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2 

Amazonian populations are increasingly exposed to climatic shocks yet knowledge of related 

health impacts is limited. Understanding how health risks are co-produced by local climatic 

variability, place and social inequities is vital for improving decision-making, particularly in 

decentralized contexts. We assess the impacts of rainfall variability and multi-scale 

vulnerabilities on birth-weight, which has life-long health consequences. We focus on highly 30 

river-dependent areas in Amazonia, using urban and rural birth registrations during 2006-

2017. We find a strong but spatially-differentiated relationship between local rainfall and 

subsequent river-level anomalies. Using Bayesian models we disentangle the impacts of 

rainfall shocks of different magnitudes, municipal characteristics, social inequities and 

seasonality. Prenatal exposure to extremely intense rainfall is associated with preterm birth, 35 

restricted intra-uterine growth and lower mean birth-weight (≤-183g). Adverse birth 

outcomes also follow non-extreme intense rainfall (40% higher odds of low birth-weight), 

drier than seasonal averages (-39g mean birth-weight) and conception in the rising-water 

season (-13g mean birth-weight). Babies experience penalties totalling 646g when born to 

adolescent, Amerindian, unmarried mothers that received no formal education, antenatal or 40 

obstetric healthcare. Rainfall variability confers inter-generational disadvantage, especially 

for socially-marginalized Amazonians in forgotten places. Structural changes are required to 

reduce inequities, foster citizen empowerment, and improve the social accountability of public 

institutions.  
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Amazonian societies were exposed to major floods in 2009, 2012, 2013 and 2014 and severe 

droughts in 2005, 2010 and 20151–3, causing widespread disruption to flows of essential goods and 

public services4,5. These increasingly frequent and severe events are caused by extremely intense or 

deficient rainfall associated with La Niña and El Niño events, and changes in water transport to 

Amazonia linked to anomalies in sea surface temperatures in the tropical Atlantic6. Vulnerability to 55 

climatic shocks is particularly high among Amazonia’s marginalized river-dependent populations, 

including remote ‘jungle towns’ unconnected to road networks7. Yet, despite intensive biophysical 

research into how extreme events in Amazonia influence, and respond to, forest degradation and 

planetary change (e.g.2), the health impacts of climatic variability in the region are under-

researched8. These knowledge gaps arises from intersecting forms of marginalization through which 60 

research communities and policy-makers neglect certain kinds of places and peoples9.  

 

Increasing climatic variability in Amazonia is concerning, in part, because prenatal exposure to 

climatic shocks can harm birth outcomes10–12 and early life climatic shocks may hinder childhood 

development13–15. Consequences of low birth-weight (LBW; <2500g), for example, include 65 

subsequent disadvantages in educational attainment, health and income in adulthood, and mortality-

risks16–19. Work highlights three main mechanisms linking climatic variability with birth outcomes 

(including fetal growth and pregnancy duration). First, climatic shocks affect crop yields and 

quality, which can cause food insecurity and malnutrition by constraining food access among rural 

agricultural populations or urban consumers20,21. Second, these shocks can alter the survival and 70 

reproduction of vectors and pathogens, compromising maternal health through increased incidence 

of water-borne11 or vector-borne disease22. Third, shock-related stress, anxiety or mental health 

disorders during pregnancy can cause preterm birth23 and impair child development24. It is 

challenging, however, to disentangle the inter-connected effects of these pathways25. For example, 

evidence linking disasters with stress and birth outcomes in the Global South is inconclusive and 75 
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confounded by impacts on maternal health and nutrition26,27. Furthermore, although prenatal stress 

may cause preterm birth23, it can also restrict fetal growth26. And, whilst maternal nutrition is 

important for fetal growth28, it also influences risks of preterm birth29,30. 

 

Rainfall variability in Amazonia affects local environments, economic activity and social systems in 80 

complex ways5, with myriad consequences for physical and psychosocial health. For instance, 

intense rainfall can cause extreme flooding, which exacerbates water insecurity31, increases risks of 

malaria32 and diarrhoeal disease33 and jeopardizes floodplain agriculture34. The health consequences 

of these, latter, short-term agricultural impacts are not well understood – research in the Global 

South has mainly examined changes in average climatic conditions35. The effects of the 85 

malnutrition, disease, and stress pathways are inter-linked and exacerbated because extreme 

climatic events also damage social systems, displace households, and disrupt mobilities, 

employment and access to public services36, including healthcare35. Even lower-magnitude 

variability in rainfall and river-levels in Amazonia can affect access to natural resources37 and 

riverine transport and trade along sub-tributaries, with implications for livelihoods and food 90 

security5. In Amazonia, as elsewhere, vulnerability is likely to be greatest for those living in multi-

dimensional poverty38 although the relative importance of inter-linked causal mechanisms may be 

place-specific.  

 

Local-scale variation in climate-health risks is poorly understood, which is problematic because 95 

climatic stressors affect health through interactions with contextual and structural factors (e.g. 

political, economic, cultural, environmental)39 and socio-economic inequities. This may explain 

spatial variation in the vulnerability of social and food systems to climatic shocks7. Place also 

matters due to decentralization of local governance of healthcare systems, emergency infrastructure 

and humanitarian services, and longer-term investment in adaptation in many countries20. 100 
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Furthermore, biophysical analysis of Amazonian floods and droughts tends to assess river-levels in 

the central mainstem (e.g.1) even though underlying episodes of anomalous rainfall are spatially-

distinct and affect sub-basins differently40. Considering locality is also important because of 

hydrological seasonality, which shapes Amazonia’s social-ecological systems5,41. The timing 

reflects flood pulses of different rivers and varies spatially due to North-South hemisphere 105 

opposition in rainfall regimes42. 

 

This paper questions how birth-weight in Amazonia is associated with maternal exposure to rainfall 

variability and social disadvantage. Given the interconnected vulnerabilities5 and limited related 

research in this system8, we examine associations between rainfall variability and birth-weight in 110 

order to stimulate future work, instead of hypothesis-testing a specific causal pathway(s). Our focus 

is on urban and rural newborns in 43 highly river-dependent municipalities in Amazonas State, 

Brazil (E.D. Fig. 1), vulnerable to climatic change7 and home to 1.278 million people. Our approach 

enables us to evaluate how an individual newborn’s prenatal exposure to locally-occurring climatic 

variability and multi-scale inequities may reduce birth-weight via growth restriction or preterm birth 115 

(PTB) (E.D. Fig. 2; Methods). We separately evaluate how positive and negative rainfall shocks of 

varying magnitude affect birth outcomes, instead of using cumulative rainfall during pregnancy11 or 

during birth year43. We do not directly translate local rainfall anomalies as river-level anomalies, 

because the latter are influenced by rainfall variability elsewhere in the basin, and other 

hydrological processes (e.g. soil moisture, vegetation type). 120 

 

