Revisiting even and odd square-free numbers

G.J.O. Jameson

An integer is square-free if none of its prime factors appears to a power greater than 1 (this includes 1 , since it has no prime factors). Denote by $F(x)$ the number of square-free positive integers not greater than x. It is well known that $F(x) \sim\left(6 / \pi^{2}\right) x$ as $x \rightarrow \infty$, where the notation $f(x) \sim g(x)$ means $f(x) / g(x) \rightarrow 1$ as $x \rightarrow \infty$ (see, for example, [1, Theorem 333]).

In response to a conjecture in [2], the author showed in [3] that, asymptotically, two thirds of the square free numbers are odd and one third even. This was done by modifying the proof of the result for $F(x)$, using concepts like the Möbius function and Dirichlet convolutions. Here, hoping to spare any future readers unnecessary effort, I offer a much more elementary proof.

Let $F_{1}(x)$ be the number of even square-free integers not greater than x, and $F_{2}(x)$ the number of odd ones. There is a very obvious relationship. An even square-free number n is necessarily of the form $4 k+2$: then $\frac{n}{2}=2 k+1$ is odd and square-free. The converse is obviously true as well. Consequently, $F_{1}(x)=F_{2}(x / 2)$. Since $F(x)=F_{1}(x)+F_{2}(x)$, we have

$$
\begin{equation*}
F(x)=F_{2}(x)+F_{2}\left(\frac{x}{2}\right) . \tag{1}
\end{equation*}
$$

Now $F(x) \sim c x$, where $c=6 / \pi^{2}$. Suppose we know that $F_{1}(x) \sim a x$ and $F_{2}(x) \sim b x$. Then (1) implies that $F(x) \sim \frac{3}{2} b x$, hence $\frac{3}{2} b=c$, so $b=\frac{2}{3} c$ and $a=\frac{1}{3} c$. Apparently game over!

Of course, the snag is that we don't know, until we have proved it, that $F_{2}(x) / x$ tends to any limit as $x \rightarrow \infty$. The fact that $F_{1}(x)+F_{2}(x) \sim c x$, without further information, certainly does not imply that $F_{1}(x) / x$ and $F_{2}(x) / x$ tend to limits, even for positive, increasing functions F_{1} and F_{2}.

The matter will be resolved by inverting (1) to express $F_{2}(x)$ in terms of $F(x)$. To start, we have $F(x / 2)=F_{2}(x / 2)+F_{2}(x / 4)$, hence, with (1),

$$
F(x)-F\left(\frac{x}{2}\right)=F_{2}(x)-F_{2}\left(\frac{x}{4}\right) .
$$

So for each $r \geq 1$,

$$
F\left(\frac{x}{2^{2 r}}\right)-F\left(\frac{x}{2^{2 r+1}}\right)=F_{2}\left(\frac{x}{4^{r}}\right)-F_{2}\left(\frac{x}{4^{r+1}}\right) .
$$

Add these identities for $0 \leq r \leq k-1$. By cancellation on the right-hand side, we obtain

$$
\begin{equation*}
F(x)-F\left(\frac{x}{2}\right)+F\left(\frac{x}{4}\right)-\cdots-F\left(\frac{x}{2^{2 k-1}}\right)=F_{2}(x)-F_{2}\left(\frac{x}{4^{k}}\right) . \tag{2}
\end{equation*}
$$

Clearly, $F_{2}(t)=0$ when $t<1$, so when $4^{k}>x$, the right-hand side of (2) is simply $F_{2}(x)$, and we have indeed expressed $F_{2}(x)$ in terms of $F(x)$. However, for our purposes, we will apply (2) with another choice of k.

We now choose $\varepsilon>0$ and let the definition of a limit do the work. There exists x_{0} such that $(c-\varepsilon) x \leq F(x) \leq(c+\varepsilon) x$ for all $x \geq x_{0}$. We will show that for all large enough $x, F_{2}(x)$ lies between $\left(\frac{2}{3} c-4 \varepsilon\right) x$ and $\left(\frac{2}{3} c+4 \varepsilon\right) x$. We deal with the upper bound first. Let k be the largest integer such that $x / 2^{2 k-1} \geq x_{0}$. Then $x / 2^{2 k}<2 x_{0}$, and for $r \leq k-1$, we have

$$
\begin{gathered}
F\left(\frac{x}{2^{2 r}}\right) \leq(c+\varepsilon) \frac{x}{2^{2 r}} \\
F\left(\frac{x}{2^{2 r+1}}\right) \geq(c-\varepsilon) \frac{x}{2^{2 r+1}} .
\end{gathered}
$$

So the left-hand side of (2) is not greater than

$$
c x\left(1-\frac{1}{2}+\frac{1}{2^{2}}-\cdots-\frac{1}{2^{2 k-1}}\right)+\varepsilon x\left(1+\frac{1}{2}+\frac{1}{2^{2}}+\cdots+\frac{1}{2^{2 k-1}}\right) .
$$

By the geometric series, the first bracket equals $\frac{2}{3}\left(1-1 / 2^{2 k}\right)$ and the second bracket is less than 2. So

$$
F_{2}(x) \leq\left(\frac{2}{3} c+2 \varepsilon\right) x+F_{2}\left(\frac{x}{4^{k}}\right) .
$$

Now $x / 4^{k} \leq 2 x_{0}$ and obviously $F_{2}(t) \leq t$ for all t, so for $x>x_{0} / \varepsilon$, we have

$$
F_{2}(x) \leq\left(\frac{2}{3} c+2 \varepsilon\right) x+2 x_{0}<\left(\frac{2}{3} c+4 \varepsilon\right) x,
$$

as required. With minor modifications, a similar proof establishes the lower bound.

References

1. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers (5th ed), Oxford Univ. Press (1979).
2. J. A. Scott, Square-free integers once again, Math. Gaz. 92 (2008) 70-71.
3. G. J. O. Jameson, Even and odd square-free numbers, Math. Gaz. 94 (2010), 123-127.

Dept. of Mathematics and Statistics, Lancaster University, Lancaster LA1 4 YF, UK e-mail: g.jameson@lancaster.ac.uk

