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We develop a Markov-Switching Autoregressive Conditional Intensity (MS-ACI) model with

time-varying transitional probability, and show that it can be reliably estimated via the Stochastic

Approximation Expectation-Maximization algorithm. Applying our model to high-frequency trans-

action data, we detect two distinct regimes in the intraday volatility process: a dominant volatility

regime that is observable throughout the trading day representing the risk-transferring trading ac-

tivity of investors, and a minor volatility regime that concentrates around market liquidity shocks

which mainly capture impacts of firm-specific news arrivals. We propose a novel daily volatility

decomposition based on the two detected volatility regimes.
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1 Introduction

Since the seminal work of Engle and Russell (1998), a growing amount of literature has emerged on

parametric modelling of intraday financial data. An important strand of this literature concentrates

on the parametric modelling of intraday price volatility using point processes, including Gerhard and

Hautsch (2002), Tse and Yang (2012), Li et al. (2019), Hong et al. (2020), etc. These papers show

that point process based volatility estimators can provide valid intraday volatility estimates that are

comparable to the popular Realized Variance (RV) estimates of Andersen et al. (2001).

An interesting feature of the point process-based approach is that its parametric structure provides

a useful framework to examine intraday volatility interaction with market microstructure covariates

without compromising the quality of volatility estimates. Existing frameworks are either incapable of

incorporating other variables due to their non-parametric design (e.g. RV framework), or are considered

inappropriate for intraday volatility estimation (e.g. intraday GARCH framework).

Under the point process-based framework, we propose a Markov-switching extension to the Au-

toregressive Conditional Intensity (ACI) model of Russell (1999) for the modelling of intraday volatility.

To the best of our knowledge, we are among the first to develop such an extension to a conditional

intensity model. In fact, only few studies consider Markov-switching extensions to autoregressive mod-

els for point processes, e.g. Hujer et al. (2002); De Luca and Zuccolotto (2006); Gallo and Otranto

(2012), which are all developed from the Autoregressive Conditional Duration (ACD) model of Engle

and Russell (1998). We therefore fill this gap by providing an intensity-based autoregressive model

with a Markov-switching feature for the modelling of point processes.

The lack of Markov-switching autoregressive models for point processes is possibly due to the

fact that a non-linear autoregressive structure is required to ensure the positivity of the durations

and the conditional intensity. This introduces a ‘path dependency problem’ in the construction of

the likelihood function1, which greatly complicates the estimation of such model. The most widely

applied strategy to circumvent the path dependency problem is to approximate the observed likelihood

function by a feasible version, for example Gray (1996); Kim (1994); Dueker (1997); Klaassen (2002);

Haas et al. (2004) in a MS-GARCH framework, and Hujer et al. (2002); De Luca and Zuccolotto

(2006); Gallo and Otranto (2012) for the MS-ACD model. However, these approaches do not solve

the path dependency problem directly, and the quality of these approximations is difficult to verify

empirically (Billio et al., 2014).

Distinct from the aforementioned studies, a direct solution to the path dependency problem typi-

cally relies on simulation and data augmentation techniques. For example, Bauwens et al. (2010, 2014);

1Intuitively, as the Markov state variables are unobserved, the observed likelihood is computed by integrating out the

full path of the latent states. Since possible realizations of the Markov chain grows exponentially w.r.t. the number of

observations, direct computation of the observed likelihood quickly become intractable as the sample size expands.
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Billio et al. (2014) develop Bayesian estimation techniques for the MS-GARCH model. Augustyniak

(2014) introduces a Monte Carlo Expectation-Maximization (MCEM) algorithm (Wei and Tanner,

1990) for maximum likelihood estimation of the MS-GARCH model. Inspired by these approaches,

we develop a maximum likelihood estimator of the Markov-switching ACI (MS-ACI) model based on

the Stochastic Approximation Expectation-Maximization (SAEM) algorithm of Celeux and Diebolt

(1992); Delyon et al. (1999), which overcomes the path dependency problem and provides estimates of

the variance-covariance matrix of the estimated parameter and the most probable state vector. Our

approach can be computationally more efficient than the method of Augustyniak (2014) as the SAEM

algorithm utilizes the simulated data more efficiently than the MCEM algorithm (Delyon et al., 1999).

Via simulation, we show that our SAEM algorithm provides empirically feasible and reliable parameter

estimates of the MS-ACI model.

We apply the MS-ACI model on the high-frequency Trade and Quote (TAQ) data of ten fre-

quently traded securities (including a market index ETF, SPY) for the year 2016, timestamped at

milliseconds. We model the dynamics of price durations, that is, the amount of time for the log-price

to change by a given amount, and examine the contemporaneous relationship between price durations

and the cumulative trading volume within each price duration. Our MS-ACI model detects two dis-

tinct regimes in the intraday volume-duration relationship for individual stocks: a dominant regime

that is observable throughout the trading day in which the duration and volume exhibits a strong

power law relationship, and a minor regime that concentrates around large bid-ask spread events with

a much weaker connection between price duration and volume. However, the latter regime cannot be

observed for SPY, the stock index ETF. These findings are further corroborated by empirical results

based on an extended sample that covers all Dow Jones constituents in 2016, which we present in the

supplementary material of the paper.

Our empirical findings provide new insights into the dynamics of intraday volatility processes.

Firstly, we show that intraday volatility processes for individual stocks exhibit regime-switching be-

haviour on an intraday level, which is likely to be caused by unpredicted shocks to the liquidity state

of the market as a result of firm-specific information arrivals. Secondly, we conjecture that the dom-

inant regime discussed above is likely to summarize risk transfers between market participants, and

the power law relationship between volume and price duration may hold across assets and time as

a result of the Market Microstructure Invariance hypothesis of Kyle and Obizhaeva (2016). Finally,

we propose a novel decomposition of daily volatility into two components based on the two detected

regimes, which allows us to disentangle different driving forces of volatility on a daily basis.

The rest of this paper is structured as follows: Section 2 introduces some basic point process theory

and the original ACI model. In Section 3, the specification and estimation technique of the MS-ACI

model are discussed. Simulation evidence is provided in Section 4, with the empirical application

following in Section 5. Section 6 concludes.
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2 Conditional Intensity Modelling

2.1 Basic Point Process Theory

This section briefly summarizes fundamental point process theory used in this paper following Hautsch

(2012). For an in-depth textbook treatment we refer to Karr (1991) and Daley and Vere-Jones (2003)

among others.

Definition 1. On a filtered probability space (Ω,F , {Ft}t≥0,P), let t denote the physical time. A (simple)

point process is defined as the sequence of random event arrival times {ti}i=0,1,2,..., subject to t0 = 0

and ti < ti+1, ∀i, almost surely. Each ti represents the arrival time of the i-th event. For a sample

size T , the complete observed sequence of the point process can be denoted as {ti}i=1:T .

A point process can be uniquely characterized by three processes. The first one is the counting

process, denoted as N(t) :=
∑

i≥1 1l {ti≤t} for the right-continuous version and N̆(t) :=
∑

i≥1 1l {ti<t}

for the left-continuous one. The second process is the duration process defined as xi = ti − ti−1 for

i > 1 and x1 = t1. A related definition is the backward recurrence time, defined as x(t) = t − tN̆(t).

Let Ft denote the information set available till time t to which the point process is adapted, the third

process is the Ft-conditional intensity process, defined formally as:

Definition 2. (Hautsch, 2012, p. 71) Let N(t) be a simple point process on [0,∞) that is adapted

to some history Ft and assume that λ(t|Ft) is a positive-valued process with sample paths that are

left-continuous and have right-hand limits. Then the process

λ(t|Ft) ≈ λ(t+ |Ft) = lim
∆↓0

1

∆
E[N(t+ ∆)−N(t)|Ft], λ(t+) > 0, ∀t, (2.1)

with λ(t + |Ft) := lim∆↓0 λ(t + ∆|Ft), is called the (Ft)-conditional intensity process of the counting

process N(t).

The following crucial property of the conditional intensity process is exploited in constructing

models for conditional intensity. Let us denote the integrated intensity between two events as:

Λi =

ti∫
ti−1

λ(s|Fs)ds.

According to the Random Time Change theorem (RTCT hereafter, see e.g. Bowsher (2007)), the

process {Λi}i=1,2,... is the duration process of a unit rate Poisson process with:

Λi ∼ i.i.d.exp(1). (2.2)

This property serves as a useful tool in constructing intensity-based models, and is used in constructing

residuals and diagnostic tests for point processes.
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The log-likelihood function of a point process can be constructed solely based on the conditional

intensity process (Karr, 1991):

ln L(θ;Y) =
T∑
i=1

[
−Λi + ln λ(ti|Fti)

]
. (2.3)

Here Y = {ti}i=1:T and θ is the unique parameter vector for some parametrized conditional intensity

process.

2.2 The ACI Model

The seminal paper of Russell (1999) proposes the bivariate ACI model with applications to high-

frequency financial data. In this section, we describe the main ingredients of the original ACI model

in a univariate framework as in Hautsch (2012).

The ACI model is a fully parametric model, which specifies the conditional intensity in a multi-

plicative form as follows:

λ(t|Ft) = Φ(t)λ0(t). (2.4)

The Φ(t) is an autoregressive component that could include time-varying covariates, and λ0(t) is

the baseline intensity function. Additional components can be included multiplicatively to capture

other effects of interest on the conditional intensity (e.g. a seasonality component), which we ignore

in this paper for simplicity. To ensure the non-negativity of the conditional intensity, Φ(t) is usually

parametrized as the exponential form of an ARMA-type structure, as an example:

Φ(t) = e
Φ̃N̆(t)+1+η′Z(t)

, (2.5)

Φ̃i =

q∑
j=1

αj ε̃i−j +

p∑
k=1

βkΦ̃i−k, (2.6)

in which N̆(t) + 1 = i for ti−1 < t ≤ ti, Z(t) is a matrix of covariates (can include both time-

varying and time-invariant covariates) and η is the corresponding parameter vector. Φ̃i is a zero mean

ARMA-type process, and the weak stationarity condition for Φ̃i is that all the roots of the polynomial

β(z) = 1−
∑q

k=1 βkz
k lie outside the unit circle. The innovation terms, ε̃i, can be defined as:

ε̃i = −γ − ln Λi. (2.7)

in which γ is the Euler-Mascheroni constant. According to Eq. (2.2), since Λi is i.i.d. unit exponential

if the ACI model is correctly specified, − ln Λi follows a standard type-I Gumbel distribution with

mean γ hence ε̃i is a zero mean martingale.

The baseline intensity component λ0(t) can be specified in various ways. Because a closed form

solution of the integrated conditional intensity and thus the error term is more computationally con-

venient, the following specifications are popular: (1) the exponential baseline λ0(t) = ew, (2) the
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Weibull baseline λ0(t) = aewax(t)a−1 with a > 0 (3) the Burr-type baseline λ0(t) = eκ ax(t)a−1

e−wa+x(t)a
with

a > 0. The model can be estimated by standard maximum likelihood approach with the log-likelihood

function given in Eq. (2.3).

2.3 Stationarity of the ACI Model

The stationarity concept discussed in this paper refers to weak (covariance) stationarity unless stated

otherwise. Previous studies focus on discussing the stationarity of the Φ̃i component (see Russell

(1999), Hautsch (2012) for instance), and the stationarity condition of Φ̃i is considered as a sufficient

stationarity condition for the ACI model. We show that for a plain ACI model with Weibull baseline

and the error term specified as in Eq. (2.7), the stationarity of Φ̃i is insufficient for the conditional

intensity process λ(ti|Fti) or the duration process xi to be stationary. Our findings are summarized

in the theorem below.

Theorem 2.1. The sufficient conditions for the stationarity of the conditional intensity and duration

processes generated by an ACI(p,q) model defined as in Eqs. (2.5) to (2.7) and λ0(t) = aewax(t)a−1

with Z(t) = 0 are:

1. All roots of the polynomial β(z) lie outside the unit circle, where β(z) is the polynomial in the lag

operator form of Φ̃i: β(L)Φ̃i = α(L)ε̃i−1, in which β(L) = 1−
∑p

i=1 βiL
i and α(L) =

∑q
j=1 αjL

j.

2. Let ψ(L) = α(L)
β(L) =

∑∞
i=1 ψjL

j. The following conditions are required:

a >
2

3
, sup |ψi| <

a

2
. (2.8)

Intuitively, condition 1 can be viewed as the stationarity condition for the ARMA component

and condition 2 is the moment condition since power transformed unit exponential variables do not

necessary have finite second moments. Note that the stationarity of durations does not imply the

stationarity of the conditional intensity, and vice versa. We thus augment the results in Russell (1999)

and Hautsch (2012) by showing that extra parameter constraints are required for the ACI model to

be stationary.

3 Markov Switching ACI Model

In this section we propose the Markov Switching ACI (MS-ACI) model by augmenting the original

ACI model with a Markov switching structure.

Let S = {si}i=1:T , si ∈M = {1, . . . ,M} denote a M -state first order Markov chain, understood as

marks attached to each point arrivals {ti}i=1:T . The Markov chain is assumed to be ergodic with the

transition probability P(si = m|si−1 = l) = πlm for l,m ∈ M and an invariant probability measure
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πi. The MS(M)-ACI(p, q) model is specified as:

λ(t;Ft) = Φ(t)λ0(t), (3.1)

Φ(t) = e
Φ̃N̆(t)+1(sN̆(t)+1)+η(sN̆(t)+1)Z(t)

, (3.2)

Φ̃i(si) =

q∑
j=1

αj(si)ε̃i−j(si−j) +

p∑
k=1

βk(si)Φ̃i−k(si−k), (3.3)

ε̃i(si) = −γ − ln

ti∫
ti−1

λ(u;Fu)du, (3.4)

P(si = m|si−1 = l) = πlm, l,m ∈M, (3.5)

in which γ is the Euler-Mascheroni constant, Z(t) is a matrix of some possible covariates, and

η(sN̆(t)+1) is the corresponding regime-specific coefficient vector. The component η(sN̆(t)+1)Z(t) en-

ables state-specific relationships between the covariates and the intensity process.

In this paper we consider a Weibull baseline function for the MS-ACI model:

λ0(t) = a(sN̆(t)+1)e
w(sN̆(t)+1)a(sN̆(t)+1)

x(t)
a(sN̆(t)+1)−1

. (3.6)

We restrict ourselves to the Weibull baseline which nests the exponential baseline, because it is in the

exponential family which allows for the convergence of the Stochastic Approximation EM algorithm

according to Delyon et al. (1999) and Allassonnière et al. (2010). We will denote all the dynamic and

baseline parameters with the parameter vector θ and the transition parameters of the Markov chain

with the parameter vector Π.

In Eq. (3.5), we assume that the transition parameters are constant over time. This can be relaxed

by assuming that the transition parameters depend on a set of covariates associated with each event

arrival {Qlm,i}i=1:T, l,m∈M. Following the approach in Filardo (1994), we specify the structure of πlm,i

through a logistic link function:

πlm,i =
eclm+γ′lmQlm,i−1

1 + eclm+γ′lmQlm,i−1
, (3.7)

where clm controls for the baseline transition probability from state l to state m, and γ ′lm is a vector

of coefficients that captures the impact of Qlm,i−1 on the transition probability from state l to state

m at the i-th observation.

Similar to a plain ACI model, the stationarity of a MS-ACI model requires both the stationarity

of Φ̃i and a moment condition for the conditional intensity and duration. Francq and Zaköıan (2001)

and Stelzer (2009) provide the strict and weak stationarity conditions for Φ̃i. For conciseness we do

not present this condition, and refer the reader to Theorem 2.1 in Stelzer (2009) as a reference. For

the MS-ACI model defined by Eqs. (3.1) to (3.6) and assume the weak stationarity of Φ̃i, a sufficient

condition that ensures the existence of the second moment of the MS-ACI model is given by:

sup
m∈M

{a(m)} > 2

3
, sup |ψi(S)| < 1

2
sup
m∈M

{a(m)}, (3.8)
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where ψi(S) are the MA(∞) coefficients of Φ̃i given some state vector S, and the supremum of |ψi(S)|

is taken over all i and all possible choices of S. The proof of the above condition is analogous to that

of Theorem 2.1 by conditioning on S, and is thus omitted. However, the requirement on sup |ψi(S)|

is difficult to verify in practice for a general MS-ACI model due to the dependence on S. A feasible

criteria can be checked based on the following relation:

supm∈M,k∈{1,...,p} |βk(m)| < 1,

supm∈M,k∈{1,...,q} |αk(m)| < 1
2 supm∈M{a(m)}

⇒ sup |ψi(S)| < 1

2
sup
m∈M

{a(m)}, (3.9)

which holds true due to the MS-ARMA structure of Φ̃i.