We first calculate seasonal anomalies in satellite-based measures of local rainfall and river-level 

observations. Then, we separately calculate prenatal exposure to rainfall variability for each live-

birth recorded between 2006-2017 based on maternal municipality of residence, birth-date and 

estimated conception date. Rainfall variability is evaluated weekly for each municipality using our 125 
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model-based version of the Standardized Precipitation Index44. We assess cumulative anomalies in 

intense or deficient rainfall by identifying: (i) weekly deviation from seasonal averages; and over 

the preceding 8-weeks (ii) non-extreme events (>1 SD, <-1 SD above the mean); and (iii) extreme 

events (≥1.96 SD, ≤-1.96) in each municipality (Fig. 1). For each newborn we calculate weeks of 

prenatal exposure (including the pre-pregnancy trimester) to each kind of rainfall variability (E.D. 130 

Fig. 3). We define hydrological seasons separately for each municipality using historical river-level 

information (E.D. Fig. 4). Finally, we use hierarchical Bayesian modelling to disentangle the effects 

of the three levels of rainfall anomalies, hydrological seasonality, municipal characteristics 

(remoteness from other urban centres, and sanitation coverage) and maternal disadvantage on birth 

outcomes. We model: overall effects on birth-weight and LBW odds; effects on intra-uterine growth 135 

(birth-weight and LBW, controlling for gestational age); effects on PTB odds. Official birth 

certificates provided birth-weight, categorized gestational age, sex, newborn ethnicity and birth-

setting, maternal characteristics and antenatal care received. Our individual-level analysis links the 

location and scale parameters of birth outcomes with linear predictors that depend on covariates, 

non-linear functions of covariates, and municipality and temporal effects. Due to the complexity of 140 

our models, the linear predictors account for the effects of municipality and maternal covariates and 

rainfall variability in an additive way.   

 

< FIGURE 1 > 

 145 

Relationship between rainfall and river-level anomalies 

We find a correlation of 0.29 between rainfall anomalies and river-level anomalies, with a mean lag 

time of 4 weeks from the former to the latter (E.D. Fig. 5). Rainfall anomalies are closely related 

(0.49< r  <0.59) with river-level anomalies in the Negro sub-basin (E.D. Fig. 6a), which is mostly 

within our study area (Fig. 2). Anomalies are also relatively strongly correlated along the Juruá and 150 
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Purús Rivers (E.D. Fig. 6c) whose sub-basins are mostly within Amazonas and Acre (Fig. 2). 

Correlations are generally lower in municipalities along the main river-stem because the discharge 

is strongly influenced by rainfall upstream, in Peru, Ecuador and Colombia. Lag periods are shortest 

in the upper Negro River (1-to-3 weeks), Atalaia do Norte (1 week), and the upper Juruá and Purus 

Rivers (1-to-3 weeks), and longest (several months) in the east, around the main-stem (e.g. Parintins 155 

[15 weeks]; E.D. Fig. 5c).  

 

<FIGURE 2> 

 

Overall, our results show that intense and deficient rainfall shocks are broadly indicative of 160 

subsequent river-level fluctuations in the upper sections of tributaries, where hydrological regimes 

appear more dependent on local rainfall. Around the main-stem, river-level anomalies are caused 

less by local rainfall and more by rainfall in areas upstream, hence long lag times (e.g. 3-4 

months6). In the Bolivian Amazon local flood events occur due to flood waves from upriver and 

abundant local rainfall45. They also find local rainfall is a strong predictor of flooded area. In 165 

Amazonas, many rural river-dwellers live along third-order sub-tributaries strongly influenced by 

local rainfall46, and many urban centres are located near the mouths of these sub-tributaries. On the 

main-stem, an extreme hydrological event may not be detected using local rainfall, exemplified by 

our failure to identify flooding in Fonte Boa in 201547 although we did capture the extremely 

intense rainfall further upriver, where river flooding also occurred and municipalities declared states 170 

of emergency48.  

 

Some shocks were geographically-restricted (e.g. extremely intense rainfall events in 2015 in the far 

west) whereas others affected virtually all municipalities (e.g. extremely deficient rainfall events in 

2015 (Fig. 3; 2). Many municipalities experienced multiple extreme rainfall events during the study 175 
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period (S.M. Fig. 1), sometimes in consecutive years (Fig. 1). The distinct spatial signatures of the 

rainfall shocks demonstrate the limitations of determining basin-wide extreme events using only 

main-stem river-levels (e.g.1). 

 

Gestational age and birth-weight 180 

GA strongly influences birth-weight, hence controlling for GA enabled us to assess the independent 

effects of rainfall variability on growth (size-for-gestational-age). Compared to term pregnancies 

(≥37 weeks), PTB reduced birth-weight by between -247g (CI:-254 to -241g) (32-to-36 weeks), -

853g (CI:-881 to -827) (28-to-31 weeks) and -1774g (CI:-1820 to -1728) (22-to-27 weeks). LBW 

odds ratios for these GAs (compared to full-term) increased by 4.78 (CI: 4.59 to 4.97), 22.84 (CI: 185 

20.76 to 25.12), and 47.57 (CI: 39.91 to 55.97).  

 

Impacts of rainfall variability 

High exposure to extremely intense rainfall was associated with a 183g reduction (CI:-319 to -57) 

in mean birth-weight (Fig. 4a), linked to increased risk of PTB (OR 222 ,CI: 16 to 894)(Fig. 4e). 190 

Growth was unaffected (Fig. 4b,d). Moderate exposure to extremely intense rainfall was associated 

with 60g lower mean birth-weight (CI:-110 to -11), or -36g (CI:-66 to -10) controlling for 

gestational age (GA)(Fig. 4b), indicating growth restriction. LBW odds were 94% higher (CI:1.296 

to 2.829; Fig. 4c) following this exposure but not significantly different when controlling for GA. 

Moderate exposure also reduced PTB odds substantially (CI:0.001 to 0.011). Evidence for 195 

extremely deficient rainfall events was weaker although we found significantly increased PTB odds 

(4.377, CI:1.01 to 11.872) and high probability (0.918) of increased LBW odds. Exposure to both 

rainfall extremes was associated with 3638 (CI:224 to 15561) higher PTB odds and no significant 

changes in birth-weight, although increasing LBW odds was more likely (0.866). Some double 
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exposure was associated with reduced PTB risks, higher mean birth-weight and lower LBW risks 200 

(E.D. Fig. 7m,a,g, respectively), indicating complex changes in pregnancy outcomes.  

