when 2014 and 2015 are compared.
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of less then 1 percent may be associated with greater uncertainty and should not be

used for the inference of why the energy consumption may vary in the sample. In-

terestingly, other research attempted to link profiled energy consumption patterns to

socio-demographic classification and found little correspondence between temporal

profiles and socio-economic groups (Haben et al., 2013) . This suggested that study-

ing actual energy consumption at greater temporal breakdown may further inform

us about behavioural patterns. For instance, variability in half hourly consumption

can be used as an indicator of distinct consumption behaviours or lifestyles that can

also challenge current geo demographics classifications completeness.

3.6 Sample Selection

This section looks closely at how best to select samples for more detailed research

and analysis. As the data magnitude is large, various samples will be used for the

study in this thesis. From descriptive analysis above, one could conclude that the

data may be segmented using simple measures of variation as a way to define sim-

ilarity across consumption records. Such a method was used in the past when only

annual energy consumption measures were available to the researchers and the gov-

ernment (DECC, 2013; DCLG, 2015). Having data of greater temporal granularity

may extend such analysis: the descriptive statistics such as mean, median and range

may be useful to illustrate the overall magnitude of energy consumption. However,

such an approach totally hides all the essential information about the dynamics of

the energy consumption. The customers with similar mean may have a very dif-

ferent behavioural pattern. Likewise, as the total per day consumption value may

be similar overall, it is hard to make conclusions about the similarity of the con-

sumption profile hidden behind the overall measures. To make this point clearer,

some illustrations below are presented. Random daily readings were selected from

the sample based on either similar average half hourly consumption load, total per

day consumption or the variation in consumption across time using the measures of

standard deviation.

To study the heterogeneity of the consumption profiles a bottom-up approach
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Figure 3.10: Correspondence between the average total consumption of Gas (Wh) per day
with Census 2011 Geo demographic Classification

is used. Various descriptive measures of the patterns (i.e. mean half hourly con-

sumption, geographical reference) are fixed at a time and a few patterns are selected

to study how similar/different the dynamics in consumption behaviour are. Here,

the variation at the individual user level is taken for the analysis. This is contrary to

a top-down approach where the analysis begins with the variation at the aggregated

national level and then is narrowed down to regions, geographical areas and only

then to individuals users (Swan and Ugursal, 2009).

First illustration considers the case where the mean half hourly consumption

is the same for each of the readings ( Figure 3.11). The second one presents two
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readings that have a similar total per day consumption (Figure 3.12).
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Figure 3.11: Two randomly selected electricity consumption patterns that can be described
by the same mean of half hourly consumption Wh.
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Figure 3.12: Two randomly selected electricity consumption patterns that can be described
by the same value of total per day consumption in Wh.

As seen above, while numerically the random patterns that were selected can

be described as similar, the dynamics of energy consumption are very distinct, no

matter whether the mean of half hour energy consumption or total value of con-

sumption per day is chosen. Intuitively, it may be expected that standard deviation

measures may be able to capture similarity in the pattern. Below (Figure 3.13)

presents the case where mean half hourly consumption, total per day and standard

deviation are roughly the same. As can be observed, it cannot obviously be con-

cluded that these consumption behaviours are similar and can be grouped together

as identical profiles. The next chapter will look more closely at other methods that

can address this issue, such as clustering of the dynamic structure instead of the

numerical range of the values occurring during the day.
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Figure 3.13: Two randomly selected electricity consumption patterns that can be described
by the same value standard deviation from mean half hourly consumption in
Wh.
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Figure 3.14: Individual smart meter users readings that correspond to the same Census
OA: Case 1
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Figure 3.15: Individual smart meter users readings that correspond to the same Census
OA: Case 2

Similar analysis was performed using the geographical reference as identifi-

cation. The Bristol sample was selected due to its greater geographical resolution.

Three electricity consumption profiles were selected at random from the same OA.

The temporal resolution was fixed at the weekday of October. As can be seen, it cant
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be assumed that homogeneity within the geographical area is necessarily a property

of energy consumption behaviour. Heterogeneity of the consumption behaviour is

present both within and across the geographical units.

3.6.1 Aggregation

Different levels of aggregation may be taken at any point of the analysis. For in-

stance, if we are interested in describing the whole national dataset, aggregation

may be useful for both data reduction and for the speed of calculations that one

would like to perform. The researcher thus may experiment with the unit of analy-

sis being a geographical point of the resident as well as looking primarily at smart

meter users as individual units under consideration.

If it is more important to give attention to the context where the unit of analysis

exists, then there will certainly be a number of limitations when dealing with smart

meter data. A registered individual user of a smart meter can equally be represented

by just a single person as well as being associated with an entity of properties being

owned. For the national dataset in this thesis, the challenge is the uncertainty over

what comprises a user, which requires some assumptions to be made.

3.6.2 Defining outliers

There are number of ways through which outliers can be observed and defined for

analysis of smart meter data. For cases where additional data on individuals is not

available, the definition of outliers becomes a rather subjective task. Outliers can

be defined using both temporal profiles as well as the aggregated values of energy

consumption (i.e. annual total gas or electricity consumed). The measures of vari-

ability, such as standard deviation from the average energy use per smart meter user

can also be a useful indicator of patterns that the researchers may want to exclude

or separate from the overall analysis. This is particularly useful for identifying a

non-residential smart users profiles (i.e. for instance, under the assumption that low

standard deviation is associated with the absence of peaks and presents a continuous

behaviour throughout the day). Even more simply, by looking at total per day con-

sumption, the values which are significantly different from the average total per day
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consumption reported in government reports for instance may be taken into con-

sideration as outliers. While overall, this thesis will take into account all the data,

including outlier or unusual behaviours, it is important to be able to identify and

remove if necessary the various cases that may affect the descriptive analysis. Once

again, this can be driven by the research question in hand. When one is interested

in an average consumption behaviour (i.e. double peaked consumption patterns),

the outliers may be removed. Similarly, to understand anomalous or unexpected be-

haviour the reverse approach can be used. Later in the thesis, it will be shown that

using various clustering approaches for instance may help in identifying both types

of behaviours. A more simple way could be visualisation of the patterns which

then can be judged for its appropriateness for inclusion as usual/average behaviour.

Please note that this is possible when the dataset is fairly small (i.e. less then a

hundred individual smart meter users with yearly coverage).

3.7 Smart Meter Data and Administrative Datasets

Before proceeding with the discussion of which datasets can aid in the analysis of

the smart meter data available for this research, it is important to define the term

administrative data. Administrative data is data that is recorded as a result of the

administrative systems operations, such as collection of data by various government

bodies as well as the records of various transactions (Connelly et al., 2016). While

in this thesis smart meter data is treated as an example of retail/consumer data it

is vital to acknowledge that there remains ambiguity around the definition of smart

meter data as it can equally be characterised as an administrative dataset due to its

relevance for both government and energy industry bodies and because of the nature

of information it provides about the population. Energy consumption is an essential

resource for the countrys residents wellbeing and can be treated similarly as the

consumption of education or health resources. The privacy concerns associated with

smart meter data can also be considered as similar to those of administrative data.

A more clearly defined administrative data source that will be accessed for possible

linkage is the 2011 Census (Please see Appendix for some other potential sources
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Figure 3.16: Frequencies of residents quantities per Postcode Sector with mean of 6979.
median of 6799 and standard deviation of 3777. Source: ONS, 2017

Figure 3.17: Postcode sector and the corresponding output areas.The table reports the nu-
merical proportion of MSOA that falls into postcode sector. Source: ONS,
2017

that can be considered). This data is available at various geographical resolutions

and provides a fairly complete picture of the population of the UK in terms of both

socio-economic characteristics of residents as well as the description of the housing

conditions in which they reside. While this data is certainly rich and useful for the

analysis in the thesis, the issue that needs to be assessed is how feasible it is to

connect Census 2011 data to smart meter data at the postcode sector level.

In regard to spatial granularity, national data available for this research is at

postcode sector level. The average quantity of smart meters for a given postcode

sector level is 59 meters with 1 being the minimum and around 393 and 349 as the

maximum number of meters for electricity and gas respectively. Postcode sector can

be considered as a fairly large geographical unit of analysis in terms of the residents

it may be embracing at one time, yet there is less uniformity in how postcode area
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borders are defined compared to more socio-economic oriented geographical units

such as Census Output Area. Figure 3.16 illustrates the average number of residents

that can represent a postcode sector. As can be observed, on average around 7

thousand residents are expected to be in the postcode sector. Given the average of

59 meters per sector in the national sample, the Great Britain sample may represent

only about 1-2% of the geographical area. Both visual and numerical assessments

of possibilities for joining smart meter data to other datasets at MSOA level is given

in Tables 3.17 and 3.19 and Figure 3.18.

Figure 3.18: Postcode sector and the corresponding output areas for Bristol The bold lines
show the postcode sector boundaries that are mapped on top of Census OA
boundaries. As can be seen number of OAs falling into postcode sectors varies
significantly. Within the city centre for instance we can see very high density
of OAs while less is observed within the rural areas. Source: ONS, 2017

In terms of corresponding MSOA areas to Postcode Sector it is observed that

there are about 26741 areas for 8000 sectors. While there are some postcode sec-

tor which fully nest in MSOA, on average only 30% of postcode sector can be

represented by MSOA. This is certainly limiting also due to the fact that nesting

properties are not uniform across postcode sectors and MSOAs.
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Figure 3.19: Frequency of proportions of postcode sector that can be matched to MSOA
for the whole United Kingdom It can be notes that most of the postcode sec-
tors can be matched to only up to ten percent of corresponding MSOA area.
Source: UKDS, 2017

A possible alternative solution is to use static characteristics of the output areas.

These are housing conditions and areas that can be differentiated as urban vs rural,

student vs working population areas, etc. A very useful dataset to achieve this goal

is a geo demographic classification of UK areas that controls for both areas and

individuals socio-economic characteristics and presents an aggregate measure to

differentiate regions on both large and small scales. The challenge is to find a way

to aggregate characteristics for each area that can be derived from a Census. As can

be seen, the proportion of postcodes in MSOA areas vary significantly, with more

than a half being under 50 percent. It can be feasible to first focus on areas that have

more complete matching and then interpolate to the ones with smaller proportion.

Being able to test for heterogeneity across the areas that are being matched together

with will be crucial for such kind of the analysis. This thesis will not be considering

linkage on such level but further work may consider transforming postcode sector

areas into smaller or larger geographical units that can be more easily connected to

socio demographic data on the UK population.

One of the alternative datasets and, perhaps, one of the few large datasets avail-
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able at postcode level geography that can serve as a useful contribution to energy

consumption data is provided by recently released Domestic Energy Performance

Certificates. The data that is available is at the postcode level and holds various

information such as type of property, floor size, number of occupied/heated rooms

and most interestingly, estimated fuel costs. Energy Consumption data at postcode

level can be easily linked to the certificates as it will directly nest geographically.

This would solve a couple of limitations outlined above that are related to linking

the smart meter data to census output areas as well as allowing for clustering of the

data with additional features that may be explanatory for the differences in varia-

tions. However, while theoretically this idea sounds very promising, the limitations

and issues inherited in EPC data need to be studied. As the data is fairly new and

novel to academic research, the amount of investigation required may be equivalent

to that performed in this thesis on smart meter data. Certainly, a more common

source to consider would be Census. However, linking to datasets such as Census

may be a slightly more challenging task in comparison with EPC simply because

of geographical granularity. However, a useful technique such as estimation of lo-

cal heterogeneity may help one to define areas that can compose overall postcode

sector characteristics based on similarity at lower scale geography. In other words,

if the areas which are nested in postcode sector have similar attributes or are ho-

mogeneous, it may be assumed that postcode sector area on average will also be

associated with those attributes either in terms of housing conditions or household

characteristics.

This section looked at the possible linkage only briefly as to provide a stepping

stone on how these data may be taken for further analysis. The final chapter of the

thesis will return to the discussion and investigation of these in more detail once the

capabilities of sole smart meter data in revealing information about UK population

have been shown.

3.8 Ethics

‘Just because it is accessible does not make it ethical’
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- Boyd and Crawford (2012),

This section considers the ethical issues that may be associated with research involv-

ing smart meter data. Ethical constraints are mostly evident from the restrictions on

the data resolution available to researchers. As was seen from this chapter, while

smart meter data may have greater temporal granularity, there is certainly a lack of

geographical resolution, given that few smart meter users fall into fairly large ge-

ographical areas in the datasets studied in this thesis. There are a number of legal

and ethical issues that are associated with the access to individual smart meter data.

The summary of some of the most commonly identified concerns are adapted from

McKenna et al. (2012) and presented in the Table 3.6.

To protect the consumers from possible issues that are determined by current

research, the available data faces a compromise of either greater spatial or temporal

granularity. Having both may potentially threaten the individual smart meter users

privacy.

While the table above may present some of the very threatening consequences

of access to smart meter data by third parties, not all of them are certainly observed

in the real world. Commercial uses can be most common as leveraging insights

from smart meter can aid the effective operationalisation of energy provision, prod-

uct advertisement and marketing campaigns. As a preventative measure for more

serious and sever consequence such as use of smart meters as legal evidence of the

person being at home or used for spying on each other by household members, the

restrictions posed on smart meter data sharing are generally high. In the UK, after

installation of the smart meters, energy customers agree by default that their data

may be accessed by the energy supplier. However, they do have a right to opt out

from their data being shared with energy providers or the government if they wish

to do so. Smart meter users can also select the aggregation of their energy con-

sumption readings. For example, share only weekly total consumption, monthly or

annually 4. One of the obvious observations of the work presented in the thesis so far

4 This was true for the time of the study, 2015. Due to various General Data Protection Regulation
(GDPR) considerations, which came to effect in May, 2018 and given the fact that smart meter data
can be treated as personal data, the arrangement have changed by giving customers more extensive
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Application Example References
Illegal uses Burglar finding when homes

are unoccupied; stalkers
tracking the movements of
their victims

Lisovich et al. (2010);
Quinn (2009);
Cavoukian et al.
(2010); McDaniel
and McLaughlin (2009);
Lerner and Mulligan
(2008); Subrahmanyam
et al. (2005)

Commercial uses Targeted advertising: use
of individual or aggregated
household smart meter data
to target advertising at a spe-
cific household or individual

Lisovich et al. (2010);
Quinn (2009);
Cavoukian et al.
(2010); McDaniel
and McLaughlin (2009);
Anderson and Fuloria
(2010); Bohli et al.
(2010)

Use by law en-
forcement agen-
cies

Detection of Illegal activi-
ties (i.e. sweatshops, un-
licensed commercial activi-
ties, drug production); ver-
ifying defendant’s claims
(i.e. that they were ’at home
all evening’)

Lisovich et al. (2010)

Uses by other
parties for legal
purposes

In a custody battle: do
you leave your child home
alone?

Quinn (2009)

Use by fam-
ily members
and other co-
inhabitants

One householder ‘spying’
on another (i.e. parents
checking if their children
are sleeping or staying up
late playing video games);
partners investigating each
other‘s behavior

Hargreaves et al. (2010)

Table 3.6: Privacy concerns related to smart meters (Adapted from McKenna et al. (2012))

is the limitations imposed by the geographical resolution available for this research.

While data is rich temporally, given its continuous nature (i.e. readings are associ-

ated directly with the activities within the entity of the smart meter user), trade-off

between temporal and spatial granularity is inevitable. This trade-off however al-

lows for generating general insights about individuals without compromising their

rights with respect to the data they share. They can opt in into data sharing and they also have a
right to be forgotten under GDPR by requiring the energy supplier to erase their past data. The
debate on smart meter data being too sensitive for energy customers privacy and how this should be
addressed under current regulations remains open. For an excellent review of the privacy issues in
smart metered future please see Véliz and Grunewald (2018)
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anonymity. This is vital for making sure that this research is performed in line with

ethical standards.

3.9 Conclusion

In this chapter the data that will be used for the analysis in the thesis was presented.

The basic descriptive analysis such as the counts of smart meter users, average dis-

persion around the mean energy consumption for both gas and electricity and a brief

comparison of the figures to overall population estimates reported in government

re- ports were presented. As observed, both the national and Bristol sample are

associated with a high temporal granularity yet suffer from rather low geographical

resolution. This, as identified above, may be driven primarily by ethical reasons.

Due to the potential threats that can be posed to privacy of the smart meter users

in the cases where data is of high temporal and spatial resolution, compromise be-

tween one and another is inevitable. This is by no means a limitation. The work

in the thesis will therefore be focused largely on the temporal granularity and al-

low for generation of rather general insights about energy consumption in the UK

without compromising the anonymity of the users. It was shown that the national

sample may have a potential to be analysed from a geographical point of view (us-

ing postcode sector level). Given how few smart meter users are presented in each

of the Census OA in Bristol, Bristol was chosen as a unit of geographical analy-

sis, with the representativeness of the results then being assessed using the national

sample. To study the national variation in energy consumption on a geographical

level, it was shown that even using MSOA may be a challenging choice as there is

no uniform correspondence between postcode sector and the output areas. Dealing

with datasets of large scale inevitably invites thoughts about possible data reduction

measures that can be applied to specific samples to be analysed at various geograph-

ical or temporal levels. The choice of sample may be driven largely by the question

in hand. For instance, for understanding consumption in urban areas and its trends,

it may be necessary to restrict the analysis to areas within cities. Choosing areas

where certainty about dwelling stock and household socio-economic characteris-
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tics is greater, may be useful where smart meter data on energy consumption at a

household level is missing. Complementing the smart meter data with information

on dwelling stock and socioeconomic characteristics allows for a more contextual

analysis of energy usage and unlocks possibilities for inference on why consump-

tion may differ according to geographic areas. Given the sample that was illustrated

in the chapter, this may however be challenging. On the other hand, having a large

enough sample that is aggregated at lower geographical resolutions also has the

benefit of retaining anonymity so there is no need to be concerned about privacy

issues or unlocking individual data.



Chapter 4

Methodology and Results:

Preliminaries and Clustering

The goals in statistics are to use data to predict and to get informa-

tion about the underlying data mechanism. Nowhere is it written on a

stone tablet what kind of model should be used to solve problems in-

volving data. To make my position clear, I am not against data models

per se. In some situations, they are the most appropriate way to solve

the problem. But the emphasis needs to be on the problem and on the

data

- Breiman (2001b),

4.1 Introduction
Conventional and traditional statistical methods available to social science re-

searchers tend to be employed in research areas that use small, yet very clearly

defined samples of data (Breiman, 2001b). These samples are often easy to collect

by the researchers themselves or can be available via open source repositories due

to the simplicity associated with these data’ storage and management. Some of the

most detailed data that can be available on population is that which is collected us-

ing targeted surveys. While this manual collection of data allows for more precise

and specific answers to research questions, one has less flexibility in reusing these

data to answer other research questions that may arise during the research process,
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or which are incidental.

In the case of big data, the issue is rather the opposite. There is a greater

flexibility about which kind of insights that can be gathered from the data, yet this

flexibility can be problematic if there is a very specific question one wishes to an-

swer. As a consequence, it may be more appropriate to let the data tell us what may

be discoverable and then operate within those limitations (Kitchin, 2014; Anderson,

2008). Smart meter data is no exception. Before even looking at the smart meter

data, one may think of various research questions that can be possibly answered

with these data. For instance, the goal may be to assess whether it is possible to

infer differences in energy consumption based on the characteristics of the regions

where energy consumers reside; or to estimate the effect of living in rural or urban

areas on energy consumption dynamics. While these questions may sound straight-

forward, when actually looking at the smart meter data directly one realises that

unless there is knowledge of key variables such as the household characteristics, or

the conditions of the property they reside in, these data may not be as informative

as first thought.

In a survey, for instance, it is possible that a great deal of contextual informa-

tion about the person and their house is collected during the personal interview. On

the other hand, one may fail capture the dynamics in their activities - which can

be for instance present more clearly in smart meter data. Relying on smart meter

data over information collected through methods such as surveys also has the ben-

efit of a certain reliability. It can not easily be faked, mistakenly answered or based

on a misunderstanding. The point here is that having both smart meter data and

survey data is an ideal methodological scenario that minimises the uncertainty or

unreliability of either data source.

This section will look more closely into how valuable insights can be gained

from smart meter data alone by applying various statistical methods to first iden-

tify, and then evaluate the patterns in the data to provide descriptive statistics. The

reasons this methodological approach utilises statistical learning (and by extension

machine learning) is firstly, due to the magnitude of data and the subsequent inabil-
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ity to manually describe or identify patterns within it. Secondly, recent progress

with machine learning in other domains has demonstrated the ability to generate

valuable insights from large datasets, where manual exploration is difficult or im-

possible (Sebastiani, 2002; Fan and Bifet, 2013; Chen and Zhang, 2014; Witten

et al., 2016). The variety of these methods allows for greater flexibility as well

as these approaches reduce the need to make unrealistic assumptions which do not

necessarily represent the scenario studying. It also allows for data of a broad range

of shape, magnitude, and process to be considered for analysis.

Before looking at these models more closely, there is an interesting paradox to

consider. Most social scientists would say that greater variability of data is prefer-

able for research as it allows us to capture the casual mechanisms and relationships

with more certainty. However, this argument only holds where the inference can

be generalised across all or many samples in the data-set. In the case of energy

data, and particularly smart-meters, one has to contend that there will be vast differ-

ences in the data-generating process across consumers. Such heterogeneity in the

population makes causal analysis challenging, as patterns averaged either across

consumers, or even time, may not converge to the population expectations. These

challenges largely motivate the work in this chapter, which aims to dissect this vari-

ability and characterise the data-generating process.

4.1.1 Structure outline

In this chapter, the methodological tools that were implemented on the smart meter

data will be discussed in details. One of the goals of this research project is to find

the optimal ways to describe smart meter data, classify the patterns in an informa-

tive way and finally, devise a design that can help in solving the task of prediction of

energy consumption using both pattern predictions and exact point prediction tools.

All of these achieved under conditions where no other data is available. This may

be particularly relevant for energy companies analysts and governments who are

interested in the automated process of data analysis in real time. Anticipating the

fact that the smart meter data collection is expanding each day with more readings

being stored, solutions that can turn these data into insight using their raw form may
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be highly valuable. Lastly, the choice of methodology is driven by generalisability

of the results whilst ensuring flexibility of the assumptions on which models are

based. This is crucial as it will be shown that data and its structure varies signifi-

cantly from user to user as well as there is a huge variability within individual users

consumption patterns.

This chapter will be focusing primarily on the immediate description of the

patterns and classification using clustering. The description of the data from the

point of view of the associated generating process (i.e. spatial and temporal station-

arity) will also be discussed. The remainder of the chapter is structured as follows.

The first part discusses various approaches that can be used to analyse datasets of

varying complexity by paying specific attention to the trade off in the complexity

of the models and their interpretations. This is followed by a preliminary analysis

which examines the casual mechanisms that are based on probability; a time series

analysis; as well as an introduction to spatial heterogeneity and correlation.

A run through of the research design, that aims at segmentation of energy con-

sumption patterns, is followed by a discussion on the suitability of the various clus-

tering techniques in the section 5. The results of clustering will be presented for

each of the samples: national case and Bristol sample. Further assessment of how

aggregation affect clustering results will be discussed. This will be followed by the

test of results predictability as to evaluate how well the approach taken for clus-

tering can classify the new data into the obtained groups.(Section 6-8). This will

be followed some possible extensions to the clustering analysis such as ’use out of

peak hours’ classification in Section 9. The final section, that will discuss the results

and limitations of the experiments, concludes the chapter.

4.2 Statistics and Machine Learning for Smart Meter

Data
As was seen in the previous chapter, a very simple approach to describe the data

(i.e. mean, standard deviation) may serve as a useful tool to illustrate variation in

the data on a small scale, yet it may fail to describe the unique dynamics that may be
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associated with consumption patterns at the level of individual users. As a solution

to this problem, in this chapter, applied machine learning methods will be surveyed

on samples at both a national and individual city (Bristol) level. Prior to this, this

section will discuss the very fundamental and even, philosophical, consideration of

what constitutes a good empirical model. These are considerations on how to find

an appropriate statistical model/process which can describe the smart meter data,

and fundamentals of pattern recognition and uncertainty. These discussions will

serve useful not just for this particular chapter but for the rest of thesis.

4.2.1 Distinction between natural and statistical approaches to

study the data

This section provides a brief overview of how one may look at the data prior to

the analysis. Focusing more on a problem in hand, the thesis is partially influenced

by the work of Leo Breiman, a statistician who after spending a significant amount

of time in industry has developed a very applied and pragmatic way of looking at

applied statistical science.