3.1 Model Estimation

We rely on the maximum likelihood estimation (MLE) method to estimate the parameter vector θ

and the state probability parameters Π. A standard implementation of MLE maximizes the observed

log-likelihood of the data, which is the marginal log-likelihood of the observed data Y given θ:

lnL(θ;Y) = ln
∑
S
L(θ,Π;Y,S). (3.10)

Note that all covariates in the above likelihood function are considered as conditionally exogenous

and omitted for conciseness. Eq. (3.10) is empirically very difficult to maximize for two reasons:

(1) the functional form of the likelihood function is difficult to maximize by standard gradient/score

methods; (2) the dimensionality of S growth exponentially and summing over the entire space of S

becomes infeasible even in a relatively small sample. We hence apply the Stochastic Approximation

Expectation-Maximization (SAEM) algorithm developed by Celeux and Diebolt (1992) and further

analysed by Kuhn and Lavielle (2004) to overcome the two difficulties in maximizing Eq. (3.10).

We firstly explain three relevant likelihood functions in the estimation process. The conditional

log-likelihood of Y given the state vector S:

lnL(θ;Y|S) =
T∑
i=1

[
− Λi + lnλ(ti|Fti)

]
. (3.11)

This log-likelihood can be easily maximized since it is in a log-linear form. The complete data log-

likelihood for the joint density of {Y,S} can be decomposed as:

lnL(θ,Π;Y, S) = lnL(θ;Y|S) + lnL(Π;S), (3.12)

in which lnL(Π;S) is the marginal log-likelihood for the Markov chain, given by:

lnL(Π;S) =

T∑
i=2

lnπsi−1si,i. (3.13)
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Note that since Π is independent of L(θ;Y|S), the complete likelihood can be maximized by separately

maximising L(θ;Y|S) and L(Π;S). Both log-likelihood functions can be maximized by gradient-based

algorithms such as the Newton-Raphson method. We provide the analytical gradient of lnL(θ;Y|S)

in Appendix B, which allows for a faster and more efficient optimization compared to pure numerical

algorithms. The marginal likelihood of Y, which cannot be directly maximized as discussed in the

previous section, can be expressed as:

lnL(θ;Y) = ln
∑
S
L(θ;Y|S)L(Π;S). (3.14)

To apply the SAEM algorithm, we draw a random sample from the conditional density of the state

given the current parameter estimate θ(n), the data Y and the current state vector S(n) using the

single move Gibbs sampler developed by Bauwens et al. (2010). The single move sampler exploits the

following conditional density of the i-th state:

p(si|s(n+1)
1:i−1 , s

(n)
i+1:T , θ

(n),Y) ∝ p(si|s(n+1)
i−1 , s

(n)
i+1,Π

(n))f(yi:T |si, s(n+1)
1:i−1 , s

(n)
i+1:T , θ

(n)). (3.15)

At every n, by iterating i from 2 to T , we obtain a random draw of the vector S(n+1) conditioning

on the previous state vector. Based on the Gibbs sampler we can implement the SAEM algorithm to

estimate the MS-ACI model, which we summarize as follows.

Simulation Step (S-step): At the n-th iteration, given the current parameter estimate θ(n), Π(n)

and the current draws of state S(n,k), draw S(n+1,k) from the following density for i = 1 : T and

k = 1 : Kn:

p(si = l|s(n,k)
−i , θ(n),Y) =

p(si = l|s(n+1,k)
i−1 , s

(n,k)
i+1 ,Π(n))f(yi:T |si = l, s

(n,k)
−i , θ(i))∑M

m p(si = m|s(n+1,k)
i−1 , s

(n,k)
i+1 ,Π(n))f(yi:T |si = m, s

(n,k)
−i , θ(i))

, (3.16)

in which s
(n,k)
−i = {s(n+1,k)

1:i−1 } ∪ {s
(n,k)
i+1:T }.

Stochastic Approximation: Let ϑ(n) denote the vector that combines θ(n) and all free probability

parameters in Π(n), update the quantity:

Qn(ϑ|ϑ(n)) = (1− γn)Qn−1(ϑ|ϑ(n−1)) +
γn
Kn

Kn∑
k=1

lnL(ϑ;Y,S(n+1,k)), (3.17)

in which γn is a positive step size that gradually decreases to zero as n→∞.

Maximization Step (M-step): Maximize Qn(ϑ|ϑ(n)) w.r.t. ϑ to obtain ϑ(n+1). Repeat until a

termination criterion is reached.

Note that maximizing Qn(ϑ|ϑ(n)) w.r.t. ϑ is equivalent to maximizing a weighted sum of complete

log-likelihoods. Therefore it can be decomposed into a weighted sum of conditional log-likelihoods of

the data given the state vector and a weighted sum of log-likelihoods of simulated Markov chains, both

of which can be maximized using gradient-based algorithms.
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We now discuss the choices of tuning parameters. For the choice of the step size γn, the general

guideline is that, as explained by Jank (2006), small (large) step sizes reduce (inflate) the Monte Carlo

error and yield slower (faster) convergence. Our choice step size γn is of the following form:

γn =

1, n ≤ n0,

1
(n−n0)0.75 , n > n0.

(3.18)

The initial n0 steps are understood as a burn-in period which will produce a sequence of parameter

estimates {ϑ(i)}i=1:n0 that will converge fast but have large Monte Carlo error. We then use a local

average of parameters from the burn-in period as the starting values of the SAEM iterations, and 0.75

is a moderate convergence speed that balances the Monte Carlo error and the convergence speed of

the algorithm.

As to Kn, it controls for the Monte Carlo size drawn at each iteration. Intuitively, the term

1
Kn

∑Kn
k=1 lnL(ϑ;Y, S(n+1,k)) is a Monte Carlo approximation of lnL(θ;Y). Larger Kn accelerates the

speed of convergence but also increases the computational burden. Unlike the Monte Carlo EM of Wei

and Tanner (1990) which requires Kn →∞ for the algorithm to converge, in the SAEM algorithm only

a fixed Kn is needed. In our implementation we choose Kn = 1 in the burn-in period and Kn = 20 in

SAEM iterations, which are chosen to fit our computational power and time constraints.

To ensure that the algorithm does not terminate prematurely, we set the termination criterion as

follows: ∣∣∣∣∣∣ 1

H

H∑
h=1

(ϑ(n−h+1) − ϑ(n−H−h+1))
∣∣∣∣∣∣
∞
≤ ε, (3.19)

where || · ||∞ denotes the supremum norm. This criterion compares the average parameter estimates

calculated from the most recent H iterations to those using H estimates prior to the most recent H

iterations. If the algorithm converges, we would expect that the criteria is close to zero. In our analysis

we choose H = 5 and ε = 5e−3.

The initial values of the burn-in period, namely ϑ(0) and S(0), are important factors in the esti-

mation procedure. We find that the estimation scheme is robust to choices of S(0), Π(0) and all ARMA

parameters, but depends crucially on the baseline parameters. This is due to the fact that the regime

identification is to a large extent determined by the baseline parameters. Guidances on choices of the

initial values are provided in Section 4.

The SAEM algorithm only provides a point estimate for the parameter vector. As suggested by

Delyon et al. (1999) and Kuhn and Lavielle (2004), we can also obtain variance-covariance matrix

estimates for the parameter estimates. From the posterior probability of the states conditioning on

the parameter estimates, we are able to provide an estimate of the most probable state vector. The

detailed estimation procedures for the variance-covariance matrix and the most probable state vector

are presented in Appendix C.
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3.2 Post-Estimation Diagnostics

According to the RTCT, the transformed residual process {Λ̂i}i=1:T follows an i.i.d. unit exponential

process if the model specification is correct. As a result, diagnostic tests of the original ACI model

usually involve testing the unit exponentiality and the presence of autocorrelation in {Λ̂i}i=1:T . These

tests, however, are not directly applicable to the MS-ACI model with only parameter estimates ϑ̂

from the SAEM algorithm. This is because a state vector S is required for the residual series to be

constructed. Thanks to the estimation of the most probable state sequence, we are able to obtain a

conditional residual series {Λ̂i|Ŝ}i=1:T by plugging in the estimated (most probable) state sequence Ŝ,

which allows us to use standard diagnostic tests such as Ljung-Box tests or empirical density function

tests to evaluate the goodness-of-fit of our model. However, distribution of these tests statistics may

become non-standard due to the conditioning and thus test results only provide indicative rather than

conclusive evidence.

To provide a descriptive statistic that reflects the strength of the regime identification, we focus

on the T ×M posterior probability matrix P conditioning on the estimated parameters ϑ̂ and the

estimated state vector Ŝ. The element at the intersection of row i and column m in P, denoted by

Pi,m = p(si = m|ŝ1:i−1, ŝi+1:T ,Y, ϑ̂), is the posterior probability of the i-th state being classified as

state m conditioning on ŝ1:i−1, ŝi+1:T , Y and ϑ̂ calculated similarly as in Eq. (3.15). Based on this

matrix, we construct a statistic named the ‘Significance of Regimes’ (SoR hereafter) which serves as

an indicator of the overall significance of the regime-switching structure. It is calculated as follows:

SoR = T−1
T∑
i=1

max
m∈M

Pi,m. (3.20)

Intuitively, SoR is the average of the largest probability in every row of P. It measures the average

(conditional) probability of each state being classified into the most probable states. The rationale

behind this statistic is that, assuming the DGP consists of M distinct regimes with densities far apart

from each other, the probability of any observation being classified into its corresponding true state,

hence the SoR, will be close to one. On the contrary, when all M densities are identical, all the

elements in the matrix P, and therefore the SoR, reduce to M−1. Therefore, conditioning on Ŝ and ϑ̂,

a SoR close to 1 indicates that every observation is being assigned to a regime with a probability close

to 1, hence the regime identification is strong. Nevertheless, when SoR is close to its lower bound

M−1, the model is indifferent about assigning each observation into any of the M regimes (so the

probability of being assigned to any regime is M−1), which implies a very weak regime identification.

The SoR allows for easy comparisons across models with different number of regimes and baseline

specifications. Moreover, we can calculate SoR for each regime to compare their relative significance.

The SoR for the l-th regime is defined as:

SoR(l) =
( T∑
i=1

1l {arg max
m∈M

(Pi,m)=l}

)−1
T∑
i=1

max
m∈M

Pi,m1l {arg max
m∈M

(Pi,m)=l}, (3.21)
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which basically calculates the average of the largest element in every row of P if the largest element

belongs to the l-th state. We provide some guidance on how to interpret the SoR in the following

section.

4 Monte Carlo Simulation Study

In this section, we conduct a Monte Carlo simulation study to highlight the estimation performance

of our SAEM algorithm under various parameter specifications. We mainly focus on the impact of

different baseline parameters and transition parameters based on MS(2)-ACI(1,1) models without

covariates.

The selection of parameter constellations is designed to examine the aforementioned relationship

between specifications and estimation quality. The size of the Monte Carlo study for each specification

is 1000. For each specification, we choose T = 1000 and n0 = 10. We initialize α
(0)
1 (1) = α

(0)
1 (2) = 0,

β
(0)
1 (1) = β

(0)
1 (2) = π

(0)
11 = π

(0)
22 = 0.5 and S(0) to be a random draw of T independent fair coin

tosses. The initial values of the scale parameter w(0)(l) are carefully set to mitigate the label-switching

problem. Specifically, in the two-regime case, assume the true scale parameters w(1) > w(2), for ŵ(1)

to converge towards w(1) (instead of w(2) or being eliminated by the algorithm), we recommend

setting w(0)(1) > w(1) > w(2) > w(0)(2) or w(1) > w(0)(1)� w(0)(2) > w(2). On a Windows machine

with a 2.3GHz CPU, it takes about 1-3 minutes to obtain one set of parameter estimates based on our

SAEM algorithm implemented in MATLAB R2020a2.

The quality of the parameter estimates is assessed through the bias and the root mean squared

error (RMSE) of the Monte Carlo parameter estimates. In detail, for each parameter specification, we

benchmark the bias and the RMSE of the Monte Carlo parameter estimates against the bias and the

RMSE from a Monte Carlo simulation of the same model given the latent state vector (referred to as

the complete model hereafter, and the incomplete model refers to the model with a latent state vector).

As parameter estimates from the complete model are statistically optimal, we are able to depict the

loss of accuracy associated with both parameter specifications and the observability of the Markov

chain by comparing the quality of parameter estimates of the incomplete model to its corresponding

complete counterpart.

The main results are presented in Table 1. We base our simulation on six different specifications,

with spec. 1-5 using exponential baselines and spec. 6 using a Weibull baseline. The first part of the

table shows the bias and RMSE of the Monte Carlo parameter estimates of the incomplete model,

with the bias and RMSE of the complete counterparts included in the second part of the table. The

2Note that the time consumption is depends on the specification of the model. In detail, models with a larger SoR converge

faster as there are less randomness in the parameter estimates. Also, the amount of computation grows quadratically

with the number of observations due to the single move Gibbs sampler which sweeps through the entire sample. For a

sample size of 3000, the required time to obtain 1 set of parameter estimates is about 10-15 minutes.
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Table 1: Monte Carlo simulation results of parameter estimates of MS(2)-ACI(1,1) models and the

corresponding complete models based on 1000 random draws

α̃1(1) α̃1(2) β̃1(1) β̃1(2) w̃(1) w̃(2) ã(1) ã(2) π̃11 π̃22

Spec. Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias SoR

RMSE RMSE RMSE RMSE RMSE RMSE RMSE RMSE RMSE RMSE σ(SoR)

Results for Incomplete Models

1 0.05 0.1 0.8 0.95 0 -5 1 1 0.5 0.5

-0.0019 0.0028 -0.0092 -0.0618 0.0020 0.0039 . . -0.0010 -0.0011 0.9805

0.0328 0.0309 0.1668 0.1604 0.0654 0.0621 . . 0.0248 0.0247 0.0019

2 0.05 0.1 0.8 0.95 0 -3 1 1 0.5 0.5

0.0030 0.0030 -0.0371 -0.0878 0.0051 0.0034 . . -0.0008 -0.0012 0.9084

0.0479 0.0422 0.2241 0.2150 0.0802 0.0640 . . 0.0319 0.0309 0.0059

3 0.05 0.1 0.8 0.95 0 -3 1 1 0.9 0.9

-0.0009 0.0066 -0.1032 -0.0305 0.0088 0.0195 . . -0.0049 -0.0043 0.9759

0.0366 0.0343 0.2637 0.0910 0.0650 0.0847 . . 0.0169 0.0167 0.0041

4 0.05 0.1 0.8 0.95 0 -1 1 1 0.5 0.5

0.0041 0.0028 0.0493 -0.1126 -0.1899 -0.1520 . . 0.1832 -0.1318 0.7549

0.0434 0.0494 0.1539 0.2194 0.2158 0.1778 . . 0.1998 0.1608 0.0352

5 0.05 0.1 0.8 0.95 0 0 1 1 0.9 0.9

0.0267 -0.0217 0.0960 -0.0955 0.1301 -0.1952 . . -0.2018 -0.5489 0.6986

0.0410 0.0530 0.1284 0.1737 0.1515 0.2154 . . 0.2075 0.5543 0.0385

6 0.05 0.1 0.8 0.95 0 -1 1 2 0.5 0.5

-0.0014 0.0062 -0.0205 -0.0680 0.0353 -0.0123 0.0290 0.0702 0.0008 0.0036 0.7827

0.0508 0.0456 0.1997 0.1753 0.1032 0.0463 0.0611 0.1503 0.0546 0.0561 0.0234

Results for Complete Models

1 0.05 0.1 0.8 0.95 0 -5 1 1 0.5 0.5

-0.0018 0.0014 0.0042 -0.0365 0.0068 0.0063 . . -0.0013 -0.0011

0.0256 0.0262 0.1141 0.1045 0.0592 0.0624 . . 0.0221 0.0221

2 0.05 0.1 0.8 0.95 0 -3 1 1 0.5 0.5

-0.0004 0.0021 -0.0005 -0.0428 0.0054 0.0072 . . -0.0006 -0.0005

0.0256 0.0256 0.1148 0.1189 0.0569 0.0619 . . 0.0224 0.0228

3 0.05 0.1 0.8 0.95 0 -3 1 1 0.9 0.9

-0.0001 0.0007 -0.0350 -0.0142 0.0033 0.0030 . . -0.0010 -0.0005

0.0270 0.0238 0.1563 0.0558 0.0579 0.0765 . . 0.0136 0.0138

4 0.05 0.1 0.8 0.95 0 -1 1 1 0.5 0.5

-0.0009 0.0021 -0.0031 -0.0369 0.0044 0.0032 . . 0.0000 -0.0006

0.0253 0.0265 0.1193 0.1044 0.0607 0.0631 . . 0.0213 0.0220

5 0.05 0.1 0.8 0.95 0 0 1 1 0.9 0.9

-0.0010 0.0006 -0.0303 -0.0148 0.0061 0.0047 . . -0.0001 -0.0011

0.0269 0.0235 0.1387 0.0593 0.0562 0.0763 . . 0.0137 0.0138

6 0.05 0.1 0.8 0.95 0 -1 1 2 0.5 0.5

-0.0004 0.0025 -0.0049 -0.0365 -0.0007 0.0017 0.0071 0.0097 -0.0013 -0.0008

0.0246 0.0258 0.1184 0.1126 0.0636 0.0336 0.0366 0.0727 0.0224 0.0218

RMSE Ratios

1 1.2785 1.1790 1.4619 1.5354 1.1060 0.9939 . . 1.1252 1.1167

2 1.8702 1.6479 1.9516 1.8081 1.4099 1.0354 . . 1.4235 1.3592

3 1.3576 1.4404 1.6870 1.6327 1.1224 1.1068 . . 1.2438 1.2064

4 1.7152 1.8597 1.2906 2.1021 3.5552 2.8180 . . 9.3974 7.3268

5 1.5217 2.2556 0.9261 2.9292 2.6942 2.8216 . . 15.1995 40.2603

6 2.0667 1.7680 1.6866 1.5572 1.6217 1.3775 1.6694 2.0692 2.4374 2.5743

Note: θ̃ denotes the DGP value of θ. SoR and σ(SoR) are the mean and standard deviation of the significance of regime defined

in equation Eq. (3.20). RMSE is the root mean square error of the Monte Carlo parameter estimates. The RMSE ratio section

presents the RMSE of the corresponding parameter of the incomplete model divided by the RMSE of its complete counterpart.
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RMSE ratio calculated by dividing the RMSE of each parameter estimate of the incomplete model

by that of the complete model allows for an easy comparison. Generally, the bias and RMSE of the

incomplete model tend to fluctuate across specifications, while those for the complete model are much

more consistent.