 

Non-extreme intense rainfall events were associated with 40% increased LBW odds (CI:1.01 to 

1.91), related to elevated PTB risks (1.79 OR, CI:1.12 to 2.67)(Fig. 4). Deficient episodes were 

associated with 55% lower PTB odds (CI: 0.18 to 0.93) but no change in birth-weight. Very high 205 

exposure to dry episodes was associated with reduced PTB odds (E.D. Fig. 7n). Particular 

combinations of intense and deficient rainfall were associated with 15-to-30g lower mean birth-

weight and 10-to-50% higher LBW odds (E.D. Fig. 7b,h). These effects were related to PTB and 

growth restriction (E.D. Fig. 7e,k). Unusually low exposure to intense and deficient rainfall was 

associated with 10-to-30g lower mean birth-weight and higher LBW odds, mainly due to growth-210 

restriction (E.D. Fig. 7b,e,h).  

 

Drier-than-normal conditions were associated with 39g lower mean birth-weight (CI:-1 to -89), 

increased likelihood of LBW (0.919 exceedance probability), and 12.79 higher PTB odds (CI:7.03 

to 21.49)(Fig. 4). Conversely, wetter-than-normal conditions were only associated with a high 215 

probability (0.92) of increased LBW odds. Combinations of unusually wet and dry periods were 

associated with 25% higher LBW odds (CI:1.01 to 1.59), linked to higher PTB risks (OR 2.78, 

CI:1.66 to 4.45)(E.D. Fig. 7i,o). Nonetheless, double exposure may also restrict growth given an 

exceedance probability 0.894 of higher LBW odds, controlling for GA. Closeness to long-term 

seasonality was associated with ~10-to-20g increased size-for-gestational-age (E.D. Fig. 7). 220 

Exposure to major deviations from long-term seasonal rainfall trends significantly increased PTB 

odds (E.D. Fig. 7o). 
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< FIGURE 3> 225 

 

<FIGURE 4 > 

 

Extremely intense rainfall in Amazonia is associated with severely reduced mean birth-weight due 

to PTB and restricted growth. Risks are greatest following months of exceptional rainfall, which 230 

often causes river flooding. Urban and rural communities in our study area are highly river-

dependent and have experienced a five-fold increase in flood frequency in recent decades1. 

However, we show that intense but non-extreme rainfall is also harmful due to PTB and, when 

combined with intense dry periods, restricts growth. Overall, our results support the suggestion that 

nutrition in ‘wetter’ regions is more vulnerable to excessive rainfall than to drought20. At low 235 

magnitude, however, variability in drier conditions appears relatively more important. These 

findings build on evidence from the Global South. In the Brazilian semi-arid, lower rainfall during 

pregnancy is correlated with higher infant mortality, lower birth-weight and premature birth11. 

However, their estimated effects were relatively minor; one SD increase in rainfall (28%) was 

associated with 1.6g higher birth-weight. In rural Mexico, more extreme wet or dry seasons limit 240 

children’s growth49 and in rural Vietnam, low rainfall during pregnancy and infancy limits height-

for-age50. In Indonesia, there are health and socio-economic benefits of higher rainfall during the 

first year of life, whereas no apparent effects of rainfall variability in utero43. Exposure to flooding 

during first year of life in India is associated with higher rates of stunting and underweight in 

children14.  245 

 

Municipal-scale determinants 

Mean birth-weight was 44g lower (CI:-81 to -6) in remote municipalities (0.8/1.0 remoteness score) 

with low sanitation (15% of households)(E.D. Fig. 8). Additionally, higher LBW odds was more 
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likely (0.93) and odds were 22% higher (CI:1.01 to 1.42) when controlling for GA, indicating 250 

impaired growth. These remote places are ≥959 km river distance from nearest state capital, which 

can takes weeks by boat7. Sanitation is less common in more remote municipalities (correlation r=-

0.53), therefore their joint effects are more meaningful. Nonetheless, low sanitation was associated 

with growth restriction (-32g [CI:-2 to -61]; lower size-for-gestational age) and 25% lower odds of 

PTB (CI:0.57 to 0.98), potentially indicating suppressed fertility or more miscarriages. Remoteness 255 

was associated with high probability (0.94) of increasing LBW odds. Beyond sanitation, remoteness 

underlies higher population sensitivity and lower adaptive capacity for coping with climatic shocks 

linked to higher imported food prices, reduced institutional presence and effectiveness, and 

governance failures in education and healthcare7. Summarizing, municipal characteristics have 

sizeable marginal effects on birth-weight, controlling for maternal covariates. 260 

 

Birth outcomes still differ markedly by municipality (S.M. Fig. 2), after controlling for remoteness, 

sanitation, random effects and maternal covariates. For instance, mean birth-weight was 213g 

higher and LBW odds 39% lower in Carauari than in Envira, largely unchanged when controlling 

for GA (E.D. Fig. 9). However, we cannot disentangle the role of contextual factors affecting 265 

maternal nutrition (e.g. dependence on floodplain agriculture, fisheries resources), from socio-

political determinants of fetal health and survival chances (e.g. access to quality healthcare, disease 

burden, discrimination) or potential biases in measurement or reporting of birth-weight.   

 

Transmission of maternal disadvantage 270 

Social inequities within highly river-dependent Amazonian municipalities are strongly associated 

with lower birth-weight, confirming the inter-generational transmission of disadvantage16. For 

adolescent mothers aged 15, LBW odds are 2.09 times (CI:1.99 to 2.20) the odds of mothers 30 

years old, and mean birth-weight is 248g lower (CI:-242 to -254g)(Fig. 5a-c). These effects are 
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robust to GA, although young mothers also have 66% higher odds of PTB (CI:1.58 to 1.74). 275 

Mothers with no formal education have smaller babies than those with 1-3 years (28% higher LBW 

odds [CI:1.19 to 1.38] and 63g lower mean [CI:-55 to -72]) or 4-7 years of education (33% higher 

LBW odds [CI:1.25 to 1.43] or 84g lower mean [CI:-76 to -93]). These effects are robust to GA 

although no education was associated with 9% increased PTB odds (CI for 1-to-3 year comparison; 

1.02 to 1.16). Being unmarried carried a penalty of 17% higher odds of LBW (CI:1.11 to 1.24) and 280 

32g lower mean birth-weight (CI:-26 to -37). These effects are robust to GA and PTB odds were not 

significantly different. Indigenous Amerindian ethnicity was associated with 7% higher LBW odds 

(CI:1.02 to 1.12) and 58g lower mean birth-weight (CI:-52 to -63). Indigenous newborns had 30% 

higher odds of PTB (CI:1.24 to 1.36), although size-for-gestational-age was still 50g lower (CI:-44 

to -55). Summarizing, social inequities are strongly associated with restricted growth and more 285 

modest increases in PTB risks. 

 

Receiving no antenatal care incurred 1.88 higher LBW odds (CI:2.70 to 3.08) and 151g lower mean 

birth-weight ([CI:-143 to -159g], compared to ≥7 consultations. These effects were robust to GA 

although PTB odds were 1.70 higher (CI:1.58 to 1.82) with no consulations. Antenatal care may 290 

help avoid PTB but the linkage between no antenatal care and severe growth restriction suggests 

these mothers face other, unmeasured disadvantages (e.g. extreme poverty, remote rural residence). 

