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An integer is square-free if none of its prime factors appears to a power greater than 1

(this includes 1, since it has no prime factors). Denote by F (x) the number of square-free

positive integers not greater than x. It is well known that F (x) ∼ (6/π2)x as x→∞, where

the notation f(x) ∼ g(x) means f(x)/g(x) → 1 as x → ∞ (see, for example, [1, Theorem

333]).

In response to a conjecture in [2], the author showed in [3] that, asymptotically, two

thirds of the square free numbers are odd and one third even. This was done by modifying

the proof of the result for F (x), using concepts like the Möbius function and Dirichlet

convolutions. Here, hoping to spare any future readers unnecessary effort, I offer a much

more elementary proof.

Let F1(x) be the number of even square-free integers not greater than x, and F2(x)

the number of odd ones. There is a very obvious relationship. An even square-free number

n is necessarily of the form 4k + 2: then n
2

= 2k + 1 is odd and square-free. The converse

is obviously true as well. Consequently, F1(x) = F2(x/2). Since F (x) = F1(x) + F2(x), we

have

F (x) = F2(x) + F2

(x
2

)
. (1)

Now F (x) ∼ cx, where c = 6/π2. Suppose we know that F1(x) ∼ ax and F2(x) ∼ bx. Then

(1) implies that F (x) ∼ 3
2
bx, hence 3

2
b = c, so b = 2

3
c and a = 1

3
c. Apparently game over!

Of course, the snag is that we don’t know, until we have proved it, that F2(x)/x tends

to any limit as x → ∞. The fact that F1(x) + F2(x) ∼ cx, without further information,

certainly does not imply that F1(x)/x and F2(x)/x tend to limits, even for positive, increasing

functions F1 and F2.

The matter will be resolved by inverting (1) to express F2(x) in terms of F (x). To

start, we have F (x/2) = F2(x/2) + F2(x/4), hence, with (1),

F (x)− F
(x

2

)
= F2(x)− F2

(x
4

)
.

So for each r ≥ 1,

F
( x

22r

)
− F

( x

22r+1

)
= F2

( x
4r

)
− F2

( x

4r+1

)
.

Add these identities for 0 ≤ r ≤ k − 1. By cancellation on the right-hand side, we obtain

F (x)− F
(x

2

)
+ F

(x
4

)
− · · · − F

( x

22k−1

)
= F2(x)− F2

( x
4k

)
. (2)

1



Clearly, F2(t) = 0 when t < 1, so when 4k > x, the right-hand side of (2) is simply F2(x),

and we have indeed expressed F2(x) in terms of F (x). However, for our purposes, we will

apply (2) with another choice of k.

We now choose ε > 0 and let the definition of a limit do the work. There exists x0

such that (c− ε)x ≤ F (x) ≤ (c+ ε)x for all x ≥ x0. We will show that for all large enough

x, F2(x) lies between (2
3
c− 4ε)x and (2

3
c+ 4ε)x. We deal with the upper bound first. Let k

be the largest integer such that x/22k−1 ≥ x0. Then x/22k < 2x0, and for r ≤ k− 1, we have

F
( x

22r

)
≤ (c+ ε)

x

22r
,

F
( x

22r+1

)
≥ (c− ε) x

22r+1
.

So the left-hand side of (2) is not greater than

cx

(
1− 1

2
+

1

22
− · · · − 1

22k−1

)
+ εx

(
1 +

1

2
+

1

22
+ · · ·+ 1

22k−1

)
.

By the geometric series, the first bracket equals 2
3
(1− 1/22k) and the second bracket is less

than 2. So

F2(x) ≤ (2
3
c+ 2ε)x+ F2

( x
4k

)
.

Now x/4k ≤ 2x0 and obviously F2(t) ≤ t for all t, so for x > x0/ε, we have

F2(x) ≤ (2
3
c+ 2ε)x+ 2x0 < (2

3
c+ 4ε)x,

as required. With minor modifications, a similar proof establishes the lower bound.
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