Results for the incomplete model shows that, by comparing spec. 1, 2 and 4, the closer the gap

between the two regime-specific densities implied by the scale parameters w̃(1) and w̃(2), the smaller

the mean SoR. According to the RMSE ratios, it is evident that the quality of the parameter estimates

deteriorates with the mean SoR implied by the increasingly narrowing gap between the DGP scale

parameters.

A more persistent latent Markov chain improves the mean SoR and the estimation performance,

as can be seen from the RMSE ratios of spec. 2 and 3. However, a persistent latent Markov chain

alone cannot guarantee reliable parameter estimates, as is shown in spec. 5. It is worth mentioning

that in spec. 5, the regime-specific scale parameters are identical, and the only information on the

latent state vector implied by the observable data is the differences in the ARMA parameters, which

do not generate enough discrepancy in the density for the latent Markov chain to be well identified.

This is explained by the large downward biases in the transitional parameters in spec. 5. Moreover,

the mean parameter estimates for the ARMA parameters of the incomplete model are very close to

each other, suggesting a label-switching problem caused by a common baseline.

Finally, comparing spec. 4 and 6, we observe that a more complex baseline function can improve

the mean SoR by generating more flexible discrepancies between the regime-specific densities. In

spec. 6, by changing the Weibull parameter, the Markov chain parameters are estimated with much

better accuracy compared to spec. 4 (smaller bias and RMSE ratio).

An important message from Table 1 is that, since the latent Markov chain will inevitably result

in a loss of information, the quality of the parameter estimates depends crucially on how much we can

learn about the latent states from the observed data. Complexity of baselines and the persistence of

the latent Markov chain largely influence the amount of information available in the observed data, and

will have a significant impact on the quality of the parameter estimates. However, the predominant

factors are the DGP scale parameters of the baseline functions, which generally control the location of

the distribution and the ability of our sampler to correctly classify the states. This rationalizes the use

of the SoR as an indicator of the quality of the parameter estimates, as it is a measure of confidence

of the Gibb’s sampler in classifying the observations. For reliable parameter estimates of the MS-ACI

model, we recommend a SoR of at least 90% so that the hidden Markov chain is on average properly

identified (as can be observed from the RMSE ratios for the last three specifications).
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5 Application to High-Frequency Stock Prices

We apply the MS-ACI model to high-frequency stock prices to analyse regime shifts in the intraday

trading activities. Our sample comprises of 9 highly liquid stocks and a stock index ETF traded on

the U.S. stock market, namely AIG, CVX, GM, INTC, JPM, PFE, T, VZ, WMT and SPY, whose

detailed descriptions are shown in Table 2. The raw data is obtained from the Trade and Quote3 (TAQ)

dataset, and is cleaned according to Holden and Jacobsen (2014) and Barndorff-Nielsen et al. (2009).

The sampling period ranges from 1 Jan 2016 to 31 Dec 2016. The trade dataset consists of prices and

trading volumes timestamped at milliseconds, and the trades are matched with the quotes using the

Lee and Ready’s (1991) algorithm to determine trade directions and prevailing bid-ask spread at each

trade. To conserve space, we mainly focus on the empirical results for AIG, VZ and SPY, which are

representative for all assets considered in our sample. Detailed empirical results for all 10 stocks are

relegated to the supplementary material of the paper, which also includes empirical analyses based on

an extended sample of 24 individual stocks that cover all Dow Jones constituents in 2016.

Table 2: Description of the sampled stocks/ETFs and their ticker symbols

Ticker Corporate/ETF name DJ 2016

AIG American International Group, Inc. N

CVX Chevron Corporation Y

GM General Motors Corporation N

INTC Intel Corporation Y

JPM JPMorgan Chase & Co. Y

PFE Pfizer Inc. Y

T AT&T Inc. N

VZ Verison Communications Inc. Y

WMT Walmart Inc. Y

SPY SPDR S&P500 ETF Trust N

Note: the DJ 2016 column indicates whether the stock belongs to the Dow Jones 30 index constituents in 2016.

We apply our MS-ACI model to the point process of absolute price change events constructed as

follows. For a sequence of trade observations with its associated log-price {tj , P (tj)}j=1:J , we construct

a sequence of ‘price events’ based on a price change threshold δ using the following algorithm:

1. From j = 1, set t0 = t1. Set the value of δ.

2. Let t
(δ)
i = inf

tj>t
(δ)
i−1

{|P (tj)− P (t
(δ)
i−1)| ≥ δ}.

3. Iterate until the end of the sample.

3https://www.nyse.com/market-data/historical/daily-taq
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We use mid-quotes in our empirical analysis to alleviate the problem of bid-ask bounce effects. The

process {t(δ)i }i=1:T records the arrival times of each price event, and is known as the δ-related absolute

price change process. We will also denote x
(δ)
i ≡ t

(δ)
i − t

(δ)
i−1 as the price duration between two price

events. Since we only sample the price process whenever the absolute price change is equal or larger

than δ, intuitively the accumulated price volatility is approximately δ2 for each price duration. In fact,

under a continuous martingale framework, it is proved by Li et al. (2019) proved that the integrated

variance between consecutive price events are i.i.d. with mean δ2 and variance 2δ4/3. Therefore, we

can interpret price durations as an inverse measure of average spot volatility within each interval.

For our analysis, we choose a daily δ which produces a mean daily price duration that is closest

to a five-minute interval. Empirical results in Tse and Yang (2012) show that volatility estimates

constructed based on this sampling frequency perform reasonably well against noise-robust measures

of RV estimates. Moreover, this choice of δ forces the daily number of price events to be identical

up to a random discretization perturbation, which removes daily dynamics from the price durations

and thus greatly simplifies our model specification. In fact, the daily δ2 is an estimate of the average

5-minute integrated variance under the continuous martingale price assumption. Therefore, each price

duration can be interpreted as the time elapse for the volatility to accumulate by 1/78 of the day’s

total volatility. An example of daily choices of δ is presented in Figure 1.

Figure 1: Daily choices of δ for AIG, VZ and SPY
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Note: The figure plots daily price change threshold δ for AIG, CVX and SPY. For each asset, δ is calculated as the maximum

threshold that produces a mean price duration which is closest to a 5-minute interval.

In this paper, we demonstrate that there exists an intraday regime-switching behaviour between

price durations (x
(δ)
i ) and the cumulative trading volume within each price duration (V oli). Due to

the well-documented diurnal pattern in the intraday trading process, we firstly extract the diurnal

component of x
(δ)
i and V oli using a flexible Fourier regression estimated on a monthly basis following

the approach in Andersen and Bollerslev (1997) and Engle and Russell (1998). Taking x
(δ)
i as an

example:

x
(δ)
i

x̄
(δ)
i

= c0 + c1t̄i−1 +

3∑
n=1

cs,n sin(2nπt̄i−1) + cc,n cos(2nπt̄i−1) + εi, (5.1)

where t̄i is the fraction of trading hours normalized to be between [0,1], and x̄
(δ)
i is the sample mean

of the price durations in the regression above. Let us denote by ŝi the fitted values from Eq. (5.1), the
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deseasonalized price duration is then computed as:

x̃
(δ)
i = x

(δ)
i /ŝi.

For the cumulative volume, we firstly compute lnV oli and deseasonalize it using Eq. (5.1) to obtain

ln ˜V oli. We plot the average monthly autocorrelations for raw and deseasonalized price durations and

log-volumes in Figure 2. The figure shows clearly that both raw duration and volume have a sinusoid-

shaped autocorrelation function which peaks at multiples of roughly 78, the average number of price

durations per day. This is completely removed by our deseasonalization procedure. The deseasonalized

price durations do not appear to have long memory, which indicates that the long-range dependence

of volatility is subsumed into our daily δ sequences.

Figure 2: Correlograms of the raw and deseasonalized price duration and log-cumulative volume
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Note: The figure plots monthly averaged autocorrelations of raw and deseasonalized price durations and log-cumulative volumes

for AIG, VZ and SPY.

We fit a MS(2)-ACI(1,1) model to the deseasonalized price durations series on a monthly basis

to capture the regime-switching behaviour of price durations upon information arrivals. The model

is summarized by Eqs. (3.1) to (3.4), (3.6) and (3.7) with p = q = 1. To capture a regime-switching

contemporaneous duration-volume relationship, we specify Z(t) = ln Ṽ olN̆(t)+1. We set the transition

probability covariates Q11,i = Q22,i = lnBASi, where BASi is the prevailing bid-ask spread at time

t
(δ)
i . The parameters being estimated are: ϑ = {α1(l), β1(l), a(l), w(l), η(l), cll, γll}′l∈{1,2}, where η(l)

captures the impact of contemporaneous log-volume on the conditional intensity in state l and γll

captures the impact of the bid-ask spread on the transitional probability from state l to l.
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To reveal some basic features of the data used in the model estimation, we present descriptive

statistics of the deseasonalized durations and volumes along with the bid-ask spread for the 10 sampled

assets in Table 3. The table shows that the mean duration is indeed close to 5 minute as expected.

Interestingly, the moments and quantiles of x̃
(δ)
i are very similar across all assets, which is a consequence

of the daily δ sequences that homogenize the price durations across stock-days. SPY’s mean ln Ṽ oli

is considerably higher than the individual stocks as it is much more heavily traded in the market.

Finally, BASi are highly skewed to the right with a large kurtosis, which is due to the fact that the

prevailing bid-ask spread for most of the price durations (at least 75% for most of the sampled stocks)

are $0.01, which is the smallest possible bid-ask spread.

For illustrative purposes, we present our estimation outputs for three representative stock-months

in Table 4. In the table, we can see that for AIG and VZ, our model detects two distinct regimes

with high ŜoR (overall > 98%). Regime 1 only accounts for a small proportion (less than 10%) of the

data, with a less persistent intensity dynamics (β̂1(1) < β̂1(2)) and a much smaller interaction with

trading volume (|η̂(1)| < |η̂(2)|). The results on ĉ11 and γ̂11 is somewhat mixed, but γ̂22 are negative

and significant for both stocks, which suggest that durations with larger prevailing bid-ask spreads are

less likely to be assigned into regime 2.

As to the estimation output for SPY, our findings are drastically different compared to the in-

dividual stocks. Firstly, the ŜoR is much smaller relative to that of AIG and VZ, suggesting that

the model is less confident about the assignment of regimes. The estimated η̂(l) are similar for both

regimes. The bid-ask spread does not seem to play any role in the classification of regimes, resulting

in insignificant γ̂ll estimates. In fact, since ĉ11 ≈ ĉ22, the model suggests a fair coin toss for the

regime classification. Summarizing from the diagnostics statistics of the three estimation outputs, the

MS-ACI model performs reasonably well in capturing the dynamics of price durations.

To demonstrate that the regimes we detect are consistent in the sampling period considered, we

present the evolution of monthly parameter estimates of η̂(l), γ̂ll and ŜoR(l) in Figure 3 for AIG, VZ

and SPY. From the figure, we can clearly see that both regimes for AIG and VZ behave consistently

throughout the sampling period, with parameter estimates of η̂(l) and γ̂ll following the pattern in

Table 1. The estimated ŜoR(l) are all above 90% and in fact very close to 1, indicating a very strong

regime identification of the MS-ACI model. For SPY, the discrepancy between of η̂(1) and η̂(2) is

much weaker, and the estimates of γ̂ll appear noisier comparing to AIG and VZ. Importantly, ŜoR(l)

for SPY is significantly smaller than that of AIG and VZ except for the result in 2016-11, consistent

with our findings in Table 1. More comprehensive analyses in the supplementary material of the paper

show that this finding is robust to the choice of δ, and in general hold true for all individual stocks

considered in our sample and the extended sample.

The most interesting finding from Table 4 and Figure 3 is the difference between the regimes we
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Table 3: Descriptive statistics of x̃
(δ)
i , ln Ṽ oli and BASi for the sampled assets

Ticker Variable #Obs. Mean Std. Dev. Skew. Kurt. Min Q(25%) Median Q(75%) Max

x̃
(δ)
i 19379 297.498 315.326 2.931 18.258 0.000 95.296 201.589 389.780 4687.967

AIG ln Ṽ oli 19379 10.365 1.181 -0.382 5.009 0.798 9.637 10.396 11.122 15.990

BASi 19379 0.017 0.031 8.240 86.933 0.010 0.010 0.010 0.010 0.490

x̃
(δ)
i 19595 298.593 306.085 2.619 14.403 0.000 98.037 203.700 393.132 3960.754

CVX ln Ṽ oli 19595 10.662 1.102 -0.415 4.657 3.545 9.989 10.693 11.382 16.400

BASi 19595 0.027 0.042 5.678 43.757 0.010 0.010 0.020 0.030 0.570

x̃
(δ)
i 19078 298.537 338.925 3.386 25.589 0.001 89.036 193.135 384.597 6247.964

GM ln Ṽ oli 19078 11.026 1.165 -0.351 4.346 2.301 10.312 11.056 11.780 16.104

BASi 19078 0.013 0.014 11.146 169.889 0.010 0.010 0.010 0.010 0.360

x̃
(δ)
i 18677 301.785 353.832 3.314 22.753 0.000 83.880 191.422 391.219 6134.462

INTC ln Ṽ oli 18677 11.586 1.208 -0.305 5.477 1.871 10.870 11.613 12.323 18.512

BASi 18677 0.012 0.014 9.377 115.052 0.010 0.010 0.010 0.010 0.310

x̃
(δ)
i 19497 297.057 323.500 3.428 27.295 0.000 95.010 198.490 384.909 6127.337

JPM ln Ṽ oli 19497 11.370 1.089 -0.390 5.080 0.000 10.691 11.394 12.080 16.758

BASi 19497 0.014 0.019 10.259 154.256 0.010 0.010 0.010 0.010 0.500

x̃
(δ)
i 18790 304.966 348.679 3.463 26.603 0.000 89.944 196.880 394.796 6036.711

PFE ln Ṽ oli 18790 11.874 1.255 -0.489 5.539 1.248 11.111 11.902 12.666 17.676

BASi 18790 0.012 0.011 13.388 285.449 0.010 0.010 0.010 0.010 0.470

x̃
(δ)
i 18765 305.012 360.357 4.347 56.314 0.000 87.733 193.495 390.823 10548.260

T ln Ṽ oli 18765 11.636 1.174 -0.430 5.483 0.000 10.930 11.666 12.379 17.648

BASi 18765 0.012 0.009 10.060 142.817 0.010 0.010 0.010 0.010 0.240

x̃
(δ)
i 19101 297.310 341.632 3.480 27.493 0.001 85.895 190.414 383.705 6748.658

VZ ln Ṽ oli 19101 11.071 1.192 -0.317 5.122 1.282 10.356 11.093 11.820 17.254

BASi 19101 0.014 0.018 10.593 152.611 0.010 0.010 0.010 0.010 0.460

x̃
(δ)
i 19399 295.006 351.566 7.275 229.075 0.000 85.828 188.136 382.683 16181.508

WMT ln Ṽ oli 19399 10.656 1.187 -0.409 5.576 0.000 9.933 10.683 11.400 17.006

BASi 19399 0.019 0.032 7.667 78.031 0.010 0.010 0.010 0.020 0.490

x̃
(δ)
i 19443 301.465 306.120 3.303 30.796 0.161 99.394 210.126 404.082 6133.803

SPY ln Ṽ oli 19443 13.272 0.937 -0.220 3.104 5.738 12.645 13.316 13.935 16.355

BASi 19443 0.011 0.004 32.729 2108.344 0.010 0.010 0.010 0.010 0.320

Note: The statistics in the table are computed from x̃
(δ)
i , ln Ṽ oli and BASi for the 10 sampled assets constructed from all trading

days in 2016. #Obs. is the number of observations in the sample. Std. Dev., Skew. and Kurt. represent sample standard deviation,

sample skewness and sample kurtosis, respectively.