Mothers receiving no antenatal care give birth to lighter babies when exposed to extremely deficient 

rainfall events (S.M. Fig. 3). Home-birth babies were 74g lighter (CI:-69 to -79) than those born in 

hospital, with no significant difference in LBW odds. PTB odds for home-birth were 23% higher 295 

(CI:1.19 to 1.28) but size-for-gestational-age was still 63g lower (CI:-58 to -68).  

 

Cumulative disadvantage for babies of adolescent, Amerindian, unmarried mothers with no formal 

education who had received neither antenatal or obstetric care equated to LBW odds 10.2 higher 
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(CI:8.98 to 11.48) and 646g lower mean birth-weight (CI:632 to 660) than newborns of relatively 300 

advantaged mothers. Controlling for GA, the combined penalties are LBW OR 7.61 (CI:6.76 to 

8.56) and 609g lower mean birth-weight (CI:-594 to -623), highlighting severely restricted growth. 

Nonetheless, their PTB risks are also 4.99 times greater (CI:4.44 to 5.55). These social inequities 

are prevalent within our study population (SI Table 1). For instance, 31.3% of babies had mothers 

aged 19 years or less. Thirty-one percent of mothers had at least 7 antenatal consultations, with 4-305 

to-6 the most common (39.8%) followed by 1-to-3 (21.9%), or none (6.4%). Summarizing, the 

susceptibility to harm from rainfall shocks in Amazonia is shaped by steep socio-economic 

gradients and their effects on disadvantaged newborns. 

 

Hydrological seasonality 310 

Hydrological seasons correlated with birth-weight (Fig. 5d-f), including 6g (-0.2 to -12) lower mean 

birth-weight following conception in the low-water season, compared to the high-water season. 

Controlling for GA, conception during the rising-water enchente season incurred 13g reduced 

growth (CI: -7 to -19) and 9% higher LBW odds (CI: 1.033 to 1.143). Enchente-related growth 

restriction may reflect malnutrition in trimesters one and two during the high-water season when 315 

there is poor fishing and food insecurity37. Early enchente conception was associated with 29% 

lower PTB OR (CI: 0.673 to 0.746). Better growth following high-season conception may reflect 

favourable food access during the low-water season37 (second trimester). However, seasonality in 

birth outcomes could also reflect variation in other unmeasured factors such as healthcare access, 

disease burden, etc. Nonetheless, these findings confirm seasonality in birth-weight51 and the vital 320 

role of rivers in this region.  

 

<FIGURE 5> 
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Discussion 325 

Our paper shows that maternal exposure to extreme rainfall shocks is associated with lower birth-

weight due to preterm birth and restricted growth. Consequently, rainfall shocks confer inter-

generational disadvantage for river-dependent populations living in neglected areas of Amazonia. 

These marginalized populations experience injustice because, despite contributing little to climate 

change, they are responsible for safeguarding most remaining forest and highly susceptible to 330 

climatic shocks. Studies elsewhere found birth outcomes compromised by variation in rainfall11 and 

temperature10,51 yet our paper provides a significant advance by accounting for individual variance 

in magnitude of exposure to short-duration rainfall shocks. We show extreme rainfall shocks in 

Amazonas correlate with local river flooding or drought, although this linkage is stronger in 

upstream second-order tributaries and third-order tributaries and weaker along the main-stem. 335 

 

Extreme events exceed coping capacities 

 Our findings suggest that Amazonian coping strategies (e.g. growing fast-growing crops to cope 

with flooding52) are, alone, insufficient for adapting to increased rainfall variability and subsequent 

hydrological anomalies5. Moreover, under-resourced municipal governments appear unable to 340 

ensure the human right to health when faced with climatic extremes. Decentralization was intended 

to strengthen public services by improving resource allocation, accountability and local 

mobilization53, but ineffective municipal structures hinder health and development in the South54. 

Non-extreme rainfall variability and subtler deviations in seasonal dry periods was also linked to 

lower birth-weight, however, pointing to the unfolding of ‘slow’, out-of-sight emergencies55.  345 

 

Reduce inequities and improve accountability 

Policy interventions to reduce vulnerability to climatic shocks include increasing the coverage of 

antenatal and obstetric care, investing in transportation and infrastructure to enable rural teenagers 
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to complete high-school, and expanding the coverage of household sanitation. Current deficiencies 350 

in these services reflect deep social inequities and the long-term political neglect of provincial 

Amazonia9, and uneven development in Brazil. Alleviating the double burden of climate change and 

health inequities requires structural changes to reduce inequities in power, money and resources and 

improve people’s daily living conditions56. Amazonian populations also need improved early 

warning systems for floods57 which should be transparent and provide locally-relevant, timely and 355 

actionable information that is accessible to citizens, considering disparities in access to technology. 

These systems can promote greater social accountability of public institutions and empowerment of 

citizens, akin to a reaching out for greater power9.  

 

Future research 360 

Designing effective public health interventions will require understanding specific causal pathways 

linking birth outcomes with meteorological and hydrological shocks. For instance, research in high-

income countries identifies trimester-specific effects of maternal stress26,58 and future Amazonian 

research could investigate how the timing of flood exposure determines the relative importance of 

the stress pathway on child development. The timing of exposure may also help understand a 365 

nutritional pathway, given observational studies showing that fetal growth and PTB risks are most 

associated with maternal nutrition in pre-pregnancy and the first trimester28. We may under-estimate 

the true effects of rainfall variability and seasonality on birth-weight given that rainfall variability, 

flooding and seasonal hardship can depress fertility and cause miscarriages11,59. This potential 

selection bias might also explain why some combinations of rainfall shocks appeared protective 370 

against PTB. In addition, healthcare resources are limited in our study context and most mothers 

received insufficient antenatal care, likely affecting the reliability of GA assessment60. Some studies 

report a tendency to under-estimate GA in growth-restricted newborns61, hence reduced growth may 

be more important than our results suggest. Finally, studying climate impacts on larger numbers of 
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Amazonian municipalities may enable researchers to identify any independent effects of 375 

temperature extremes on birth-outcomes, as found elsewheree.g. 11,49.  

 

This work shows how birth-weight can be severely reduced by maternal exposure to extreme 

climatic shocks, creating life-long disadvantage when combined with place-based and social 

marginalization. Extreme rainfall events are responsible for subsequent river floods and droughts 380 

and pose greater risks for vulnerable mothers, especially those living in remote river-dependent 

places. Most climate-health research in Amazonia has focussed on the more accessible Estuary 

region (e.g. 62) and work in Amazonas is scarce32. Beyond Amazonia, we provide novel insights by 

focussing on a highly river-dependent rural and urban population with multifaceted vulnerability to 

climate change. Moreover, we evidence why it is important to consider spatial variation in hazard 385 

exposure and vulnerability, and relative maternal disadvantage. Finally, this study shows how 

rainfall variability can severely affect birth-weight, demonstrating the urgent need to dedicate 

greater scientific resources and policy attention to enable Amazonians to better cope with climatic 

change.  