There are clear distinctions between the ways in which one considers data

when it comes to natural, statistical and machine learning approaches. Each ap-

proach has its place in smart meter data analysis and the appropriateness will de-

pend solely on the research question in hand. Breiman (2001b) separates statistical

modelling into two cultures. One of them always assumes the data was generated

by some specific process or in other words a stochastic model. Another one, and

perhaps favoured by Breiman, is where a researcher uses various algorithmic mod-

els yet assumes that the data generation process is unknown. The former process, as

Breiman suggests, often leads to rather irrelevant theories which as a consequence

alienate the performed statistical analysis from more complex and real world prob-

lems as the assumptions behind these data models are almost impossible to meet.

A natural approach to the data generation process is to assume that x and y can

be related to each other in the following fashion: the predictor variable x and out-

come variable y. Imagine, that this could be consumption readings x and the clusters

to which the algorithm aims to assign these readings to y. What is important to un-
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Figure 4.1: Two ways to represent the relationship between input (predictor) and output
(outcome) variable Regression analysis represents an interpretative approach
while ‘unknown’ is referred to black box solution, where process that connect
x to y exists but cannot be described using modelling language

derstand the nature of the mechanism that describes the associations between the

two best so it can be reproduced and replicated. In Breiman (2001b), the author

assumes that there is a black box connecting the two and the distinction among the

approaches lies primarily on the contents of this box. For instance, one may have

a parametric regression analysis that will hold some knowledge about the mecha-

nism and will have some interpretative power while preserving the simplicity of the

relationship between x and y; the alternative way is the unknown, here represented

as a black box solution. Example of black box methods, such as a neural network

models, are usually associated with good accuracy of y prediction based on values

of x but have high complexity and low interpretability.

The work of Breiman further highlights a number of rules or perceptions which

are critical for the performance of simple yet reliable statistical analysis. These are:

(1) the primary objective should be to find a good solution that will presumably

hold for a long period of time; (2) prior to modelling, a significant amount for time

should be spent working with the data to get a sense of it and its inherent dynamics;

(3) a model with a solution is to be preferred; (4) the error on the test set always

a provides some measure of the suitability/efficiency/success of the model. While

there can be disparities among statisticians on whether Breiman’s set of rules is

even feasible, this thesis takes the side of Brieman and aims not just to provide

methodological solutions that may withstand the time, but also learn a great deal
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Figure 4.2: Occam’s Razor representing the trade off between bias and variance and its
effect on error of prediction as the complexity of the model increases. As can
be seen Test set error will be more sensitive as training error gets smaller and
smaller implying that the data is over-fitted by the model and while model is
highly complex and prediction error is low on a training set, the model will not
perform well on a new/unseen sample.

about the data, its dynamics and the statistical processes which may underpin the

uniqueness of temporal profiles.

One of the formal ways to access the model performance critically is known as

Occam’s Razor. The concept is discussed in more details in the next section.

4.2.2 What Constitutes good Modelling?

This section complements the discussion above and moves on from conceptual dis-

cussion on what constitutes a good modelling framework, to more practical aspects.

One of the common issues that statisticians look out for when choosing an appro-

priate model is the trade-off between bias and variance. Bias occurs where a model

may be too general such that it misses important and distinct features required to

model relationships in the data. Variance occurs in the opposite extreme scenario
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where a model overfits the relationships in the data due to being too specific to each

unique feature in the data, yet lacking the ability to generalise to other samples.

One solution to the bias and variance trade off is through methods referred to

as cross validation. Additionally, this may be complemented by regularisation that

will allow for introduction of penalties that restrict overly complex models. Both

of these methods will be discussed in more detail later in the thesis, as their spe-

cific use will vary depending on the methodology under consideration. For broader

illustration, one may consider the trade-off illustrated in Figure 4.2, where this phe-

nomenon is described by Occam’s Razor. Occam’s Razor; the idea that all else

being equal ( i.e. predictive power) the simplest model is preferable, can be used

to illustrate why lower model complexity may sometimes be preferred. In prac-

tice, this means that results should be able to be generalised to new/unseen data,

represented here by the test set.

A final goal of any modelling, is to develop an objective way to help mimic

and reproduce data and relationships in the data, as closely to the way it is produced

in the real world. For instance, if one learns that students who have fully attended

classes and have received more details on the assessment’s aims and structure during

the seminars; are these students more likely to score better in the final exam? To

study that, one may simply design a model using the data on attendance and final

scores and model this relationship to assess whether attendance and being fully

informed are sufficient predictors of final scores.

In the case of energy data, to start with, it is known that time plays an impor-

tant role for energy consumption variability and that depending on the time of the

day, different behavioural responses can be observed in energy consumption levels.

While the relationship between time of the day, and variation in energy consumption

is rather self explanatory, one may further consider regional effects, or how habitual

the consumer is in their energy use as monitored by the smart meter; for instance,

does consumption of five weeks ago have anything to do with the consumption of

the current week. By doing so, it may be possible to design a simple model in terms

of interpretation, yet some mathematical developments may be needed to reproduce
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the dynamics that generated consumption differences.

4.3 Smart Meter Data as Time Series Data

After looking more broadly at how various data can be treated from statistical point

of view, we may now narrow down to the discussion of how smart meter data can be

described using statistical processes. Most attention will be given to understanding

what gives this data some of its unique characteristics. This is mainly due to the

time component inherited in the nature of smart meter data.

This section looks at the smart meter data treated as a time series process. It is

important to define the data in terms of its statistical features/characteristics prior to

any analysis as this is what essentially motivates the choice of appropriate model.

Stationarity in terms of both space and time will be discussed with a particular focus

given to heterogeneity issues. While statistical tests and diagnostics for stationarity

are widely researched and established, assessing the heterogeneity of time series

patterns is still a topic of interest.

Time series data can be characterised as a sequence indexed by time and values

of of the variables of interest. For example, this may be denoted x1, . . . ,xT where

variables are indexed for time-points t = 1, . . . ,T . For smart meter data there are

various ways to represent time series sequence. For instance, one of the sequence

could be a total consumption per day, while another sequence example could be

half hourly energy loads. Depending on the way one views energy consumption

readings, different data generation process may be attributed. In this section, the

challenges presented by smart meter data are discussed when looked at using tra-

ditional time series assumptions and possible alterations. The aggregation level of

smart meter data matters significantly for the results observed. This is valid for

both segmentation and prediction and was discussed previously in the context of

different time series data analysis by Shellman (2004). Lastly, in case of smart

meter data and meter users one may analyse the data in both univariate (a single

data-stream) and multivariate (multiple data-streams) setting. If one is interested

in the prediction of average energy demand that is composed or consumption by
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individual users it may imply a pooling of a large amount of individual series that

may be correlated or be totally independent of each other. On the other hand, in the

univariate case each customer’s time series is taken separately for the attempts to

predict their consumption using only their own history of behaviour.

4.3.1 Stationary time series

A very simple model for energy consumption at the granularity of smart meter is

given by a sequential chain model (Figure 4.3). If one considers the arrows in the

figure to represent conditional dependency relationships between random variables,

then this Figure only depicts single step dependencies, i.e. the current value only

depends on that directly before it. Such models are often referred to as Markov

chains, and higher order chains may also be specified such that xt may depend on

more than just xt−1. For instance, a second order chain would mean xt could depend

on xt−1 and xt−2.

Figure 4.3: Chains based on half hourly readings and on total per day readings

The illustration above is rather very simplistic yet useful for setting the scene

for initial analysis of the data. One thing that is immediately noticeable from the

sketch in Figure 4.3 is that the dependence pattern stays constant as a function of

time, i.e. there is always only a one-step dependency. Typically, when one fits

statistical models, it is assumed that the value of the parameters stays constant as

a function of time, a setting which closely relates to the ideas of heterogeneity and

stationarity.

There are multiple definitions of stationarity. A strictly stationary process is

one in which the joint distribution of the variables {Xt ,Xt−1, . . . ,Xt−s} remains the
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Figure 4.4: Decisions are made at each t

same for any time shift k, i.e.

p(xt ,xt−1 . . . ,xt−τ) = p(xt+k,xt−1+k . . . ,xt−τ+k)

for all lags τ . This is a very strong requirement, so frequently it is assumed a process

is a weakly, or covariance, stationary process. In this case, it is assumed that the

mean and variance remain constant as a function of time (see Wooldridge (2015) for

more on definitions). Such processes are very convenient for providing statistical

guarantees on the estimation of parameters, as they effectively mean that more can

be learnt about the process as one collect more and more data. That is, as long as

the complexity of our model grows slower than the rate of data increase, one should

be able to get better and better estimates of the population parameters.

However, such stationarity assumptions pose a large challenge when working

with smart-meters. For instance consider the decision making process of a con-

sumer throughout the day, c.f. Fig. 4.4. The user will typically use energy when

required, they make decisions which are impacted or motivated by a vast array of

scenarios in their daily life, from drying their hair, to turning the heating up when

its cold. Since, these all vary on a daily, weekly, and monthly level, if all one gets

to observe about this consumer is their energy usage, it might be expected that this

series be highly non-stationary.
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Figure 4.5: Combined electricity and gas consumption for a random individual. As can be
seen electricity vary at much lower scale in comparison to gas.

The illustration may be further expanded to the integration of two series si-

multaneously (gas and electricity). The smart meter time series sequence may po-

tentially be analysed simultaneously with other time series such as the weather for

example. The most simple co-integration is in fact adding two energy sources to-

gether: electricity and gas. While expected to be highly correlated for some con-

sumers, one may see different type of relationships where one of the sources may be

more static and follow stable trends through the year while another source may be

more variable. In time series statistics, the term co-integration is used for modelling

relationship between two or more time series. For instance, rather than attempt-

ing to fit the model to predict a single point of the time series, one is interested in

modelling the combination.

Failure to diagnose correctly stationary or non-stationary process may lead to

false inferences about the phenomena under the study as well as reliability of the

statistical results. In this chapter it will be investigated how the sampling frequency

(or equivalently aggregation level) of data affects the output of analysis. It will

further be shown that it may be safer for researchers sometimes to focus on methods

that do not rely on stationary behaviour as this may affect prediction results.

Sometimes, while a process itself may not be stationary, its differenced pro-
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cess can be. That is, the process zt = xt − xt−1 for all t may be stationary, even if

xt is not. One example of such a process is the Autoregressive Integrated Moving

Average (ARIMA) model (Saboia, 1977). A quick examination of the smart-meter

data however, shows that such a process may not be useful in our case. For in-

stance, consider Figure 4.6 which plots the differenced smart-meter data over the

course of the day. Whilst it can be observed that many of the peaks are removed,

there are still larger periods of volatility surrounding the peak regions, these corre-

spond to the associated increase/decrease in consumption during these periods. A

simple calculation of the empirical auto-correlation function (that is an estimate of

the auto-correlation) is given to the left, and demonstrates that even in the differ-

enced sequence significant autocorrelation (and thus dependency) still exists. While

one could fit an ARIMA model to this process, through for instance the Box-Cox

methodology of iterative model-building-testing (Box and Cox, 1964, 1981), the ap-

propriateness of this model class would still be in doubt as the non-stationarity still

persists even after differencing. Alternatives to the simple autoregressive classes of

model, with less strict assumptions are considered later in this chapter.

4.3.2 Spatial stationary process

As with temporal stationarity, heteroskedasticity, or in other words, violation of the

assumption of the constant variance of the series, poses a threat to the inference. In

the case of daily energy consumption pattern, one may observe differences in vari-

ances around peak hours of consumption such has morning and evening where more

activity maybe observed. One may also observe that there is increased variability

throughout weekend days for instance.

In the case of spatial stationarity, the definitions are similar. The observations

of the temporal processes will depend directly to how far are they from each other in

terms of respective distance Cressie (1988). For more formal definition see below

where L represents a set of possible spatial locations and l1 − l2 is the respective

distance between two locations:

mean[x(l)] = µ ∀l ∈ L
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Figure 4.6: First difference of the smart meter data time series

and

Cov[x(l1),x(l2)] =C(l1 − l2) where ∀l1, l1 ∈ L .

Similarly, to temporal stationarity, constant mean and variance of the series

are assumed but now across the space. The only difference is that the dimensions

in spatial case may be extended to more than two. As is commonly seen with

temporal auto-correlations, that points in time are more dependent, near objects in

space are also more like to share some common information. Spatial stationarity

can be violated in nature when the dependence properties at different distances l1−

l2, depend on the absolute locations of l1 and l2, not just their relative positions.

Generally, the dependence structures expected are in line with the Tobler rule of

geography:

‘Everything is related to everything else, but near things are more related than

distant things’ Tobler (1970).

To measure the degree of spatial autocorrelation, some of the most common

tools are Morans I (Moran, 1950) and Gearys C (Geary, 1954) with latter being
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used most widely (Haworth, 2014).

4.3.3 A Pragmatic solution for assessing stationarity

At the end of the day, there are various ways to diagnose whether the processes one

observes are stationary or non-stationary. For instance, one could use a test (i.e.

Dickey-Fuller test (Dickey and Fuller, 1981) for stationarity on each consumers

time-series independently. In general, it may be expected that different users be-

haviour be more or less stationary. This makes formally modelling the observed

data using traditional time-series models, for instance the ARIMA model, challeng-

ing and time consuming if we were to apply the analysis on each individual time

series.

As an alternative to performing such extensive model construction and testing

for each user, this work first attempts to cluster users according to similar energy

use dynamics. We would like to move away slightly from the strict assumption of

stationarity to be able to include customers with very heterogenous behaviour that

may not fit standard parametric model structures. While such structures may be

easy to identify in the small samples, it may be more challenging to identify those

in large samples of data were manual inspection may be nearly impossible.

Pragmatic solution, as the name of the section suggests, could be to look at the

patterns as a combination of data points that can be studied from data generation

process point of view. By operating this way, no strict requirements on time and en-

ergy consumption relationship are imposed. As was shown in the previous chapter

(Data), smart meter data can be described as highly heterogeneous and challenging

process to generalise about when available in very large quantities. To address this,

clustering methods will be applied to data. These are presented by unsupervised

machine learning techniques, often used as a way to group the data so it is more

intuitive for visualisation and allocation of sub samples that can be used for more

detailed research.

In the next section, Gaussian Mixture Models are presented as perhaps the

most optimal among available clustering methods to be applied to smart meter data.

The best features of Gaussian process based models is the ability of the mechanism
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to change the model parameters as more data arrives. Gaussian process clustering is

a probabilistic approach that accounts for the uncertainty in the decision of certain

class to be assigned. Segmentation in its nature may be obtained using generative

approach (modelling conditional on other classes distribution) or discriminative ap-

proach (modelling the probability of the class directly).

One may say that if these models sound so appropriate for large and complex

datasets, what may appear counterintuitive why they are not used that widely. The

issue in hand is perhaps computational as the requirement of the process is the abil-

ity to handle inversions of very large matrices and for instances of very big datasets

we may need extra operational capacities. We will attempt to see the consequences

of reducing the sample to aggregated energy use as a way to address this and com-

pare the results with diss-aggregated data results.

Several and very common methods for clustering the time-series are assessed

from a computational and empirical view very briefly, to convince the reader that

Gaussian Model may serve as best compromise between very simplistic approaches

and very precise time series analysis that was discussed earlier with respect to sta-

tionarity. The methods that will be discussed are known as k-means clustering.

They are often one of the easily available approaches that applied data scientists

tend to look at. Given the very thorough discussion of the nature of smart meter

data it is suggested that extra caution need to be taken when those methods are

considered. A connection to the traditional statistical analysis of time-series, as dis-

cussed in this section, is made via the use of Gaussian Mixture Models in Section

4.4.2.

Next section will look at clustering more broadly as a method to group patterns

and characterise data in a systematic way.

4.4 Clustering

The validation of clustering structures is the most difficult and frus-

trating part of cluster analysis. Without a strong effort in this direction,

cluster analysis will remain a black art accessible only to those true
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believers who have experience and great courage.

- Jain and Dubes (1988),

This chapter asks the question whether clustering is, interestingly, even possible for

energy consumption data. As seen from the literature review, one of the main tasks

in smart-meter data research is the segmentation of energy behaviour and customers

characteristics using clustering methods. However, the samples tend to differ as

well as representations and additional features that are used in conjunction with

the energy data. The clustering techniques in this chapter were applied to analyse

samples both at a national and city (Bristol) scale level. The main task of this

chapter is the creation of artificial labels that can characterise similar patterns of

energy consumption.

There are number of methods that are available for the segmentation of time

series data using large datasets. These are primarily designed using various statis-

tical distances that can help the statistical algorithm to group the data points based

on their similarity. In this section these methods and associated limitations in the

context of energy data analysis are presented . Firstly, the intuition behind the clus-

tering methods; K-means and Gaussian Mixture modelling, is discussed and the

techniques are compared.

Clustering is an unsupervised machine learning method that is used primar-

ily to discover the underlying structure of the data that have no labels a priori.

For example, having solely energy consumption recordings, one knows little about

whether the consumption patterns may be aggregated into groups based on similar-

ity. For instance, are people who work full time grouped together, while those who

stay at home throughout the day may also be identified in the similar group. The

objective is thus, to find an algorithm which would ensure that similarity between

individuals within each cluster is maximised, while similarity between clusters is

minimised.

To date, a number of methods were developed for clustering the data. The

majority of these have been shown to give reliable performance on static data Liao

(2005), however, often disregard the dynamic of structural groupings, posing chal-
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lenges when considering spatial and temporal dimensions in the analysis. Fortu-

nately, there are number of pattern transformations techniques that may help in

preparation of the data for the algorithms that are developed for the static data.

One of the immediate solutions could be to transform dynamic data into the static

format. For example, one may calculate the mean for each of the individuals and

create numerical indicator that represents an estimate of average consumption for

the individuals in our sample. This also can be done for geographical references

reducing the dimensionality of the data and allowing for greater generalisation, but

at the expense of precision (either in time, or at to an individual consumer). As was

seen from Chapter 3, descriptive measures such as average energy use or total use

per day tell us little about the dynamics of energy consumption, thus serving as poor

measure to group patterns together. It was also shown that arriving from the same

spatially referenced group does also not necessarily imply that consumption pat-

terns can be meaningfully grouped together. According to Liao (2005), the decision

on which clustering method to use for time series further depends on the type of the

series. The characteristics can include: discrete vs real valued, uniformity of the

sample, univariate vs multivariate series as well as lengths of time series considered

for the analysis.

Most clustering algorithms consider maximising dissimilarity among the group

as the objective using various distance measures (k-means, hierarchical). Alterna-

tives, may consider data generation process replication, i.e. Gaussian Mixture Mod-

els or Bayesian clustering by dynamics. If the data is highly variable, caution need

to be taken about which one to choose. A further issue, is how to restrict the algo-

rithm to select only similar groups and leave the remaining data-points as outliers,

rather than trying to assign every user/data-point to a group.

While clustering is widely used by researchers, it is important acknowledge

the difficulty evaluating clustering results, both in terms of quality as well as com-

putational expense. The latter is especially important when scaling up is considered

for the analysis to large datasets, not to mention when adding additional features

for already highly dimensional data structures. Besides, if individuals are subject
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of grouping, additional data that characterise this individual may help to validate

the clustering results and evaluate the magnitude of error caused by generalisations.

One should note, that in practice this may not always be possible, and as in the

case of this thesis additional information only constitutes some broad geographical

knowledge of where the smart meter user lives. In the next sections we present

one of the most popular clustering methods seen in the literature, k-means, and dis-

cuss this method’s suitability with respect to smart meter data characteristics. Some

limitations of the k-means methods will eventually lead to the choice of Gaussian

Mixture Models, which will be given the central attention in the chapter.

4.4.1 K-means

K-means is one of the simplest and fastest methods to minimise the similarity

among the objects within each class centres. Often used in consumer research

for problems such as classification of consumer baskets Jain (2010) and for var-

ious geo-demographic classification, yet mostly on static features, i.e. data from

Census 2011. This method is chosen for description here as without prior knowl-

edge of clustering methods it is the one which is chosen often by interdisciplinary

researchers and industry practitioners.

The steps of algorithm are as follows:

K-means steps:

1. Choose the centre to start with and a number of centres (k) to consider. ( i.e.

k = 5).

2. For each of the centres assign the data points that are closest compared to the

rest of the data.

3. Call the set of point N. Revise and update the clusters by using the mean of

the points that were assigned to each of the centres.

The way the closest points are chosen in k-means is usually via the Eucledian

distance, and is one of the most common distance metrics. It can be represented

with the equation below where xi and x j are vectors of dimension P. The squared
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difference among data points is taken to calculate likeliness of them belonging to

the same cluster.

de =

󰁹󰁸󰁸󰁷
P

∑
k=1

(xik − x jk)2 (4.1)

For the survey of some other distances that can be used please see Liao (2005).

For time series similarity measures, one among many quite useful way to look at

similarity of the patterns could be by treating time series process as piecewise linear

function (Möller-Levet et al., 2003) in Liao (2005). The similarity may be taken by

taking the squared differences of the slopes for each of the time-series. The problem

in application to the energy data is an evident non-linear behaviour of energy use

patterns and how these can be incorporated into this standardisation.

One of the additional problems with k-means is the randomisation of the cen-

tres at each iteration that can lead to slightly different results each time algorithm

will be run. Furthermore, k-means is unable to deal with outliers, an issue which

may limit its usefulness for smart-meter data.

While this is certainly one of the most popular methods used in social science

data application. One of the limitations associated with the use of k-means is dimen-

sionality and this will become more evidence once smart meter data is considered.

Generally, issues of dimensionality may occur when when one is dealing with too

many variables that correspond to each of the individual units of the analysis. In our

case, each smart meter user has at least 48 features, corresponding to half hourly

readings. Adding more features in, may slow down the computation. Some other

issues are associated with the Euclidean distance that forms the similarity measure.

Temporal profiles imply the occurrence of numerical peaks in the data that can be

of different sizes. These are also may be correlated. Each individual fundamen-

tally would have low and high periods of consumption. The similarity measure

thus needs to be able to handle such variation, and be able to group both high and

low dynamics simultaneously as this is an essential feature of energy dynamics (for

more extensive review of similarity measures please see in Liao (2005))
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As an alternative to k-means Gaussian Mixture Models are proposed. Given

the considerations for the data which were outlined in the first half of the chapter,

the next subsection aims to convince the reader that this method may be an appropri-

ate for smart meter data segmentation K means algorithm was applied to the same

datasets that are presented in this chapter. In the case of the aggregated sample, only

one cluster was observed, meaning that algorithm may have failed to differentiate

between the patterns using half hourly energy use as an independent features.

4.4.2 Gaussian Mixture Models

Gaussian Mixture Models constitute a probabilistic framework in which to perform

clustering. Unlike k-means, this method also has added consideration of the data

generation process that underpins the data, and uses a model for this process to per-

form segmentation. It is based on a probabilistic method for clustering that handles

diverse types of data, including dealing with missing data and hierarchical struc-

tures. The probabilities for each data point to be in a particular cluster are first

assigned and then a cluster is allocated to each point using those probabilistic mea-

sures. The mixture is formed using the probabilities obtained from the standard

Gaussian representation:

p(x|µ,Σ) = 1󰁳
2πdet(Σ)

exp
󰀝
−1

2
(x−µ)⊤Σ−1(x−µ)

󰀞
,

with µ representing the mean vector and Σ being a covariance matrix. A mixture of

Gaussians is then represented as the following:

P(x) =
H

∑
i=1

P(x|µ i,Σi)P(x ∈ cluster i) .

As an example, Figure 4.7 demonstrates how consumption variability can be

represented as a mixture of densities. As can be seen, these data can be described

with a mixture of Gaussian shaped distribution, although they may differ in size

or shape. The GMM algorithm is implemented in R in ’mclust’ package (Scrucca

et al., 2016). For the mixture models, a likelihood based estimation procedure is
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Figure 4.7: An example of how the energy consumption density can be represented with the
mixture of Gaussian distributions

utilised.