19

Electronic copy available at: https://ssrn.com/abstract=2785499



Table 4: Estimation outputs for AIG 2016-01, VZ 2016-05 and SPY 2016-03

AIG 2016-01 VZ 2016-05 SPY 2016-03

l = 1 2 1 2 1 2

α̂1(l) 0.662∗∗∗ 0.231∗∗∗ 0.421∗∗∗ 0.242∗∗∗ 0.204∗∗∗ 0.456∗∗∗

(0.077) (0.018) (0.057) (0.019) (0.049) (0.017)

β̂1(l) 0.548∗∗∗ 0.904∗∗∗ 0.234∗∗ 0.939∗∗∗ 0.976∗∗∗ 0.865∗∗∗

(0.109) (0.014) (0.117) (0.011) (0.022) (0.027)

ŵ(l) −0.263 3.650∗∗∗ 2.020∗∗∗ 4.109∗∗∗ 11.343∗∗∗ 7.046∗∗∗

(0.804) (0.117) (0.600) (0.136) (0.444) (0.306)

â(l) 0.907∗∗∗ 2.956∗∗∗ 0.738∗∗∗ 2.541∗∗∗ 2.993∗∗∗ 3.523∗∗∗

(0.075) (0.070) (0.049) (0.063) (0.131) (0.165)

η̂(l) −0.350∗∗∗ −2.454∗∗∗ −0.435∗∗∗ −2.240∗∗∗ −3.693∗∗∗ −3.319∗∗∗

(0.079) (0.064) (0.047) (0.065) (0.195) (0.119)

ĉll −0.463 −5.010∗∗∗ 8.570∗∗∗ −8.685∗∗∗ 3.064 2.932

(0.798) (0.809) (1.595) (1.534) (3.435) (3.260)

γ̂ll −0.353 −2.204∗∗∗ 1.865∗∗∗ −2.746∗∗∗ 0.575 0.341

(0.215) (0.217) (0.358) (0.363) (0.729) (0.696)

Regime Statistics

T 1477 1594 1708

N(si = l) 90 1387 154 1440 563 1145

ŜoR 0.990 0.980 0.845

ŜoR(l) 0.948 0.993 0.932 0.985 0.810 0.859

Diagnostic Statistics

L(θ̂;Y|Ŝ) −8491.725 −9176.952 −9575.877

L(ϑ̂;Y, Ŝ) −8613.934 −9371.204 −10470.729

E[Λ̂i|Ŝ] 1.012 1.012 0.987

Var[Λ̂i|Ŝ] 1.263 1.058 0.954

AD-stat 3.235∗∗ 0.496 1.746

KS-stat 0.032∗ 0.020 0.026

LB(20) 18.026 20.207 29.606∗

Note: Standard errors are in parentheses. ***, ** and * represent significance at 1%, 5% and 10% respectively. N(si = l) counts

the number of durations in state l. AD-stat and KS-stat are Andersen-Darling and Kolmogorov-Smirnov test statistics for unit

exponential distribution constructed on Λ̂i. LB(20) is the Ljung-Box test statistics at lag 20. Definitions of ŜoR and ŜoR(l) can

be found in Eq. (3.20) and Eq. (3.21).
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Figure 3: Monthly estimates of η̂(l), γ̂ll and ŜoR(l) for AIG, VZ and SPY
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Note: We plot monthly estimated η̂(l), γ̂ll and ŜoR(l) for AIG, VZ and SPY in the sampling period. Parameter estimates for

regime 1 (l = 1) and regime 2 (l = 2) are represented by red circles and black diamonds, respectively. For η̂(l) and γ̂ll, filled markers

represent parameter estimates that are significant at the 5% level.

capture for the individual stock and SPY. To explain this difference, we plot ln x̃
(δ)
i against ln Ṽ oli for

two estimated regimes in Figure 4. In this figure, we can clearly see that for AIG and VZ, ln x̃
(δ)
i and

ln Ṽ oli are highly co-linear with an R2(2) of > 60% in regime 2, while this linear relationship is much

less obvious in regime 1. However, we can observe similar linear relationships for both regimes 1 and

2 in SPY. This is clear evidence supporting a regime-switching volume-duration relationship in AIG

and VZ, but not SPY, which partly explains the lower ŜoR of SPY.

Our findings in Figure 4 suggest a clear power law relation between x̃i and Ṽ oli for regime 2.

To demonstrate this, we run the regime-specific OLS regression ln Ṽ oli = b0(l) + b1(l) ln x̃
(δ)
i + ui for

l = 1, 2 and provide descriptive statistics of the estimated b̂1(l) and R2(l) in Table 5. From the table

we can clearly observe that there is a big discrepancy between R2(1) and R2(2) for individual stocks

in the sense that ln Ṽ oli and ln x̃
(δ)
i are highly co-linear in regime 2 with an average R2(2) of 67%,

while R2(1) is only 31% for regime 1. This result cannot be observed from SPY with similar averages

of R2(1) and R2(2). The findings in Table 5 is robust to different choices of δ and holds true when we

include stocks in the extended sample, which is demonstrated in the supplementary material.

More importantly, the power law relationship between x̃
(δ)
i and Ṽ oli as described in Table 5

resembles the market microstructure invariance hypothesis of Kyle and Obizhaeva (2016), which also

suggests a power law between the number of bets placed by the investors and trading activity for a

given time interval that holds for any asset across time. Following Kyle and Obizhaeva (2016), we

propose the following hypothesis:
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Figure 4: Scatter plots of ln x̃
(δ)
i against ln Ṽ oli for regimes 1 and 2
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Note: We plot ln x̃
(δ)
i against ln Ṽ oli for regimes 1 and 2, where the regime classification is estimated monthly by the MS(2)-ACI(1,1)

model. The dotted and dashed lines are fitted plots for the regression ln Ṽ oli = b0(l) + b1(l) ln x̃
(δ)
i + ui for l = 1, 2, with estimated

parameters and R2 given in the legend.

Table 5: Descriptive statistics of b̂1(l) and R2(l) for regimes 1 and 2

Mean Std. Dev. Q(25%) Median Q(75%)

All Individual Stocks

b̂1(1) 0.4680 0.1185 0.3908 0.4592 0.5411

b̂1(2) 0.7999 0.0476 0.7732 0.8040 0.8311

R2(1) 0.3080 0.1164 0.2325 0.3020 0.3997

R2(2) 0.6706 0.0660 0.6375 0.6788 0.7151

SPY Only

b̂1(1) 0.5727 0.0779 0.5513 0.5732 0.6111

b̂1(2) 0.7807 0.0318 0.7504 0.7849 0.7983

R2(1) 0.7126 0.1810 0.7308 0.7538 0.8013

R2(2) 0.6813 0.0566 0.6240 0.6932 0.7403

Note: the table presents descriptive statistics of estimated b̂1(l) and R2(l) from ln Ṽ oli = b0(l) + b1(l) ln x̃
(δ)
i + ui with l = 1, 2 for

all 120 stock-months in our sample. The regime classification is estimated monthly by the MS(2)-ACI(1,1) model. Results for SPY

are excluded in the ‘All Individual Stocks’ panel and are presented separately in the ‘SPY Only’ panel. Q(x%) is the x% quantile.

Hypothesis 1 (Intraday Volume-Duration Invariance). For a sufficiently large level of price change

δ, the (seasonality adjusted) price duration x̃
(δ)
i and cumulative trading volume generated by bets
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satisfies the following relationship for all stocks across time:

Ṽ oli ∝ (x̃
(δ)
i )

4
5 . (5.2)

We conjecture that regime 2 captures price movements triggered by the bets placed by the in-

vestors, which represents the sharing of risk between different types of market participants that are

typically not associated with news arrivals. We note that the results in Kyle and Obizhaeva (2016)

do not directly imply Eq. (5.2) without any assumptions on the arrival rate of bets, and the exponent

4/5 is also likely to be dependent on the average sampling interval which is determined by δ. Fur-

ther research is required to examine the economic connection between Eq. (5.2) and the invariance

relationship documented in Kyle and Obizhaeva (2016), which is beyond the scope of this paper.

To provide further insight into the regimes we detected, we plot the log bid-ask spread against

time of day4 for the estimated regimes in Figure 5. The figure shows that bid-ask spread to a good

extent explains the classification of regime 1 for AIG and VZ. Observations in regime 1 are mostly

concentrated at the start of the trading day when the bid-ask spread widens, while observations in

regime 2 spread across the whole trading day with a smaller bid-ask spread. As the bid-ask spread

of SPY is more evenly distributed throughout the trading day, it appears that both regimes in SPY

behave similarly to regime 2 of the individual stocks. The small bid-ask spread of regime 2 observations

is also consistent with our previous bet-based argument, as investors planning to submit large bets

into the market typically slice their bets into sequences of small orders with the aim to reduce market

impact of the bets. Therefore, it is likely for these investors to only submit their orders when the

market is sufficiently liquid with a small bid-ask spread.

The cluster of regime 1 observations at the beginning of a trading day can be explained by

overnight firm-specific information accumulation. Information-based market microstructure theory

(e.g. Glosten and Milgrom (1985), Easley et al. (1996)) predicts that the market makers widen the

bid-ask spread in the presence of private information to mitigate their potential loss trading with

informed traders. Therefore, trading volume from the informed traders adjusts the price level rapidly

when the market opens, which lowers the liquidity of the market, increases the bid-ask spread and

causes the volume-duration relationship to deviate from the intraday volume-duration invariance. This

also explain why we cannot observe the same effect from SPY, as firm-specific news overnight is unlikely

to have an impact on the stock index ETF.

To support our news-based explanation of regime 1, we plot the duration adjusted volume

Ṽ oli/(x̃
(δ)
i )

4
5 alongside with the prevailing bid-ask spread against time of day for AIG on Jan 22

and 27, 2016 in Figure 6. On both days there are very few regime 1 observations at the beginning

of the trading day. On 22-Jan 2016, we see a cluster of regime 1 observations at around 15:30 in the

4Note that the x-axis covers the regular trading session of a typical U.S. security exchange on a trading day, which is from

9:30 to 16:00 Eastern Standard Time.
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Figure 5: Scatter plots of BASi against time of day for regimes 1 and 2
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Note: We plot lnBASi against t
(δ)
i for regimes 1 and 2, where the regime classification is estimated monthly by the MS(2)-ACI(1,1)

model. Note that the regime of lnBASi is determined by si+1.

afternoon, accompanied by an increase in the bid-ask spread. This is likely to be triggered by AIG’s

announcement of a spin-off of mortgage unit. We track this event using the RavenPack5 dataset which

collects all publicly available firm-specific news. The first entry of this event is recorded at 15:32:47

on Jan 22, 2016 with RavenPack unique story ID “CB6E9267993A172986E45E07EBFDC723”. This

event triggers fast price adjustments with large duration-adjusted volume, which is identified by our

model as regime 1.

By contrast, the lower panel of Figure 6 also presents a cluster of widened bid-ask spread right

after 14:00, and the duration-adjusted volume is also slightly elevated. This is possibly caused by

the Federal Open Market Committee (FOMC) meetings scheduled at 14:00 on 27-Jan 2016. As this

market-wide event does not have enough firm-specific information content about AIG, our model

does not detect a regime shift in the duration-adjusted volume. Therefore, observations right after

14:00 are not classified into regime 1, despite a significantly widened bid-ask spread. This is direct

evidence supporting our argument that regime 1 is mainly capturing market impact of firm-specific

news arrivals.

The behaviour of regime 1 observations has a close connection to the findings in Jiang et al. (2010)

and Christensen et al. (2014). In these papers, they describe the phenomenon that a burst of volatility

in the market is often accompanied by a shock to liquidity, which is often identified as jumps with

less frequent sampling (e.g. once every 5 minutes). Plotting the price path and bid-ask spread of AIG

around 15:30 on 22-Jan-2016 in Figure 7, we see that a larger cluster of price events is observed after

15:30 with a significantly widened bid-ask spread, which is triggered by a significant increase in price

volatility. Importantly, the cluster of price events is not a result of a single jump which only triggers

5https://www.ravenpack.com/
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Figure 6: Example of regime classification for AIG on 22 and 27, Jan 2016
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Note: The duration-adjusted volume is defined as Ṽ oli/(x̃
(δ)
i )

4
5 . The the regime classification is estimated monthly by the MS(2)-

ACI(1,1) model. For each duration-adjusted volume plotted on the right y-axis, we plot the corresponding prevailing bid-ask spread

BASi−1 on the left axis.

one price event. Therefore, our findings can provide a method to detect bursts of volatility proposed

by Christensen et al. (2014) in an ultra high-frequency context.

As an application to the two regimes detected by our MS-ACI model, we propose a news-based

decomposition of daily volatility estimates for individual stocks. Based on Tse and Yang (2012) and

Li et al. (2019), daily volatility estimates can be directly derived from Λ̂i. Let {Λ̂i}i=1:Td denote the

fitted integrated intensity over the i-th price duration from the MS-ACI model for day d, the Integrated

Conditional Variance (ICV) estimate of day d is constructed as:

ICVd = δ2
d

Td∑
i=1

F−1(1− e−Λ̂i), (5.3)

where δd is the daily choice of price threshold and F−1(x) is the inverse function of F (x) = 2 −

2
∑∞

k=−∞ erf
(

1+4k√
2x

)
, which is the cumulative density function of the first exit time of a standard

Brownian motion to exit the [−1, 1] bound. As each duration is classified into one regime based on

the estimated states ŝi, we propose the following decomposition of total daily ICV:

ICVd = ICVd(1) + ICVd(2), (5.4)

where ICVd(l) = δ2
d

∑Td
i=1 F

−1(1− e−Λ̂i)1l {ŝi=l} is the volatility contribution from regime l in day d.

We plot the ICV decomposition for AIG and VZ in Figure 8. The figure shows that, for most of

the trading days, the total ICV is dominated by ICVd(2) that is not related to news arrivals. However,
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Figure 7: AIG price and bid-ask spread plot on 22-Jan-2016
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diamonds, with a corresponding δ = 0.00178.

in some cases ICVd(1) can be even higher than ICVd(2), which can be an indicator of important firm-

specific events occurring either during the overnight period or within the trading hours that act as

shocks to the liquidity of the market.

The component ICVd(1) has drastically different statistical properties in comparison to ICVd(2).

In Table 6 we present some descriptive statistics for the ICV decomposition for all 9 individual stocks in

our sample. The table shows that, firstly, ICVd(1) is on average only a small (about 10%) percentage

of total ICVd. The autocorrelation of ICVd(1) is much weaker than that of ICVd(2), which implies

that forecasting ICVd(1) is much more difficult. Finally, ICVd(2) is highly correlated with ICVd and

ICV SPY
d , while for ICVd(1) the correlations are much weaker.

Concluding from above, we argue that the volatility components ICVd(1) and ICVd(2) measure

different aspect of risks for the individual stocks. ICVd(2) mainly captures market-wide risk factors

which are highly-persistent and predictable, whereas ICVd(1) is largely influenced by liquidity shocks

possibly caused by firm-specific news arrivals that are more likely to be transitory and idiosyncratic.

This decomposition provides unique insights in understanding the driving forces of price volatility, and

can be applied by practitioners to evaluate their exposure to different sources of risk.
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Figure 8: Daily ICV decomposition for AIG and VZ
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Note: The ICV decomposition is defined in Eq. (5.4) based on monthly-estimated MS(2)-ACI(1,1) model.

Table 6: Descriptive statistics of the ICV components for 9 individual stocks

Regime Mean ACF(1) ACF(5) ACF(22) ρ(ICVd) ρ(ICV SPYd )

AIG
ICVd(1) 0.9579 0.1049 0.0077 0.0247 0.3852*** 0.1286**

ICVd(2) 8.6119 0.7317*** 0.6123*** 0.3595*** 0.9824*** 0.8974***

CVX
ICVd(1) 1.1635 0.4468*** 0.2508*** 0.1649*** 0.6623*** 0.5588***

ICVd(2) 15.0555 0.9005*** 0.8382*** 0.3151*** 0.9975*** 0.8938***

GM
ICVd(1) 1.758 0.0722 0.1218* 0.0156 0.5195*** 0.4275***

ICVd(2) 15.4703 0.7671*** 0.6521*** 0.2902*** 0.9898*** 0.8679***

INTC
ICVd(1) 0.8732 0.0786 0.0366 -0.0215 0.4246*** 0.2047***

ICVd(2) 10.2234 0.6091*** 0.5089*** 0.3409*** 0.9904*** 0.8496***

JPM
ICVd(1) 0.7604 0.1892*** 0.2121*** -0.0768 0.3091*** 0.2406***

ICVd(2) 11.3937 0.7249*** 0.5643*** 0.3027*** 0.9965*** 0.8832***

PFE
ICVd(1) 0.7361 0.0276 0.0428 0.0019 0.2993*** 0.0937

ICVd(2) 9.2922 0.553*** 0.3211*** 0.0936 0.995*** 0.6537***

T
ICVd(1) 0.7042 0.1365** 0.1072* 0.1107* 0.5104*** 0.1525**

ICVd(2) 6.2082 0.5512*** 0.3263*** 0.1083* 0.9909*** 0.5581***

VZ
ICVd(1) 0.7313 0.1309** 0.0801 0.0025 0.3235*** 0.1026*

ICVd(2) 6.2059 0.6442*** 0.5297*** 0.1064* 0.9832*** 0.7950***

WMT
ICVd(1) 0.9968 0.2179*** 0.1817*** 0.0419 0.5081*** 0.2630***

ICVd(2) 6.8686 0.6659*** 0.5146*** 0.2383*** 0.9889*** 0.7301***

Note: ***, ** and * represent significance at 1%, 5% and 10% respectively. The mean of the ICV estimates are scaled by 105.