 390 
 

Data Availability 

The data that supports the findings of this study are publicly available as follows: 

- Birth data from the Brazilian Information System for Live Births (Sistema de Informação Sobre 

Nascidos Vivos, SINASC), 395 

http://www2.datasus.gov.br/DATASUS/index.php?area=0901&item=1&acao=28&pad=31655 

- Municipality-level covariates from the Brazilian Institute of Geography and Statistics (Instituto 

Brasileiro de Geografia e Estatistica, IBGE), 

ftp://ftp.ibge.gov.br/Censos/Censo_Demografico_2010/Sinopse/Agregados_por_Setores_Censitario

s/ 400 

http://www2.datasus.gov.br/DATASUS/index.php?area=0901&item=1&acao=28&pad=31655
ftp://ftp.ibge.gov.br/Censos/Censo_Demografico_2010/Sinopse/Agregados_por_Setores_Censitarios/
ftp://ftp.ibge.gov.br/Censos/Censo_Demografico_2010/Sinopse/Agregados_por_Setores_Censitarios/
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- Precipitation data from the Integrated Multi-satellitE Retrievals for GPM (IMERG) 

https://pmm.nasa.gov/data-access/downloads/gpm  

- River-level data from Brazil’s National Water Agency (Agência Nacional de Águas, ANA), 

https://www.snirh.gov.br/hidroweb/publico/apresentacao.jsf  

 405 

Code Availability 

All analyses were performed using the open-source platform R, version 4.0.2. We used the mbsi 

package (https://github.com/ErickChacon/mbsi) to compute the model-based standardised 

precipitation index and the bamlss package (https://cran.r-

project.org/web/packages/bamlss/index.html) to perform inference on the BAMLSS models. All the 410 

scripts for modelling can be found at https://gitlab.com/ErickChacon/birthweight, and visualize at 

https://erickchacon.gitlab.io/birthweight/. Additional code for data gathering, cleaning and processing; 

or processed data can be provided upon request. 
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We assess how an individual newborn’s prenatal exposure to climatic variability in their mother’s 

municipality of residence may affect their birth-weight through growth or gestational age (GA); 

only growth; and only GA. We account for maternal social characteristics, prenatal and obstetric 

healthcare, and municipal characteristics. For each newborn, we draw on official birth certificates to 

obtain information on the timing and location of pregnancy, maternal characteristics, and healthcare 440 

received. Our analysis  includes  six key stages (E.D. Fig. 2).  

 

Step (1) Select study universe 

We focus on live births in highly river-dependent municipalities in Amazonas State, Brazil, 

unconnected to other urban centres by road (n=43) (E.D. Fig. 1). These municipalities’ populations 445 

have higher social vulnerability to climatic shocks than road-connected municipalities. High social 

vulnerability in these areas arises through adaptive capacity deficits, higher social sensitivity and 

higher prices of imported foodstuffs7. In these places, only very proximate rural communities are 

reachable by road/track from the urban centre. Most of them are only reachable by river. A global 

study found ‘roadlessness’ is associated with underdevelopment63.  450 

 

Step (2) Calculate and compare seasonal local rainfall and river-level anomalies 

 

 2a) Rainfall measurement. Precipitation was derived from the satellite-based Tropical 

Rainfall Measuring Mission (TRMM) project and the Global Precipitation Measurement (GPM) 455 

project, both NASA-JAXA collaborations. TRMM’s mission ended in 2015 whereas GPM launched 

in 2014; we used NASA’s combined rainfall data product, IMERG ‘Final Run’, Level 3. TRMM has 

been widely used in hydrological research, and IMERG has been validated for Brazil, including 

Amazonia64,65. IMERG performs better than TRMM for smaller areas because of its finer spatial-
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temporal resolution66. IMERG provides rainfall measure every 3 hours for 0.25° × 0.25° cells from 460 

2002 to 2017. We weekly-averaged measures by municipality, i.e. weekly-rainfall-per-municipality.  

 

 2b) River-level measurement. Historical river-levels were extracted for monitoring 

stations in Amazonas from 2004-to-2014, from the Hidroweb platform of Brazil’s Agência Nacional 

de Águas. We could not extract comparable river-level data after 2014 due to changes in the 465 

platform. . Anomalies at municipality-level were obtained by extracting the residuals of harmonic 

regression models for each station  active for ≥10 years (S.M. Fig. 4). The residuals were 

interpolated onto a raster image using ordinary kriging, and then were averaged for each 

municipality and week. 

 470 

 2c) Comparing anomalies. We  compared rainfall and river-level anomalies for 2004-to-

2014. After establishing the relatively strong (but spatially-differentiated) relationship between 

rainfall and subsequent river-level anomalies (E.D. Fig. 4) we chose  satellite-derived 

intense/deficient rainfall episodes (section 4b) as our measure of climatic variability. Satellite-based 

precipitation is useful for understanding local climatic variability and even hydrological modelling 475 

in Amazonia, due to the low density of on-the-ground rainfall or river gauges67. In our study area 

some municipalities had long-term river-level gauges whereas others lacked local data, which 

would have required modelling local climatic variability using interpolation from stations hundreds 

of kilometers up/down-river, or in different sub-basins. Overall, we find local intense and deficient 

rainfall events are indicative of ‘extreme climatic events’ which often lead to riverine flooding or 480 

drought. Work from the Peruvian Amazon also shows a strong relationship between satellite-derived 

rainfall estimates and observed streamflow67. Evidence for using precipitation anomalies to capture 

river-level anomalies (and hence, river flooding and drought) is weaker in the main-stem. Even if 

local rainfall was normal, a main-stem municipality might experience a hydrological drought due to 
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extremely low rainfall upriver, or a river flood due to extremely high rainfall upriver. Research also 485 

shows that river-levels in the Brazilian section of the Madeira River are strongly related to rainfall 

in the Peru and Bolivian Amazon3,45,68,69. 