4.5 Experimental Data and Results
A summary of the data sub samples that used in this section is given in Table 6.1.

Two sub-samples are taken. One of these is at an aggregated level which include all

the customer data, yet reduces the magnitude of the whole sample by taking the av-

erage consumption per half hour across individuals in each geographical reference,

postcode sector, thus creating the aggregation based on both spatial and temporal

averaging. The disaggregated sample corresponds to a random selection of patterns

at individual level which were not compressed at any level and can be regarded as

raw data. Intuitively, aggregated data may be expected to be more appropriate as it

represents a general picture of energy use. However, what will be shown from the

clustering experiments, segmenting such data may not always tell as much about

diversity of energy use in the country that can be captured if individual readings

were taken for analysis. Through suppression of diversity of consumption, cus-

tomers may look more alike in cases where actually they are not being similar to

each other. The results of GMM clustering analysis applied on the experimental

samples are presented in Figure 6.6 and Table 4.2.

As may be observed from Figure 4.8 and Table 4.2, while the GMM algorithm

is dealing with different samples in terms of size and diversity, interestingly, the

same number of clustered groups are obtained. However, the key differentiator

between the two cluster models is the shape of the Gaussian models used to fit the

patterns. While the aggregated sample presents smoother shapes, more variation

can be seen in the disaggregated case, meaning that there is more dissimilarities
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Data Overall Aggregated Sample Disaggregated Sample
Unique identifiers 489,000 8,171 15100
Days 365 365 365
Daily readings) 48 48 48
Total observations 8,567,280,000 143,155,920 19,272,000

Table 4.1: Data structure. The structure of the samples. Please note that aggregated
sample is obtained by taking the average consumption among individual users
at each of geographical reference, postcode sector level

Segment % of total sample (Aggregated patterns) % of total sample (Disaggregated patterns)
1 24.0% 15.7%
2 10.6% 14.2%
3 5.3% 1.4%
4 0.9% 5.9%
5 1.9% 20.0%
6 21.9% 3.4%
7 15.5% 13.6%
8 14.4% 22.5%
9 5.5% 3.4%

Table 4.2: Results of consumption pattern segmentation using GMM.

in the data. This is intuitive, as after taking the averages of consumption unique

variation will inevitably become hidden.

Figures 4.9 and 4.10 present the shapes and variation within the resulting clus-

ters using the GMM model. Note, this differs from Figure 6.6 which projects the

clusters and points onto the top two principle components. This visualisation pro-

vides a useful way of assessing and attempting to interpret the clusters. As can be

seen the number of clusters was identical in both aggregated and raw data, however,

the shape of aggregated clusters is far more smoother in the aggregated when com-

pared to those of the disaggregated sample. This fundamental difference may have

had a direct implication for the predictability of aggregated clusters as the differen-

tiation on the aggregated level may be more challenging as essential dynamics that

distinguish the patterns were collapsed during the averaging of energy consumption.

In terms of spatial allocation to each of the clusters, there is an unbalanced

allocation. This is caused by the fact that on average, as was seen in Figure 4.4, en-

ergy customers may be alike in their temporal behaviour, particularly characterised

by morning and evening peaks. In the case of clustering, the less represented groups
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Figure 4.8: Resulting clusters in high dimensional space
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Figure 4.9: Clusters observed on aggregated sample

of patterns are indeed those with lower expected energy consumption, profiles that

vary from very low to very high, persistent usage during the day.

To conclude this section, it is useful to recall the clustering results observed

in Yao and Steemers (2005) which were seen earlier in Chapter 2. As may be

noted, some patterns obtained seem to share similarities with those obtained by

other researchers. On average, the energy consumption can be distinguished using
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Figure 4.10: Clusters observed on disaggregated sample

Figure 4.11: Spatial distribution of the clusters observed using the aggregated sample

behaviour in and out of peak hours. Further interpretation of the clusters essentially

requires further information about the consumers, i.e. demographic data. However,

in our case this was not available. Nevertheless, what can still be tested, is how well

the clustering method applied in this section can help in allocation of new smart

meter readings to clusters. This step can be crucial to conclude on the reliability of

the clustering results seen above. The next section considers this in more details.
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Figure 4.12: Energy load profiles of a UK average households
Source: Yao and Steemers (2005)

.

4.6 Predictability of the Clustering Results

To study how well the clusters are allocated to smart meter readings, the predictabil-

ity of cluster allocation is now assessed under the case where new patterns are in-

troduced into the study. Various tree methods were chosen to segment new/unseen

data into clusters that were obtained using GMM models. This was performed for

both aggregated and disaggregated samples. What will be observed immediately

from the results is that performance on aggregated sample is poorer compared to

that disaggregated sample. This is driven by the fact that through aggregation im-

portant unique dynamics of customer behaviours that are crucial for segmentation

into the distinct clusters may be lost.

In this case study, labels from GMM segmentation of the data are predicted

for test sets of data, comparing performance on aggregated and disaggregated sam-

ples. Three algorithms are assessed: K-Nearest Neighbours, Random Forest, and

Gradient Boosting Trees. K-Nearest Neighbours (KNN) is one of the simplest clas-
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sification methods for both binary and multi-class problems. It is particularly useful

for problems where the conditional distribution of the outcome variable on the in-

dependent variables is unknown. Random Forest (RF) and Gradient Boosting Trees

(GBM), are based on decision tree mechanisms. They are differentiated by the ap-

proach used to select the best combination of trees and how samples of data are

incorporated in the learning process. These methods are especially valuable due

to their simplicity in interpretation compared to other machine learning algorithms.

They can easily be used for regression and classification type problems and, ad-

ditionally, to model non-linear relationships. The choice of models here is driven

by their popularity in past research, specifically in the multi-class setting. It that

has been shown that random forest for instance tends to work particularly well with

smart meter data in prediction analysis (Weiss et al., 2012). The model simplifies

the analysis and does not require narrowing of the sample through exclusion of

certain days as it automatically incorporates patterns in the data corresponding to

distinctive individuals. Previously, researchers tended to omit weekends or holiday

periods from the analysis as they are often associated with greater heterogeneity

among customers (Flath et al., 2012).

4.6.1 K-Nearest Neighbour

K-Nearest Neighbour (KNN) is considered one of the simplest classification meth-

ods for both binary and multi-class problems. It is particularly useful for problems

where the conditional distribution of the outcome variable on the independent vari-

ables is unknown (James et al., 2013). KNN works by taking an input point, x, and

K points that are in some sense close to it, i.e. in its neighbourhood. The points

nearby in the feature space can then be used to select an appropriate label. The

estimator can be written mathematically as

󰁥Y (x) = 1
K ∑

xi∈NK(x)
yi ,

where yi represents the labels of the points in the neighbourhood NK(x) of input

point x.
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4.6.2 Tree-based methods

The other methods assessed here include Random Forest (RF) and Gradient Boost-

ing Trees (GBM), are based solely on decision tree mechanisms. They are differen-

tiated by the approach used to select the best combination of trees and how samples

of data are incorporated in the learning process. These methods are especially valu-

able due to their simplicity in interpretation compared to other machine learning

algorithms. They can easily be used for regression and classification type problems

and, additionally, to model non-linear relationships. For a complete introduction to

RF and GBM please see Friedman et al. (2001b).

The Random Forest algorithm is based on building decision tress on boot-

strapped (randomly sub-sampled) data with a smaller subset of randomly sampled

predictors at each decision node. A large number of trees is grown until a stopping

rule is achieved (e.g. minimum 5 observations in the terminal nodes) and then ag-

gregated for final prediction. An example of the successful use of Random Forest in

civil war onset prediction can be found in Muchlinski et al. (2015) and Strobl et al.

(2008).

Our implementation of the model is as follows. The input variables are repre-

sented by the sequence {b...B} which is a combination of half-hourly readings. The

model draws bootstrap samples, Z, from the training set, and random forest trees

are built using a combination of predictors that are responsible for the split of these

trees. Once a number of tree classifiers have been generated, the average is taken

among all and form a single classifier. Output is represented by {Tb}B
1 The class is

then predicted for the unseen data (test set) through the majority vote that selects

the best performing trees:

󰁧CB
RF(x) = majority vote

󰁱
󰁧Cb(x)

󰁲B

b=1
,

where 󰁧Cb(x) is the classification given by a single tree.

An alternative tree algorithm known as Gradient Boosting was first used to

tackle classification problems, however, is now widely used for regression as well

(Friedman et al., 2001b). Like Random Forest, the gradient boosting algorithm
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takes advantage of both weak and strong classifiers. The reference ”weak” refers

to the fact that on average classifiers may bring a prediction which is slightly better

or just the same as a random guess. Unlike Random Forest where at each iteration

a new solution is being trained to then find the average best among many, in the

Gradient Boosting model the solution of the already trained model is updated as

more samples are taken. The trees are therefore updated at each iteration to obtain

more powerful classifiers.

In boosting models, one first assigns weights wi =
1
N to each of our training

observations that include both input and output variables, with N being the total

number of observations (Friedman et al., 2001b). The process is then iterated F

times during which the classifier G f (x) is fit using the observation weights. The

observations which were misclassified at the previous stage are assigned greater

weights, so at each iteration more importance is given to the observations that were

harder to initially classify. The error associated with each model fit calculated as:

e f =
∑iεNi wiI(yi ∕= G f (xi))

∑iεNi wi
,

where I(x) = 1 if x = 0 and I(x) = 0 otherwise, and is known as the indicator

function.

Those with the highest error are assigned an increase to their weights using

the factor of expγ f , where γ f . The final output G(x) is based on continuous iter-

ations of model fit using re-weighted observations until the error rate of penalised

observations is minimised

4.7 Testing the segmentation mechanism
Table 6.2 reports overall accuracy and kappa values for each of the models used

to predict the data segment. Entries for ‘Accuracy’ report the overall prediction

power of the model including both true positives and true negatives over total of true

and false positives and negatives. The Kappa statistic is used for the evaluation of

classifiers by comparing the observed accuracy of prediction with that of a random

chance. The optimal parameters were obtained using ten-fold cross-validation that
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allows for using all the dataset in the training process. The data is being split into

train and test set ten times and each chunk is used for training and testing of the

model.

Model Accuracy Kappa

Aggregated sample
K-Nearest Neighbor 23% 0.14

Gradient Boosting Trees 37% 0.29
Random Forest 40% 0.29

Disaggregated sample
K-Nearest Neighbor 65% 0.58

Gradient Boosting Trees 80% 0.73
Random Forest 79% 0.75

Table 4.3: Results of multi-class prediction.

KNN 1 2 3 4 5 6 7 8 9

1 13.79% 3.42% 1.67% 0.00% 0.00% 0.00% 26.85% 5.08% 2.04%

2 15.17% 23.29% 0.00% 0.00% 0.00% 0.00% 9.34% 11.02% 0.00%

3 11.03% 21.23% 6.67% 9.52% 3.45% 10.53% 6.23% 13.56% 10.20%

4 4.83% 13.01% 40.00% 47.62% 34.48% 21.05% 0.00% 7.63% 16.33%

5 11.03% 14.38% 11.67% 23.81% 41.38% 21.05% 5.06% 8.47% 10.20%

6 6.21% 7.53% 26.67% 19.05% 20.69% 47.37% 1.56% 11.02% 42.86%

7 8.28% 1.37% 0.00% 0.00% 0.00% 0.00% 30.35% 0.85% 0.00%

8 16.55% 5.48% 1.67% 0.00% 0.00% 0.00% 14.79% 17.80% 2.04%

9 13.10% 10.27% 11.67% 0.00% 0.00% 0.00% 5.84% 24.58% 16.33%

GBM 1 2 3 4 5 6 7 8 9

1 27.03% 11.54% 1.52% 1.39% 1.32% 1.19% 24.79% 15.38% 2.15%

2 12.61% 36.54% 21.21% 4.17% 5.26% 0.00% 5.98% 8.65% 4.30%

3 9.01% 21.15% 30.30% 6.94% 10.53% 3.57% 3.42% 9.62% 11.83%

4 0.90% 2.88% 12.12% 52.78% 22.37% 19.05% 0.00% 2.88% 7.53%

5 1.80% 10.58% 1.52% 16.67% 44.74% 13.10% 2.56% 5.77% 3.23%

6 0.00% 0.00% 13.64% 18.06% 10.53% 41.67% 0.00% 2.88% 26.88%

7 23.42% 1.92% 0.00% 0.00% 0.00% 0.00% 48.72% 5.77% 2.15%

8 18.92% 6.73% 6.06% 0.00% 0.00% 2.38% 13.68% 29.81% 12.90%

9 6.31% 8.65% 13.64% 0.00% 5.26% 19.05% 0.85% 19.23% 29.03%

RF 1 2 3 4 5 6 7 8 9

1 26.13% 10.53% 3.17% 0.00% 0.00% 1.33% 27.73% 13.33% 4.12%

2 11.71% 43.42% 22.22% 1.41% 0.06% 0.00% 9.24% 9.17% 5.15%

3 9.91% 26.32% 22.22% 8.45% 12.64% 0.00% 0.84% 12.50% 15.46%

4 0.90% 2.63% 14.29% 46.48% 27.59% 17.33% 0.00% 1.67% 9.28%

5 4.50% 13.16% 14.29% 21.13% 44.83% 0.07% 0.84% 4.17% 4.12%

6 0.00% 5.26% 7.94% 19.72% 9.20% 50.67% 0.00% 5.83% 17.53%

7 21.62% 1.32% 1.59% 0.00% 0.00% 0.00% 49.58% 5.83% 1.03%

8 18.02% 7.89% 3.17% 0.00% 0.00% 2.67% 10.92% 30.83% 13.40%

9 7.21% 13.16% 11.11% 0.00% 2.30% 21.33% 0.84% 16.67% 29.90%

Figure 4.13: Confusion matrix reporting the correspondence between observed vs pre-
dicted class

One of the immediate observations is the difference in performance when con-

sidering aggregated versus disaggregated analysis. Aggregated models are asso-

ciated with higher misclassification rates, suggesting that by aggregating essential

dynamics that contribute to identifiable patterns indeed have been lost.
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KNN 1 2 3 4 5 6 7 8 9

1 73.00% 2.00% 15.00% 0.00% 3.00% 1.00% 6.00% 10.00% 0.00%

2 0.00% 67.00% 0.00% 3.00% 0.00% 0.00% 1.00% 0.00% 0.00%

3 0.00% 2.00% 60.00% 0.00% 0.00% 0.00% 2.00% 0.00% 2.00%

4 0.00% 0.00% 0.00% 97.00% 0.00% 0.00% 0.00% 0.00% 0.00%

5 20.00% 0.00% 42.00% 0.00% 87.00% 4.00% 4.00% 15.00% 1.00%

6 2.00% 0.00% 13.00% 0.00% 2.00% 64.00% 2.00% 2.00% 8.00%

7 0.00% 18.00% 17.00% 0.00% 0.00% 0.00% 67.00% 1.00% 0.00%

8 1.00% 10.00% 29.00% 0.00% 1.00% 0.00% 19.00% 70.00% 1.00%

9 3.00% 0.00% 29.00% 0.00% 6.00% 31.00% 0.00% 2.00% 88.00%
GBM 1 2 3 4 5 6 7 8 9

1 88.49% 1.23% 2.24% 1.22% 4.36% 0.00% 3.43% 4.14% 0.24%

2 0.59% 84.06% 0.00% 6.97% 0.04% 0.00% 6.63% 1.56% 0.00%

3 0.32% 1.28% 81.34% 1.51% 0.21% 0.00% 1.11% 0.28% 0.96%

4 0.00% 0.09% 0.00% 83.52% 0.00% 0.00% 0.00% 0.00% 0.00%

5 6.82% 0.32% 5.22% 0.75% 90.38% 4.00% 2.18% 5.28% 0.00%

6 1.26% 0.00% 5.97% 0.00% 0.88% 92.22% 0.05% 0.51% 3.37%

7 0.09% 8.70% 0.75% 4.05% 0.18% 0.00% 78.35% 3.15% 0.00%

8 1.22% 4.33% 2.24% 1.98% 2.14% 0.22% 8.25% 84.82% 0.00%

9 1.22% 0.00% 2.24% 0.00% 1.83% 3.56% 0.00% 0.26% 95.42%

RF 1 2 3 4 5 6 7 8 9

1 82.73% 0.96% 9.62% 0.00% 8.27% 0.00% 4.29% 5.00% 0.35%

2 0.60% 84.50% 0.00% 2.64% 0.00% 0.00% 6.92% 2.24% 0.00%

3 0.60% 1.33% 75.00% 0.00% 0.31% 0.27% 2.54% 1.34% 0.70%

4 0.00% 0.23% 0.00% 97.14% 0.00% 0.00% 0.00% 0.00% 0.00%

5 8.01% 0.23% 3.85% 0.00% 83.67% 6.04% 3.66% 7.67% 1.40%

6 2.26% 0.23% 5.77% 0.00% 2.27% 70.60% 0.79% 1.22% 23.16%

7 0.64% 9.77% 1.92% 0.22% 0.21% 0.00% 67.97% 2.76% 0.00%

8 3.22% 2.75% 3.85% 0.00% 0.31% 0.27% 13.63% 79.23% 0.70%

9 1.93% 0.00% 0.00% 0.00% 4.96% 22.80% 0.20% 0.54% 73.68%

Figure 4.14: Confusion matrix reporting the correspondence between observed vs pre-
dicted class

More detailed information can be observed from the confusion tables that high-

light differential performance of the prediction methods across clusters. While RF

and GBM tend to perform better on average, KNN showed higher accuracy in some

classes. This is possibly related to different ‘bias-variance’ trade off for each of

the tree models. While boosting aims to reduce the bias by taking the average of

predictive performance among the estimated models, Random Forest fundamen-

tally searches for a solution that reduces variance by imposing a strict structure of

reducing the number of predictors at each split of the tree.

As observed from the confusion tables (Figures 4.13 and 4.14), the predic-

tion methods show differential performance across clusters. One of the immediate

observations is the difference in performance when considering aggregated versus

disaggregated analysis (Table 6.2 ). Aggregated models are associated with higher

misclassification rates, suggesting that by aggregating, information on essential dy-

namics that contribute to identifiable patterns are lost.

While RF and GBM tend to perform better on average, KNN showed higher

accuracy in some classes. This is possibly related to different ‘bias-variance’ trade

off for each of the tree models. While boosting aims to reduce the bias by taking
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the average of predictive performance among the estimated models, Random Forest

fundamentally searches for a solution that reduces variance by imposing a strict

structure of reducing the number of predictors at each split of the tree.

Often, the classes that are better represented in the data may be associated with

better performance as there is more data available for the training. In our case, this

had no implication on performance. Classes with smaller number of observations

were more easily differentiated, while the bigger ones showed higher levels of mis-

classification. Later in the thesis, it will be shown that such trade off persistent also

in applications that consider regression analysis of smart meter data.

4.8 Some further extensions
This section presents possible extensions to the clustering analysis above. The ex-

tensions are aimed at narrowing down the analysis both spatially and temporally.

This is based on the assumption that by increasing resolution of space and time one

may be more confident about the relationships in the data. The clustering within

the sample of Bristol energy consumption is presented. It follows by an attempt to

use clustering on a chunk of time (out of peak hours). The results in this section are

inconclusive, yet are presented to give the reader a flavour of the kind of approaches

that may be taken to answer more specific questions about where, when and how

smart meter users consume energy.

4.8.1 Narrowing the space

The aggregated data for Bristol was created in similar to national sample faction.

Average half hourly measures across the whole year were taken at OA level. The

temporal profiles were then clustered. The only difference of this sample is much

finer OA level geography compared to that of postcode sector. The resulting clusters

are presented in Table 4.4 and Figure 4.15.

The number of distinct clusters is smaller than that of the national dataset.

Nevertheless, some immediate correspondence with the clusters that were defined

previously can be noted for clusters 1 and 2. The consumption in Bristol is observed

to be differentiated by both peak hours and throughout the day patterns. Most of
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Segment % of total sample (Aggregated patterns)
1 27%
2 38%
3 35%

Table 4.4: Results of consumption pattern segmentation at OA level in Bristol using GMM.

the output area aggregates are associated with very low or no consumption during

the night time. This may suggest that variability of energy consumption at a finer

geographical level, i.e. over the city of Bristol, could be representative of wider UK

energy use. Further to this, it may help us in filling the gaps where data is missing

by defining some common energy behavioural patterns that are more frequent in

each of the areas in Great Britain, or as one may call it, typical profiles.

4.8.2 Narrowing the Time Resolution

A further extension to the temporal analysis of energy data may involve segmenta-

tion of the patterns in terms of peak hours as they have shown to be important for

the definition of the clusters above. Only one day was selected for the analysis, an

average weekday in the end of January. Figure 4.9 suggests that regardless of seg-

mentation, there are quite similar patterns around morning and evening peak hours

which vary in magnitude but are evident for each of the clusters. Examining peak

and outside peak hours separately may tell us slightly more on households presence

at home as well as particular habits or routine (i.e. waking up early for work, late

nighters). It can be shown that for defining the interactions between characteristics

of people living in the area and energy, concentrating on specific time and location

may reveal more information about energy consumption rather than when both time

and space are aggregated. As may be observed in clusters 3 and 4 in Figure 4.16,

consumption happening throughout the day is more frequent around the coastal re-

gions and less occurring in central England. Overall, while the results seem fuzzy

at this stage due to the lack of additional data, the approach itself can be taken to

study a very specific and narrow questions such as “where people are likely to be at

home during the day?”.
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Figure 4.15: Clusters derived from annual aggregates at OA level for Bristol.

4.9 Conclusions

This chapter has provided an introduction to the smart meter data as time series pro-

cess. The concepts of stationarity and uncertainty were discussed in the context of

smart meter data. Some unique characteristics of temporal and spatial dimensions

of the data were presented to undermine the complexity of the data and motivate

the choice of methodologies to be used for data segmentation. Clustering models
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Figure 4.16: Clustering of off-peak hours data. The peak hours consumption levels are
characterised by the the times between 11.30am and 3pm

that are available to group the energy consumption patterns together were briefly

introduced. It was demonstrated that the data can be meaningfully clustered using

Gaussian Mixture Models. The chapter suggested a possible strategy for prediction

and characterisation of temporal profiles. It was shown that both segmentation and

predicability of segments groups tend to work differently depending on whether the

aggregated or disaggregate samples are under study. For prediction in particular, it

was shown that using aggregated data records leads to much higher rates of misclas-

sification, while the most granular data can be classified and predicted with more

certainty. Compared to Random Forest, in practice some classifications may be bet-

ter performed using Gradient Boosting trees. However, the performance may be at

the cost of over-fitting the data (Friedman et al., 2001b) Nevertheless, what is ob-

served is rather a mixture of performances with each method winning or losing for

different prediction class. This may be related to the essential ‘bias-variance’ trade-

off that is handled differently by each model. While boosting aims to reduce the



4.9. Conclusions 147

bias by taking the average of predictive performance among the estimated models,

Random Forest fundamentally searches for the solution that reduces the variance by

imposing a strict structure of reducing the number of predictors at each split of the

tree.

On the interpretative side, an approach to narrow down either the spatial or

temporal dimensions was presented briefly. Given the limitations of the datasets

accessed in this thesis it is challenging to move towards any inference why profiles

of energy consumption may differ. Looking at various regions one by one or at

distinct chunk of times may be handy if the researcher has a specific question in

mind. For instance, in the Section 8 of this chapter it was shown that by using

clustering at various temporal and spatial scales one can access:

• ‘How representative the variation in energy consumption in Bristol of the

wider population of the UK?’

• ‘Where people are likely to be at home during the day?”

The next chapter will look in more details at various approaches to characterise

smart meter data, this time in a regression context. The aim, is to predict the patterns

of energy consumption and understand what influences the variability of energy

usage across time, one can learn more precisely about the process that generates the

energy consumption pattern. Some further applications arising from this chapter

could be an attempt to build the hierarchical structure of energy consumption based

on seasons, month, days of the weeks. It may also be constructed with the addition

of a spatial dimension for data where greater spatial granularity is available to study;

this would allow us to assess if there are any spatial pre-determinants of the variation

in the energy use. To improve even further, a possible suggestion of using the co-

integrated time series where both gas and electricity are combined may perhaps

presents a more complete picture of the segmented energy use for the UK using this

or similar data.



Chapter 5

Methodology and Results:

Regression Analysis of Time Series

5.1 Introduction

The following two chapters are concerned with the tasks of forecasting and predic-

tion with smart-meter data. Once the data is meaningfully grouped, the next step

would be to attempt to predict energy use of either an individual user or to look at

the energy use of customers as a group that share similar patterns.