ACF(x) represents the x-th lag autocorrelation. ρ(ICVd) (resp. ρ(ICV SPYd )) is the contemporaneous correlation between ICVd(l)

and ICVd (resp. ICV SPYd , the ICV estimates for SPY) for the corresponding regime.
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6 Concluding Remarks

This paper develops the Markov-Switching ACI (MS-ACI) model by extending the Markov-switching

structure to the original ACI model (Russell, 1999). The stationarity and moment conditions for the

ACI model are derived, which augments the stationarity condition provided by Hautsch (2012). To

overcome the path dependency problem in the estimation of Markov-switching autoregressive models,

we propose to estimate the model via the SAEM algorithm combined with Bauwens et al.’s (2010)

single move sampler. By introducing the concept of Significance of Regimes (SoR), we demonstrate in

our simulation that our SAEM estimation scheme is capable of providing reliable parameter estimates

for the MS-ACI model. Our simulation analysis subsequently shows that the SoR statistic can serve

as a diagnostic tool in assessing the performance of a regime-switching structure, which has a crucial

impact on the accuracy of parameter estimates for the MS-ACI model.

In our empirical study, we discover two distinct volume-duration regimes with high SoR for 9 in-

dividual stocks, whereas the differences between the two identified regimes are much less pronounced

for SPY. These findings are further corroborated by the empirical results on 24 additional stocks pre-

sented in the supplementary material. We connect the dominant regime with the risk transfer between

market participants and the minor regime with firm-specific information arrivals, and decompose daily

volatility into two components that correspond to the two detected regimes. We demonstrate that the

two components have very different statistical properties, which are likely to carry different sources of

risks within a trading day.

Our study has several limitations that provide ample room for future research. First, our empirical

study is based on a relatively small sample due to the computationally intensive estimation of the

model. It is therefore important to verify our hypothesis of volume-duration invariance on a more

comprehensive dataset. Second, the specification of the MS-ACI model in our empirical analysis

can be further generalized to study additional determinants of the regimes, e.g. asymmetry in the

regime identification conditioning on the sign of the past return. Lastly, the regime-based volatility

decomposition can be useful in various empirical applications, such as volatility forecasting and factor

analysis, and is worth further empirical investigations.
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A Proof to Theorem 2.1

Since we do not include any time-varying covariates, we can consider λ(t|Ft) as a time-deformed model

evaluated at every ti. For simplicity, let us define λi ≡ λ(ti|Fti), we can write:

λi = ewa+Φ̃i · axa−1
i . (A.1)

The integrated intensity between two events is available in closed form:

Λi ≡
ti∫

ti−1

λ(s|Fs)ds = ewa+Φ̃i · xai =
xiλi
a
∼ i.i.d. exp(1). (A.2)

We now use the MA(∞) representation of Φ̃i:

Φ̃i = ψ(L)ε̃i−1 = −γ
∞∑
j=1

ψj −
∞∑
j=1

ln Λ
ψj
i−j . (A.3)

Substituting the above into Eq. (A.1) and using Eq. (A.2), we can write λi in a compact form:

λi = CΛ
1− 1

a
i

∞∏
j=1

Λ
−
ψj
a

i−j , (A.4)

where C = aew−γ
∑∞
j=1 ψj . From Eq. (A.2) we can also derive:

xi =
a

C
Λ

1
a
i

∞∏
j=1

Λ
ψj
a
i−j . (A.5)

From the i.i.d.-ness of Λi, the k-th moments of λi and xi can be written as products of moments of

Weibull random variables:

E[λki ] = Ck E[Λ
k− k

a
i ]

∞∏
j=1

E[Λ
−
kψj
a

i−j ],

E[xki ] =
ak

Ck
E[Λ

k
a
i ]
∞∏
j=1

E[Λ
kψj
a

i−j ].

(A.6)

It is clear that E[λki ] are E[xki ] are finite if (1) C ∈ (0,∞); (2) the infinite products in Eq. (A.6) are

finite. We now show that conditions 1 and 2 of Theorem 2.1 imply the two conditions above for k = 2.

Condition 1 of Theorem 2.1 implies absolute summability of ψi which further implies that C ∈

(0,∞). For the second argument, we use the following lemma:

Lemma A.1. Let Λi ∼ exp(1), then E[Λki ] < ∞ iff k > −1. When k > −1, E[Λki ] = Γ(k + 1), where

Γ(x) is the Gamma function.
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Proof. Notice that by definition of the Gamma function E[Λki ] =
∫∞

0 xke−xdx = Γ(k + 1). The Euler

integral converges iff k > −1 as a property of the Gamma function. This completes the proof.

To ensure that all expectations in Eq. (A.6) are finite, the following constraints for the parameters

of the ACI model can be derived from Eq. (A.6) using Lemma A.1:

a >
k

k + 1
, sup |ψi| <

a

k
. (A.7)

Under this condition, we can write:

E[λki ] = CkΓ(k − k/a+ 1)
∞∏
j=1

Γ(1− kψj/a),

E[xki ] =
ak

Ck
Γ(k/a+ 1)

∞∏
j=1

Γ(1 + kψj/a).

(A.8)

It is therefore clear that condition 2 implies that all expectations in Eq. (A.6) are finite. We are left

to show that the infinite products in Eq. (A.8) are finite under conditions 1 and 2. Convergence of the

infinite products in Eq. (A.8) is equivalent to convergence of the sum
∑∞

j=1 ln Γ(1± kψj/a). We now

show that absolute summability of ψj implies absolute summability of ln Γ(1 ± kψj/a). Condition 1

implies that limj→∞ |ψj | → 0. We note that the following result holds by first order Taylor expansion

at ψj = 0:

lim
j→∞

| ln Γ(1± kψj/a)|
|ψj |

→ kγ/a > 0, (A.9)

where γ is the Euler-Mascheroni constant. By limit comparison test, the absolute summability of ψj

and Eq. (A.9) imply the absolute summability of ln Γ(1± kψj/a), and the proof is complete.

B Analytical Gradient of the MS-ACI Model

We provide analytical gradient of the MS(M)-ACI(1,1) model with Weibull baseline conditioning on

the state vector which we denote by ∂ lnL(θ;Y|S)
∂θ , where

θ = {{α1(m)}m∈M, {β1(m)}m∈M, {w(m)}m∈M, {a(m)}m∈M, {η(m)}m∈M}′

is a 5M×1 parameter vector. Note that in the above parameter vector, we assume that Z(t) = ZN̆(t)+1,

where {Zi}i=1:T is a univariate time-invariant covariate, and η(m) is the corresponding state-dependent

coefficient. Using the notation lnL(θ;xi|S) = − ln Λi + λi and according to Eq. (A.2), we can write:

∂ lnL(θ;xi|S)

∂θ
=
∂ lnλi
∂θ

(
1− xi

a(si)
λi

)
−
∂ xi
a(si)

∂θ
λi. (B.1)

Therefore the analytical gradient can be computed based on the knowledge of ∂ lnλi
∂θ . Note that lnλi

has an MS-ARMA-type representation by taking log on both sides of a regime switching version of
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Eq. (A.1). Consequently, we can derive that:

∂ lnλi
α1(m)

= 1l {si=m}(−γ − lnxi−1 + a(si−1)− lnλi−1) + (β1(si)− α1(si))
∂ lnλi−1

α1(m)
,

∂ lnλi
β1(m)

= 1l {si=m}(lnλi−1 − w(si−1)a(si−1)− η(si−1)Zi−1 − ln a(si−1)− (a(si−1)− 1) lnxi−1)

+ (β1(si)− α1(si))
∂ lnλi−1

β1(m)
,

∂ lnλi
w(m)

= 1l {si=m}a(si)− 1l {si−1=m}βi(si)a(si−1) + (β1(si)− α1(si))
∂ lnλi−1

w(m)
,

∂ lnλi
a(m)

= 1l {si=m}(w(si) + a(si)
−1 + lnxi) + (β1(si)− α1(si))

∂ lnλi−1

a(m)

+ 1l {si−1=m}(−β1(si)w(si−1) + (β1(si)− α1(si))a(si−1)−1 − β1(si) lnxi−1),

∂ lnλi
η(m)

= 1l {si=m}Zi − 1l {si−1=m}β1(si)Zi−1 + (β1(si)− α1(si))
∂ lnλi−1

η(m)
.

(B.2)

For a given θ, we can therefore calculate ∂ lnλi
∂θ recursively using the above set of equations. Finally,

note that:
∂ xi
a(si)

∂θ
=

xi
a(si)2

∂θ

∂a(si)
. (B.3)

The analytical gradient can therefore be calculated by substituting Eq. (B.2) and Eq. (B.3) into

Eq. (B.1).

C Estimating the Variance-Covariance Matrix of Parameters and the Most

Probable State Vector

As suggested by Delyon et al. (1999) and Kuhn and Lavielle (2004), the variance-covariance matrix

for parameter estimates can be estimated directly from the iterations of the SAEM algorithm. We can

use the following stochastic approximation scheme to obtain an estimate of the observed information

matrix:

Sn = (1− γn)Sn−1 +
γn
Kn

Kn∑
k=1

s(ϑ(n+1);Y,S(n,k)),

Dn = (1− γn)Dn−1

+
γn
Kn

Kn∑
k=1

(I(ϑ(n+1);Y, S(n,k)) + s(ϑ(n+1);Y,S(n,k))s(ϑ(n+1);Y, S(n,k))′),

Hn = Dn − SnS′n,

where s(ϑ(n+1);Y,S(n,k)) and I(ϑ(n+1);Y,S(n,k)) are the score vector and the Fisher’s information

matrix of the complete likelihood function L(ϑ(n+1);Y,S(n,k)). Delyon et al. (1999) show that −Hn

converges to −I(ϑ,Y) when ϑ converges to the limiting value and the function lnL(ϑ;Y) is smooth

enough. Thus, the inverse of −Hn obtained will be used as an estimate of the variance-covariance

matrix of ϑ, which is evaluated at the termination of the SAEM algorithm.
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As to the estimation of the most probable state vector, we rely on the posterior density of S

given the data and the estimated parameter vector ϑ̂. Due to the dimensionality of S, it is difficult

to directly maximize the likelihood of S conditioning on ϑ̂ and Y, and standard algorithms (e.g.

Viterbi’s algorithm) for the Hidden Markov Model are not applicable in this case because of the path

dependency issue. Bauwens et al. (2010) use the smoothed posterior probabilities for each state to

obtain an estimate of this state sequence. We hereby propose a direct Monte Carlo search method to

obtain Ŝ by exploiting the following relationship:

p(S|ϑ̂,Y) ∝ f(Y|S, ϑ̂)p(S) = f(Y, S|ϑ̂). (C.1)

Theoretically, one can use an arbitrary multivariate multinomial density g(S)6 that corresponds to the

dimension of the distribution of S to simulate a set of Ns trial state sequences denoted as {S̃1, · · · , S̃Ns},

and a natural estimate is obtained by:

Ŝ = arg max
ns

f(S̃ns ,Y|ϑ), ns = 1 : Ns. (C.2)

Intuitively, as Ns →∞ and g(S̃) > 0 for all S̃, this algorithm will exploit all possible realizations of S̃

and obtain the one that maximizes the joint likelihood. An obvious problem is that this algorithm is

extremely inefficient if g(S) is not chosen properly, and a good choice of g(S) should account for the

information in the observed data to improve the efficiency of the simulation. Our solution is to continue

performing the S-step Ns times after the convergence of the SAEM algorithm with parameters fixed to

the converged value ϑ̂, so that g(S) in our case becomes the single move sampler. The underlying reason

is that the conditional posterior probabilities used in the single move sampler include information of

the observed data, therefore is much more efficient than an uninformed sampler such as a plain Markov

chain. In our empirical application we choose Ns = 1000.

6A possible choice of g(S) can be, for example, a plain M -state Markov chain with the transition parameters Π̂.
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1 Sensitivity Analysis on the Choice of δ

The aim of this section is to show that the empirical findings in our paper are robust to different

choices of δ, the threshold used to construct price durations. Recall that in our paper, we choose

a daily δ which makes the daily average price durations to be as close to 5 minutes as possible.

We will refer to this choice as the base δ (δbase) with a 5-minute average sampling interval. In this

section, we consider alternative daily δs constructed from the 10 sampled assets with sampling

intervals of 2.5 minutes and 10 minutes, which are referred to as the low δ (δlow) and high δ

(δhigh), respectively. We firstly present the daily choices of these δs in Figure 1. We can see that

the base δ is always between the low and the high δ as expected. Heuristically, these daily δs

are daily estimators of the square root of the average integrated variance over the corresponding

sampling intervals, which satisfy the following approximated relation for each day:

δlow ≈
√

2δbase ≈ 2δhigh. (1.1)

Intuitively, a larger (resp. smaller) choice of δ samples the high-frequency price process less

(resp. more) frequently, which reduces (resp. increases) the amount of sampled observations but

also weakens (resp. strengthens) the impact of market microstructure noises to the sampling

procedure (Hong et al., 2020). As the different choices of δ directly change the number of price

∗Corresponding author: Alliance Manchester Business School, Booth Street W, Manchester, M15 6PB, UK.

e-mail: yifan.li@manchester.ac.uk.
†Lancaster University Management School Bailrigg, Lancaster LA1 4YX, UK. Phone +44 15245 92644, email:

I.Nolte@lancaster.ac.uk
‡Lancaster University Management School, Bailrigg, Lancaster, LA1 4YX, UK. Phone +44 15245 93634, e-mail:

S.Nolte@lancaster.ac.uk.
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durations and hence the sampling frequency, results in this section serve as a robustness check

to show that the regime identification in our paper is insensitive to the choice of δ.

Figure 1: Daily choices of δbase, δlow and δhigh
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Note: The figure plots daily price change threshold δ for the 10 sampled assets. For each asset, the base (resp. low, high) δ is

calculated as the maximum threshold that produces a mean price duration which is closest to a 5-minute (resp. 2.5-minute,

10-minute) interval.

After constructing price durations and the associated cumulative volume measures using

the three choices of δ, we follow the same deseasonalization procedure as in Eq. (5.1) of the

paper. We present descriptive statistics of the deseasonalized datasets constructed with the low

and high δs in Tables 1 and 2. Comparing these two tables with Table 3 of the paper, we find

that the average price durations with δlow and δhigh correspond to roughly 2.5 and 10 minutes as

expected. The quantiles of the price duration distribution with δlow and δhigh also appear to be

proportional to those based on δbase. A corresponding decrease (resp. increase) can be observed

from ln Ṽ oli with δlow (resp. δhigh) due to the shorter (resp. longer) price durations on average.

Behaviours of BASi are qualitatively similar across different choices of δ.