 

Step (3) Gestational timing and location 

Data were extracted from the Sistema de Informação sobre Nascidos Vivos (SINASC), Brazil’s 490 

health information system for registering live births. During the study period (01/2006-to-12/2017) 

there were 291,479 live births recorded in our study region, where mothers had pregnancy duration 

≥22 weeks, for singleton births without congenital abnormalities. Records are based on official birth 

certificates with information on newborn’s weight, birth circumstances and mother’s socio-

demographic position (section 6c). Maternal municipality of residence was used to specify 495 

newborn’s municipality, and hence their prenatal rainfall variability exposure, and additional 

municipality characteristics (section 6b). The difference between birth-date and approximate GA 

was used to estimate conception date and the exposure period to rainfall variability. Because GA 

was recorded in categorical intervals (e.g. [22–27] weeks), the middle-point was used as the 

approximate GA (eg. 24.5 = (22 + 27) / 2). 500 

 

Step (4) Calculate prenatal exposure to three magnitudes of rainfall variability 

For each newborn, we calculated prenatal exposure (including pre-pregnancy trimester) to extreme 

and non-extreme rainfall events, and seasonal deviations using the timing, duration and location of 

pregnancy, and an improved model-based version of the Standardized Precipitation Index (SPI). We 505 

utilize a Model Based Standardised Index (MBSI), used for measuring the magnitude of 

intense/deficient rainfall events. It models seasonal rainfall distribution from historical data, 

computes the relative position of the observations in terms of probabilities, and transforms them to 

normal standard quantiles. For details, including advantages relative to the SPI, see44. The MBSI 
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provides a measure of deviation from seasonal behaviour with respect to the moving average 510 

rainfall of order k, called the ‘time-scale’. We assessed rainfall variability at two time-scales; 1-

week (for deviations from seasonal averages) and 8-weeks (to identify extreme and non-extreme 

events based on cumulative anomalies during this time period). We computed MBSI at an 8-week 

time-scale (k = 8) because; (1) this time-scale been used to identify major river floods and droughts 

in China70 with the maximum correlation between river discharge and SPI71, and was reliable for 515 

flood-risk monitoring in Argentina72; (2) Our analysis of SPI time-scale in Amazonas shows 8-

weeks is reliable for identifying extreme climatic events44.  

 We developed a bivariate index to capture deviation from average seasonal rainfall, and 

formulated a separate measure of joint exposure to intense and deficient rainfall events (or extremes 

of each) during (pre-)pregnancy. The pre-pregnancy trimester (12 weeks) was taken as immediately 520 

prior to the estimated conception date. These indices accounted for the duration of each pregnancy 

in order to avoid confounding results because GA influences birth-weight. Maternal nutritional 

status pre-pregnancy strongly influences birth outcomes73. We therefore include measures of pre-

pregnancy climatic variability because exposure might affect maternal health or nutrition prior to 

conception, potentially influencing fetal development11,50. Moreover, climatic shocks might have 525 

delayed impacts on local food access21 hence a pre-pregnancy shock may disrupt maternal food 

intake and nutrition several months later.   

 

 4a. Precipitation deviations. We assessed deviation from seasonal behaviour of rainfall 

using a one-week time-scale  (k = 1) when computing MBSI. We represent the obtained MBSI for 530 

mother of newborn i at week of pregnancy j as 𝑆𝑆𝑖𝑖𝑖𝑖𝑘𝑘=1, where i = 1, ..., m and j = −11, ..., 0, ..., di. 

Possible values of j are from 12 weeks before the mother was pregnant until the pregnancy duration 

di . The sum of only positive and only negative deviations during the pre-pregnancy and pregnancy 

period divided by the number of weeks are the elements our bivariate indicator Di: 
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where δ(c) takes a value 1 when the underlying condition, c, holds and 0 otherwise. Di1 and Di2 

measures negative and positive deviations respectively. Low values in both dimensions represent a 

mother’s exposure close to historical seasonal rainfall. Cases where Di2 is high and Di1 close to 

zero, represent mothers experiencing higher rainfall than expected. Conversely, high values of Di1, 

and Di2 close to zero represent mothers experiencing less rainfall than expected.  540 

 

 4b. Intense and deficient rainfall events. A deficient (or intense) rainfall event is a 

period when the MBSI is continuously negative (or positive, for intense rainfall) reaching at least 

one value lower (or higher for intense events) or equal to −1 (1 for intense events)74. The sum of 

standardized precipitation values corresponding to deficient (or intense) rainfall events during pre-545 

pregnancy and pregnancy divided by the number of weeks are the elements of our bivariate 

indicator DFi for measuring exposure to intense and deficient events such as: 

𝐷𝐷𝐷𝐷𝑖𝑖 = � �
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 4c. Extreme rainfall events. We computed exposure to extreme events Ei similarly to 550 

exposure to DFi, but only considered the 8-week MBSI values >2 or <−2. These limits are 

conventional for characterizing extreme intense and deficient rainfall events, respectively74. Our 

bivariate index for mother of newborn i is defined as: 

𝐸𝐸𝑖𝑖 = �∑
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Step (5) Define local hydrological seasons 
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Using river-level data from 2004-2014, we defined hydrological seasons by municipality. To 

measure and standardise seasonality of river-levels, we fitted harmonic regression models from 

stations active for ≥10 years. The harmonic terms were  chosen using forward selection. For each 

station, we identified the annual period when rivers, on average, reached their highest levels. We 560 

transformed these series into seasonal status (values between 0 and 53): weeks 0 and 53 (cyclically) 

denote peak wetness, whereas values around 26 are peak dryness. We interpolated them spatially 

onto a raster image using ordinary kriging. Lastly, we weekly-averaged the resulting pixel-level 

data by municipality; the seasonal river-level index. Amazonas State is enormous therefore the 

calendar week of peak wetness varies greatly, particularly between the north and south  (E.D. Fig. 565 

4). For each newborn, we controlled for hydrological seasonality by using the hydrological-week in 

their mother’s municipality of residence at estimated date of conception. 

 

Step (6) Bayesian modelling of mean birth-weight, low birth-weight and preterm birth   

6a) Hierarchical modelling approach. 570 

We modelled how rainfall variability affects birth-weight through intra-uterine growth or GA; only 

growth; and only GA using MBSI, together with municipality and maternal characteristics, and 

temporal and municipality effects. Our individual (newborn)-level analysis is nested at 

municipality-level. We model birth-weight (M.1) and LBW (M.3) without controlling for GA to 

assess the full effects; birth-weight (M.2) and LBW (M.4) controlling for GA to assess the effect 575 

through growth; and PTB (M.5) to assess to effect through GA. We model the location, scale and 

probability parameters using: 

Exposure to rainfall variability (intense/deficient) of 3 magnitudes (extreme, non-extreme events, 

seasonal deviations) 

• Seasonal effects (river-levels) 580 

• Municipality-level covariates 
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• Individual-level covariates (newborn, mother, healthcare) 

• Unexplained temporal effects (using conception’s week) 

• Unexplained municipality effects 

 585 

We used Bayesian additive models for location, scale and shape (BAMLSS) linking the parameters 

with linear predictors that depend on covariates; non-linear functions of covariates; and independent 

random effects. Bayesian inference is achieved by obtaining the mode of the posterior distribution 

and later using these as starting values to obtain samples of the posterior distribution through Monte 