There are two types of predictions that can be considered: point or sequence

prediction, and classification. Point prediction refers to the scenario where one may

want to predict either next half hourly energy consumption or the whole sequence

of consumption, say for the next 24 hours. There are number of approaches that

are developed for point prediction. Primarily, they assume stationary or weakly sta-

tionary processes embedded in the time series. As discussed in the previous chapter,

the assumption of stationarity may not be appropriate and the researcher should also

consider alternative methods that may relax the assumption of stationarity.

The importance of prediction is mainly centred on the opportunities provided

via consumption feedback, which can be offered to both the energy supplier and

the smart meter user. For example, this could be a personalised saving suggestion

at smart meter user level based on past use. Alternatively, it can be more inclu-

sive and aggregated information such as helping to understand the overall pressure
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on the grid by looking at aggregated consumption at different time periods. One

could use this to anticipate if any interventions are required given predicted future

usage. Lastly, a detailed analysis of predictability of certain patterns may tell us

about overall periodicity in the consumption behaviour. In other words, if the cus-

tomer consumption can be easily predicted using the model one may conclude the

customer is to some level being periodic in their behaviour so it is easier for model

to learn what they will be doing next.

Classification refers to the scenario where one is interested in using smart meter

data to predict a specific class/category that characterises specific energy patterns.

The previous chapter demonstrated how using classification may assist one in study-

ing how stable clustering allocations are performed for grouping smart meter data

patterns when new data is subsequently introduced. In the next chapter, we will in-

vestigate a further type of classification problem, this time where the label of smart

meter data has a meaning. For instance, smart meter data can be used to classify

different type of customers (i.e. family vs single occupant) or classification of prop-

erty types (i.e. terraced house vs detached). For this thesis, a very specific example

of the label is chosen: energy vulnerability of the customer based on affordabil-

ity of the energy bills. Such an application is highly topical for both applied and

methodological reasons. On the application/industrial side, the UK energy market

and policies require companies to attempt to identify the fuel poor (Rosenow et al.,

2013). From a technical and academic point of view, it is interesting to discuss

such classification, as interpretation of the label is usually subjective and qualitative

rather then quantitative.

Application of predictive analysis for both forecasting and classification are

yet quite limited within smart-meter industry research. For instance, a number of

software companies such as IBM are aiming to offer tools to analyse smart meter

data, however, if there is no data infrastructure put in place such that real time

analysis is possible, these solutions may remain infeasible for quite some time.

The experiments presented in this thesis may also suffer from the the same issue,

as while feasible on the cases of smaller samples, they certainly may fail if data of
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larger magnitudes are considered. A number of additional preliminary steps for data

analysis such as clustering prior to forecasting and feature transformations prior to

prediction may need to be thought of. Some possible directions for such feature

extraction are discussed in Chapter 7.

The energy research community focuses largely on addressing the above im-

plementation barriers by targeting the complete roll out of smart meters by 2020,

whilst also exerting a sustained drive to develop the tools and techniques that will

be in place once data will start arriving on automated basis (Wang et al., 2018;

OFGEM, 2015). To give an example, one application of predictions for smart meter

data may include the design of a feedback loop for customers, which allows them to

see the predicted costs of the energy usage if they change their behavioural patterns.

Past research have shown that usage of home in displays by customers to analyse

their own energy use have a potential for immediate savings and behaviour change

(Faruqui et al., 2010b). However, the study of how periodic or habitual the indi-

viduals are in their energy consumption still remains a relatively untapped subject

due to unavailability of long term consumption smart meter data. The uniqueness

and individuality in energy consumption patterns makes it challenging to design a

standard and generalised approach to study their patterns.

5.1.1 Structure overview

One of the first contributions of this chapter is to highlight the challenges and op-

portunities that are associated with the variability and heterogeneity of energy con-

sumption patterns when sample is pooled from various regions with various type of

users that are unidentified. This case is characterised by the situation where data

cannot be reduced based on some meaningful selection (i.e. selection of specific

income group customers or certain property types). A key question which is asked

in this chapter is whether the available methods that can be used to predict next day

consumption are capable of handling such diverse and large datasets. Census 2011

OAC classification is used to complement the previously introduced Bristol sample

which is then used to predict consumption trends in winter and summer.

Some preliminaries on time series forecasting, and the nature of linear models
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are introduced before moving on to generalised linear models and smoothing. The

central methodology of this chapter, Generalised Additive Models (GAM) with ap-

plication to smart meter data will follow in Section 5.3. Section 5.4 will present

some justification for the samples chosen for the analysis, and brief descriptive

statistics for this sample will be provided. Results of using GAM to fit energy

consumption for various types of smart meter users will then be presented and anal-

ysed. Some issues and problems with the analysis will also be outlined, opening up

more opportunities for further research. The conclusion and discussion of potential

limitations and further ideas arising from this work will round the chapter.

5.2 Preliminaries

Previous work in point prediction for energy data has largely been constrained to

modelling annualised energy use Huebner et al. (2015) instead of the real consump-

tion due to unavailability of smart meter data. With growing access to smart meter

data, one may think that now the energy consumption can be easily predicted with

almost no uncertainty. What was observed in a previous chapter however is that

smart meter data and the dynamical structure of such data are highly complex and

may require an advanced methodology to be used. This section will review some

important fundamentals that need to be considered to describe the smart meter data

when one considers the point or the patterns prediction.

In the previous chapter, the issues of both temporal and spatial heterogeneity

were touched upon briefly. This section will focus on how these heterogeneous

behaviours can be controlled for in the predictive analysis. In particular, the main

explanatory cause for heterogeneity appears to be from effects of seasonality that is

present both within the days, weeks, month and quarters of the year.

This chapter will be based on relatively small samples of data, a random se-

lection of individual patterns will be used. The aim is essentially to experiment

with various patterns of energy consumption to study if they can be described using

regression analysis and consequently be predicted. Once it can be shown that pre-

diction strategy is satisfactory on a small sample, larger selection of patterns may
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be considered. In a broader sense, this may be relevant for the predictive tasks as-

sociated with studying the cases where the researcher may want to investigate an

overall pressure on the energy network and national grid. However, as is demon-

strated in this work, it can be challenging to take larger samples of smart meter data

for regression analysis, as more data means more variability and complexity.

The next section will present an overview of the baseline structure of linear

models. These models underpin the main method used in the chapter, Generalised

Additive Models and is necessary to be mentioned here to provide a guiding intu-

ition behind the outcome and the predictors relationship. In this set up the outcome

variable would be the next half hour energy use and the predictors will be repre-

sented by the series of past energy use.

Another reason of revising a linear model (as with k-means in clustering appli-

cation), this is the method which will be often initially considered by a researcher or

an industry practitioner due to its popularity and simplicity of application. To move

a step further and introduce a discussion for extending linear model to GAMs, both

nature of the approach and nature of the data that is suitable for these models are

discussed.

5.2.1 Linear model

Despite the growing availability of statistical tools available to researchers, the most

common and reliable type of statistical analysis remain to be a technique that is

based on a linear relationship between predictors and outcome variables. These

can be used to estimate the dependence of E(y) on predictors vector X where the

model is linear and is of the fixed parametric form. Such parametric structure im-

plies a very definite form of relationship (i.e. linear) which limits flexibility of the

regression line in expense of generalisable and concise summary of the relationship

between predictors and outcome variables.

This section revises the assumptions and the structure of simple linear model

that can be used describe the relationship between the outcome and predictors vari-

ables. The intuition behind linear model sets an essential base for Generalised Ad-

ditive Models (GAM) that will be applied to smart meter data in order to forecast
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next day energy consumption pattern. The most basic and intuitive way to approach

time series data prediction is by using a ‘simple’ Ordinary Least Squared (OLS)

estimator to identify parameters.

OLS approaches for time series forecasting rely heavily on the assumption of

independence which was discussed briefly in a previous chapter. The linear model

is canonically specified by

E(Y |X) = α +βX , (5.1)

In the energy consumption case E(Y |X), is the expectation of consumption in

the next half hour as a function of past consumption observed, can be expressed as

the function of explanatory variables X . In a linear model, least-squared estimation

is used to obtain α and β such that residual sum of the squared differences between

the fitted by the model line and observed data are minimised. From the definition, it

is appropriate to use linear model where relationships between explanatory variables

and the outcome tend to be linear. However, non-linear cases may be still studied

using the linear model construction by inclusion of quadratic terms, i.e. X2.

Some of the important assumption that linear models rely on are those of inde-

pendence, normality, homoscedasticity, and linearity. Behaviour of the error term is

one of the most important components in the regression analysis, mainly its statisti-

cal distribution. Error, also know as the residual term, itself does not mean a literal

’error’. Rather, it is a measure of the variation in the data that is random and cannot

be explained by the suggested relationship between the variables. Ideally, the error

term is expected to be normally distributed and has no correlation with independent

variables. If this holds, one may conclude that bias is minimised and the model has

picked up all the relevant variation that can be explained by the model.

Linear regression is a powerful tool that can be used on its own or serve as a

base for more advanced techniques. Some of the main purposes of linear regression

were outlined in Rencher and Schaalje (2008). These are prediction, data descrip-

tion and explanation, parameters estimation, variable selection and control of output

for experimentation. Where relationship may not be perfectly linear, various mod-
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ifications to the linear model can be made either via transformation of one of the

predictors (i.e. using polynomial) or by fitting the smoothing function that can be

then used as an independent variable. The example is shown in the next section.

5.2.2 Smoothing

Smoothing is the method that similar to regression analysis that may help in de-

scribing series which have no obvious trend. A smoothing function (smoother) can

be described as an approach that is used to summarise the trend in some random

variable (y), in this case next hour energy consumption readings. Smoothers belong

to the family of non-parametric models and are often used to either describe the data

generation process or for estimation of how the mean of of the outcome variable (y)

is dependent on the predictors (x). The latter is related to the type of the smoother

that will be used in the structure of Generalised Additive Models. It is also widely

used in GIS applications when one is interested in the intensity of the mean depen-

dancy based on the various geographical units. Smoothing represents an essential

component of non-parametric regression. While regression can be of parametric

nature (i.e. linear), its components may be non parametric (i.e. smoothers).

There is a huge variety of smoothing functions ranging from very basic such as

natural splines to more diverse, such as families of gaussian kernel smoothers. They

mostly differ in the approaches to how the data is being averaged across neighbour-

hoods of X , these neighbourhoods can be described using smoothing parameters.

In this thesis, the survey of smoothing functions will be limited. As will be

seen, different customers may have very unique periodicity and cyclic behaviour.

Hence, there may be no general smoother that can be applied across all smart meter

users equally. Choice of smoothing function may also largely depend on the fre-

quencies of erratic or irregular consumption patterns. An example of kernel smooth-

ing applied to the annual aggregation of daily consumption patterns is presented in

Figure 5.1. A Gaussian kernel smoother is used in this scenario. As was seen from

the previous chapter, a Gaussian density based approach to smart meter data may

be a wise initial choice.

From the first glance at Gaussian kernel smoothing of the average annual daily
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Figure 5.1: Gaussian kernel smoothing of the average annual daily pattern

pattern in Figure 5.1, one may notice that the smoother fits directly to the points

of energy use, meaning that there is little or no space for generalisability left if we

were to consider using the same function to a series of different patterns. A recall of

bias-variance trade off is necessary here to inform the reader that depending on bias

-variance trade off one may be looking at, we may choose very different complexity

of smoothing parameters when setting up GAMs. The section below provides an

overview why this is an important consideration when one attempts to describe

energy use.

5.2.3 The Bias-Variance Trade-Off

The concept of Occam Razor introduced in the previous chapter needs recalling in

this section as we are approaching the discussion on model selection. The bias-

variance trade off is a trade off between the complexity of the model and variability

in accuracy achieve by that model be it prediction or classification tasks. In the

context of linear regression, the most obvious bias variance trade off can be de-

scribed using concepts of overfitting and under-fitting. Models that have less bias

are often associated with higher complexity in their parameterisation, thus making

them less likely to generalise to new data, and to overfit the data. Overfitting may

also happen due to noisy data points being parametrised. Thee points could be rep-

resented by rate unusual deviation in consumption which not necessarily indicates
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significant shifts in user behaviour . Where a model is simple enough the bias may

be much higher, however, there will be less chance for such input variables noise

to be taken as important for describing the relationships between input and out-

put variables, making the model more generalisable to other unseen data. Ideally,

one would attempt to balance both bias and variance. It will be shown that thanks

to smoothing component in Generalised Additive Models (GAM) presented below,

one may reduce chance of overfitting or under-fitting by appropriately regulating

the smoothing parameters of the model.

5.2.4 Metrics for Models Comparison

Given the discussion above, intuitively one may want to measure how much vari-

ance increase over bias decrease is gained by attempting different models structures.

There are various measures in place for that. The main metrics that will be used

in this study are primarily, R squared and adjusted R squared for accessing the ex-

planatory power of the models and secondarily, Akaike Information Criterion (AIC)

and Bayesian and Information Criterion (BIC) to access the complexity of the given

models.

R squared is used to measure the goodness of fit of the models that can be

found by calculating the ratio of the variation in the data that can be explained by

the suggested model (i.e. linear model with multiple predictors). As more predictors

are included in the model, R squared is expected to rise, this does not always mean

however that the model is better as there may be an issue of overfitting as well as

this measure will be sensitive to the total number of data points in the dataset that

is used for model fitting. To correct for this, adjusted R squared is often preferred

as it would adjust to higher number of predictors with respect to total data points on

which model being trained.

AIC and BIC are metrics that often being used to measure complexity of the

model that is based on the analysis of bias-variance trade off in the model as well

as number of predictors that are used in the model. In other words, the metric help

find a model that fit data well but also can be generalisable enough. Both are based

on the likelihood of the estimated model to predict true values. Lower AIC and
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BIC are indication of better fit (for more details on metrics for model comparison

and mathematical intuition behind them please see (Judd et al., 2011; Burnham and

Anderson, 2004).

5.3 Generalised Additive Models (GAM)
The techniques and analytical strategy applied in this chapter are based in parts

on work by Wood (2006, 2004) and Laurinec and Lucká (2016). More specifi-

cally,Wood (2006) has developed an application of GAM to EDF energy load data,

while Laurinec and Lucká (2016); Laurinec (2016) has considered data on com-

mercial buildings electricity consumption in the United States. The work in this

chapter extends their analysis by applying the model in the context of the residen-

tial customers where periodicity of consumption may be more variable. The aim is

to test whether these models are suitable for big data analysis with residential gas

and electricity consumption.

The Generalised Additive Models (GAM) allow for the model to be based

not just on the sum of individual variables (i.e. linear regression) but the sum of

smoothing functions of those explanatory variables. This implies that non linear

effects can be studied as well as effect of individual smoothing functions can be

examined separately (similar to the assessment of significance of explanatory vari-

ables in the linear regression model we can access the explanatory power of the

functions). One of the highlights of GAMs is that we can account for seasonal-

ity within the day, week, month or even a year and incorporate those seasonalities

into our prediction by allowing the model to be built using the functions of daily,

weekly, monthly dependencies. The GAM belongs to the family of the non para-

metric model types which makes it slightly more flexible than ordinary Generalised

Linear Models (GLM).

Formally, the model can be written as follows:

g(yi) = β0 + f1(xi)+ ... fk(xi)+ εi (5.2)

where yi belongs to the exponential family distribution (to see more about
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exponential family distribution please look at Chatfield et al. (2010)), i = 1, ...N

references the data-point, y is the outcome variable (next half hour prediction),

and x1, ...xk are independent variables (past energy consumption). The unknown

smoothing functions are represented by f1, ... fk. Furthermore, we can write these

functions as combinations of basis functions bi j according to

fi(x) =
q

∑
j=1

bi j(x)βi j . (5.3)

This parameterisation allows us to linearise the representation, basically, all we

need to do is find the appropriate parameters of βi j. This function can also be re-

ferred to as a spline with a basis function b. The splines or smoothing bases can be

variable (i.e. cubic, cyclic-cubic) depending on being most suitable for the regres-

sion fit. We can now represent the overall model as a linear combination of these

functions. To do this, we can consider making a big matrix X = (bi j(x), . . . ,bkq(x)),

the expected value is now given by:

g(E(y)) = βX , (5.4)

where β is now a vector of size kq (if q is constant for all f1, . . . , fk). An esti-

mator can be formed in a similar manner to OLS by minimisation of the following

function:

󰀂y−βX󰀂2
2 +λ

k

∑
i=1

󰁝 1

0

󰀅
f ′′i (x))

󰀆2 dx . (5.5)

Lambda (λ ) is a smoothing parameter, larger values encourage smoother func-

tions f , the notation f ′′(x) is used to denote the second derivative of the functions.

The integral of second derivative squares can be presented as:

󰁝 1

0

󰀅
f ′′i (x))

󰀆2 dx = β T Siβ (5.6)

The coefficients can be estimated using below:
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β̂ = (XT X+λ
k

∑
i=1

Si)
−1XT y (5.7)

β̂ is an estimator of the regression coefficients. It can be estimated using a

penalised approach called Penalised Iteratively Re-weighted leas Squares (P-IRLS)

(Wood, 2006).

5.3.1 The Back-fitting algorithm and cross validation

Some of the most common issues with GAMs, due to the nature of smoothers cho-

sen, is imprecision in model fit as well as challenges with model selection process

as the number of smoothing functions that can be incorporated can vary.

Hastie and Tibshirani (1990) developed one of the early model implementa-

tions availiable as a package for the R software. In their package ’gam’ to fit the

GAMs to the data they used back fitting algorithm developed by Friedman (1991);

Breiman (1993). In a nutshell, their algorithm attempts to solve a system of equa-

tions by attempting finding a solution to the set of functions till the model converges

to a unique solution. Yet, in general, there is no strong condition on availability of

the unique solution to given problem as it is highly conditional on selected smoother

and initial condition of the algorithm (i.e. functional form used at the start of itera-

tive process) so every time the back fitting algorithm is run it may provide a variety

of results. This implies that there is no guarantee of a unique solution to the estima-

tion procedure. An alternative to consider is the cross validation. Cross validation

splits the given sample in the training and test data chunks that are being rotated till

the whole sample has been used. The average model fit can then be taken consider-

ing the results on each data split.

New developments allowed for cross validation to be incorporated instead

which makes fitting easier and perhaps, more robust. Simon Wood from Bristol

developed a new package ’mgcv’ in 2006 that is now used more commonly for

GAM applications (Wood, 2001).

Cross validation is the process which used for most of the machine learning

methods that were applied to smart meter data in this thesis. It is one of the best
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ways to address the issue of bias variance trade off and ensure that the model we fit

on training data can be as as generalised as possible to the new and unseen data.

5.4 Fitting GAMs: Data and Results

To study how predictable customer behaviour is in terms of gas and electricity con-

sumption a number of cases were selected for testing the GAM approach. Us-

ing Census 2011 Output Area Classification (OAC), four random customers were

extracted from the dataset that correspond to Bristol sample which is available at

greater geographic resolution. These are two customers (one for gas and one for

electricity) from the area that is characterised as Rural Residents by OAC and two

customers from the area that is characterised as Urban Professionals and Families.

As will be seen throughout, the results relating to gas consumption remain

more variable and perhaps more challenging to study. The next chapter considers

this in more detail and is based solely on gas readings. All these samples were

picked under the assumption that periodicity of behaviour may be slightly different

for those who are based in urban area and may be employed full time compared

to those who can be described as rural residents. Ageing was further chosen as a

covariate to assess wether an ageing population is more like to have more periodic

and continuous consumption compared to urban professional and whether ageing

category itself can be further differentiated by urban and rural area of residence’s

characteristics (the results for these customers can be found in Appendix 8.6).

Before proceeding to the results, it is of further importance to note that there

may be an uncertainty associated with the fact the OA classification is based on

average demographics in a region. However, the individual consumer we pick from

this area may not exhibit all of these demographic characteristics. In other words,

these classifications often tend to be characterised by the characteristics of dominant

socio demographic group. There is always a chance, even if small, that the customer

selected from for instance urban professional, may be characterised by many other

characteristics which have nothing to do with urban setting or professional life.

Nevertheless, as will be seen from the results there are some intuitive corre-
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spondences between area characteristics and the consumption patterns. Previously

in the thesis, it was attempted to to use the Census Output Area Classification to ex-

plain some variability of the total per day consumption in various areas. While such

attempt have shown rather weak relationship, what is observed here is that when the

periodicity of behaviour is studied instead, there are much clear correspondences to

OA characteristics. This once again confirms the observation that aggregation may

hide unique characteristics of smart users behaviour that can be explained by the

socio-demographics of the areas they reside. Using gas in these scenarios may un-

dermine the distinctive behaviours across seasons. Electricity will also be explored

for the comparison later in the chapter. It will be shown that electricity is not neces-

sarily totally different from gas when it comes to fitting the GAMs. Yet, there may

be less differentiation by seasons (this will be shown in Section 5.5).

To compare the overall performance of the models, a measure of explained

variation such as R squared will be used to access the quality of the overall model

fit. Comparison of fitted and real values are visualised together with the 3D graphic

where both daily and weekday trends can be shown simultaneously. Most of ex-

periments consider a further comparison between summer and winter. As will be

shown there are quite huge differences in the overall patterns description and their

predictability when gas and electricity consumption from the different seasons are

considered . To complement the overall results and visualisations, the residuals

check that can aid the understanding of model fit and highlight the possible prob-

lems that may be taken for further research, especially for big samples, are pre-

sented.

Each sample of readings was trained using the variation of GAM models. Start-

ing with a very simple model where the parameters of weekly seasonality are taken

independently from daily seasonal behaviour. It then expanded to a model that con-

sider interactions of weekly and daily dynamics, assuming that conditionally on

individual weeks, there may be different effects of daily variation on the predic-

tion of next half hour readings. When looking at the error term, it will be shown

that there are persistent occurrences of heteroscedasticity which are caused by the
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energy consumption being unique or heterogeneous from day to to day. This is

not that concerning when looking at small samples, however, the problem becomes

more apparent where more months taken into analysis. Overall, it will be shown

that energy consumption is hard to be modelled at full in practice. In other words,

it is challenging to find a model that can possibly explain every little component of

variation in energy use across half hour intervals. However, as broad results (Sec-

tion 5.5) presented here show, high precision may not be always necessary if one

is simply interested in understanding the periodic components of consumption, and

their weighting given the total variability of consumption.

One of the important aspects to note, is that compared to linear models, com-

monly used by social science researchers, it is hard to use hypothesis testing in

GAM models to describe the results of the model fit. The coefficients are slightly

meaningless (it will be shown that only magnitude of the coefficients can be used

for comparison) due to non linearity of the behaviour the model attempt to describe

and there are no confidence intervals provided by the model output. All in implies

that there is no precise calculation of predicted value as it may be described by dif-

ferent parameters at various parts of the fitted line. As a consequence, regression

tables, graphical results such as smoothing splines and residual plots serve more

effectively as fit quality check in GAM context.

5.4.1 Data Samples Description

This section presents a brief description of the selected samples of smart meter users

that were picked for the analysis using the characteristics of the Output Area they

reside in and the seasons. It further can be differentiated by energy source: gas and

electricity. The samples that were chosen had more of less full annual coverage.

Nevertheless, as will be noted from the tables below, some smart meter recordings

are more complete than others. Most of the users had missing data across days

which was not systematic. These missing values were removed where consumption

readings were coded as NA in a raw data 1. Threadings where consumption coded

1The reason behind recoding missing values to NA instead of replacing the value with the average
energy consumption was due to the fact that by replacing value as a mean, the pattern of energy use
will be changed. Most of the missing values occurrences were spotted for time between 11.30pm-
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as zero were kept as this can be a realistic measure of consumption . On the positive

side, the users that were picked up for the analysis had full coverage for specific

months that were chosen to describe differences between weeks in winter and sum-

mer. As can be observed below, rural residents consumption can be described as

slightly smaller in the overall magnitude compared to that of urban professionals.

Tables 2 and 5.2 present the overview of the sampled users. The order of the

presentation corresponds to the order of results that are presented in the rest of the

section.