We proceed to estimate the MS(2)-ACI(1,1) model monthly for the 10 sampled assets with

data constructed from two additional choices of δs. To present our findings in a concise manner

and demonstrate that the two regimes we detected are insensitive to the choice of δ, we summa-

rizes the monthly estimates of η̂(l), γ̂ll and ŜoR(l) for each stock and choice of δ in Tables 3 to

5, which describe the main features of the two regimes detected in our paper.
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Table 1: Descriptive statistics of x̃
(δ)
i , ln Ṽ oli and BASi for the sampled assets with δlow

Ticker Variable #Obs. Mean Std. Dev. Skew. Kurt. Min Q(25%) Median Q(75%) Max

x̃
(δ)
i 38004 152.557 169.261 3.622 38.078 0.000 46.364 101.085 199.109 4963.715

AIG ln Ṽ oli 38004 9.667 1.202 -0.304 4.907 0.000 8.926 9.682 10.438 16.059

BASi 38004 0.016 0.025 9.332 117.126 0.010 0.010 0.010 0.010 0.490

x̃
(δ)
i 39106 150.293 158.168 2.869 18.737 0.000 48.372 101.570 197.710 2801.094

CVX ln Ṽ oli 39106 9.955 1.116 -0.368 5.047 0.000 9.264 9.971 10.686 16.553

BASi 39106 0.025 0.037 5.923 49.594 0.010 0.010 0.020 0.030 0.570

x̃
(δ)
i 37212 155.517 189.116 4.506 52.896 0.000 42.739 97.463 198.698 4924.328

GM ln Ṽ oli 37212 10.341 1.189 -0.321 4.692 0.000 9.605 10.368 11.119 16.349

BASi 37212 0.012 0.011 13.163 252.718 0.010 0.010 0.010 0.010 0.390

x̃
(δ)
i 36214 156.949 194.012 3.560 25.032 0.000 40.091 95.504 200.953 3305.375

INTC ln Ṽ oli 36214 10.870 1.239 -0.237 5.769 0.000 10.144 10.892 11.631 18.904

BASi 36214 0.012 0.011 10.233 141.814 0.010 0.010 0.010 0.010 0.310

x̃
(δ)
i 38421 151.455 167.341 3.290 23.343 0.000 47.235 99.821 195.761 3161.599

JPM ln Ṽ oli 38421 10.682 1.099 -0.261 4.525 0.000 9.990 10.706 11.395 16.888

BASi 38421 0.013 0.016 11.579 201.876 0.010 0.010 0.010 0.010 0.500

x̃
(δ)
i 36563 157.709 193.509 5.010 94.644 0.000 41.297 97.168 203.299 7795.834

PFE ln Ṽ oli 36563 11.153 1.295 -0.364 5.035 1.263 10.374 11.172 11.977 18.120

BASi 36563 0.011 0.009 15.413 392.933 0.010 0.010 0.010 0.010 0.470

x̃
(δ)
i 38291 151.029 180.980 3.744 36.272 0.000 40.707 94.122 194.172 5126.813

T ln Ṽ oli 38291 9.961 1.192 -0.260 5.048 0.000 9.221 9.981 10.715 17.195

BASi 38291 0.017 0.026 8.446 101.198 0.010 0.010 0.010 0.020 0.490

x̃
(δ)
i 36296 158.229 197.045 4.848 70.305 0.000 41.752 97.304 202.911 6981.422

VZ ln Ṽ oli 36296 10.932 1.213 -0.412 6.134 0.000 10.213 10.955 11.694 17.850

BASi 36296 0.011 0.008 11.020 177.537 0.010 0.010 0.010 0.010 0.240

x̃
(δ)
i 37759 152.163 182.225 3.760 32.813 0.000 41.800 94.727 196.742 4487.068

WMT ln Ṽ oli 37759 10.369 1.199 -0.232 5.432 0.000 9.642 10.382 11.124 17.465

BASi 37759 0.013 0.014 12.462 223.483 0.010 0.010 0.010 0.010 0.460

x̃
(δ)
i 38857 151.443 160.879 3.513 38.134 0.000 47.494 102.205 200.436 4540.227

SPY ln Ṽ oli 38857 12.560 0.968 -0.278 3.617 3.918 11.928 12.591 13.233 15.917

BASi 38857 0.011 0.005 41.398 2935.277 0.010 0.010 0.010 0.010 0.430

Note: The statistics in the table are computed from x̃
(δ)
i , ln Ṽ oli and BASi for the 10 sampled assets constructed from all

trading days in 2016. #Obs. is the number of observations in the sample. Std. Dev., Skew. and Kurt. represent sample

standard deviation, sample skewness and sample kurtosis, respectively.
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Table 2: Descriptive statistics of x̃
(δ)
i , ln Ṽ oli and BASi for the sampled assets with δhigh

Ticker Variable #Obs. Mean Std. Dev. Skew. Kurt. Min Q(25%) Median Q(75%) Max

x̃
(δ)
i 9670 583.841 622.822 3.253 24.222 0.000 195.747 395.806 751.716 10611.492

AIG ln Ṽ oli 9670 11.062 1.191 -0.633 6.208 0.786 10.344 11.081 11.827 15.934

BASi 9670 0.020 0.040 6.880 58.469 0.010 0.010 0.010 0.010 0.490

x̃
(δ)
i 9746 588.018 584.963 2.548 14.101 0.000 201.942 408.542 768.275 7037.280

CVX ln Ṽ oli 9746 11.372 1.076 -0.482 4.815 3.898 10.715 11.387 12.092 16.070

BASi 9746 0.030 0.050 5.210 35.448 0.010 0.010 0.020 0.030 0.570

x̃
(δ)
i 9572 579.369 645.276 3.585 27.661 0.002 183.499 384.624 748.542 10136.990

GM ln Ṽ oli 9572 11.735 1.138 -0.534 5.118 2.300 11.041 11.780 12.475 15.943

BASi 9572 0.014 0.018 8.831 104.595 0.010 0.010 0.010 0.010 0.360

x̃
(δ)
i 9452 586.035 679.577 3.643 28.908 0.001 171.576 378.618 751.911 12006.922

INTC ln Ṽ oli 9452 12.301 1.164 -0.406 5.494 2.277 11.597 12.324 13.031 18.007

BASi 9452 0.013 0.017 8.311 87.289 0.010 0.010 0.010 0.010 0.310

x̃
(δ)
i 9722 577.341 620.490 3.660 30.491 0.000 189.206 391.902 751.928 9562.011

JPM ln Ṽ oli 9722 12.083 1.057 -0.415 4.808 5.053 11.427 12.109 12.779 16.512

BASi 9722 0.015 0.024 8.918 113.904 0.010 0.010 0.010 0.010 0.500

x̃
(δ)
i 9474 598.237 692.027 4.372 45.552 0.000 179.776 393.970 779.212 14334.969

PFE ln Ṽ oli 9474 12.556 1.266 -0.711 6.494 1.246 11.819 12.587 13.368 17.395

BASi 9474 0.013 0.014 10.879 190.730 0.010 0.010 0.010 0.010 0.470

x̃
(δ)
i 9678 579.861 650.027 3.382 26.917 0.000 172.555 372.896 760.210 10764.022

T ln Ṽ oli 9678 11.348 1.190 -0.612 6.615 0.000 10.633 11.361 12.117 16.929

BASi 9678 0.022 0.041 6.462 53.405 0.010 0.010 0.010 0.020 0.490

x̃
(δ)
i 9552 584.303 642.976 3.380 25.376 0.002 183.433 384.774 756.509 10736.764

VZ ln Ṽ oli 9552 12.326 1.166 -0.785 7.216 0.000 11.651 12.373 13.056 17.250

BASi 9552 0.012 0.012 8.327 96.507 0.010 0.010 0.010 0.010 0.240

x̃
(δ)
i 9598 580.314 647.157 3.433 26.681 0.001 176.988 377.673 751.826 11044.532

WMT ln Ṽ oli 9598 11.782 1.198 -0.581 5.502 3.902 11.075 11.808 12.536 16.900

BASi 9598 0.015 0.024 8.545 96.202 0.010 0.010 0.010 0.010 0.460

x̃
(δ)
i 9697 596.224 580.501 3.477 34.416 0.060 210.046 434.779 804.290 10366.776

SPY ln Ṽ oli 9697 13.975 0.914 -0.294 3.324 6.875 13.374 14.026 14.618 16.943

BASi 9697 0.011 0.005 43.836 2892.766 0.010 0.010 0.010 0.010 0.390

Note: The statistics in the table are computed from x̃
(δ)
i , ln Ṽ oli and BASi for the 10 sampled assets constructed from all

trading days in 2016. #Obs. is the number of observations in the sample. Std. Dev., Skew. and Kurt. represent sample

standard deviation, sample skewness and sample kurtosis, respectively.
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Table 3: Descriptive statistics of monthly estimated η̂(l), γ̂ll and ŜoR(l) based on δbase

Regime 1 (l = 1) Regime 2 (l = 2)

Ticker Mean Std. Dev. Q(25%) Median Q(75%) #5% Sig. Mean Std. Dev. Q(25%) Median Q(75%) #5% Sig.

η̂(l) -0.495 0.094 -0.574 -0.494 -0.422 12 -2.337 0.238 -2.481 -2.317 -2.157 12

AIG γ̂ll 0.496 0.498 0.188 0.447 0.719 6 -2.717 0.499 -3.143 -2.684 -2.307 12

ŜoR(l) 0.987 0.006 0.984 0.988 0.993 0.982 0.007 0.976 0.984 0.989

η̂(l) -0.600 0.168 -0.661 -0.634 -0.530 12 -2.733 0.222 -2.892 -2.670 -2.551 12

CVX γ̂ll 0.314 0.330 0.115 0.223 0.393 4 -2.243 0.486 -2.431 -2.107 -2.014 12

ŜoR(l) 0.984 0.004 0.982 0.984 0.985 0.978 0.005 0.975 0.978 0.981

η̂(l) -0.502 0.223 -0.562 -0.436 -0.404 12 -2.178 0.171 -2.329 -2.206 -2.020 12

GM γ̂ll 1.645 2.864 0.471 0.829 1.168 4 -3.737 1.002 -4.441 -3.435 -3.028 12

ŜoR(l) 0.986 0.007 0.982 0.987 0.991 0.981 0.009 0.978 0.983 0.988

η̂(l) -0.301 0.105 -0.401 -0.278 -0.278 10 -2.326 0.233 -2.414 -2.303 -2.204 12

INTC γ̂ll 5.960 7.504 0.672 1.101 15.504 9 -4.204 0.619 -4.566 -4.287 -3.775 12

ŜoR(l) 0.990 0.003 0.988 0.991 0.993 0.988 0.004 0.986 0.988 0.990

η̂(l) -0.687 0.199 -0.817 -0.708 -0.632 12 -2.731 0.262 -2.878 -2.724 -2.560 12

JPM γ̂ll 0.730 0.660 0.182 0.694 0.998 6 -3.356 0.892 -3.949 -3.274 -2.830 12

ŜoR(l) 0.987 0.008 0.982 0.987 0.994 0.983 0.009 0.978 0.983 0.991

η̂(l) -0.498 0.164 -0.617 -0.458 -0.368 12 -2.422 0.208 -2.552 -2.391 -2.250 12

PFE γ̂ll 11.946 7.055 8.222 15.211 16.419 11 -3.899 0.657 -4.358 -3.944 -3.584 12

ŜoR(l) 0.988 0.006 0.986 0.990 0.992 0.985 0.008 0.983 0.987 0.989

η̂(l) -0.524 0.184 -0.619 -0.489 -0.388 12 -2.573 0.227 -2.674 -2.590 -2.389 12

T γ̂ll 6.988 7.052 1.187 2.354 15.145 10 -4.206 0.806 -4.650 -4.024 -3.612 12

ŜoR(l) 0.985 0.005 0.981 0.986 0.988 0.981 0.006 0.976 0.983 0.986

η̂(l) -0.466 0.123 -0.543 -0.453 -0.399 12 -2.533 0.229 -2.626 -2.515 -2.362 12

VZ γ̂ll 3.367 6.138 0.444 0.879 1.876 6 -3.508 0.455 -3.736 -3.476 -3.346 12

ŜoR(l) 0.985 0.004 0.983 0.986 0.988 0.981 0.006 0.979 0.982 0.984

η̂(l) -0.530 0.148 -0.622 -0.543 -0.487 12 -2.622 0.215 -2.809 -2.661 -2.433 12

WMT γ̂ll 0.503 0.318 0.239 0.472 0.669 6 -2.276 0.199 -2.440 -2.258 -2.166 12

ŜoR(l) 0.980 0.004 0.977 0.980 0.984 0.973 0.006 0.969 0.973 0.977

η̂(l) -3.325 0.990 -3.888 -3.339 -2.963 12 -3.146 0.375 -3.326 -3.101 -2.857 12

SPY γ̂ll 2.126 8.541 -0.931 0.588 7.481 5 1.510 5.524 -1.174 -0.645 0.380 4

ŜoR(l) 0.927 0.034 0.921 0.934 0.942 0.917 0.037 0.916 0.923 0.931

Note: The table reports descriptive statistics of monthly estimated η̂(l), γ̂ll and ŜoR(l) from the MS(2)-ACI(1,1) model

with price duration data associated with δbase. The column #5% Sig. is the number of of significant parameter estimates

out of the 12 monthly estimates.
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Table 4: Descriptive statistics of monthly estimated η̂(l), γ̂ll and ŜoR(l) based on δlow

Regime 1 (l = 1) Regime 2 (l = 2)

Ticker Mean Std. Dev. Q(25%) Median Q(75%) #5% Sig. Mean Std. Dev. Q(25%) Median Q(75%) #5% Sig.

η̂(l) -0.403 0.104 -0.467 -0.391 -0.331 12 -1.976 0.183 -2.142 -1.923 -1.812 12

AIG γ̂ll 0.902 0.407 0.576 0.862 1.027 11 -2.581 0.309 -2.765 -2.491 -2.375 12

ŜoR(l) 0.986 0.004 0.982 0.987 0.988 0.980 0.006 0.975 0.982 0.984

η̂(l) -0.487 0.162 -0.590 -0.448 -0.344 12 -2.304 0.272 -2.402 -2.306 -2.107 12

CVX γ̂ll 0.469 0.205 0.371 0.437 0.629 9 -1.828 0.290 -1.928 -1.766 -1.660 12

ŜoR(l) 0.982 0.006 0.980 0.984 0.987 0.976 0.007 0.972 0.979 0.981

η̂(l) -0.443 0.127 -0.545 -0.406 -0.371 12 -1.821 0.141 -1.950 -1.806 -1.682 12

GM γ̂ll 4.918 6.415 1.039 1.574 8.850 10 -3.089 0.467 -3.478 -3.031 -2.894 12

ŜoR(l) 0.985 0.006 0.981 0.988 0.989 0.981 0.007 0.976 0.983 0.986

η̂(l) -0.336 0.089 -0.363 -0.340 -0.280 12 -1.916 0.140 -1.946 -1.876 -1.851 12

INTC γ̂ll 2.902 4.395 1.087 1.478 2.449 11 -3.750 0.502 -3.961 -3.725 -3.369 12

ŜoR(l) 0.989 0.004 0.987 0.989 0.991 0.985 0.005 0.983 0.986 0.988

η̂(l) -0.610 0.152 -0.737 -0.626 -0.528 11 -2.380 0.212 -2.542 -2.453 -2.207 12

JPM γ̂ll 0.961 0.756 0.393 0.832 1.327 8 -2.756 0.477 -2.953 -2.809 -2.556 12

ŜoR(l) 0.983 0.006 0.979 0.984 0.987 0.978 0.007 0.973 0.980 0.984

η̂(l) -0.461 0.134 -0.522 -0.424 -0.370 12 -2.047 0.162 -2.165 -2.058 -1.892 12

PFE γ̂ll 9.491 7.075 1.794 15.018 15.222 12 -3.546 0.455 -3.856 -3.548 -3.187 12

ŜoR(l) 0.983 0.006 0.980 0.984 0.988 0.979 0.007 0.976 0.979 0.984

η̂(l) -0.367 0.119 -0.486 -0.361 -0.275 12 -2.115 0.218 -2.337 -2.096 -2.001 12

T γ̂ll 11.844 6.109 6.614 15.290 15.931 12 -3.684 0.669 -4.204 -3.733 -3.344 12

ŜoR(l) 0.985 0.006 0.979 0.988 0.990 0.982 0.007 0.974 0.985 0.988

η̂(l) -0.388 0.090 -0.453 -0.382 -0.331 12 -2.158 0.170 -2.248 -2.127 -2.056 12

VZ γ̂ll 5.284 6.699 1.335 1.661 9.459 12 -3.297 0.365 -3.456 -3.246 -3.130 12

ŜoR(l) 0.985 0.004 0.982 0.985 0.989 0.980 0.005 0.977 0.981 0.984

η̂(l) -0.454 0.055 -0.508 -0.450 -0.420 12 -2.289 0.187 -2.414 -2.291 -2.162 12

WMT γ̂ll 0.746 0.436 0.432 0.693 1.110 10 -2.235 0.461 -2.598 -2.062 -1.868 12

ŜoR(l) 0.978 0.006 0.974 0.978 0.982 0.972 0.006 0.967 0.970 0.976

η̂(l) -2.934 0.880 -3.395 -2.959 -2.719 12 -2.737 0.360 -2.917 -2.620 -2.480 12

SPY γ̂ll 4.295 6.529 0.234 0.600 9.031 4 -0.869 0.501 -1.297 -0.988 -0.441 5

ŜoR(l) 0.913 0.032 0.897 0.913 0.925 0.900 0.035 0.885 0.895 0.914

Note: The table reports descriptive statistics of monthly estimated η̂(l), γ̂ll and ŜoR(l) from the MS(2)-ACI(1,1) model

with price duration data associated with δlow. The column #5% Sig. is the number of of significant parameter estimates

out of the 12 monthly estimates.
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Table 5: Descriptive statistics of monthly estimated η̂(l), γ̂ll and ŜoR(l) based on δhigh

Regime 1 (l = 1) Regime 2 (l = 2)

Ticker Mean Std. Dev. Q(25%) Median Q(75%) #5% Sig. Mean Std. Dev. Q(25%) Median Q(75%) #5% Sig.