Carlo Markov chain algorithms; see75 for detailed explanation. This model is an extension of a 590 

generalized linear model (GLM) in which, in addition to the location parameter, the scale and shape 

parameters are also modelled through linear predictors that allow the inclusion of smooth functions 

to capture different effects types such as univariate non-linear, spatial and temporal effects and non-

linear interactions75. We used BAMLSS  because; (I) Exploratory analysis revealed  

heteroscedasticity across certain covariates levels (e.g. maternal age), indicating the need to also 595 

model the scale parameter. (II) non-linear effects using basis functions were less computationally 

expensive compared to other alternatives (e.g. Gaussian processes). (III) BAMLSS models allow 

including non-linear interactions to evaluate the effects of our bivariate indices that jointly measure 

maternal exposure to intense and deficient rainfall events.  A more simplistic approach with separate 

measures of exposure to intense/deficient rainfall events would lead to misleading results. 600 

 

 6b) Municipal characteristics 

We used 2010 Brazilian census data to define the proportion of households with an internal tap and 

toilet for each municipality76. Remoteness was measured using an index of travel distances from 

each urban centre to from larger towns/cities in a hierarchical urban network with values from 0 605 

(least remote) to 1 (most remote) (see7 ).  
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 6c) Birth-weight and maternal characteristics   

SINASC data also provided: birth-weight (grams); categorized gestational age (22–27 weeks; 28–

31; 32–36; >37), sex of infant (male/female); ethnicity of newborn as reported by the mother 610 

(reclassified as indigenous Amerindian or not); maternal age (years), marital status 

(single/married/civil union/widowed/divorced) and formal education received (0 years; 1-3; 4-7; 8-

11; ≥12); antenatal consultations (0; 1-3; 4-6; ≥7);  birth-place (hospital/health center/ home/other 

location). There were missing values for birth-weight (2.1%), marital status (22%), type of birth-

place (0.006%), ethnicity (0.4%), antenatal consultations (1.1%) and mother’s age (0.001%). One 615 

registration missing birth-weight and mother’s age was removed. To handle more prevalent missing 

data for other covariates we introduced “missing” levels. Our dataset did not include unique 

identifiers for mothers therefore, unavoidably, some mothers will appear several times in our 

database if they gave birth ≥2 during the study period. 

 SINASC data may present certain biases, and we observe implausibly large frequencies of 620 

certain values, such as 13% of records being multiples of 500g. This problem, ‘heaping’, can occur 

if a birth was recorded without due diligence or if the mother reports an approximate value because 

the newborn was not weighed at-birth. The latter is more likely in rural areas where mothers tend to 

have lower education and less antenatal care hence care must be taken when interpreting analyses 

based on these data77. This problem could lead to differences in the observed birth-weight 625 

variability across municipalities; we take this into account by modelling the standard deviation with 

respect to municipality. 

 

 6d) Statistical modelling. Five types of BAMLSS models were used: birth-weight (M.1) 

and LBW (M.3) without controlling for GA; birth-weight (M.2) and LBW (M.4) controlling for 630 

GA; and PTB (M.5). We evaluated distribution adequacy when modelling birth-weight (M.1 and 
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M.2); importance of including rainfall variability for each model type; and sensitivity to 

hyperparemeters for model M.3 and M.5 only because of the computational cost for other models 

(e.g. birth-weight). The non-linear effects in our models are represented using thin plate regression 

splines; a low rank approximation of thin plate splines obtained by minimizing a cost function that 635 

considers the trade-off between model fitting and smoothness, and does not require knots (see 78). 

 

 6d.i) Proposed models 

Gaussian and t-student distributions with mean (μ) and scale (σ) parameters were used to model 

birth-weight, while the Bernoulli distribution with probability parameter (π) was used for LBW and 640 

PTB. The linear predictor for the scale parameter for birth-weight models (M.1 and M.2) was 

defined as: 

𝑙𝑙𝑙𝑙𝑙𝑙�𝜎𝜎𝑖𝑖𝑖𝑖� = 𝜂𝜂𝑖𝑖𝑖𝑖* = 𝛽𝛽0* + ℎ1*�𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖� + ℎ2* �𝑦𝑦𝑠𝑠𝑦𝑦𝑦𝑦𝑠𝑠𝑙𝑙𝑦𝑦𝑠𝑠𝑑𝑑𝑒𝑒𝑒𝑒𝑦𝑦𝑒𝑒𝑒𝑒𝑙𝑙𝑒𝑒𝑖𝑖𝑖𝑖� + ℎ3* �𝑏𝑏𝑒𝑒𝑦𝑦𝑒𝑒ℎ𝑝𝑝𝑙𝑙𝑦𝑦𝑒𝑒𝑠𝑠𝑖𝑖𝑖𝑖� + ℎ4*�𝑠𝑠𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑦𝑦𝑦𝑦𝑒𝑒𝑠𝑠𝑖𝑖𝑖𝑖�+
ℎ5* �𝑒𝑒𝑙𝑙𝑒𝑒𝑠𝑠𝑒𝑒𝑙𝑙𝑒𝑒𝑦𝑦𝑒𝑒𝑒𝑒𝑙𝑙𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒𝑛𝑛𝑏𝑏𝑠𝑠𝑦𝑦𝑖𝑖𝑖𝑖� + 𝑦𝑦1*�𝑦𝑦𝑙𝑙𝑠𝑠𝑖𝑖𝑖𝑖� + 𝑦𝑦2*�𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑠𝑠𝑝𝑝𝑒𝑒𝑒𝑒𝑙𝑙𝑒𝑒𝑑𝑑𝑦𝑦𝑒𝑒𝑠𝑠𝑖𝑖𝑖𝑖� + 𝑦𝑦*�𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑦𝑦𝑙𝑙𝑒𝑒𝑒𝑒𝑦𝑦𝑖𝑖�,

 

where σij is the standard deviation for newborn i in municipality j and β*
0 is the intercept. The 

functions h*
1 (.) , h*

2 (.) , . . . , h∗5 (.) represent the effects of categorical variables, f∗1 (.) , f∗2 (.) 645 

represent univariate thin plate regression splines, and r*
 (.) represents independent random effects. 