Electricity
Mean (half hour) St Dev (half hour) N

Rural Resident (Annual) 125.01 Wh 144.42 Wh 15300
Rural Resident (Jan-Mar) 152.92Wh 163.72Wh 3374

Rural Resident (May-Aug) 97.20Wh 122.74Wh 3605
Urban Professional (Annual) 235.84Wh 273.28Wh 15300
Urban Professional (Jan-Mar) 216.515Wh 271.45Wh 3374

Urban Professional (May-Aug) 222.05Wh 231.55Wh 3605

Table 5.1: Descriptive Statistics for Electricity Samples, ”Rural/Urban” group

Gas
Mean (half hour) St Dev (half hour) N

Rural Resident (Annual) 901.92 wh 1686.54Wh 14833
Rural Resident (Jan-Mar) 1685.70Wh 2241.47Wh 3374

Rural Resident (May-Aug) 239.67Wh 581.65 Wh 3605
Urban Professional (Annual) 490.16 Wh 1444.85 Wh 14449
Urban Professional (Jan-Mar) 801.15Wh 1550.90 Wh 3374

Urban Professional (May-Aug) 29.49 Wh 251.28 Wh 3605

Table 5.2: Descriptive Statistics for Gas Samples, ”Rural/Urban” group

5.5 Experimental Results
This section presents the results of experiments performed for this thesis using

GAMs. As application of these models in social sciences is not very common, there

is no standard way of regression output presentation. Consequently, the results can

be assessed from various angles. Regression tables, smoothing splines, residuals

12.30am. On average, these are the time intervals where consumption tend to be lower compared to
the day average
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checks, and 3D illustration of the fit that incorporates both weekly and daily di-

mensions of the consumption that were fit by the model. These were selected to

give as much detailed picture as possible of model performance on selected sub-

samples of data. To start with, results using samples of electricity consumption are

presented from a sampled smart meter user in the rural area. It is then compared

to the area characterised as ’Urban Professionals’. Winter and summer patterns are

compared, a large sample over several months of readings is also taken for analysis.

This is to demonstrate that extrapolation within one smart meter user may not be

as straightforward, meaning that there can be differences in the model performance

when applied to small versus large time span.

This section and this chapter as a whole once again highlight how complex the

smart meter data are, and how difficult it is to generalise models across the popula-

tion. The next subsection will present an attempt to fit GAMs to smart meter data.

The rest of the chapter will further consider the strategies to report and evaluate the

model results more effectively 2.

5.5.1 Electricity

5.5.1.1 Rural

The analysis here considers smart meter users arriving from the Output Area char-

acterised as ’Rural’.

Figure 5.2 presents samples of consumption patterns for winter and summer

that are presented with the GAM fit that was achieved using unrestricted GAM

model with interaction of ’Daily’ and ’Weekly’ parameters. The unrestricted model

demonstrated best performance in terms of explanatory power measured by R

squared ( 0.6 for winter and 0.2 for summer). More detailed results are presented in

the Table 5.3.

Even without considering model fit, one immediately notices how distinct the

behaviour of the customer in winter compared to summer. This is evident from

2Most of the strategies for analysis and results presentation were borrowed from the tutorial of
Peter Laurinec (Laurinec, 2016). He performed a very similar analysis of non residential smart meter
data using Wood (2001) package ’mgcv’
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both magnitude and consumption periodicity. This is not surprising and as will be

seen from the rest of the chapter, regardless of which customer one chooses and no

matter whether it is gas or electricity the patterns will differ.
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Figure 5.2: GAM fit for a customer that belongs to OA characterised as ‘Rural Resident’

Both patterns can further be visualised in the form of a surface (c.f. Fig. 4) that

can help visualising both daily and weekly shape of the fit. On the left axis there are

48 half hourly periods and on the right are 7 days a week. Weekends are associated

with peaks of consumptions for this customer (both in winter and summer there is

a strong afternoon peak on Saturday and midday peak on Sunday)
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Figure 5.3: GAM fit for a customer that belongs to OA characterised as ‘Rural Resident’
in 3D.

So far, the results lack a metric for assessing model fit, and what the model
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tells us about explanatory power of individual time variables. As a further step,

the visualisations of how each of the time periods affects y variable are presented

below. There are two graphics that show the relationship between x and y on a daily

basis and on a weekly basis. These are further differentiated for two samples (one

sample of about 11 days and one sample of about 4 months). This comparison is

essential, as smaller samples are much easier to describe using GAM whilst on a

larger sample too much variations may make it hard to generalise about effects of

individual half hour periods.

While these samples are fairly small, a slightly bigger sample was selected to

see what the smoothed behaviour may look like. Smoothing line which is passing

through the readings is presented below for both daily and weekly variation which

is further differentiated by the size of the sample (Figure 5.4). Both winter sample

and six month sample are considered for the comparison and assessment of long

term dynamics of this particular user. One can see that while variation across the

day can be represented as fairly typical (defined morning and evening peaks), there

is an increasing trend for consuming more by the end of the week. Overall, for

this specific customer, it may be said that their sampled pattern behaviour appears

representative of their behaviours over longer period of time.

In terms of specific regression results, Table 5.3 presents a detailed picture

of what has happened behind the scenes of the fitted lines which were seen in the

beginning of the section. The table shows results for GAMs fit with and without

interaction terms, this is further split into a restricted and unrestricted model. An

unrestricted model is represented by a model with unlimited estimated degrees of

freedom (EDF). Having restricting on EDF may prevent the issue of overfitting as

it will restrict the model of fitting a way too complex smoothing function. Unre-

stricted EDF thus allows for much greater complexity, making the model fit better

but at the expense of overfitting. Results are further differentiated by small3 and

large samples (please see ‘Numbers of Observations’ row).

3Small sample is represented by the sample for winter. This was selected due to that fact that on
average summer fit, not only in this particular case, but across the set of experiments was associated
with realtively poor model fit
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Figure 5.4: The fitted response due to each variable/covariate contribution in winter, ‘Rural
Resident’. Winter sample (up) and 6 month sample (bottom)

The resulting coefficients represent here the complexity of the smoothing

splines. Complexity is directly related to the value of EDF (greater the EDF, more

complex is the spline (Laurinec, 2016). The stars indicate how statistically signif-

icant is daily or weekly values are in explaining the outcome variable which is the

next day consumption. As can be seen, both daily and weekly variation is important

for this smart meter user for predicting their future use. However, the interaction

of two shows better explanatory power which is measured by the ratio of explained

variation in the data over the total variation, R squared. The unrestricted model here

demonstrated somewhat better explanatory power (R squared of 0.69) but is associ-

ated with greater EDF, which implies greater complexity of the smoothing splines.

When using larger sample that is associated with more variation of energy use, the

model fit is quite poor. Again, this is not surprising due to many factors that may

be affecting the customer across the year apart from time alone, implying that there
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is a need for controlling for more variables that may be correlated with changes in

energy use.

GAM GAM +
Inte. (Un-
restricted)

GAM +
Inter.

GAM GAM +
Inter. (Un-
restricted)

GAM +
Inter.

(Intercept) 133.70∗∗∗ 133.70∗∗∗ 133.70∗∗∗ 116.93∗∗∗ 116.93∗∗∗ 116.93∗∗∗

(4.71) (4.39) (4.50) (1.45) (1.42) (1.41)
EDF: s(Daily) 28.64∗∗∗ 39.16∗∗∗

(34.90) (44.32)
EDF: s(Weekly) 5.81∗∗∗ 5.97∗∗∗

(5.98) (6.00)
EDF:
te(Daily,Weekly)

113.26∗∗∗ 127.82∗∗∗

(146.97) (165.80)
EDF:
t2(Daily,Weekly)

60.42∗∗∗ 99.88∗∗∗

(74.30) (118.62)
AIC 6481.41 6472.15 6455.99 77519.36 77344.41 77250.72
BIC 6637.02 6964.22 6722.48 77837.32 78220.23 77938.03
Deviance ex-
plained

0.57 0.69 0.63 0.25 0.29 0.30

R2 0.54 0.60 0.58 0.25 0.28 0.29
GCV score 12562.35 12979.29 12091.58 13226.81 12868.66 12676.24
Num. obs. 528 528 528 6288 6288 6288
Num. smooth
terms

2 1 1 2 1 1

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 5.3: Regression Output, ’Rural Resident’

Further to the results above, residual checks (Figures 5.16, 5.15) are presented

to more explicitly assess the behaviour of the error term. As was mentioned in the

previous section, for the model to have valid results, one of the most important as-

sumption to be satisfied as normality and randomness of the error term. As can be

seen, when using small samples, this assumption may be satisfied with more ease

than when bigger sample is taking into analysis. More variability brought in with

more data creating endogeneity problem. On average, for this sample, the distri-

bution of the error term is positively skewed. This doesn’t look as problematic for

small sample as for the larger one. Overall, more data is required. Not as much

data on energy use but data that can serve as potential covariates of energy use. It

may be useful to include various socio-demographic or property characteristics in

the model to see whether the distribution of the error term may improve. The resid-
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uals analysis below suggests that model doesn’t not explain well everything that is

happening in energy consumption variation, especially for the case of large sample.

There is also no evidence for suggesting that unrestricted sample is significantly

better than the restricted one.
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Figure 5.5: Residual Check for Winter Fit, ‘Rural Resident’. Restricted (left) and unre-
stricted model (right).
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Figure 5.6: Residual Check for 6 months sample, ‘Rural Resident’. Restricted (left) and
unrestricted model (right).

This section has suggested a strategy on how the results of a GAM fit can be

analysed and presented such that one may gauge some insights about what is sta-

tistically happening behind smart meter readings. These results do not necessarily

suggest that energy consumption analysed with GAMs will always be associated

with similar performance of the model, neither does it suggest that these are aver-

age consumption characterises of rural resident consuming electricity. The rest of

the chapter will present three other examples to highlight the diversity of energy use

from user to user and model performance. An urban customer is presented next in

a similar fashion, before the chapter proceeds to the analysis of gas consumption.
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Gas consumption will be shown to be more variable compared to that of electric-

ity, something that was already seen earlier in the thesis when smart meter readings

were looked at from angle of clustering analysis.

5.5.1.2 Urban

It is expected that the customer arriving from the area that is characterised by ’Ur-

ban’ may have slightly different consumption behaviour compared to ’Rural Res-

idents’. This section looks at ’Urban Professionals’ area. While there is certainly

seems to be more randomness in winter consumption behaviour , summer behaviour

have occurrence of absence of consumption and may looks rather regular (See Fig-

ure 5.7).
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Figure 5.7: GAM fit for a customer that belongs to OA characterised as ‘Urban Profes-
sional’

From more detailed 3D visualisations, it can be gauged that week in winter for

the customers looks way more periodic than that of summer.

When looking at smoothing splines, it can be seen that extrapolated to longer

period of time the customer barely has an association with typical energy use but

may have more variation across different weeks. Smoothing spline visualisation is

helpful here to see that when taking an average, the behaviour has lower variance

and has more distinct patterns.

Perhaps, it may be more interesting to assess how well GAMs can fit such
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Figure 5.8: GAM fit for a customer that belongs to OA characterised as ‘Urban Profes-
sional’ in 3D.

0 10 20 30 40

−2
00

0
10
0

20
0

30
0

40
0

50
0

Daily

s(
D
ai
ly,
12
.3
8)

1 2 3 4 5 6 7

−2
00

0
10
0

20
0

30
0

40
0

50
0

Weekly

s(
W
ee
kl
y,2
.2
1)

0 10 20 30 40

−1
00

0
10
0

20
0

Daily

s(
D
ai
ly,
16
.6
7)

1 2 3 4 5 6 7

−1
00

0
10
0

20
0

Weekly

s(
W
ee
kl
y,5
.6
8)

Figure 5.9: The fitted response due to each variable/covariate contribution in winter, ‘Urban
Professional’ .Winter sample (up) and 6 month sample (bottom)

behaviour. Table 5.4 presents the overall results. As can be seen, compared to

the previous case, unrestricted model with interactions terms for small sample tend

to perform best (R squared of 0.59) in terms of variance explained by the model.
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However, the EDF components are slightly different compared to rural customers.

Perhaps, due to more irratic behaviours across the reading, it is harder for model

to fit a simple spline. EDF is quite high for models with interaction, regardless of

wether they are restricted or unrestricted.

As before, large sample only confuses the model. Performance measured by

model fit is relatively poor, perhaps due to more diversity of energy use in the long

run which can only be explained with an addition of other covariates such as weather

or identification of smart meter user characteristics.

GAM GAM +
Inte. (Un-
restricted)

GAM +
Inter.

GAM GAM +
Inter. (Un-
restricted)

GAM +
Inter.

(Intercept) 205.96∗∗∗ 205.96∗∗∗ 205.96∗∗∗ 220.45∗∗∗ 220.45∗∗∗ 220.45∗∗∗

(8.87) (7.61) (7.26) (3.01) (2.89) (2.89)
EDF: s(Daily) 12.38∗∗∗ 16.67∗∗∗

(15.45) (20.77)
EDF: s(Weekly) 2.21∗∗∗ 5.68∗∗∗

(2.64) (5.94)
EDF:
te(Daily,Weekly)

131.24∗∗∗ 109.43∗∗∗

(168.96) (140.58)
EDF:
t2(Daily,Weekly)

146.05∗∗∗ 102.52∗∗∗

(172.26) (125.51)
AIC 7131.22 7066.44 7025.79 86743.49 86283.42 86292.43
BIC 7202.05 7635.28 7657.81 86907.73 87035.15 86997.59
Deviance ex-
plained

0.41 0.66 0.70 0.16 0.24 0.24

Dispersion 41578.87 30611.35 27838.74 57135.69 52381.96 52513.65
R2 0.39 0.55 0.59 0.16 0.23 0.23
GCV score 42844.02 40840.36 38584.32 57348.59 53318.32 53392.69
Num. obs. 528 528 528 6288 6288 6288
Num. smooth
terms

2 1 1 2 1 1

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 5.4: Regression output, ’Urban Professional’

Residuals checks (Fig. 4) complement the above results to suggest that once

again while small samples are associated with well behaved GAM in terms of satis-

fying the normality and randomness assumption of the error terms, there are issues

for bigger samples.

Regardless of the fact that these samples may be characterised by different
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Figure 5.10: Residual Check for Winter Fit,‘Urban Professional’ . Restricted (left) and
unrestricted model (right).
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Figure 5.11: Residual Check for 6 months sample, ‘Urban Professional’. Restricted (left)

and unrestricted model (right).

socio demographics, there appear to be no differences in model fit and explanatory

power when it comes to explaining variability of energy use using the parameters

based on time.

5.5.2 Gas

This section presents the results for gas consumption for two customers arriving

similarly from rural and urban areas. As will be shown, gas can be considered as

slightly more variable in the nature of energy use. It is also more periodic compared

to that of electricity.

5.5.2.1 Rural Residents

The first example considers the resident of the area that is characterised as rural by

OAC. Figure 5.12 report the fitted and real values of energy consumption first for

the sample of winter days and then for the summer. Selection of days is chosen such

there are no absences by the smart meter user (i.e. no days without consumption).
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Figure 5.12: GAM fit for a customer that belongs to OA characterised as ‘Rural Residents’

As can be observed from above, sampled rural resident consuming gas tends to

have semi periodic consumption patterns. Persistent presence at the house/property

can be noted from a continuous through the day consumption. One should note, that

while magnitudes of consumption in winter and summer differ, the patters them-

selves may share some similarities.

A more detailed picture of the fit presented by 3D graphic in Fig. 5.13 which

illustrates the spline which is fitted using daily and weekly variation. It may be

noted that for winter month, variability of consumption is evident for almost every

day of the week, while for summer, the largest peaks of consumption correspond to

Saturday and Sunday (6th and 7th day).

The average behaviour over time is represented by the smoothing splines below

(Fig. 4). Something different is seen here compared to electricity readings that

were presented earlier. Daily or weekly consumption has nothing to with an idea
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Figure 5.13: GAM fit for a customer that belongs to OA characterised as ‘Rural Resident’
in 3D.

of a ’typical user’. There is evidence of continuous consumption of gas through

the day. For a small winter sample, consumption appears to be constant across the

day. Whilst over a six month time span it can be described by a greater peak in

the morning that then decreases throughout the day. Mid week for this customer is

associated with highest levels of consumption.

A slightly more detailed picture can be seen from regression table below (Table

5.6). The complexity of the splines characterised by smaller EDF suggest that on

average gas consumption may require less complex smoothing splines compared

to the electricity. There is no weekly significance in explaining the next half hour

energy load for smaller sample. Unrestricted model provides a slightly better fit (R

squared of 0.45) yet still not able to explain even a half of variation in energy use

of this customer. As in the previous sections, the larger sample hold in way more

variability that model cannot explain using the time only.

Residuals checks below are presented to complement results above. It can be

seen that the model fit is more satisfactory on a smaller sample.

5.5.2.2 Urban Professional

As previously, to complement the visualisation of the consumption trends, 3D visu-

alisation of daily fit are presented in Figure 5.18. High periodicity of double-peaked

consumption across the week can be noted. There are almost no differences in the
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Figure 5.14: The fitted response due to each variable/covariate contribution in winter, ‘Ru-
ral Resident’ .Winter sample (up) and 6 month sample (bottom)
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Figure 5.15: Residual Check for Winter Fit, ‘Rural Resident’. Restricted (left) and unre-
stricted model (right).

consumption patterns across the weekdays for this smart meter user.

Sampled urban professional represents a very evident difference to the example

from a rural output area. The pattern can be described as highly periodic and also

can be described by high predictability when using GAM (R squared of 0.75 for

winter). In the winter illustration of Figure 5.17 there is a very consistent occurrence

of morning and evening peaks with no consumption over night. There are also

almost no effect of the weekend which perhaps may have contributed to such high
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GAM GAM +
Inte. (Un-
restricted)

GAM +
Inter.

GAM GAM +
Inter. (Un-
restricted)

GAM +
Inter.

(Intercept) 246.20∗∗∗ 246.20∗∗∗ 246.20∗∗∗ 235.93∗∗∗ 235.93∗∗∗ 235.93∗∗∗

(7.28) (6.25) (6.88) (2.26) (2.26) (2.26)
EDF: s(Daily) 9.20∗∗∗ 12.93∗∗∗

(11.49) (16.14)
EDF: s(Weekly) 2.71 5.44∗∗

(3.14) (5.84)
EDF:
te(Daily,Weekly)

99.27∗∗∗ 55.89∗∗∗

(124.88) (73.50)
EDF:
t2(Daily,Weekly)

55.94∗∗∗ 27.96∗∗∗

(70.92) (34.71)
AIC 6919.03 6835.09 6901.36 83102.84 83135.54 83102.63
BIC 6978.42 7267.43 7148.69 83240.29 83526.11 83304.74
Deviance ex-
plained

0.27 0.55 0.40 0.20 0.21 0.21

R2 0.25 0.45 0.33 0.20 0.20 0.20
GCV score 28657.26 25462.89 28046.57 32141.88 32311.82 32141.17
Num. obs. 528 528 528 6288 6288 6288
Num. smooth
terms

2 1 1 2 1 1

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 5.5: Regression Output, ’Rural Resident’
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Figure 5.16: Residual Check for 6 months sample, ‘Rural Resident’. Restricted (left) and
unrestricted model (right).

explanatory power of the fitted model. In the case of summer prediction, one may

note a very small consumption loads which are slightly irregular through the week.

The absence of consumption may correspond with physical absence of the smart

meter user.

Figure 5.19 shows that more variability is present in larger sample. This is rel-

evant for daily variation. However, it can be observed that contribution of individual
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Figure 5.17: GAM fit for a customer that belongs to OA characterised as ‘Urban Profes-
sionals’

days of the week is almost invisible on a smaller sample yet has some evidence of

increasing effects of weekends on a larger sample.

Looking in more details (Table 5.6) one can see that for this particular user vari-

ation within the day is significant while total consumption over each day throughout

the week doesn’t seem to affect the energy load. For unrestricted model the EDF are

suggesting high complexity of the smoothing spline. Significance is measured by

F tests and lower p-value indicates the we can reject the null hypothesis that daily

or weekly variables have no impact on the variation in the energy load. Further

measures of fit to look at is the R squared that was mentioned earlier to suggest how

well the functional form of presented models explain variability in energy load.

Regardless of whether one uses simple model with no interactions, unrestricted



5.5. Experimental Results 179

Daily

10
20

30
40

W
ee
kly

1

2
3
4
5
6
70

2000

4000

GAM fit
GAM fit (Winter)

Daily

10
20

30
40

W
ee
kly

1

2
3
4
5
6
70

100

200

300

GAM fitGAM fit (Summer)

Figure 5.18: GAM fit for a customer that belongs to OA characterised as ‘Urban Profes-
sionals’ in 3D.

(Intercept) 809.22∗∗∗ 809.22∗∗∗ 809.22∗∗∗ 499.86∗∗∗ 499.86∗∗∗ 499.86∗∗∗

(9.78) (7.10) (9.39) (19.56) (19.67) (19.54)
EDF: s(Daily) 46.97∗∗∗ 46.51∗∗∗

(47.00) (46.99)
EDF: s(Weekly) 5.83∗∗∗ 5.78∗∗∗

(5.98) (5.97)
EDF:
te(Daily,Weekly)

297.19∗∗∗ 93.00∗∗∗

(320.44) (94.90)
EDF:
t2(Daily,Weekly)

65.85∗∗∗ 55.71∗∗∗

(69.31) (57.75)
AIC 7269.01 7037.55 7237.48 110292.89 110405.38 110282.05
BIC 7502.95 8314.84 7527.13 110659.14 111046.28 110671.41
Deviance ex-
plained

0.98 1.00 0.98 0.17 0.17 0.18

Dispersion 50466.87 26618.63 46529.38 2406261.86 2434072.48 2400817.96
R2 0.98 0.99 0.98 0.17 0.16 0.17
GCV score 56192.53 61158.49 53274.30 2426827.91 2471011.27 2422669.08
Num. obs. 528 528 528 6288 6288 6288
Num. smooth
terms

2 1 1 2 1 1

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 5.6: Regression Output, ’Urban Professional’

or restricted model, smaller sample pattern can be easily predicted using the dimen-

sion of time. Periodic behaviour of the sampled smart meter user can be thus well

described by GAM. Larger sample performance however is poor. Meaning that once

again long term trends of the consumption may be in need of additional explanatory
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Figure 5.19: The fitted response due to each variable/covariate contribution, ’Urban Por-
fessional’ .Winter sample (up) and 6 month sample (bottom)

factors to be measured and included alongside.

Further residual diagnostics have shown that while for the smaller sample

model certainly behaves best among the four experiments presented in the chap-

ter, once bigger sample is taken more variation in energy use seems to occur that

model simply collapses. This can be seen from R squared, AIC and BIC.
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Figure 5.20: Residual Check for Winter Fit,‘Urban Professional’ . Restricted (left) and
unrestricted model (right).

To conclude, the sample rural resident that consumes gas in winter is shown to
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Figure 5.21: Residual Check for 6 months sample, ‘Urban Professional’. Restricted (left)
and unrestricted model (right).

be highly periodic and predictable given the results of regression analysis.

Please note that these results are relevant only to these particular smart meter

users and cannot be extrapolated to all urban/rural residents in the selected area, nei-

ther can they suggest that this will be valid for average energy consumer. The results

above are further narrowed down to winter sample as this season is associated with

more variability. This variability may have been crucial in explaining why GAM

model on average were associated with best fitting performance pre-dominantly on

smaller winter samples.

5.6 Limitations
It is important to note some of the immediate limitations in the presented analy-

sis are once again associated with the availability of data about the smart meter

user characteristics. An an approximation of those, Census OA Classification, has

shown some potential to undermine the reasons behind the variability of the energy

consumption cycles in the selected sample. However, these results are by no means

conclusive and should not be taken as definitive representation of urban and rural

differences in energy consumption.

5.6.1 GAMs are complex

Other limitations with the presented experiments are associated with the nature of

the GAM model. It is obvious that it is a complex model and given the number

of smoothing functions available out there it is also a hard model to be designed

such that the best combination of the functional form or combination of functions

is chosen. Very simple structures of the model were used in this chapter in order to
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preserve some opportunities for interpretability as well as avoid over fitting prob-

lem. As in other chapters, the black box solutions are least favourable here. Mainly

because if one acts on these findings, the simpler the model combined with its inter-

pretation may serve to be more useful. This can be true for cases where one wants to

understand periodicity or regularity of energy use which can be directly presented

by smooth basis functions.

5.6.2 Residuals

As was seen from the experiments in the chapter, on average the residual terms in the

model output for smaller samples tend to follow a normal distribution shape. How-

ever, the uniqueness of energy consumption on each day by different consumers,

add noise which in turn adds outliers values that may undermine the assumption

about the error term. It is important to say at this stage that outlier values when it

comes to energy consumption recordings may actually be quite useful. They are

the characteristics of certain behaviour and over time may be systematic. If one

has more data on each consumer, say their two-three years of consumption these

systematic behaviours may be picked up and modelled more easily.