η̂(l) -0.648 0.262 -0.721 -0.623 -0.487 12 -2.577 0.342 -2.841 -2.542 -2.304 12

AIG γ̂ll 0.586 0.616 0.263 0.817 0.930 5 -7.176 14.059 -4.207 -3.008 -2.296 12

ŜoR(l) 0.988 0.005 0.984 0.990 0.992 0.984 0.007 0.980 0.985 0.989

η̂(l) -1.016 0.387 -1.432 -0.863 -0.688 12 -3.227 0.365 -3.445 -3.396 -2.949 12

CVX γ̂ll 0.647 1.650 -0.029 0.280 0.518 2 -3.035 1.042 -4.019 -2.713 -2.253 12

ŜoR(l) 0.976 0.018 0.970 0.981 0.986 0.969 0.021 0.960 0.976 0.981

η̂(l) -0.844 0.559 -1.076 -0.740 -0.484 11 -2.550 0.358 -2.625 -2.468 -2.347 12

GM γ̂ll 0.943 0.720 0.291 0.903 1.299 7 -3.300 1.356 -3.627 -3.168 -2.571 12

ŜoR(l) 0.956 0.062 0.957 0.981 0.990 0.952 0.061 0.950 0.975 0.987

η̂(l) -0.283 0.128 -0.376 -0.304 -0.176 10 -2.583 0.269 -2.666 -2.588 -2.379 12

INTC γ̂ll 4.884 11.188 0.164 1.263 9.498 8 -4.520 1.013 -5.236 -4.318 -3.960 12

ŜoR(l) 0.990 0.004 0.989 0.991 0.992 0.988 0.004 0.987 0.988 0.991

η̂(l) -0.740 0.248 -0.915 -0.816 -0.552 12 -3.099 0.297 -3.215 -3.103 -2.858 12

JPM γ̂ll 12.236 25.902 0.301 1.111 14.269 9 -3.358 0.286 -3.531 -3.390 -3.263 12

ŜoR(l) 0.989 0.005 0.986 0.989 0.994 0.986 0.006 0.984 0.985 0.992

η̂(l) -0.664 0.339 -0.884 -0.537 -0.427 12 -2.825 0.452 -3.117 -2.696 -2.480 12

PFE γ̂ll 8.857 8.082 0.842 9.227 16.528 7 -6.537 6.579 -5.786 -4.823 -3.939 12

ŜoR(l) 0.984 0.012 0.984 0.986 0.989 0.980 0.013 0.980 0.981 0.984

η̂(l) -0.575 0.165 -0.714 -0.563 -0.454 12 -2.812 0.406 -3.083 -2.926 -2.498 12

T γ̂ll 7.641 7.985 0.776 4.178 16.240 7 -6.242 7.040 -4.999 -4.155 -3.675 10

ŜoR(l) 0.988 0.005 0.984 0.988 0.992 0.984 0.007 0.979 0.985 0.989

η̂(l) -0.577 0.227 -0.635 -0.551 -0.392 12 -2.825 0.294 -3.003 -2.907 -2.554 12

VZ γ̂ll 3.775 6.865 0.391 1.099 1.685 6 -6.431 8.598 -4.470 -4.225 -3.813 12

ŜoR(l) 0.986 0.010 0.985 0.988 0.992 0.982 0.011 0.982 0.985 0.987

η̂(l) -0.655 0.468 -0.720 -0.541 -0.375 12 -2.919 0.263 -3.082 -2.988 -2.771 12

WMT γ̂ll 0.363 0.686 -0.287 0.570 0.679 6 -2.731 1.495 -2.809 -2.333 -2.124 12

ŜoR(l) 0.978 0.013 0.976 0.980 0.985 0.971 0.015 0.966 0.975 0.980

η̂(l) -4.164 0.868 -4.446 -3.976 -3.577 12 -3.641 0.481 -3.976 -3.630 -3.379 12

SPY γ̂ll 4.254 12.776 -6.715 7.546 15.528 7 2.050 6.789 -2.102 -0.826 6.213 5

ŜoR(l) 0.902 0.049 0.894 0.902 0.928 0.895 0.041 0.890 0.894 0.917

Note: The table reports descriptive statistics of monthly estimated η̂(l), γ̂ll and ŜoR(l) from the MS(2)-ACI(1,1) model

with price duration data associated with δhigh. The column #5% Sig. is the number of of significant parameter estimates

out of the 12 monthly estimates.
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Comparing the results in Tables 3 to 5, we see the following common features across assets

and choices of δ: (1) All estimates of η̂(l) are significant at 5%. For individual stocks, η̂(1) is

much smaller in magnitude than η̂(2), indicating that volumes are much less associated with

the conditional intensity process in regime 1 relative to regime 2. This effect clearly cannot be

seen on SPY, whose η̂(l) estimates are similar in both regimes for all choices of δs. (2) For

individual stocks, the estimates γ̂22 are negative and strongly significant for all individual stocks

across different δs. This shows that observations that stay in regime 2 are associated with a low

bid-ask spread. For γ̂11 it is overall positive but less significant that γ̂11. This effect is also not

visible for SPY, as both γ̂11 and γ̂2 appear positive and only weakly significant. (3) All estimated

ŜpR(l) are larger than 0.95 for individual stocks with different choices of δs. However, for SPY,

this is only around 0.9. This shows that the regime identification is on average stronger for the

individual stocks than SPY. This is clear evidence supporting the argument that the parameter

estimates and regime identification of the MS(2)-ACI(1,1) model are robust to the choice of δ.

In our paper, we interpret regime 1 as a regime driven by the news arrivals, while regime 2

represents the risk transfer activity of market participants. We show that this interpretation is

also applicable when a different choice of δ is used. To this end, we firstly present the regime-

specific annual averages of ŝi, x̃
(δ)
i , ln Ṽ oli and BASi for each asset under different choices of

δ in Table 6, where ŝi is the estimated regime for the i-th observation. The table convincingly

shows that, for individual stocks, regime 2 is the dominant regime for all individual stocks which

accounts for more than 80% of data with a substantially longer mean duration, larger mean

log-cumulative volume and a much smaller bid-ask spread. For SPY, we can still observe some

differences in terms of ŝi, x̃
(δ)
i , ln Ṽ oli, but the distinction is relatively weaker in comparison to

the individual stocks. More importantly, there does not seem to be a large difference for the

BASi of SPY in the two regimes. As these results hold for all three choices of δ, this table

provides some preliminary evidence to show that the two regimes are identified by the data

characteristics that are not largely affected by the choice of δ.

To further verify our findings in the paper, we reproduce Table 5 of our paper and examine

the intraday volume-duration invariance for regime 2 using data based on δlow and δhigh in Table

7. Our findings from both Table 7 and Table 5 of our paper are largely similar. We see that b̂1(1)

and R2(1) are in general smaller than b̂1(2) and R2(2) for individual stocks, while the difference

in R2s cannot be observed for SPY. The high R2(2)s for individual stocks suggest that a power

law relation between x̃
(δ)
i and Ṽ oli also holds for observations in regime 2 when we use a smaller

or larger δ, which is in line with our hypothesis of volume-duration invariance. Interestingly,
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Table 6: Annual averages of ŝi, x̃
(δ)
i , ln Ṽ oli and BASi for regimes 1 and 2 based on different choices of δ

Regime 1 Regime 2

Ticker %(ŝi = 1) x̃
(δ)
i ln Ṽ oli BASi %(ŝi = 2) x̃

(δ)
i ln Ṽ oli BASi

Panel 1: δlow

AIG 0.1345 74.6762 9.1655 0.0423 0.8655 164.6581 9.7447 0.0119

CVX 0.0948 69.0142 9.3847 0.0781 0.9052 158.8072 10.0143 0.0199

GM 0.1298 68.0120 9.8253 0.0212 0.8702 168.5656 10.4184 0.0106

INTC 0.1097 44.1300 10.2828 0.0255 0.8903 170.8548 10.9427 0.0103

JPM 0.1079 72.5408 10.1766 0.0293 0.8921 160.9982 10.7429 0.0113

PFE 0.1281 62.9131 10.4076 0.0188 0.8719 171.6310 11.2624 0.0104

T 0.1232 64.8092 10.3074 0.0184 0.8768 171.3529 11.0202 0.0103

VZ 0.1423 68.8633 9.8865 0.0251 0.8577 165.9863 10.4492 0.0107

WMT 0.1726 79.6712 9.5328 0.0404 0.8274 165.9174 10.0506 0.0126

SPY 0.2872 121.1903 12.5384 0.0112 0.7128 163.6315 12.5693 0.0105

Panel 2: δbase

AIG 0.1143 130.5569 9.8497 0.0559 0.8857 319.0416 10.4314 0.0125

CVX 0.0850 133.7953 10.1669 0.0955 0.9150 313.8968 10.7078 0.0208

GM 0.1160 118.0308 10.5587 0.0263 0.8840 322.2345 11.0875 0.0108

INTC 0.0927 74.9235 11.0813 0.0322 0.9073 324.9734 11.6372 0.0104

JPM 0.0841 125.3751 10.8545 0.0418 0.9159 312.8143 11.4173 0.0116

PFE 0.0913 97.2756 11.0988 0.0255 0.9087 325.8391 11.9515 0.0105

T 0.1157 119.8705 11.0834 0.0216 0.8843 329.2462 11.7086 0.0103

VZ 0.1208 123.4531 10.5768 0.0331 0.8792 321.1928 11.1385 0.0109

WMT 0.1452 141.7026 10.1616 0.0523 0.8548 321.0501 10.7405 0.0133

SPY 0.2278 237.3538 13.1662 0.0110 0.7722 320.3829 13.3029 0.0106

Panel 3: δhigh

AIG 0.0941 261.2665 10.5671 0.0847 0.9059 617.3509 11.1135 0.0135

CVX 0.1298 365.2893 11.0602 0.0920 0.8702 621.2395 11.4181 0.0209

GM 0.1319 320.0325 11.4618 0.0310 0.8681 618.7894 11.7764 0.0111

INTC 0.0704 171.5377 12.1823 0.0465 0.9296 617.4036 12.3104 0.0106

JPM 0.0586 204.2368 11.7830 0.0717 0.9414 600.5786 12.1012 0.0118

PFE 0.0978 225.3298 11.9930 0.0321 0.9022 638.6826 12.6167 0.0105

T 0.0876 238.9562 11.8558 0.0310 0.9124 617.4709 12.3714 0.0106

VZ 0.0969 243.4376 11.3806 0.0514 0.9031 616.4577 11.8249 0.0111

WMT 0.1448 295.7031 10.9367 0.0662 0.8552 627.9593 11.4175 0.0144

SPY 0.2702 483.1841 13.8605 0.0112 0.7298 638.0725 14.0178 0.0106

Note: in this table we present the sample mean of regime-specific si, x̃
(δ)
i , ln Ṽ oli and BASi for the entire sampling period,

where the regimes are estimated monthly from the MS(2)-ACI(1,1) model as in Tables 3 to 5. The column %(ŝi = l)

computes the annual percentage of data being classified into regime l.
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we find that b̂1(2) is smaller (resp. larger) to the proposed exponent 4/5 as in Hypothesis 1 of

the paper when we choose a smaller (resp. larger) δ relative to the base δ. This provides ample

room for future research on the volume-duration relationship under different aggregation levels,

which is beyond the scope of the paper.

Table 7: Descriptive statistics of b̂1(l) and R2(l) for regimes 1 and 2 based on δlow and δhigh

Pane1 1: All Individual Stocks

Results based on δlow Results based on δhigh

Mean Std. Dev. Q(25%) Median Q(75%) Mean Std. Dev. Q(25%) Median Q(75%)

b̂1(1) 0.3853 0.0724 0.3323 0.3786 0.4429 0.5569 0.1798 0.4589 0.5718 0.6818

b̂1(2) 0.7638 0.0473 0.7370 0.7678 0.7935 0.8250 0.0543 0.7919 0.8239 0.8655

R2(1) 0.2669 0.0858 0.1981 0.2585 0.3301 0.3830 0.1799 0.2592 0.3956 0.5234

R2(2) 0.6272 0.0631 0.5895 0.6363 0.6803 0.7027 0.0776 0.6673 0.7204 0.7547

Pane1 2: SPY Only

Results based on δlow Results based on δhigh

Mean Std. Dev. Q(25%) Median Q(75%) Mean Std. Dev. Q(25%) Median Q(75%)

b̂1(1) 0.5686 0.0786 0.5538 0.5689 0.6039 0.6225 0.0550 0.5851 0.6078 0.6575

b̂1(2) 0.7879 0.0511 0.7438 0.7927 0.8206 0.8236 0.0494 0.7711 0.8380 0.8683

R2(1) 0.6507 0.1711 0.6535 0.6801 0.7408 0.7786 0.0601 0.7364 0.7855 0.7973

R2(2) 0.6525 0.0536 0.6050 0.6535 0.6965 0.7113 0.0694 0.6535 0.7132 0.7665

Note: the table presents descriptive statistics of estimated b̂1(l) and R2(l) from ln Ṽ oli = b0(l) + b1(l) ln x̃
(δ)
i + ui with

l = 1, 2 for all 120 stock-months in our sample constructed using either δlow or δhigh. The regime classification is estimated

monthly by the MS(2)-ACI(1,1) model as in Tables 4 and 5. Results for SPY are excluded in the ‘All Individual Stocks’

panel and are presented separately in the ‘SPY Only’ panel. Q(x%) is the x% quantile.

Finally, for each asset we plot the time-of-day distribution of the observations classified

into regimes 1 and 2 under different choices of δ in Figures 2 to 4. The figures show that, for

individual assets, regime 1 observations largely concentrate at the beginning of a trading day

which is possibly driven by the accumulation of firm-specific information overnight, while regime

2 observations spread more evenly throughout the day. This discrepancy cannot be observed

from SPY as observations in both regimes have very similar time-of-day distribution. This result

is again insensitive to the choice of δ considered, which demonstrates the robustness of our regime

identification and interpretation.

2 Empirical Results on an Extended Sample

In this section, we show that our findings based on the 10 sampled assets (the main sample)

in our paper can also be observed from a larger collection of stocks, which demonstrates the
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Figure 2: Time-of-day distribution of regimes under δbase

Note: The figure plots the histogram of the time of day associated with observations in regimes 1 and 2, where the regimes

are estimated monthly based on the MS(2)-ACI(1,1) model under δbase. The y-axis is the percentage of regime-specific

observations that fall in one of the 20 equidistant time intervals.

Figure 3: Time-of-day distribution of regimes under δlow

Note: The figure plots the histogram of the time of day associated with observations in regimes 1 and 2, where the regimes

are estimated monthly based on the MS(2)-ACI(1,1) model under δlow. The y-axis is the percentage of regime-specific

observations that fall in one of the 20 equidistant time intervals.

11
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Figure 4: Time-of-day distribution of regimes under δhigh

Note: The figure plots the histogram of the time of day associated with observations in regimes 1 and 2, where the regimes

are estimated monthly based on the MS(2)-ACI(1,1) model under δhigh. The y-axis is the percentage of regime-specific

observations that fall in one of the 20 equidistant time intervals.

generality of the results in our paper. Our extended sample consists of 24 additional individual

stocks that cover all Dow Jones 30 constituents in 2016 (6 stocks are already included in our

original sample). We present a description of the stocks and their tickers in Table 8.

Following the construction of price durations for the main sample in our paper, for each

asset in the extended sample, we choose a daily δ which generates a daily average price duration

that is as close to 5 minutes as possible. We deseasonalize the price durations and the log-

cumulative volume in the same manner as the main sample, and estimate the MS(2)-ACI(1,1)

model monthly to obtain parameter estimates and the fitted most probable state vector for each

stock-month. For brevity, we do not present the values of δ and the descriptive statistics of all

24 stocks, which are available upon request.

To demonstrate that the findings on the regime identification of the MS(2)-ACI(1,1) model

estimated on the main sample also hold true for the extended sample, we summarize the monthly

estimated η̂(l), γ̂ll and ŜoR(l) for the extended sample in Table 9. The table clearly shows that

for all assets in the extended sample, η̂(l) are mostly significant, with η̂(2) much larger than

η̂(1) in magnitude. All estimated γ̂22s are negative and significant, while γ̂11s all appear positive

with a relatively much weaker statistical significance. Finally, all average ŜoR(l) estimates are

12
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Table 8: Description of the stocks and their tickers in the extended sample

Ticker Corporate Name Ticker Corporate Name

AAPL Apple Inc. V Visa Inc.

AXP American Express Company HD The Home Depot, Inc.

BA The Boeing Company IBM International Business Machines Corporation

CAT Caterpillar Inc. JNJ Johnson & Johnson

CSCO Cisco Systems, Inc. KO The Coca-Cola Company

DD E.I. du Pont de Nemours & Company MCD McDonald’s Corporation

DIS The Walt Disney Company MMM 3M Company

GE General Electric Company MRK Merck & Co., Inc.