 

The linear predictors associated with the mean (μij=ηij) or probability parameters (logit(πij)=ηij) , for 

child i in municipality j, for models without controlling for GA (M.1, M.3 and M.5) were defined 

as: 650 

𝜂𝜂𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + ℎ1�𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖� + ℎ2�𝑛𝑛𝑦𝑦𝑦𝑦𝑒𝑒𝑒𝑒𝑦𝑦𝑙𝑙𝑠𝑠𝑒𝑒𝑦𝑦𝑒𝑒𝑒𝑒𝑠𝑠𝑖𝑖𝑖𝑖� + ℎ3�𝑦𝑦𝑠𝑠𝑦𝑦𝑦𝑦𝑠𝑠𝑙𝑙𝑦𝑦𝑠𝑠𝑑𝑑𝑒𝑒𝑒𝑒𝑦𝑦𝑒𝑒𝑒𝑒𝑙𝑙𝑒𝑒𝑖𝑖𝑖𝑖� + ℎ4�𝑏𝑏𝑒𝑒𝑦𝑦𝑒𝑒ℎ𝑝𝑝𝑙𝑙𝑦𝑦𝑒𝑒𝑠𝑠𝑖𝑖𝑖𝑖� + ℎ5�𝑠𝑠𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑦𝑦
ℎ6�𝑒𝑒𝑙𝑙𝑒𝑒𝑠𝑠𝑒𝑒𝑙𝑙𝑒𝑒𝑦𝑦𝑒𝑒𝑒𝑒𝑙𝑙𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒𝑛𝑛𝑏𝑏𝑠𝑠𝑦𝑦𝑖𝑖𝑖𝑖� + 𝑦𝑦1�𝑦𝑦𝑙𝑙𝑠𝑠𝑖𝑖𝑖𝑖� + 𝑦𝑦2�𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑠𝑠𝑝𝑝𝑒𝑒𝑒𝑒𝑙𝑙𝑒𝑒𝑑𝑑𝑦𝑦𝑒𝑒𝑠𝑠𝑖𝑖𝑖𝑖� + 𝑠𝑠�𝑦𝑦𝑒𝑒𝑟𝑟𝑠𝑠𝑦𝑦𝑙𝑙𝑠𝑠𝑟𝑟𝑠𝑠𝑙𝑙𝑤𝑤𝑠𝑠𝑠𝑠𝑤𝑤𝑖𝑖𝑖𝑖�+

𝑙𝑙1�𝑦𝑦𝑠𝑠𝑛𝑛𝑙𝑙𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖� + 𝑙𝑙2�𝑒𝑒𝑦𝑦𝑝𝑝𝑒𝑒𝑙𝑙𝑒𝑒𝑙𝑙𝑠𝑠𝑒𝑒𝑝𝑝𝑦𝑦𝑙𝑙𝑝𝑝𝑙𝑙𝑦𝑦𝑒𝑒𝑒𝑒𝑙𝑙𝑒𝑒𝑖𝑖� + 𝑦𝑦�𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑦𝑦𝑙𝑙𝑒𝑒𝑒𝑒𝑦𝑦𝑖𝑖�+
𝑦𝑦3(𝐷𝐷𝑖𝑖1,𝐷𝐷𝑖𝑖2) + 𝑦𝑦4(𝐷𝐷𝐷𝐷𝑖𝑖1,𝐷𝐷𝐷𝐷𝑖𝑖2) + 𝑦𝑦5(𝐸𝐸𝑖𝑖1,𝐸𝐸𝑖𝑖2),

 

 

Functions h1(.), ... , h6(.); l1(.), l2(.) represent fixed effects of factor and continuous variables 

respectively. Functions f1(.), f2(.) represent univariate thin plate regression splines, while f3(.), f4(.), 
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f5(.) are bivariate. Lastly, s(.) and r(.) represents cyclic and cubic regression splines used for 655 

modelling seasonality and indepent random effects respectively. Previous analysis led us to include 

linear effects for remoteness and sanitation to avoid over-fitting; exclude rurality (rural % of 

municipal population) because it was correlated with sanitation (r=-0.33) and was not significant (at 

95%); and  include independent random effects at municipality-level to account for unexplained 

municipality differences and intra-municipality correlation. 660 

  

The linear predictors of models controlling for GA (M.2 and M.4) include the term h7 (gestational 

ageij); and the alternative models without including rainfall variability remove the terms f3(Di1 ,Di2), 

f4(Dfi1 ,DFi2), f5(Ei1 ,Ei2) from the linear predictors. 

The priors depend on the semi-parametric representation of the effects hi (.), fi (.), si (.), hi
*(.), and 665 

fi
*(.), for which the BAMLSS package prefers to define weakly informative priors (75, Section 4.1). 

 

 5d.ii) Model selection 

 

When modelling birth-weight (M.1), the t-distribution (DIC: 4420308) performed better than the 670 

Gaussian distribution (DIC: 4433581) in terms of goodness-of-fit and model assumptions’ adequacy 

(comparing QQ-plots) due to the heavy tails of the residuals.  For all models (M.1-M.5) we also 

found that fitting was improved by including rainfall variability (DIC: 4420308, 129549, 4408755, 

120447.2, 152947.9) compared to not including (DIC: 4420543, 129784.3, 4408848, 120464.6, 

160983). This shows the relevance rainfall variability on birth outcomes. There was no strong 675 

evidence to support the inclusion of spatial effects at with exception of model M.5 (P-value = 0.04); 

tested using the Moran index and Monte Carlo simulation. However, we did not include this effect 

because of convergence problems when including both spatial and independent municipality effects. 
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The bivariate non-linear terms of our models might be difficult to interpret (E.D. Fig. 7). To 680 

facilitate interpretation, we computed credible intervals for three (or four) bivariate combinations 

representing different scenarios like high exposure to extreme intense (or deficient) episodes, 

moderate exposure to extreme intense and deficient rainfall (Fig. 4).   

 

  6d.iii) Bayesian inference 685 

The number of chains, iterations, burn-in and thinning for each model was defined by considering 

the RAM  required to run parallel chains; and inspecting convergence using traceplots, 

autocorrelation function plots. These graphs can be seen at 

https://erickchacon.gitlab.io/birthweight/. For model M.1, we ran 3 chains of 7000 iterations with 

no burn-in and keeping 1/20 samples. For M.3, we ran 3 chains of 9000 iterations removing the first 690 

1000 iterations and keeping 1/20 samples. For M.2 and M.4, we ran 4 chains of 7000 iterations 

removing the first 3500 iterations and keeping 1/10 samples. For M.5, we ran 4 chains of 10000 

iterations removing the first 3500 iterations and keeping 1/20 samples. Consistently, for most 

models, convergence was slower for the independent random effects, municipality covariates 

(remoteness and sanitation), and the intercept. 695 

 

We assessed sensitivity to the priors’s hyperparameters of the inverse smoothing parameters for 

models M.3 and M.5 with three types of priors using an inverse gamma distribution with shape a 

and rate b: (i) weakly informative prior (default; a = b = 0.0001), (ii) informative prior in favor of 

non-smooth functions (a = 5, b = 1000), and (iii) informative prior in favor of smooth functions (a = 700 

10, b = 0.0001). Highly informative priors (ii and iii) influenced the estimated terms and their 

uncertainties, but similar patterns on the effects were observed. In absence of strong knowledge 

about the inverse smoothing paramaters, we base our results on weakly informative priors (i). 

 

https://erickchacon.gitlab.io/birthweight/
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