5.6.3 Imprecision

The results of the GAM fit in this chapter may suffer from imprecision. It is hard

to be able to use the results to forecast exact energy consumption in the next hour

using these type of model fit due to its smoothing nature. However, this is a rather

useful property for generalisability of the results that suggest about periodicity of

energy use by particular consumers. So on the other hand, it can still be useful to

describe, if not predict behaviour. In the case where many consumers are pulled

together, smoothing may be a better strategy as it will be less sensitive to outlier

consumption patterns and provide a more general picture of how people consumer

energy in groups that can be then referenced to specific geographical areas or even

the whole country.
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5.7 Discussion and Conclusions
This chapter has presented an attempt to describe energy load by studying past

consumption recorded by smart meters. An inference into how different days of the

week and different weeks of the months may possibly tell us about future energy use

was presented using Generalised Additive Models (GAM) regression analysis. This

is the first application of GAM models to residential energy patterns. Previous work

only looked at industrial electricity consumption (Laurinec, 2016; Wood, 2006).

Possible links to the socio-demographic characteristics of the ares under they study

were further accessed to see whether simple distinction between urban and rural

areas may have impact on periodicity in consumption and as a consequence, its

predictability.

GAM approach is certainly not one of the most straight forward to use and suf-

fers from complexity that undermines overall interpretation of the results if we were

to put it in the social context that exists outside the data. As the energy consumption

itself can be hardly described using simple linear model, GAM may perhaps be one

of the best alternatives one can look at for analysis of smart meter data time series.

It was shown that on average, where customers are periodic the model can pick it up

efficiently using the mix of smoothing functions that are fitted on different part of

the series. It is important to note that such high accuracy is achieved only on a fairly

small sample, where various structures of GAM were attempted before choosing the

most optimal one. If use on big sample of fitting the same GAM to different smart

meter users the results may not necessarily look as neat as in this chapter.

Having more data on consumers, particularly an ability to have greater geo-

graphical resolution, would certainly improve the model results. Time series data

on weather, activities and appliances use recorded along side smart meter data may

complete the understanding of greater variation in the energy use. Precision in cus-

tomers location, offers further precision in possible temperature changes in the area

as well as unique characteristics of buildings types and use that can improve the

explanatory power of GAMs.



Chapter 6

Methodology and Results: Customer

Label Prediction

6.1 Introduction
This chapter will look at the other and very different type of prediction task known

as classification. As with forecasting, this method can be applied to both an in-

dividual energy use as well as to grouped customers energy patterns that was de-

fined through clustering algorithm. The chapter will begin with the discussion of

the context in which classification problem is attempted. Namely, it is focused on

prediction of specific label for the customers that may be characterised by the vul-

nerability towards paying energy bills. Prediction and identification of these kind of

customers is of high importance for both energy companies and the regulators. Un-

like two previous chapters which were pre-dominantly methodological, this chapter

bears greater substantive application. More details are provided below.

The UK is known to be one of the pioneers in introduction in 1994 a policy of

energy suppliers’ obligation in energy efficiency. Focus on carbon savings at resi-

dential level, this regulation has led to initiatives such as subsided home insulations,

free boiler replacements and various modifications to energy company tariffs that

can help modify the energy use to be more sustainable. It further expended to con-

siderations of more pressing societal issues such as fuel poverty and its reduction1.

1Such targets are imposed through Energy Company Obligation (ECO) and administered by the
government regulator, Office of Gas and Electricity Markets (OFGEM). Apart from the UK, policies



6.1. Introduction 185

Big energy suppliers are the ones that are targeted mainly by the regulators.

These companies are expected to provide house insulations and financial assistance

to their customers at no cost, including free installation of smart meters. When de-

ciding on which customers may qualify for the financial support the income to bills

spending is used for identification of fuel poverty/energy vulnerability. The com-

plimentary way to access such vulnerability is also looking at how much energy

being consumed by the customers compared to their expected use. For instance,

if you were supported would you consume more energy to bring yourself closer to

adequate levels. Whilst defining how these customers can be picked up by energy

supplies may sound straight forward, it remains to be one of the greatest challenges

for suppliers to find vulnerable or at risk of becoming vulnerable customers. Cur-

rent financial support which is offered to customers comes through self selection

process where energy customers themselves report that they may benefit from fi-

nancial support.

Now that energy companies are obtaining more and more data on their cus-

tomers energy readings from smart meter, the question is whether these customers

may be actually identified from smart meter data using various classification and

segmentation techniques. In Chapter 4, it was shown that smart meter data when

desegregated can be meaningfully segmented into distinct groups of consumption.

This chapter aims to test whether smart meter data can be further segmented into

groups that have qualitative characteristics or label. In this case, energy consump-

tion vulnerability flag.

6.1.1 Structure of the chapter

The data used in this chapter is on gas consumption is utilised from smart meters

installed across northern England and Scotland for the period from 2014 to January

2015, and existing data on household energy vulnerability derived from the fact

that customers have been enrolled in various kinds of financial support. Some of

the similar methods which were seen in Chapter 4 are re attempted here. As the

to tackle fuel poverty poverty have been introduced in New Zealand (Howden-Chapman et al., 2012;
O’Sullivan et al., 2015), Indonesia (Andadari et al., 2014), Japan (Okushima, 2016) and also, in a
number of European Union countries such as Italy, France, Belgium and Spain.
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case study based on unbalanced sample (majority of the customers in the sample

are characterised by absence of vulnerability flag), few techniques to balance the

sample were applied to the data in the preparatory step.

This chapter further discusses how the accuracy of analytical models may vary

over different types of data and alternative methods. The next section will discuss

the data that was used for the experiments. It is followed by methodology overview

which outlines the analytical strategy that was used to classify customers to discover

different consumption patterns in the data. The last section concludes and provides

suggestions for the policy implications of the findings in this chapter as well as

some suggestion for future work in customer label prediction2.

6.2 Label Prediction: Energy Vulnerability

The case study is based on the sample of 1,919 smart meters from a region in north-

ern England and parts of Scotland. Each meter was recording half-hourly consump-

tion in kWh or Wh depending on the source. For the sake of simplicity, a binary

vulnerability flag was created to indicate whether one or more support measures

associated vulnerability characteristics were applied to the customer.3

For the analysis below, all smart meter readings for the month of February that

are then used later in our prediction model. Table 6.1 provides an overview of the

data. In the given sample 24% of customers were classified as vulnerable and 76%

as non-vulnerable. On average, per day, overall consumption is recorded at 98.69

kWh (median 67.44) with standard deviation 39.34 (minimum at 0 and maximum

at 181.72).

2The work in this chapter is a continuation of the MSc Thesis in which the prediction of energy
customer vulnerability was attempted using neural network model. This chapters extends the anal-
ysis seen in Ushakova (2015) by suggesting more appropriate modelling techniques as well as it
modifies the issues that arise due to unbalanced distribution of the categorical labels in the experi-
mental sample. The data which is used in this chapter was available for further research till March,
2016 and is restricted in use due to non disclosure agreement. This has prevented usage of this data
for other sections in the thesis

3This includes information on customers who have been enrolled in priority services, belong to a
group of credit customers in debt, customers on Fuel direct, customers receiving a grant, vulnerable
customers off supply and those who receive a warm home discount
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Data N (smart meters) N (days) N (daily readings) N (total observations)
One month sample 1,919 28 48 2,372,592
Overall dataset 1,919 390 48 33,309,120

Table 6.1: Data structure. The structure of the smart meter sample and the one month
subsample that is used in the prediction model below.

As a simple visualisation of the data monthly consumption patterns for two

groups of customers as categorised by the energy supplier are presented below. Fig-

ures below illustrate examples of consumption patterns for retired consumers and

families, both in the case of vulnerable and non-vulnerable consumers.

6.2.1 Box plots of consumption patterns for randomly-selected

customers in a given demographic class

Figure 6.1: Vulnerable “Retired and Empty Nester” customer

Figure 6.2: Non-vulnerable “Retired and Empty Nester” customer
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Figure 6.3: Non-vulnerable “Family” customer

Figure 6.4: Vulnerable “Family” customer

For retired individual in Figures 6.1 and 6.2 consumption was generally high but

dropped mainly in January. Non-vulnerable customer experienced a smoother pro-

file across the year with more variation in July compared to other months. Overall,

retired customers receiving support tend to consume more gas compared to non-

vulnerable customers. The family group in Figures 6.3 and 6.4 demonstrates con-

sistent consumption over the year, and in fact increased energy consumption during

spring time in comparison to previous figures. This may be attributed to using gas

for cooking and more hot water as family size may be also correlated with con-

sumption. Presence of the vulnerability flag does not necessarily imply a sizeable

difference in consumption for sampled individuals.

Figures above are based on data of very fine granularity and used here to high-

light the complexity of aggregating the data on consumption due to differences

in individual consumption profiles. Many additional customer characteristics are

omitted, and it cannot be assumed that sampled customers are representative of

consumption patterns for a given life-stage group. Tenancy and property character-

istics as well as geographical location may play a significant role in the observed

differences in consumption. Furthermore, while the data was cleaned by focussing
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Figure 6.5: Median half-hourly consumption for vulnerable and non-vulnerable consumers
for the month of February

on weekday usage there are still a number of outliers, especially for non-vulnerable

customers. This may be due to, for example, sudden weather changes.

As a further illustration we look at all individuals for weekdays in one month.

Figure 6.5 plots median consumption by vulnerable and non-vulnerable customers

during February. It is clear, that the median half-hourly consumption for vulnerable

consumers exhibits similar peaks to non-vulnerable consumers, however, there is a

slight difference in outliers and magnitude of peaks. Winter, as in previous chapters,

was selected for both visualisation and prediction with the underlying assumption

that there is greater variation in the consumption patterns throughout the winter.

For Scotland and Northern England, according to Met Office (2015) January and

February tend to be the coldest months of the year, but February may be more

isolated from the effect of winter holidays Cao et al. (2013).

The results in Figure 6.5 indicate high levels of variability within the data, as

well as presence of outliers especially for consumption during night hours. While

most of the vulnerable sample tend not to use gas during night, there are still a

number of individuals exhibiting high consumption levels. It is also very difficult

to discern any differences in the consumption patterns between two groups of cus-
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tomers.

6.3 Predicting consumer vulnerability
In the previous section, it was shown that visual inspection of two groups may not

necessarily suggest differences in the energy use, especially in the case of aggre-

gated patterns. Given the size of the sample and inability to check each individ-

ual profile separately, machine learning methods are being applied to the data, as

in other chapters, to study whether the algorithm can pick what differentiates two

groups from numerical point of view.

The methodology for this study is based on supervised machine learning tech-

niques that are commonly applied in big data analytics and were previously used in

the analysis of smart meter data. Some of the familiar tree methods such as Ran-

dom Forest that was used in clustering section will be presented. Nevertheless, the

analysis in this chapter extends existing literature with more targeted classification

and prediction — identification of vulnerable customers. Tree methods are further

tested against some of the very common classification methods that can be found in

literature (i.e neural network, support vector machines and naive Bayes) for further

robustness checks.

6.3.1 Balancing the sample

As a pre-stage, given the uneven distribution of consumer vulnerability flag, the

methods for sample re-balancing were attempted. These are hybrid method or syn-

thetic minority oversampling technique (SMOTE). SMOTE uses simultaneously

both under-sampling and over-sampling of the classes, by reducing the majority

class through dropping observations randomly. It has been shown in Kuhn and John-

son (2013) that SMOTE and under sampling are associated with higher receiver op-

erating characteristic (ROC) and improved sensitivity and specificity. SMOTE was

used primarily for this case study. One of the main reasons to re-balance the sample

is to avoid higher prediction accuracy for one group compared to another. Given

that non-vulnerable customers are over-presented in the sample, there may be a risk

that model will earn how to predict well the group which is represented by majority
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of the patterns and not the one we are primarily interested with: vulnerable energy

customers.

6.3.2 Random forest

As random forest was already discussed in details in Chapter 4. This subsection

considers a minimal reference to the algorithm structure yet gives slightly more

details about the model with the reference to problem specification such that is

clear what is the outcome variable and the predictors are.

Random forest classification for vulnerability identification is performed in the

familiar by now stages of the random forest described earlier in the thesis. First, the

algorithm selects a bootstrap sample to be analysed. The tree is then built through

repetitive steps until the optimal combination of variables for predictions with min-

imal error is found. Each time, the model selects variables at random. In our case,

there are 48 variables that correspond to each half-hour smart meter reading every

day of the year. The outcome variable is the vulnerability flag for each consumer.

The learning algorithm begins on two randomly-selected predictors of vulnerability

flag and expands until covering all 48 predictors. The tree is identical to the deci-

sion tree mechanism, where the decision is based on how each variable contributes

to further splitting of the data until we can reach our final classification split – into

vulnerable and non-vulnerable classes. One advantage of using a random forest

model is that it allows for the building multiple trees, rather than just one. Through

such a process the algorithm mainly looks for trees that would build associations be-

tween input and output variables. A higher variation in the data allows the algorithm

to easily differentiate what contributes to vulnerable and non-vulnerable classes,

and split the data further. Furthermore, there is no need to correct the model for

seasonality or time dependencies as random forest logically would separate those

in the training stage. A brief overview of the methodology is given below:

As was observed from the data visualisation, for smart meter data it is expected

that evening or morning gas consumption levels would have a greater impact on the

learning process, while overnight or afternoon consumption should have a relatively

smaller influence on the relationship between input and outcome variables.
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One of the advantages of using random forest models is low probability of

over fitting the data Friedman et al. (2001a) as it is mainly based on decision trees

rather than optimisation problems. The optimisation nature of the algorithms are

core to the neural network and support vector machine algorithms. As part of the

robustness studies, these models were still included and presented briefly below.

6.3.3 Neural networks, support vector machines and naive

Bayes

The models discussed here are suggested for the analysis of large datasets Friedman

et al. (2001a). The specific choice of the model is often motivated by data variation

and whether one may expect a linear or nonlinear relationship between predictors

and the outcome.

Neural network methodology is based on defining neurones that connect input

variables to the outcome, the multilayer structure of the model allows it to represent

complex non-linear mappings. In our specification, the analysis is built on a logistic

regression model for the hidden layer that connects smart meter readings to a binary

vulnerability flag. Minimisation of the sum of squared errors is done by the gradient

descent algorithm.

Gradient descent works by using the first order condition of the function in or-

der to find the local minimum point. By taking small steps from a proxy of gradient

for a given function, both local maximum or minimum points can be approached

through a number of iterations. For this study the number of iterations was raised

depending on the size of the sample due to the fact that each customer has a unique

combination of inputs and the model may need a reasonable amount of time to

converge. Neural networks have been previously been used for energy consump-

tion point predictionNizami and Al-Garni (1995); Tso and Yau (2007); Haghi and

Toole (2013); Lee et al. (2012). Neural network models usually outperform other

approaches such as linear regression, decision trees or support vector machines for

the point prediction using historical data. However, in our case we observe a rather

poor performance, perhaps due to the classification nature of our prediction prob-

lem and noisiness of the data. The latter issue complicates finding a unique solution
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to the optimization problem.

Support vector machines (SVMs) are based on the minimization of the cost

function through a similar gradient descent approach. Instead of having a hidden

layer connecting the input and outcome variable, the algorithm is based on initially

creating a nonlinear feature space where it then seeks to fit a linear regression that

may separate the features into two classes. While the use of SVMs in energy con-

sumption studies is not extensive, several studies show good prediction performance

of such models. For example, Mohandes et al. (2004) focus on wind speed predic-

tion from historic daily averages using multi-layer perceptron (MLP) neural net-

works and support vector machines. Support vector machines outperformed MLP

in terms of prediction accuracy. Dong et al. (2005) use SVMs to predict energy

consumption of commercial buildings in Singapore.

Finally, a naive Bayes classifier is also considered as in this particular setting

it allows is to calculate the probability of a users vulnerability flag by forming a

posterior about the outcome. This posterior updates as more smart meter readings

are taken. Thus, with more data available greater prediction accuracy. is expected

The probability of the outcome variable to be either zero or one is estimated using

the maximum likelihood approach. Naive Bayes, as shown in Rish (2001), relies

mainly on the assumption that the features are independent of the predicted class,

and performs well on highly-interdependent features. The prediction power would

gradually decrease if the class zero is over represented in the sample. In our case,

after re-balancing the sample, we could not report a highly visible difference in the

prediction power using naive Bayes. This is likely attributable to high variation

in the half-hour loads. In addition, the heterogeneous levels of interdependencies

associated with half-hour consumption may also arise from idiosyncratic usage of

natural gas at household level.

In practical work, algorithms often differ in how they utilize predictors that

are less statistically important for identifying the relationship between input and

outcome Breiman (2001a). Whereas random forest models benefit from such weak

inputs, for neural network and support vector machines this additional noise may
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Model Accuracy Recall Precision F-score

Neural Network 60.11% 0.64 0.66 0.65
SVM (radial kernel) 76.2% 0.81 0.99 0.89

Naive Bayes 56.0% 0.81 0.85 0.83
Random Forest 94.6% 0.81 0.79 0.80

Table 6.2: Results (ten folds cross validation) for each model that was used to predict vul-
nerability flag using consumption data

detrimentally affect the solution. Caruana and Niculescu-mizil (2006) show that

for highly variable and complex data sets, or those that have information on real-

world complex problems, naive Bayes is expected to be outperformed by models

like random forest. The results confirm this earlier prediction.

6.4 Results
The accuracy of prediction for each model are presented in this section. The optimal

model parameters for each model are selected through ten-fold cross validation. To

assess the performance of the models, Table 6.2 reports accuracy, precision, recall,

and F-score. The summary of the results suggest that Random Forest outperforms

alternative models in terms of overall accuracy. As was also seen in Chapter 4, it

only confirms the observation that the random forest may have a greater power in

differentiating similar patterns of consumption.

As the choice of alternative models was largely driven by their popularity in

academic research, the observed prediction results are in line with the literature in

related fields. For example, Lines et al. (2011) focus on appliance consumption

predictions and compare naive Bayes, random forest, neural network, and SVM

(also using cross-validation to select optimal model parameters). They show that

Random Forest slightly outperforms other models on their data.

One of the advantages of using random forest is its interpretability. In this

example especially, analysis of variable importance for decision tree split allows for

identification of which hours are important for distinction between the two groups.

Alternative models like neural network and SVMs are often treated as “black-box”

solutions due to the fact that they can be rarely opened up in a similar fashion for
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Figure 6.6: Mean Decrease Accuracy and Gini by variable importance

further inspection on why certain model has performed well. . With random forest

one can assess which variables are significant for prediction accuracy. Figure 6.6

provides a summary of variable importance tables that indicate the variables in the

order of importance for prediction power and their contribution to subsequent tree

splits based on Gini impurity criterion.

By importance ranking, as expected, morning and evening peak hours have

a strong contribution to prediction accuracy. By Gini, morning hours tend to be

more important in their contribution to the split of the decision tree. This is highly

intuitive as one may expect that customer vulnerability can be more more evident

through the distinct behaviour during the peak hours.

In line with the original argument by Breiman (2001a), the weak inputs in the

dataset make achieving high prediction accuracy with neural network or SVM more

challenging. Variation that arises from these variables adds more noise and con-

tributes to more confusion in convergence to local minimum point. In our case,

the variables’ importance in Figure 6.6 shows that almost half of the variables are

not critical for prediction accuracy. Random forest appears to have taken weak-

ness/importance into account, thus achieving maximum noise reduction.
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6.5 Conclusions and Limitations

The research presented above aimed to answer the question of whether there is

a potential to identify vulnerable natural gas customers by using data from smart

meters using various machine learning methods. This section further has extended

previously shown analysis to more targeted prediction of customer label such as

fuel poverty/energy vulnerability.

Vulnerable customers were expected to under-consume in transition to the win-

ter period, yet this was hardly observed in the data. Vulnerable customers have

shown more constant and distributed over the day consumption profiles while the

non-vulnerable tend to exhibit peaks and have quite uniform patterns of consump-

tion within the sample, implying that they may leave home at certain periods while

vulnerable customers may consistently use gas in their homes. Nevertheless, some

patterns in both groups were similar which may have been a reason as to why most

of the models failed to provide high prediction accuracy. Tree based models once

again have shown better performance compared to other methods. it was further

shown that in classification of the smart meter readings , the peak hours play an

important role for differentiation between two customers groups.

It is important to acknowledge that while this analysis produces some insights,

it should be seen as a demonstration, rather than complete solution, for how smart

meter data can be used to understand and predict vulnerability. Some further ex-

tensions that can improve the presented work would be inclusion of time indicators

that suggest how support was provided to customers. This will allow for study of

so-called treatment effect of intervention into energy consumption by smart meter

user.

Some trivial policy implication can be drawn from this section. Mostly it is

a relationship between high heterogeneity of gas consumption households and the

meeting of the objectives set by OFGEM , mainly targeting and supporting fuel

poor. Energy consumption vulnerability remains an ambiguous concept in both

technical and social contexts, which may require further research to build more

inclusive and transparent indicators. As suggested in Schmidt and Weigt (2015),
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the study of energy demand and consumption requires a highly interdisciplinary ap-

proach especially if policymakers are interested in shaping and transforming current

energy systems. Thus, both social and political science as well as engineering and

data science may be helpful in answering such research questions.



Chapter 7

Scaling Up: Data Reduction and

Transformation Techniques for

Smart Meter Data

7.1 Introduction

Prior to this chapter, the analysis presented in the thesis was performed on various

samples of the large dataset that was specially available for this research. Aggre-

gated and disaggregated samples were considered for tasks of segmentation and

forecasting. This chapter aims are to address how one may consider scaling up the

data analysis in the previous chapters to the whole sample such that it is suitable for

instance, in cases where data may arrive and update at real time. Certainly, standard

computing systems will struggle to process such large amount of data if we were

applying the computational methods seen earlier to full sample. To give a rough

idea, to predict a fuel poverty/energy vulnerability flag on February sample takes

around a week to process for a single model. This is an issue that could serve as

a barrier for using advanced or more importantly, the most suitable methodology

when answering various research questions with smart meter data.

A number of advances in the area of mathematical transformations for time

series data may come up handy for tackling the issues of computational limits. Pri-

marily referred to as spectral analysis and signal processing based methods, these
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techniques allow for data reduction through the meaningful transformation of the

time series data such that the uniqueness of patterns is preserved, however, takes

up less space, i.e. the data is compressed. Smoothing, as seen in previous chapter,

is one example of such approach, whereby the data is represented as a set of basis

functions. However, in smoothing, little attention is given to time and space dimen-

sion, meaning that functional form is not driven by periodicity or cyclical behaviour

of the data. This chapter extends the survey of transformation methods available to

both the Fourier and Wavelet transformations, and examines how they may help

in data reduction for clustering and prediction applications on the full dataset. All

the techniques are vital for another possible challenge associated with the analysis

of smart meter data: privacy. In this context, the ability to transform smart meter

data series into a less visually identifiable sequence of activity can help preserve

smart meter users’ anonymity. Lastly, another application arising for the work in

this chapter could be identification of anomaly behaviour or fault issues with smart

meters that can be identified by the periods of irregular readings, or the complete

absence of readings for certain period of time.

The robustness of the proposed smart meter time series transformations are

checked by looking at the recovered pattern of the energy consumption from the

transformation. The significance levels of various periodic behaviour over different

time spans are also assessed. The strategy is essentially to check how much infor-

mation can be lost/maintained from the energy consumption patterns by projecting

onto certain functional forms. As pointed out by Nason and Von Sachs (1999)

’there is no such thing as one statistical time series analysis as the very many differ-

ent fields encompassed by time series analysis are in fact so different that the choice

of a particular methodology must naturally vary from area to area’. As this thesis

is rather an applied work, it wont go in too much details about various modifica-

tion and extensions that can be added to presented time series transformations. The

aim is to keep it simple and generalisable at this stage, while highlighting a definite

opportunity for future work in the area of signal processing.

The rest of the chapter is structured as follows. The preliminary sections dis-
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cuss the significance of data reduction in the emerging area of big data research and

provide a quick overview of the statistical tasks that needs solving. The examples

of methods available such as Principal Component Analysis, Fourier transform and

Wavelet transform are then presented. Given the description of how these method-

ologies work, it is suggested that Wavelet transformations might be the most appro-

priate for smart meter data. The results of wavelet application are presented in the

subsequent section and followed by some conclusions and possible further work.

