Equal sums, sums of squares and sums of cubes

G.J.O. Jameson

Sums of squares; triples
Consider the problem of finding triples of numbers $\left(x_{1}, x_{2}, x_{3}\right)$ and $\left(y_{1}, y_{2}, y_{3}\right)$ satisfying

$$
\begin{equation*}
x_{1}+x_{2}+x_{3}=y_{1}+y_{2}+y_{3} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=y_{1}^{2}+y_{2}^{2}+y_{3}^{2} . \tag{2}
\end{equation*}
$$

The variables x_{j}, y_{j} are taken to be real numbers (not excluding negative numbers), but we shall be particularly interested in integer solutions.

It will help to use vector notation. We write $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, y_{3}\right)$. If (1) and (2) hold, we write $\mathbf{x} \sim \mathbf{y}$, and say that \mathbf{x} and \mathbf{y} are associates.

Of course, the problem is not really restricted to pairs of vectors. For given S_{1} and S_{2}, all solutions of the pair of equations

$$
x_{1}+x_{2}+x_{3}=S_{1}, \quad x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=S_{2}
$$

are associates of each other. Geometrically, this is the intersection of a plane and a sphere in three-dimensional space. However, it is not at all a pleasant exercise to find solutions (still less, integer solutions) of this pair of equations for given S_{1} and S_{2}. Instead, we will outline a method that generates associate pairs without effort.

Some elementary observations will help to pave the way.
(i) If $\mathbf{x} \sim \mathbf{y}$, then $\lambda \mathbf{x} \sim \lambda \mathbf{y}$ for any λ.
(ii) If $\mathbf{x} \sim \mathbf{y}$, then $\mathbf{x}^{\prime} \sim \mathbf{y}$ for any permutation \mathbf{x}^{\prime} of \mathbf{x}, for example (x_{2}, x_{1}, x_{3}). For example, we can re-order \mathbf{x} so that $x_{1} \leq x_{2} \leq x_{3}$ (we will say that \mathbf{x} is aligned if this holds).
(iii) If $\mathbf{x} \sim \mathbf{y}$, then $\left(x_{1}+c, x_{2}+c, x_{3}+c\right) \sim\left(y_{1}+c, y_{2}+c, y_{3}+c\right)$ for any c, since

$$
\sum_{j=1}^{3}\left(y_{j}+c\right)^{2}-\sum_{j=1}^{3}\left(x_{j}+c\right)^{2}=\sum_{j=1}^{3}\left(y_{j}^{2}-x_{j}^{2}\right)+2 c \sum_{j=1}^{3}\left(y_{j}-x_{j}\right) .
$$

So it is enough to present a pair normalised so that (for example) $x_{1}=0$. Also, any pair of vectors containing negative numbers can be converted in this way to a pair with all numbers non-negative.

Next, we note that the problem for 2 -vectors is trivial. Suppose that $x_{1}+x_{2}=y_{1}+y_{2}$ and $x_{1}^{2}+x_{2}^{2}=y_{1}^{2}+y_{2}^{2}$. Then $y_{1}-x_{1}=x_{2}-y_{2}$ and $y_{1}^{2}-x_{1}^{2}=x_{2}^{2}-y_{2}^{2}$, so that $\left(y_{1}-x_{1}\right)\left(y_{1}+x_{1}\right)=$
$\left(x_{2}-y_{2}\right)\left(x_{2}+y_{2}\right)$. So either we have $x_{1}=y_{1}$ and $x_{2}=y_{2}$, or $y_{1}+x_{1}=x_{2}+y_{2}$, in which case $x_{1}=y_{2}$ and $x_{2}=y_{1}$.

Consequently, for 3 -vectors, if $\mathbf{x} \sim \mathbf{y}$ and any x_{i} equals any y_{j}, then \mathbf{y} is simply a permutation of \mathbf{x}.

A given integer triple can have at most a finite number of integer-valued associates, because condition (2) sets a bound on $\left|y_{j}\right|$. There are plenty of triples that have no integervalued associates other than permutations, for example $(0,1,2)$ and $(0,1,3)$ (this is easily checked, with the help of the previous remark).

A neat observation (supplied to me by Nick Lord) is that if $\mathbf{x} \sim \mathbf{y}$, then $(p \mathbf{x}+q \mathbf{y}) \sim$ $(q \mathbf{x}+p \mathbf{y})$ for any p, q.