GS The Goldman Sachs Group, Inc. MSFT Microsoft Corporation

NKE Nike, Inc. PG The Procter & Gamble Company

TRV The Travelers Companies, Inc. UTX United Technologies Corporation

UNH UnitedHealth Group Inc. XOM Exxon Mobil Corporation

Note: all stocks are the constituents of the Dow Jones Industrial Average index in 2016.

larger than 0.96, which suggests that the regime identification is very strong for all assets in the

extended sample. This result is largely in line with our findings for the main sample in Table 3.

Following the structure of the previous section, we also show that the interpretation of the

two regimes is applicable to the results of the extended sample. To this end, we firstly replicate

Table 6 using the extended sample, which is presented in Table 10. The table convincingly shows

that the regime-specific averages of all variables for each stock in the extended sample follow the

same pattern as those for the individual stocks in Table 6.

We also replicate Table 5 of our paper again using the extended sample, and present our

results in Table 11. The results in Table 11 is largely in line with Table 5 of our paper. In fact the

results in Table 11 further strengthen our volume-duration invariance hypothesis as b̂1(2) ≈ 4/5

is also observed for the extended sample. Combining the results for both samples does not alter

our main conclusion.

Lastly, we compare the time-of-day distributions of observations from regimes 1 and 2 for

each asset in the extended sample, which is shown in Figure 5. Comparing Figure 5 with Figure

2, it is evident that the time-of-day distributions of regimes 1 and 2 for all assets in the extended

sample have the same pattern as those for the individual assets in the main sample. This

corroborates our interpretation in our paper that regime 1 observations are information driven

due to the aggregation of overnight firm-specific news arrivals.

13

Electronic copy available at: https://ssrn.com/abstract=2785499



Table 9: Descriptive statistics of monthly estimated η̂(l), γ̂ll and ŜoR(l) from the extended sample

Ticker Mean Std. Dev. Q(25%) Median Q(75%) #5% Sig. Mean Std. Dev. Q(25%) Median Q(75%) #5% Sig.

η̂(l) -0.546 0.174 -0.613 -0.530 -0.481 11 -3.376 0.248 -3.470 -3.331 -3.198 12
AAPL γ̂ll 0.510 0.651 0.358 0.524 0.916 6 -2.626 0.646 -2.836 -2.525 -2.187 12

ŜoR(l) 0.987 0.006 0.982 0.988 0.990 0.983 0.007 0.977 0.983 0.987

η̂(l) -0.543 0.186 -0.666 -0.540 -0.450 11 -2.435 0.220 -2.592 -2.466 -2.329 11
AXP γ̂ll 0.378 0.222 0.251 0.322 0.543 2 -2.436 0.422 -2.705 -2.544 -2.083 11

ŜoR(l) 0.983 0.005 0.979 0.984 0.986 0.976 0.007 0.970 0.977 0.980

η̂(l) -0.509 0.205 -0.586 -0.430 -0.420 12 -2.424 0.324 -2.537 -2.434 -2.183 12
BA γ̂ll 0.242 0.144 0.112 0.209 0.400 3 -2.256 0.420 -2.406 -2.115 -1.969 12

ŜoR(l) 0.977 0.009 0.970 0.976 0.984 0.968 0.012 0.959 0.967 0.977

η̂(l) -0.663 0.216 -0.726 -0.669 -0.508 12 -2.357 0.196 -2.550 -2.373 -2.195 12
CAT γ̂ll 0.297 0.465 0.058 0.290 0.665 5 -2.011 0.482 -2.133 -1.971 -1.792 11

ŜoR(l) 0.973 0.018 0.967 0.978 0.981 0.965 0.021 0.956 0.970 0.975

η̂(l) -0.343 0.143 -0.404 -0.321 -0.242 11 -2.277 0.168 -2.451 -2.244 -2.130 12
CSCO γ̂ll 6.749 6.700 1.438 2.194 14.563 10 -5.072 0.845 -5.576 -4.983 -4.416 12

ŜoR(l) 0.990 0.007 0.990 0.992 0.995 0.987 0.009 0.986 0.990 0.992

η̂(l) -0.395 0.109 -0.493 -0.375 -0.323 12 -1.859 0.307 -1.912 -1.773 -1.709 12
DD γ̂ll 0.405 0.247 0.269 0.340 0.625 6 -2.021 0.551 -2.463 -1.997 -1.507 12

ŜoR(l) 0.979 0.006 0.975 0.978 0.984 0.971 0.007 0.967 0.971 0.976

η̂(l) -0.561 0.179 -0.684 -0.582 -0.425 12 -2.705 0.221 -2.864 -2.729 -2.558 12
DIS γ̂ll 0.477 0.369 0.280 0.539 0.669 8 -2.303 0.277 -2.447 -2.284 -2.071 12

ŜoR(l) 0.982 0.005 0.977 0.982 0.986 0.975 0.007 0.969 0.975 0.981

η̂(l) -0.711 0.272 -0.919 -0.705 -0.541 12 -2.508 0.240 -2.639 -2.506 -2.367 12
GE γ̂ll 9.261 7.470 1.239 14.433 15.480 9 -5.708 3.903 -5.908 -4.590 -3.776 11

ŜoR(l) 0.975 0.011 0.965 0.975 0.985 0.970 0.012 0.957 0.972 0.982

η̂(l) -0.746 0.507 -0.721 -0.588 -0.443 12 -2.303 0.195 -2.340 -2.275 -2.180 12
GS γ̂ll 0.143 0.610 -0.197 0.010 0.210 3 -2.214 0.634 -2.615 -2.257 -1.759 11

ŜoR(l) 0.972 0.018 0.972 0.975 0.982 0.965 0.020 0.964 0.967 0.976

η̂(l) -0.651 0.170 -0.796 -0.631 -0.511 12 -2.601 0.434 -2.700 -2.612 -2.537 12
NKE γ̂ll 0.693 0.585 0.234 0.512 1.276 6 -2.751 0.846 -3.093 -2.444 -2.140 12

ŜoR(l) 0.979 0.008 0.975 0.980 0.984 0.971 0.009 0.965 0.972 0.976

η̂(l) -0.373 0.082 -0.436 -0.360 -0.313 12 -2.188 0.218 -2.249 -2.176 -2.037 12
TRV γ̂ll 0.426 0.221 0.261 0.398 0.529 6 -2.446 0.366 -2.768 -2.452 -2.158 12

ŜoR(l) 0.984 0.004 0.981 0.984 0.986 0.977 0.006 0.974 0.976 0.980

η̂(l) -0.536 0.155 -0.640 -0.496 -0.433 12 -2.424 0.257 -2.617 -2.401 -2.232 12
UNH γ̂ll 0.300 0.176 0.175 0.274 0.459 5 -2.369 0.462 -2.726 -2.441 -1.998 12

ŜoR(l) 0.979 0.008 0.973 0.980 0.985 0.971 0.009 0.964 0.973 0.977

η̂(l) -0.564 0.198 -0.729 -0.534 -0.401 12 -2.733 0.229 -2.906 -2.782 -2.521 12
V γ̂ll 0.699 0.312 0.480 0.678 0.852 9 -2.299 0.303 -2.539 -2.224 -2.103 12

ŜoR(l) 0.987 0.002 0.986 0.987 0.988 0.981 0.002 0.980 0.981 0.983

η̂(l) -0.474 0.095 -0.539 -0.468 -0.426 12 -2.674 0.197 -2.831 -2.685 -2.530 12
HD γ̂ll 0.406 0.207 0.275 0.368 0.510 6 -2.338 0.489 -2.738 -2.360 -2.034 12

ŜoR(l) 0.983 0.005 0.979 0.984 0.987 0.976 0.007 0.971 0.978 0.982

η̂(l) -0.458 0.161 -0.562 -0.430 -0.350 12 -2.506 0.175 -2.599 -2.530 -2.418 12
IBM γ̂ll 0.169 0.267 0.044 0.168 0.354 2 -2.461 0.540 -2.628 -2.428 -2.108 12

ŜoR(l) 0.984 0.005 0.980 0.985 0.988 0.978 0.006 0.972 0.977 0.983

η̂(l) -0.534 0.196 -0.709 -0.550 -0.333 12 -2.795 0.200 -2.889 -2.774 -2.662 12
JNJ γ̂ll 0.369 0.244 0.167 0.363 0.544 7 -1.825 0.195 -2.001 -1.848 -1.725 12

ŜoR(l) 0.981 0.005 0.977 0.980 0.985 0.975 0.006 0.972 0.975 0.980

η̂(l) -0.474 0.194 -0.622 -0.440 -0.313 12 -2.252 0.241 -2.336 -2.241 -2.060 12
KO γ̂ll 4.027 5.644 0.993 1.651 3.165 10 -3.686 0.562 -3.976 -3.575 -3.324 12

ŜoR(l) 0.988 0.003 0.986 0.989 0.990 0.985 0.004 0.982 0.985 0.987

η̂(l) -0.636 0.206 -0.680 -0.614 -0.531 12 -2.879 0.256 -3.106 -2.892 -2.684 12
MCD γ̂ll 0.397 0.264 0.228 0.436 0.545 7 -2.221 0.628 -2.272 -2.205 -1.846 12

ŜoR(l) 0.979 0.007 0.978 0.979 0.984 0.971 0.009 0.968 0.971 0.978

η̂(l) -0.392 0.171 -0.443 -0.381 -0.272 12 -2.359 0.364 -2.582 -2.192 -2.172 12
MMM γ̂ll 0.261 0.147 0.146 0.299 0.367 3 -2.549 0.403 -2.699 -2.510 -2.195 12

ŜoR(l) 0.983 0.005 0.979 0.985 0.987 0.976 0.007 0.970 0.978 0.982

η̂(l) -0.424 0.174 -0.572 -0.441 -0.282 11 -2.465 0.200 -2.653 -2.428 -2.321 12
MRK γ̂ll 0.628 0.382 0.331 0.646 0.933 6 -2.630 0.597 -2.987 -2.662 -2.166 12

ŜoR(l) 0.986 0.006 0.981 0.986 0.992 0.980 0.008 0.974 0.982 0.987

η̂(l) -0.401 0.168 -0.513 -0.406 -0.283 11 -2.755 0.264 -2.874 -2.747 -2.556 12
MSFT γ̂ll 3.255 5.683 0.548 0.828 1.583 7 -4.150 0.909 -4.891 -3.923 -3.436 12

ŜoR(l) 0.992 0.003 0.990 0.991 0.993 0.990 0.003 0.987 0.989 0.991

η̂(l) -0.435 0.114 -0.526 -0.424 -0.338 12 -2.687 0.375 -2.971 -2.821 -2.320 12
PG γ̂ll 0.666 0.382 0.420 0.801 0.904 9 -2.483 0.427 -2.732 -2.465 -2.380 12

ŜoR(l) 0.983 0.008 0.976 0.985 0.989 0.978 0.009 0.969 0.979 0.983

η̂(l) -0.568 0.293 -0.783 -0.568 -0.295 12 -2.342 0.334 -2.444 -2.362 -2.109 12
UTX γ̂ll 0.272 0.390 -0.024 0.323 0.553 7 -2.089 0.292 -2.271 -2.113 -1.865 12

ŜoR(l) 0.985 0.005 0.981 0.986 0.988 0.980 0.007 0.975 0.978 0.983

η̂(l) -0.656 0.274 -0.734 -0.669 -0.580 12 -2.962 0.326 -3.177 -2.895 -2.776 12
XOM γ̂ll 0.574 0.483 0.344 0.457 0.676 5 -2.444 0.368 -2.750 -2.421 -2.265 12

ŜoR(l) 0.983 0.005 0.981 0.984 0.987 0.977 0.006 0.974 0.978 0.981

Note: The table reports descriptive statistics of monthly estimated η̂(l), γ̂ll and ŜoR(l) from the MS(2)-ACI(1,1) model

estimated on the extended sample. The column #5% Sig. is the number of of significant parameter estimates out of the 12

monthly estimates. 14
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Table 10: Annual averages of ŝi, x̃
(δ)
i , ln Ṽ oli and BASi for regimes 1 and 2 for the extended sample

Regime 1 Regime 2

Ticker %(ŝi = 1) x̃
(δ)
i ln Ṽ oli BASi %(ŝi = 2) x̃

(δ)
i ln Ṽ oli BASi

AAPL 0.0551 91.8817 12.0031 0.0370 0.9449 306.6248 12.3896 0.0119

AXP 0.1510 165.8976 9.6395 0.0622 0.8490 317.0809 10.1671 0.0151

BA 0.1493 177.2054 9.5152 0.1570 0.8507 315.4958 10.0664 0.0461

CAT 0.1297 179.4191 9.7900 0.0766 0.8703 309.9714 10.2893 0.0231

CSCO 0.0949 89.7579 11.1721 0.0264 0.9051 330.0185 11.7716 0.0102

DD 0.1352 153.4883 9.1055 0.0924 0.8648 320.3704 9.6237 0.0210

DIS 0.1352 151.6551 10.2023 0.0689 0.8648 315.9966 10.6810 0.0175

GE 0.1243 154.0692 11.7078 0.0144 0.8757 340.0005 12.1774 0.0102

GS 0.1165 173.5606 9.4959 0.2211 0.8835 314.3397 10.0019 0.0863

NKE 0.1533 164.3781 10.4660 0.0409 0.8467 314.1945 10.8026 0.0137

TRV 0.1445 180.1966 8.5116 0.1891 0.8555 315.7850 9.0409 0.0384

UNH 0.1592 181.8590 9.3980 0.1899 0.8408 317.1635 9.7408 0.0483

V 0.1186 132.5547 10.2186 0.0755 0.8814 318.7315 10.7278 0.0150

HD 0.1371 171.6699 9.7693 0.1321 0.8629 317.6330 10.2090 0.0330

IBM 0.1101 146.5353 9.3814 0.1916 0.8899 314.3452 9.9763 0.0479

JNJ 0.1393 134.8873 9.8100 0.0924 0.8607 325.6155 10.4627 0.0192

KO 0.1095 93.1248 10.3803 0.0305 0.8905 331.1631 11.0841 0.0106

MCD 0.1636 166.7272 9.8791 0.0973 0.8364 319.8651 10.2370 0.0238

MMM 0.1666 159.9102 8.8182 0.2284 0.8334 323.3118 9.2726 0.0523

MRK 0.1119 120.1513 10.1628 0.0617 0.8881 321.2483 10.7851 0.0126

MSFT 0.0694 69.3481 11.4449 0.0393 0.9306 317.6993 12.0264 0.0105

PG 0.1379 137.6501 10.2305 0.0667 0.8621 325.4344 10.7287 0.0136

UTX 0.1337 158.3380 9.3806 0.1224 0.8663 318.1102 9.9181 0.0277

XOM 0.1228 156.3153 10.6496 0.0570 0.8772 319.5497 11.0959 0.0138

Note: in this table we present the sample mean of regime-specific si, x̃
(δ)
i , ln Ṽ oli and BASi for the entire sampling period,

where the regimes are estimated monthly from the MS(2)-ACI(1,1) model as in Tables 9. The column %(ŝi = l) computes

the annual percentage of data being classified into regime l.
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Figure 5: Time-of-day distribution of regimes for the extended sample

Note: The figure plots the histogram of the time of day associated with observations in regimes 1 and 2, where the regimes

are estimated monthly based on the MS(2)-ACI(1,1) model for the extended sample. The y-axis is the percentage of regime-

specific observations that fall in one of the 20 equidistant time intervals.
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Table 11: Descriptive statistics of b̂1(l) and R2(l) for regimes 1 and 2

Mean Std. Dev. Q(25%) Median Q(75%)

Extended Sample Only

b̂1(1) 0.4163 0.1174 0.3501 0.4109 0.4838

b̂1(2) 0.8042 0.0503 0.7719 0.8045 0.8410

R2(1) 0.3118 0.1231 0.2308 0.3154 0.3831

R2(2) 0.6745 0.0740 0.6271 0.6844 0.7311

Extended Sample + Individual Stocks of Main Sample

b̂1(1) 0.4304 0.1198 0.3599 0.4240 0.4996

b̂1(2) 0.8030 0.0495 0.7724 0.8045 0.8381

R2(1) 0.3107 0.1212 0.2325 0.3076 0.3914

R2(2) 0.6735 0.0718 0.6310 0.6822 0.7256

Note: the table presents descriptive statistics of estimated b̂1(l) and R2(l) from ln Ṽ oli = b0(l) + b1(l) ln x̃
(δ)
i + ui with

l = 1, 2 for each stock-month. The ‘extended sample only’ panel presents parameter estimates based on the 24 assets in the

extended sample, while the ‘extended sample + individual stocks of main sample’ also include the 9 individual stocks in the

main sample. The regime classification is estimated monthly by the MS(2)-ACI(1,1) model. Results for SPY are excluded

in the ‘All Individual Stocks’ panel and are presented separately in the ‘SPY Only’ panel. Q(x%) is the x% quantile.
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