7.2 Importance of Data Reduction

Previously in the thesis, various sampling approaches were used for both clustering

and prediction tasks. Specifically, sampling techniques that involve aggregation or

narrowing down the temporal resolution of data (i.e. selecting specific month) have

rather meaningful reasons as it allowed for researching smart meter user data in

more details on the smaller sample, studying very granular and unique variation.

However, if the analysis applied in the thesis was to be replicated in an industry

setting such detailed approach needs to be compromised. This mainly driven by the

requirements for privacy and customers anonymity preservations.

Data reduction is an inevitable process one needs to consider when dealing

with data of the size presented in this thesis. However, these approaches can be

based on both qualitative and quantitative strategies. Qualitative, as previously in-

troduced, include selection of a month of interest or aggregating readings to some

specific unit (i,e, Output Area, Postcode Sector). Quantitative include direct trans-

formations of time series data in other summarised functional forms this can de-

scribe data using less features. For instance, if we have a stationary time series,

using the average trend would be sufficient to describe the nature of the patterns.

Where series are rather non stationary, alternative methods need to account for this,

such as de-trending using wavelets.

Another advantage of data reduction is that the initial stage of simplifying the

data helps to avoid so called ’curse of dimensionality’ problem. More data vari-

ability that is included in the model is not always the best choice as more data may
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imply more noise and higher likelihood of spurious relationships. It is thus may

be wiser to use only systematically important features that describe variation in the

data.

7.3 Preliminaries
Spectral analysis is a form of time-series analysis focused on the decomposition of

the series into discrete frequencies that can represent trends in the signal. This type

of analysis is one of the most popular techniques used in geo-sciences, engineer-

ing, astrophysics and generally in domains which deal with temporal data of high

resolution. In essence, spectral analysis aims at arriving at some representation of

time series that is formed by cosines and sines functions that further represent the

periodicity/seasonality characterisation in the data. These functions form the base

of the analysis as a way to account for cyclical behaviour or so-called periodic com-

ponents. The core and certainly the most famous method to do such accounting is

the Fourier analysis presented in the subsequent section.

7.4 Principal Component Analysis
One of the most common and perhaps computationally economic methods to reduce

the dimensionality of data is via Principal Component Analysis (PCA). Originated

from the work of Karl Pearson (Pearson, 1901), PCA is based on the orthogonal

transformations of partially or fully correlated features into linear combination of

uncorrelated variables (principal components). These principal components are de-

fined and measured by the variance of features under consideration. The principal

components are consequently represented by features that have highest variance in

the dataset. Often PCA is used to define some of the most important features that

can describe relationship between input and outcome variables. One important re-

quirement for PCA to be useful is that input variables have more or less similar

scale, as failing to ensure this will result in variables that are presented by larger

numerical scale being preferentially selected which is not always representative of

variability, especially for data of categorical nature for which ones may want to use

Factor Analysis (for more details on methods available please see Comrey and Lee
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(2013); Jackson (2005).

Intuitively, one may see that using PCA can be a quite common and easy to

grasp approach to reduce smart meter time series data, it is nevertheless mentioned

here similarly to k-means was mentioned in the chapter about clustering (Chapter

4). Both PCA and k-means are the methods that researchers often turn to due to

their simplicity of application and interpretation. What is important to consider is

that the relationship between variables in the data need to be carefully accessed

from very profound and even theoretical point of view, before any methods applied.

While can be fairly challenging to apply to auto-correlated time series data

such as smart meter data, PCA can be handy where extra variables about smart me-

ter users are available, such as weather or socio demographic characteristics. Where

no additional data is available the approaches suggested below may be considered

to be more appropriate.

7.5 Fourier Transform
The Fourier Transformation is one of the most common tools used to analyse time

series and signal based data. This approach also serves as baseline that has a very

strong connection to other signal processing methods such as Wavelets that are ap-

plied later in this chapter. However, it will be shown that in the case of smart meter

series, Fourier transformation alone may not always be appropriate as smart meter

data can be characterised by presence of discontinuous behaviours and occasional

spikes. This will demand a transformation that can account for such behaviour and

their respective durations.

Fourier transform is one of the most popular techniques that is used to decom-

pose time series data into frequencies that represent the signal and its development

began with work of Joseph Fourier (1807) who demonstrated that a 2π periodic

function can be represented as:

f (x) = α0 +
∞

∑
k=1

󰀃
αkcos(kx)+bksin(kx)

󰀄
, (7.1)

where α0, αk and bk are obtained using:
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α0 =
1

2π

󰁝 2π

0
f (x)dx , αk =

1
2π

󰁝 2π

0
f (x)cos(kx)dx , bk =

1
2π

󰁝 2π

0
f (x)sin(kx)dx

(7.2)

The time dimension of the function is now lost once we perform the decom-

position and the pattern is instead composed of frequencies, indexed by k = 1, . . ..

The transformation is based on the fact that any function of periodic nature can be

transformed into a sum of sine and cosine waves (Priestley, 1996). For time series

where periodicity is rather systematic, the Fourier transformation may be an appro-

priate choice. However, for series where periodicity changes at different parts of

the function, the Fourier transformation may not be able to represent this additional

information.

7.6 Wavelet Transform
After a number of years, the field of signal processing focussed on moving away

from a cosine and sine representation of time series. In 1980s developed by Mor-

let and Grossman (see more in Grossmann and Morlet (1984); Kronland-Martinet

et al. (1987)) the so-called wavelets acted to expand the Fourier method by adding

dimensions of time into the count of distinct features. Unlike the Fourier method,

this allows localisation in both time, and frequency (or scale). This feature is par-

ticularly useful if one is interested with data compression and time series noise

removal (Graps, 1995).

Figure 7.1: Illustration of Fourier (left) and wavelet basis functions (right)
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A family of wavelet basis functions is principally described by a mother

wavelet ψ(x) and its scaled and shifted children (Graps, 1995):

ψs,l(x) = 2−
s
2 ψ(2−sx− l) . (7.3)

In the notation above, s describes the wavelet function width, and l the wavelet

position.

For this section the Discrete Wavelet Transform (DWT) will be used. Despite

its use here for data reduction, the DWT can also be used as alternative similarity

measure between time series (Fritz et al., 2012), particularly for indirect cluster-

ing approach that was discussed earlier in Chapter 3. The main objective of the

approach that is used here is to use the wavelet coefficients to approximate the orig-

inal series. Various scales of transformation can be used. If we use a so-called

dyadic sampling scheme as we move towards greater scale a fewer number of co-

efficients are needed to represent the series (for more details please see Handcock

and Gile (2010)).

7.7 Results
To begin with, the wavelet transformation is applied to smart meter data, with a

random annual pattern of consumption being selected1 . A month subsample was

then selected for simplicity of visualisation. Please note that this is a subsample of

annual pattern that was selected once again due to computational issues. Winter gas

consumption was picked due on average being more variable and suffer or benefit

from seasonal effects as was seen from the previous chapters.

The first illustration presents the raw data (Figure 7.2). It is then followed

by the reconstructed series which used only distinct features of the wavelet (Fig-

ure 7.3). Lastly, the variety of wavelet transformation coefficients are presented in

Figure 7.4. In a nutshell, this figures represent how the series can be transformed

further such that only few features can be used to represent the pattern uniqueness.

1 For this section, the packages ’wavelets’ and ’WaveletComp’ were used in R, for more details
on the package and general application of methodology in R please see Nason (2010); Rösch and
Schmidbauer (2014)
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Figure 7.2: The sampled pattern that will be used for transformation. Please note that
there is identification of either absence or faulty in smart meter taking records
around June 20th.

−2
00

0
0

20
00

40
00

60
00

80
00

minimum power level: 0, significance level: 0.05, only coi: FALSE, only ridge: TRUE, period: all relevant

original
reconstructed

200 400 600 800 1000 1200 1400

index

Figure 7.3: Reconstructed trend using wavelet waves
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Figure 7.4: Wavelet coefficients. Each colour represents different scale coefficients

Images of the wavelet coefficients (Figures 7.5 and 7.6) are often referred to

as scalograms, and illustrate how the signal is broken down over different scales,

and how this varies over time. It provides a useful aid to understanding what has

happened across the time within the environment of a single smart meter user. In

these images the wavelet analysis on the given sample and the annual series are pre-

sented. The images illustrate how the variance in the time series is distributed across

different time spans, otherwise known as scales. Where it is warmer (yellow and

red colour palette), the contribution of these wavelet functions can be considered

to be more significant, meaning that within such time spans there was a significant

contribution from this scale of waveform. Note: the purple region indicates regions

of scale/time space in which the wavelet cannot be fully evaluated (the size of the

wavelet extends beyond the range of the data). In the case of month only sample,

this significance is present with the time equivalent to a day, meaning that each day

may be different from one another. They y-axes on the images represent the period

conducted of half hourly readings, where 48 of such readings represents a single

day.

A more interesting picture may be obtained from the wavelet analysis of annual

data, where now the month tend to be an important explanatory time scale of the
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variation in the data. The period represented about 21 days. Just about each three

weeks. These periods may be indicative of climate and day light changes that may

have impacted the energy use within the household.
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Figure 7.5: Signal significance illustration. The y axis indicates the which period is associ-
ated with half hours periods. Most of the significance is associated with period
under 64 half hour intervals which indicates just about a day

Figure 7.6: Signal significance illustration. The y axis indicates the period which is associ-
ated with half hours periods. Most of the significance is associated with period
under 1024 half hour intervals which indicates just about a month

At a very fine temporal scale, an example of the wavelet transformation for
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average daily energy consumption is presented below (Figure 7.7. Many of the

wavelet scales in this setting have an average value of zero, meaning that only a few

wavelet scales may explain, or describe most of the data.

Figure 7.7: Wavelets decomposition of the average daily energy consumption temporal
profile. Figure on the left represents the real temporal profile in black and
the profile recovered from wavelets transformation in red. Figure on the right
represented the levels of transformation starting with the first level decomposi-
tion in black and fifth level decomposition in blue. As can be seen wavelets tend
to pick the peak hours as the representative pattern of the given time series.

7.8 Conclusions
This chapter provided a very basic attempt to transform time series data into a two-

dimensional time-scale plane. The task was to see how the data can be reduced to

more manageable form. For example, the wavelet analysis at a daily scale ( Figure

7.7) suggests the most significant features/trends in the data can be described by

only a few wavelet basis functions. Storing only these relevant coefficients, and

setting the rest to zero, enables us to compress the dataset whilst retaining key in-

formation. Furthermore, presented transformations also may allow for perseverance

of uniqueness of certain smart meter profiles. Given the ethical considerations of

how smart meter data can be shared and utilised where available at highly granular

individual level, techniques like wavelet transformations may be used to transform
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the data from the raw and privacy sensitive form to more generalised information

which can tell one enough about the pattern structure but may be harder to trace

back to individual consumers.

Wavelet signal processing is an area that has been relatively untouched by re-

searchers that look at smart meter data. This is can be both surprising and unsur-

prising, as while these methods are highly relevant for such data, they can prove

more useful when large data is available, most datasets analysed in social science

are remaining to be on a relatively small scale.

This chapter can also be seen as an extension to the preceding work on regres-

sion analysis that was used to describe periodicity of energy consumption. Wavelet

analysis can be treated as an alternative tool to study the effects of various sea-

sonality which can be captured in data, meaning that there is no need to impose

seasonality structure by researcher as was done in the regression. Wavelet analysis

helps to identify what is seasonal and what is not. As such, it allows for more in

depth analysis of periodicity for each individual user or regions a whole.

Some limitations of the present analysis are associated mainly with inter-

pretability of the results. It is often had to attribute a precise significance level

to any observed structure in the wavelet coefficients. The images and visualisations

presented in the chapter can at best describe what is happening after transforma-

tions have been applied. However, this can be a problem, as subjective judgements

of what the results represent may drive very different implications. Thus, inter-

pretation of wavelets representations need to be taken with care and maybe less

preferred to slightly more interpretable methods such as Fourier transformations of

even simple PCA.



Chapter 8

Discussion, Conclusions and Future

Work

‘We are drowning in information and starving for knowledge.’

- Naisbitt (2015),

This chapter presents some conclusions and final thoughts on the overall thesis. It

further provides more thorough details on the potential contribution the thesis makes

to research fields that are concerned with energy, smart meter data and methodol-

ogy for big datasets of time series structure available to social scientists at large.

The limitations of the performed work and future directions that can be taken by

the research community will be presented and discussed alongside. Additionally,

issues that are associated directly with the data will be discussed in order to draw

attention to additional sources that can supplement large collections of smart meter

data readings.

The rest of the chapter is structured as follows. Data used in the thesis is

overviewed first to remind the reader of the samples, their temporal and geographi-

cal resolutions that were taken for the analysis. The difficulty of reliably performing

data linkage that motivated the thesis to be focused solely on smart meter data are

also covered in this section. Some solutions to these problems that can be consid-

ered by future research are presented afterwards. This is followed by the summary

of research questions and findings. Contributions to the disciplines of energy and

methodology in social science research in general are presented in the subsequent
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sections. Further work and discussion of how the limitations in this work can be

potentially addressed by future research will round up the chapter.

8.1 Data Driven Limitations

As thesis is largely driven by the nature of data, challenges associated with the data

structure and sampling may be considered as the hardest to overcome and to a large

extent remain unsolved. The data used in this work consisted of a National Sample

of smart meter data for about 400,000 users. These data were referenced at postcode

sector level and had half hour temporal granularity. The other samples that were

used for analysis were the so-called Bristol sample, this was available at greater

geographical resolution, Census Output Area. Finally, the Fuel Poverty Sample was

available at postcode level and supplemented with data on financial vulnerability of

energy customers. Chapter 3 has provided a detailed assessment of National and

Bristol sample to motivate discussions of how smart meter data can be effectively

visualised, what are the possible issues with using aggregated descriptive measures.

It was shown that to describe smart meter data using both temporal and geographical

resolution is challenging yet the combination of mapping techniques and careful

selection of specific time intervals that are of interest may be helpful. Chapter

3 has presented further problems associated with various geographic resolution.

These have motivated the obstacles to data linkage given the consideration of ethical

issues. Indeed, the ethical use of the data may be considered to greatly restrict the

depth of findings that can be derived from smart meter data.

This piece of research has shown that Big Data does not necessarily mean that

the richness of insights, arriving from such data is proportional to its size. Where

available, for the most part, such large data sets are actually associated with more

noise and complexity which may not necessarily aid one’s understanding of the is-

sue under investigation. Big data that is reduced to small data and data of more

traditional size still can be considered to serve as more insightful and profound way

to look at smart meter data. So overall, one may say that big data analysis is rather

a comprehensive analysis of big data chunks. Analysis on the whole datasets is
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certainly challenging given the computational capacities available to research com-

munity and industry practitioners.

As was suggested throughout the thesis, most of the results remain to be rather

inconclusive and bear illustrative nature. Due to limitations associated with what

could be known about smart meter users, it was challenging to provide confidently

the inferential conclusions about why consumption varies across the users. It is im-

portant to note, that there are number of issues and dimensions that could have been

added to energy consumption to provide a clearer picture, however, these remained

largely ignored at this stage. For instance, weather and climate conditions that are

associated with the areas under study. Other factors which have not been analysed

are energy price and the energy tariff the customer is on. Due to unavailability of

the data, these effects were impossible to include in this study, yet it is important to

acknowledge the significant contribution these factors could make to the variability

of consumption.

8.1.1 Possible Solutions

In the Appendix of the chapter on data (Chapter 3) a number of additional datasets

that can possibly be connected to smart meter data were suggested. These datasets

are only those that are available openly or through administrative networks. What

wasn’t considered thus far, is how additional data can be possibly collected along

with smart meter data to generate more beneficial outputs for analysts in both indus-

try and academia. While there is a significant amount of research available to date

that looks at smart meter records, socio demographic classifications and appliances

use (Haben et al. (2016); Albert and Rajagopal (2013); Haghi and Toole (2013);

Beckel et al. (2014) it would be interesting to connect the readings to household ac-

tivities in more targeted way. An attempt to do that is currently underway in Oxford

and lead by Philipp Grunewald under the umbrella of the project ”METER” (for

more details please see Grunewald et al. (2017)). The project seeks to understand

how time use and energy use activities correspond to each other. By giving the par-

ticipants of his study a small device where they can log their activities over the day,

he then connects these data to the readings from the participant smart meter data. In
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a nutshell, this approach helps to reveal what is happening in the household beyond

the readings and also, what is smart meter user routine may look like and which

household characteristics may influence overall activities over the day. This study,

whilst currently only taking into consideration a single day per participants could be

expanded for longer time periods. However, one of the challenges with such studies

is self selection by participants, which often indicates greater energy use awareness

and affluence. What is still missing in the current research agenda is the targeting of

minority groups, less affluent energy customers and customers that may know little

or nothing about how the cost of energy is reflected through their activities. An

attempt to that can be seen from the fuel poverty case study presented in the thesis.

Nevertheless, due to data access restrictions, there is certainly a scope to improve

presented work. In the subsequent section, some ideas of how qualitative research

can aid the completeness of data will be also suggested.

8.2 Research Questions and Findings
One of the main research question that was posed in the thesis is how much insights

can be generated from smart meter data when available on its own, without any

further data attached. Sub research areas were thus are presented by narrowing

down this question to the following sub questions:

• How smart meter data can be visualised effectively such that spatial and tem-

poral variability of energy use can be accessed?

• Given the size of the dataset, are there optimal strategies to select samples for

further analysis?

• Can smart meter data be classified meaningfully? Are there national clusters

of energy use that can be used to characterise the national population (Great

Britain)?

• Can energy consumption be analysed and predicted using regression tools and

if yes, how accurately? Are there any differences in predictability based on

where smart meter user may live?
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• Is it possible for fuel poor energy customers to be identified from smart meter

data? If yes, to which extent this is feasible and what are the limitations?

• How helpful is geo-demographic classification such as Census OAC to ex-

plain the variability in energy use?

• How can clustering and prediction be performed more efficiently (i.e. using

less computational power)?

To address the first question of classification feasibility, Chapter 4 has pre-

sented some interesting and relatively stable results using Gaussian Mixture Mod-

els. Various temporal and spatial aggregation were taken for analysis to study how

suppressing individual user dynamics may change the results of segmentation. Rea-

sons why the affects of aggregation were selected for further analysis are mainly

driven by the researchers’ temptation to aggregate data such that sample is reduced

without considering the fact that such strategy may lead to poor results or the results

that lack understanding of uniqueness of energy consumption use.

Clustering results were further explored under narrowed temporal and space

scenarios to see how different time or different region may be representative of

the results obtain on the whole dataset. This was rather illustrative, however, still

demonstrates how different time and space resolution may be associated with fur-

ther diversity of energy consumption variation. Such analysis informs the research

community about how hard it is to generalise about energy use given its incredible

variety and uniqueness.

The Chapter 5 had looked at various ways how energy consumption time series

can be described and studies using regression analysis. Generalised Additive Mod-

els (GAMs) were introduced to approach this task. This thesis is the first attempt

to use GAMs for residential energy customers load description. For this trial, a few

random electricity and gas smart meter users were selected for the analysis from

areas that were characterised by Census 2011 Geo demographic classification as

urban or rural. It was shown that GAM models that consider interactions of weekly

and daily seasonality may perform well in describing the energy use. However, one
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of the main observations is that GAM do work well predominantly on small sam-

ples of readings that cover about 10-11 days. Once the samples if extended to few

months, the performance of the models alters to be very poor. This is not surpris-

ing result that was observed across the thesis when using other methods as well.

The uniqueness of each user consumption patterns and behaviours may not be fully

explained by time only and more data need to be added to achieve better model fit.

Other types of prediction task such as customer label prediction were also stud-

ied for feasibility given the variation in the energy consumption data. While Chapter

5 offered methods to study the periodicity in energy consumption using statistical

properties of the data, Chapter 6 has taken a rather subjective and non statistical out-

come for prediction. Specifically, this related to label prediction for a fuel poverty

indicator. This allowed the evaluation of how feasible it is to use smart meter read-

ings to classify customers such that some of the socio-economic characteristics may

be predicted from energy readings alone.

To augment the smart meter data, Census OAC geo demographic classification

was used in Chapters 3 and 5. Mostly, for the Bristol sample that offers greater

geographical resolution of Output Area. Whilst still inconclusive, due to an inability

to validate the observed results, some associations between energy variability and

the socio demographic characteristics of areas where smart meter user resides were

evident throughout the thesis. Future work that may have a hold of smart meter

data for all of the residential properties in the areas certainly can advance the results

presented at this stage.

Most of the work nevertheless was performed on smaller samples. The meth-

ods such as Gaussian Mixture Model and Generalised Additive Model require sig-

nificant computational power which currently can be challenging to obtain on an

average dual core computer. It was also shown that overall models themselves tend

to operate well on smaller samples as additional complexity arriving from larger

sample add rather noise that confuses the derivation of the appropriate model fit.

The previous chapter has suggested some ways in which data may be transformed

such that uniqueness of the energy consumption patterns can be preserved but its
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can be summarised with fewer data points. Wavelet transformations borrowed from

signal processing literature were attempted to asses how well the wave functions

can be used in the context of smart meter data. The wavelet analysis of smart meter

data can serve not just as data reduction tool but also descriptive tool that can help

in defining significant time spans of consumption variability. Such analysis can be

performed at individual and aggregated level and allow for more in depth under-

standing of unique seasonal patterns embedded in the energy consumption of each

smart meter user.

This thesis has assessed numerous ways for describing the patterns of energy

consumption using clustering techniques, regression analysis and data reduction

methods such as wavelet transformations. Whilst clustering has been performed

on raw data to maintain all the unique features of energy use, future work should

attempt the clustering of model parameters that can be derived from GAMs and

Wavelets. This may help in segmenting larger pieces of data where preserving cus-

tomers anonymity is a priority.

8.3 Contribution and Applications

There are a number of rather indirect knowledge advancements from this work, for

instance, in tasks such as assessment of smart meter data, data visualisation and

sample organisation. However, the central contribution of this work is rather ap-

plied and methodological. Given the data limitations discussed above, the research

agenda was turned into an investigation of how smart meter data may be explored

to provide fruitful insights about customer behaviour and energy use using only its

temporal structure.

The thesis relied heavily the methods that are available in statistical and com-

puter science literature, thereby no new algorithms were designed as a result of this

research. However, it was discussed previously by Diamantoulakis et al. (2015) that

significant research opportunities for Big Data research in the energy field lie in de-

velopment of new machine learning methods that can aid development of dynamic

energy management systems and contribute to more efficient management of smart
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grid. In this thesis, the aim was to show what possible issues may be associated

with the application of available methods and highlight the space for more technical

work that can be taken by computer scientists. Before new methods are designed, it

maybe important to revise what the scholarly work already have in place as methods

such as Mixture (Scrucca et al. (2016)) and Generalised Additive Models (Wood,

2006; Hastie and Tibshirani, 1990) have shown to be highly appropriate for smart

meter data.

A broader contribution of this work that hopefully goes beyond smart meter

data analysis, was an aim to create a marriage between social science research and

applied computational methods, which hopefully can be seen through the combina-

tion of technical and interpretative parts of the thesis.

Direct application for this these can be seen more easily on the premises of

energy suppliers and government departments that have got a hold of smart meter

data 1. Clustering techniques seen in the thesis can be used for effective targeting of

advertisements campaigns as well as for demand side management strategies such

as peak hour consumption shifting. Forecasting and regression analysis of energy

use can point at more predictable customers as well as rather hectic and unusual

behaviours.

In summary, the thesis attempts to show how much can be explained by time

on its own when it comes to smart meter user data. The conclusion and perhaps a

stepping stone for further research of smart meter data is that partially, variability of

energy use that is driven by time and seasonality, and is capable of segmenting and

predicting energy use without any additional data, however, performance of does

really vary from case to case.

8.4 Suggestion for Future Work
Smart meter data are an essential ingredient for any innovation that is interested

with development and management of newborn smart cities and inhabited in them

Internet of Things (IOT). Most of these recent innovations are centred around effi-

1The methodology and results from Chapter 4 of this thesis were used to inform clustering tech-
niques at the data supplier premises
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cient energy use and how such can be addressed with providing more home control

using Artificial Intelligence technologies (Augusto and Nugent, 2006). Example of

these include remote control of washing machines, dishwashers, ovens and more

generally, electric heating control and efficient lighting.

Future social and economic developments and welfare certainly depends on

how well governments and energy providers are managing their energy supply and

use (Armaroli and Balzani, 2007). This work provides a recommendation as it

informs, at least in part, which additional data may make aid inference about energy

consumption variation using smart meter data, and making the resulting insights

more robust.

Where extra data is available, possibilities can be way more extended. For

instance, some interesting work has been performed using probabilistic dynamic

spatio-temporal graphical models, mostly in disease research yet can be easily ex-

trapolated to smart meter data that have additional data on customer characteristics.

Example of this can be found in Ahmed and Xing (2009).

Data integration on different levels would certainly allow for a more complete

picture of any analysis based on smart meter data. Nevertheless, one needs to be

thoughtful about how data on consumers is collected to provide long term and robust

insights on consumer behaviour.

Future work can certainly incorporate additional variables which may explain

behaviour, for instance integrating these into time series (i.e. weather plus energy

data) to see whether there may be an improvement in GAM predictions. Further-

more, methodology in this thesis may be applied way beyond smart meter data

and can be considered by researchers looking at other energy recordings that have

similar time resolution. These could be research projects that are interested in un-

derstanding renewables energy use and how much renewable energy may be needed

to satisfy a single smart meter user energy load.

8.4.1 Matter of perspective

It is important to mention that the benefits of understanding smart meter data can

be different depending on whether one adopts a supplier perspective or a customer
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perspective. The regulatory pressures will drive different interest about which in-

sights are important for energy supplier. For instance, energy cost saving will be

prioritised by consumer while demand side management may be prioritised by the

energy supplier.

8.4.2 Mixed methods approaches: benefits of qualitative re-

search and data

This research, primarily based on quantitative data can only demonstrate a limited

understanding of energy consumption behaviour when presented only by smart me-

ter data. It is further limited to the natures of statistical approached used to analyse

it. A thorough understanding of environments in which consumption takes place is

certainly vital. For instance, two families which have different daily activities and

habits though living in absolutely identical properties can be associated with greater

consumption diversity. Chapter 3 touched upon this issue rather briefly, where there

are a few datasets already open to research community may aid the smart meter data

analysis if available at sufficient enough geographical resolution. However, what is

missing is a thorough understanding of what drives certain energy use. One can

endlessly link numerous datasets that hold information about property attributed

and household characteristics of smart meter users but the ‘elephant in the room’

will not disappear till the researchers start conducting interviews with the users,

studying their habits and how impact of particular lifestyles or activity patterns can

be seen from smart meter data. Energy use and in particular, how inefficient it can

be in the modern society, probably is described best using Jevon’s paradox (Alcott

et al., 2012). Whilst most often the technology around has been improved and de-

signed to be more energy efficient. Having energy efficient bulb may often lead to

more bulbs in the house. Someone who used to drive a car everyday of their life less

likely to switch to the bicycle no mater how much sustainable they want this world

be. Such a theory suggests more work needs to be done with consumers individu-

ally. A review of initiatives that are focused on consumers feedback and engagement

was performed by Gangale et al. (2013). Furthermore, a number of studies have ev-

idence that where customers have shown greater awareness and knowledge about
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the benefits of smart meter and the information it provides, there were immediate

opportunities to save on energy bills as well as contribute to the overall attempts of

energy load on the grid at peak times(Faruqui et al., 2010a; Buchanan et al., 2014).

8.4.3 Infrastructure for Data Analysis

A further challenge associated with smart meter data is how one can analyse such

big datasets in a short period of time without spending months on data cleaning

and then another few months on application of various data analytics techniques.

Despite considerations on how to design an effective data storage solutions that can

preserve anonymity of individual records, there is strong need for the development

of computer systems that can allow processing of such massive datasets using paral-

lel computing. There are some solutions that are put in place and mainly targeted at

business communities such as Microsoft Azure and Amazon Web Services. These

data analytics infrastructures offer an access to remote computing that have an in-

credibly large amount of memory and speed such that big data sets as the one in

this thesis can be possible analysed without a need to be split in chunks. These

systems also benefit from a user friendly environment. However, the main issue

is the cost of these services and also the issue of anonymity preservation. A week

on Amazon Web Services using an average memory and speed system can come

up to as much as £600. This is certainly may deem unaffordable for an academic

research and until universities start investing into the design of similar systems to

be put in place for academic use, the lack of appropriate data infrastructure will be

slowing down advances in big data analytics. Large university such as University

College London, have an attempt to do so by providing the researchers with access

to parallel computing , known as ’Legion’. Although this can be highly useful for

data available openly, given all the necessary security requirements associated with

smart meter data, it may deem impossible at this stage to use such systems for this

or similar type of research.
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8.4.4 Conceptualisation of energy use

An interesting direction for further research is in the conceptualisation of energy

use. Energy consumption can be thought of in a similar fashions as the various

good and services consumption studied by economists. Reflecting on the Literature

Review (Chapter 2) and work of Bernard et al. (1988); Lutzenhiser et al. (1997);

Wilhite and Wilk (1987); Hackett and Lutzenhiser (1991) one may consider testing

the following model of energy consumption

Final consumption = Fixed consumption + Variable consumption

This may be particularly useful in addressing fuel poverty. The hypothesis being

that customers with a lower margin of variation around the Fixed consumption may

be tested and investigated further. Likewise, customers whose Variable consump-

tion tends to be stable may be investigated for sudden spikes in energy load. This

could present another way of classifying energy behaviour which is more theoret-

ical rather then reliable solely on statistical methods. Furthermore, as was seen in

rather fundamental studies on understanding the factors that contribute to variation

in energy consumption such as those by Raaij and Verhallen (1982); Steemers and

Yun (2009); Lutzenhiser (1993), a number of variables may be included in explana-

tory analysis of energy consumption variation. However, challenges remain and

are in desperate need of qualitative research, namely: quantifying variables such

as lifestyles, energy knowledge, attitudes and social norms, values and personality

(Lutzenhiser, 1993; Lutzenhiser et al., 1997).

Furthermore, there are many temporal processes which are hard to capture, for

instance, habit formations, learning, and internalisation (Raaij and Verhallen, 1982).

Change in household size, family transformations such as child birth, divorce or loss

of a family member will also inevitably have an effect on temporal dynamics. This

can be modelled separately and present a new area of energy consumption research.

Figure 8.1 provides a summary of factors that can be included in such analysis

simultaneously.

Another conceptualisation tool could be the use of optimisation. Energy con-

sumption can be transformed into minimisation and maximisation problems which
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Figure 8.1: What lies behind energy consumption pattern: factors that can be tested as
contributors to energy consumption variation in the conceptualised model

can be solved under budget constraints as well as constraints which are build on the

necessary amount of light and heat that are sufficient for well being of smart meter

user. Some examples of attempting to do so can be seen from Samadi et al. (2010).

8.4.5 Fuel poverty identification

Only a part of the thesis was dedicated to a very specific application of smart meter

data. That is in the area of fuel poverty identification. It is very much debatable

and certainly a very challenging area to provide a definite answers on how one can

define what fuel poverty is, not to mention how it can be reduced and eliminated.

Smart meter data have been rarely used in the past to predict and classify potentially

fuel poor customers. Future work may consider collecting very precise data on

fuel poverty. In close connection with smart meter data such data may allow for

identification of customers that need support across the UK much faster that it is

currently possible using energy costs models that were presented in Chapter 3.

8.5 Future Applications
There is a strong need for data integration on different levels i.e. individual , prop-

erty level, neighbourhood level. Researchers need to be smarter about the data
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collection on consumers to make the insights from smart meter data valuable and

have forward looking advantages instead of just short term gains. So far, smart me-

ter data was associated with significant excitement about the potential it can give

for research and industry knowledge advancements. Yet, the way data is collected

in the first place needs to be well thought out depending on the type of applications.

Privacy concerns which need to be prioritised in the modern age of data del-

uge should consequently lead to more specific data protection legislations that are

targeted at smart meter users. There is so much that can be observed about a single

household from the smart meter data. Yet until well protected, these data should

remain to be available at perhaps similar resolution that was seen in the thesis (i.e.

high granular temporally but of very low geographical resolution). Energy compa-

nies need to put systems in place which will require an extra layers of data trans-

formations applied to raw data before it can arrive at hands of larger data analytics

groups.

With respect to some industrial application of the analysis in the thesis, non

quantitative customer labelling and classification remain challenging. When using

classification methods such as tree methods that were presented to classify cus-

tomers as potentially vulnerable with respect to energy costs, one may need to al-

low for cases where extra information is available to define whether a customer is

financially vulnerable. This could be information arriving from direct contact with

the customer, or by means of surveys/interviews. As many automated technologies

that are available nowadays such as those used by Experian or retail companies pro-

viding recommendations on purchases such as Amazon or Netflix, it is obvious that

the algorithm can not always be reliable. Especially with smart meter data, given

the fact that energy is an essential service for human wellbeing, machine learning

and AI cannot function well without human contribution, and may be harmful when

it comes to the issues of individual privacy.

8.5.1 No free lunch

The No free lunch theorem (Wolpert and Macready, 1997) suggests that there is no

single model that magically can work well for all kinds of tasks and problems, and
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whilst some algorithms may work well on one sample of data it has no implication

that the same approaches can behave as well on other samples. In this thesis each

of the methods was carefully chosen given the nature of the data that was avail-

able. Additionally, experimenting with various sub samples of data allowed one to

overview the suitability of methods for different kinds of data samples. According

to the no free lunch theorem one of the main consequences or lessons to keep in

mind when working with big data is that when different sample of data are used (or

even the same data complemented with a few additional variables), one may need

to re-consider which models and methods would fit best.

8.6 Closing Statement
To conclude this thesis, instead of suggesting that the solutions to any problems

presented with smart meter data were revealed in this work, it may be said instead

that till someone shows that there is a better and more efficient way to analyse these

data, this work will serve as a useful stepping stone.

Largely, this thesis has considered a previously uncharted sample of data and

unlocked the potential of smart meter data for customers classification, and regres-

sion analysis of energy use. These applications will hopefully serve useful in var-

ious domains, be it policy making or energy company customer support strategies.

It is a first attempt to provide a comprehensive methodological and interpretative

review of various methods that can be used to generate valuable insights from such

data.

So much and so little was revealed from smart meter data on its own. However,

given how much information the data holds, it is exciting to see what future research

that will have more detailed information about customers, their activities, lifestyles

and everyday practices, may reveal and tell about trends and behaviour of energy

customers, not just in the UK but across the whole world.
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Chapter 2: Appendix
Source Name of

the Data
Time
pe-
riod

Geog.
Refer-
ence

Granul. Description

DCLG English
Housing
Survey

2008-
2015

NA Annual
statistic

Updated each year and provides data on energy ef-
ficiency, insulation and tenure trends/does not cover
entire UK, sample of around 6-7,000 houses is drawn
randomly each year for investigation

UKDS
and
DECC

Energy
Perfor-
mance
Certifi-
cates

2005-
2012

Region Annual
statistic

Data is provided by DECC and was collected
under National Energy Efficiency Data-Framework
(NEED). Sample is sufficiently large and covers over
4 million households from England and Wales. Data
besides, energy efficiency bands have additional vari-
ables on age, type of property, floor area, annual gas
and electricity consumption as well as fuel poverty
indicators.

CDRC House
Ages
and
Prices

1899-
2015

LSOA
and
MSOA

ONS
(quar-
terly)
and
VOA
(annual)

The data was collected originally by ONS and VOA.
The dwelling age counts at LSOA level alongside
recorded median house prices at MSOA level.

ONS Census
2011

2011 Census
Output
Area

Decennial
statistic

Offers a fairly detailed description of all households
and properties in the UK. Useful variables could
include household size, employment characteristics,
dwelling age, country of origin and others. However,
the data has no consideration for recent (< 10 year)
temporal variations and may contain missing data.

UKDS Understanding
Society

2009-
2015

LSOA
and
medium
level
Local
Au-
thority
Districts

Annual
statistic

Multi-dimensional household survey that re-
interviews the same individuals every 24 months with
the sample being over 40,000 individuals. Among
other information, the detailed data on household
composition, family background, employment as
well as housing and payments related to subsistence
are provided.

DECC English
Housing
Survey:
Fuel
Poverty
Dataset

2012 Census
Output
Area

Annual
statistic

A detailed data set on financial circumstances of the
sampled households with reference to the amount of
energy that is used for different appliances (i.e. used
for space and water heating); also includes the data on
the eligibility for fuel poverty support schemes such
as the Warm Front grant. As a limitation, it does not
cover the entire UK, with the sample being limited to
12,000 households).

Table 1: The openly available data sets that may aid the understanding of variation in
energy consumption
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A selection of the data sets that are currently openly available and may contribute to

the analysis of energy consumption variation in the UK are presented in the Table 1.

At large, these data are limited to annual statistics, while the Census is only available

as decennial. In terms of geographical references, there is a visible heterogeneity

as some data sets are more granular than others. This would imply that if one

is interested in linking the data sets it is necessary to first aggregate the data to

different geography.
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Chapter 4: Appendix

Time Interval Mean Median St.Dev Mean Median St.Dev
1 259.80 234.92 140.08 181.96 0.00 1178.16
2 220.58 197.30 124.38 164.12 0.00 1145.76
3 199.61 177.38 118.64 159.73 0.00 1140.11
4 188.91 167.45 116.58 156.93 0.00 1143.15
5 183.96 162.23 116.29 160.52 0.00 1143.68
6 184.54 163.47 117.05 158.71 0.00 1145.71
7 187.95 166.85 119.18 166.91 0.00 1182.66
8 203.57 180.67 126.72 180.73 0.00 1184.06
9 229.44 206.03 136.46 214.08 0.00 1238.64
10 306.70 273.04 182.71 314.94 0.00 1400.71
11 421.46 381.55 226.57 467.85 0.00 1626.99
12 686.83 629.86 343.77 694.64 0.00 1913.96

13 976.60 904.71 439.61 953.85 20.00 2175.56

14 1306.30 1226.27 531.64 1146.52 70.00 2286.96
15 1510.45 1419.06 592.26 1216.66 90.00 2271.78
16 1558.24 1481.12 555.39 1474.98 90.00 2150.01

17 1421.02 1358.17 473.94 1337.45 120.00 2020.68

18 1276.81 1227.62 399.74 880.61 90.00 1857.05

19 1093.03 1057.07 328.46 766.19 22.00 1759.55

20 951.90 925.39 277.99 656.50 0.12 1696.31

21 854.64 831.74 252.07 583.86 0.00 1625.30

22 781.08 762.16 233.69 549.54 0.00 1594.56

23 741.01 723.04 224.81 552.25 0.00 1598.88

24 741.73 722.33 227.28 551.11 0.00 1608.77

25 722.07 704.34 218.00 563.18 0.00 1634.49
26 750.96 728.97 230.48 553.34 0.00 1622.94
27 728.22 710.34 217.77 559.58 0.00 1644.10

28 220.58 715.41 212.91 164.12 0.00 1639.50

29 737.52 177.38 210.52 602.01 0.00 1681.72
30 787.08 774.86 116.58 643.80 0.00 1143.15

31 850.69 839.90 232.32 764.25 10.00 1828.98

32 1046.35 1029.30 289.77 930.65 67.00 2006.49
33 1234.72 1214.22 330.11 1171.51 100.00 2204.06

34 1472.50 1441.87 394.22 1285.21 150.00 2252.11

35 1603.22 1563.55 415.40 1369.46 200.00 2299.62

36 1698.90 1654.65 436.31 1314.84 191.00 2195.42
37 1644.06 1603.94 409.87 1316.56 177.00 2204.19

38 1644.44 1603.13 407.36 1241.10 138.50 2147.75

39 1565.43 1526.71 391.76 1176.25 112.00 2079.76
40 1492.84 1455.79 383.25 1083.67 90.00 2007.02

41 1390.42 1349.09 369.52 994.66 89.00 1952.78
42 1278.60 1236.79 353.70 1197.23 67.00 1893.60
43 1144.64 1100.02 334.37 1018.55 90.00 1829.42
44 977.39 929.89 304.52 630.75 23.00 1562.56
45 797.32 753.50 267.70 483.32 0.00 1403.52
46 605.45 565.37 228.64 350.38 0.00 1536.12
47 431.50 398.29 187.90 278.56 0.00 1482.01
48 320.94 293.57 157.03 245.98 0.00 1502.46

Aggregated Disaggregated

Figure 2: Descriptive statistics for the samples we used for the experiments
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As an extension to the analysis in Chapter 5, a brief analysis for ’Ageing’ socio

demographic group is presented below.

Gas
Mean (half hour) St Dev (half hour) N

Ageing Rural Resident (annual) 901.92 wh 1686.54Wh 14833
Ageing Rural Resident (Jan-Mar) 1685.70Wh 2241.47Wh 3374

Ageing Rural Resident (May-Aug) 239.67Wh 581.65 Wh 3605
Ageing Urban Resident (annual) 508.89Wh 1194.86Wh 15169

Ageing Urban Resident (Jan-Mar) 1052.77Wh 1717.00Wh 3374
Ageing Urban Resident (May-Aug) 92.01Wh 284.13Wh 3605

Table 2: Descriptive Statistics for Gas Samples, ”Ageing” group

Ageing

This section considers a very similar comparison as was seen in Chapter 5 yet for

a smart meter users that reside within the areas that are characterised as having

large proportion of ageing population. Urban and rural ageing populations areas

were selected for comparison. As will be shown in fact the urban and rural ageing

population can be described as distinct in quite similar fashion as the experiments

in the chapter.

Rural Ageing

Sampled smart meter user from ’Rural Ageing’ area can be characterised by quite

persistent consumption throughout the day with partial periodicity in terms of the

consumption peaks, yet with way more variability in between as the presented user

certainly consumes quite continuously throughout the day (Figure 3). The model fit

measured by R squared is about 0.81 for winter and about 0.61 for summer. The

model performance can be considered as relatively good in explaining overall vari-

ability of this smart meter user’s consumption. This is contrary to rural customer

that was studied earlier, meaning that there may be more periodicity expected for

smart meter user that reside in the urban area with pre-dominantly ageing popula-

tion.

Summer consumption can be characterised as double peaked yet with almost
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no or little consumption in between the peaks. This may be explained by absence

of heating which can be more evident during the winter seasons. The period of

possible physical absence can also be noticed from the summer pattern.
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Figure 3: GAM fit for a customer that belongs to OA characterised as ‘Rural Ageing’

The breakdown of the model fit by hours of the day and days of the week are

presented in Figure 4. For winter, it may be noted that consumption during the first

half of the day tend to be greater in magnitude compared to that of evening. In

summary, consumption look persistent in its trend for each day of the week but can

be described by decreasing consumption across the day.
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Figure 4: GAM fit for a customer that belongs to OA characterised as ‘Rural Ageing’ in
3D.

In the case of the summer, consumption levels appear rather hectic. There seem

to be more consumption first days of the week (Monday to Wednesday). Overall,

there are more than just two peaks during the days. This makes it slightly challeng-

ing to conclude which kind of activities may be present in this type of property.
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Urban Ageing

Sampled smart meter user from the urban area characterised by large number of

ageing population may remind the reader of the ’Urban Professional’ case that was

studied previously. Figure 5illustrates winter and summer trend and predictions.

Extremely high periodicity of the behaviour can be noted for both winter and sum-

mer. The model fit for winter measured by R squared is 0.92. Summer however can

be described quite poorly (only about 0.28). The summer poor fit may be described

by inconsistency of the peaks magnitude across the sampled time.
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Figure 5: GAM fit for a customer that belongs to OA characterised as ‘Urban Ageing’

The 3D visualisations that illustrate in more details the consumption differ-

ences across the time during the day and across the days of the week are given in

Figure 6. From winter fit, one may note quite sharp consumption levels with clearly
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defined morning and evening peaks that are persistent regardless of the away of

the week. Very similar picture is observed for the summer with slightly shorter

consumption timeframe for the morning and evening peaks but nevertheless clearly

defined and present across all the days of the week.
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Figure 6: GAM fit for a customer that belongs to OA characterised as ‘Urban Ageing’ in
3D.

In summary, it can be noted that there are certainly well defined differences
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in terms of periodicity and predictability of energy consumption patterns between

urban and rural group. Narrowing down analysis not just for urban and rural but

further to ageing population that reside in these distinct areas have demonstrated that

on average ageing smart meter users tend to be more persistent in the consumption

behaviour that does not alternate across the days of the week. These customers are

also more likely to be present at the property.
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C. S. Möller-Levet, F. Klawonn, K.-H. Cho, and O. Wolkenhauer. Fuzzy clustering

of short time-series and unevenly distributed sampling points. In International

Symposium on Intelligent Data Analysis, pages 330–340. Springer, 2003.

R. Moore. Definitions of fuel poverty: Implications for policy. Energy Policy, 49:

19–26, 2012.

http://www.metoffice.gov.uk/climate/uk/summaries


BIBLIOGRAPHY 248

P. Moran. A test for serial correlation of residuals. Biometrica, 37:178–181, 1950.

D. Muchlinski, D. Siroky, J. He, and M. Kocher. Comparing random forest with

logistic regression for predicting class-imbalanced civil war onset data. Political

Analysis, 24(1):87–103, 2015.

J. Naisbitt. Megatrends (1982). Ten New Directions Transforming Our Lives, 2015.

G. Nason. Wavelet methods in statistics with R. Springer Science & Business Media,

2010.

G. P. Nason and R. Von Sachs. Wavelets in time-series analysis. Philosophical

Transactions of the Royal Society of London A: Mathematical, Physical and En-

gineering Sciences, 357(1760):2511–2526, 1999.

A. Newing, B. Anderson, A. Bahaj, and P. James. The role of digital trace data

in supporting the collection of population statistics–the case for smart metered

electricity consumption data. Population, Space and Place, 22(8):849–863, 2016.

T. A. Nguyen and M. Aiello. Energy intelligent buildings based on user activity: A

survey. Energy and buildings, 56:244–257, 2013.

S. J. Nizami and A. Z. Al-Garni. Forecasting electric energy consumption using

neural networks. Energy Policy, 23(12):1097 – 1104, 1995. ISSN 0301-4215.

doi: http://dx.doi.org/10.1016/0301-4215(95)00116-6.

T. Oates. Identifying distinctive subsequences in multivariate time series by clus-

tering. In Proceedings of the fifth ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 322–326. ACM, 1999.

OFGEM. Retail energy markets in 2015. 2015.

S. Okushima. Measuring energy poverty in japan, 2004?2013. Energy Policy, 98:

557 – 564, 2016. ISSN 0301-4215. doi: http://dx.doi.org/10.1016/j.enpol.2016.

09.005.



BIBLIOGRAPHY 249

K. C. O’Sullivan, P. L. Howden-Chapman, and G. M. Fougere. Fuel poverty, pol-

icy, and equity in new zealand: the promise of prepayment metering. Energy

Research & Social Science, 7:99–107, 2015.

K. Pearson. Principal components analysis. The London, Edinburgh, and Dublin

Philosophical Magazine and Journal of Science, 6(2):559, 1901.

J. Peppanen, X. Zhang, S. Grijalva, and M. J. Reno. Handling bad or missing

smart meter data through advanced data imputation. In Innovative Smart Grid

Technologies Conference (ISGT), 2016 IEEE Power & Energy Society, pages 1–

5. IEEE, 2016.

S. Piantadosi, D. P. Byar, and S. B. Green. The ecological fallacy. American journal

of epidemiology, 127(5):893–904, 1988.

M. Priestley. Wavelets and time-dependent spectral analysis. Journal of Time Series

Analysis, 17(1):85–103, 1996.

E. L. Quinn. Smart metering and privacy: Existing laws and competing policies.

2009.

W. v. Raaij and T. Verhallen. Patterns of residential energy behavior. Journal of

Economic Psychology, 4, 1982.

A. C. Rencher and G. B. Schaalje. Linear models in statistics. John Wiley & Sons,

2008.

I. Rish. An empirical study of the naive bayes classifier. In IJCAI 2001 workshop

on empirical methods in artificial intelligence, volume 3, pages 41–46. IBM New

York, 2001.

D. Roberts, E. Vera-Toscano, and E. Phimister. Fuel poverty in the uk: Is there a

difference between rural and urban areas? Energy policy, 87:216–223, 2015.

S. Roberts. Energy, equity and the future of the fuel poor. Energy Policy, 36(12):

4471–4474, 2008.



BIBLIOGRAPHY 250
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