We are now ready to describe our method. Suppose that \mathbf{x} and \mathbf{y} satisfy (1). Let $z_{j}=\frac{1}{2}\left(x_{j}+y_{j}\right)$. Then for some a and b, we have

$$
\begin{array}{lll}
x_{1}=z_{1}-a, & x_{2}=z_{2}+a+b, & x_{3}=z_{3}-b, \\
y_{1}=z_{1}+a, & y_{2}=z_{2}-a-b, & y_{3}=z_{3}+b . \tag{4}
\end{array}
$$

For non-trivial examples, a and b must be non-zero. Now

$$
\sum_{j=1}^{3} y_{j}^{2}-\sum_{j=1}^{3} x_{j}^{2}=4 a z_{1}-4(a+b) z_{2}+4 b z_{3}
$$

so for (2) to hold, we must have $g(\mathbf{z})=0$, where

$$
\begin{equation*}
g(\mathbf{z})=a z_{1}-(a+b) z_{2}+b z_{3}=a\left(z_{1}-z_{2}\right)+b\left(z_{3}-z_{2}\right) \tag{5}
\end{equation*}
$$

For a chosen a and b, the set $\{\mathbf{z}: g(\mathbf{z})=0\}$ is a two-dimensional linear subspace E of \mathbb{R}^{3}. Two obvious members are $(0, b, a+b)$ and $(1,1,1)$. It is easily verified that all elements of E are linear combinations of these two, in other words, of the form

$$
\begin{equation*}
\mathbf{z}=\lambda(0, b, a+b)+\mu(1,1,1) \tag{6}
\end{equation*}
$$

For each such \mathbf{z}, an associate pair \mathbf{x}, \mathbf{y} is then defined by (3) and (4). All associate pairs are obtained by allowing λ, μ, a and b to vary freely. However, a good deal of duplication occurs, in ways which will emerge below.

To normalise with $x_{1}=0$, we take $\mu=a$, with the effect that the scheme becomes

$$
\begin{gather*}
\mathbf{x}=\lambda(0, b, a+b)+(0,2 a+b, a-b), \tag{7}\\
\mathbf{y}=\lambda(0, b, a+b)+(2 a,-b, a+b) \tag{8}
\end{gather*}
$$

Any choice of a, b and λ delivers an associate pair. However, the choice $\lambda=1$ is not productive: it gives $\mathbf{x}=(0,2 a+2 b, 2 a)$ and $\mathbf{y}=(2 a, 0,2 a+2 b)$, a permutation of \mathbf{x}. Similarly for $\lambda=-1$.

The x_{j} and y_{j} will be integers if a, b and λ are integers, but more exactly, it is easily checked that necessary and sufficient conditions are that $2 a, 2 b,(\lambda-1) a$ and $(\lambda-1) b$ are all integers. Since $\mathbf{y}-\mathbf{x}=(2 a,-2 a-2 b, 2 b)$, it is entirely natural to consider cases where a or b is a half integer.

Example 1. Take $a=b=\frac{1}{2}$. By (7) and (8), we have $\mathbf{x}=\left(0, \frac{1}{2}(\lambda+3), \lambda\right)$ and $\mathbf{y}=\left(1, \frac{1}{2}(\lambda-1), \lambda+1\right)$. For integer values, we need λ to be an odd integer. Note that \mathbf{x} and \mathbf{y} will be aligned if $\lambda \geq 3$. We record a few such cases:

λ	\mathbf{x}	\mathbf{y}
3	$(0,3,3)$	$(1,1,4)$
5	$(0,4,5)$	$(1,2,6)$
7	$(0,5,7)$	$(1,3,8)$
9	$(0,6,9)$	$(1,4,10)$
11	$(0,7,11)$	$(1,5,12)$

Meanwhile, $\lambda=4$ gives $\mathbf{x}=\left(0, \frac{7}{2}, 4\right)$ and $\mathbf{y}=\left(1, \frac{3}{2}, 5\right)$, which we can double to give the integer-valued pair $(0,7,8)$ and $(2,3,10)$. Also, $\lambda=2$, after doubling, gives $\mathbf{x}=(0,5,4)$ and $\mathbf{y}=(2,1,6)$, permutations of the pair derived from $\lambda=5$. This is actually an instance of a more general fact: one can check that if $\lambda>3$ generates the pair $\left(x_{1}, x_{2}, x_{3}\right), \quad\left(y_{1}, y_{2}, y_{3}\right)$ and $\mu=(\lambda+3) /(\lambda-1)$, then $\mu<3$ and μ generates the pair $\alpha\left(x_{1}, x_{3}, x_{2}\right)$ and $\alpha\left(y_{2}, y_{1}, y_{3}\right)$, where $\alpha=2 /(\lambda-1)$.

The reader may care to write out some examples delivered by other choices of a and b.
We mention some further consequences of our reasoning. First, if $x_{1}=x_{2}=x_{3}$, then $g(\mathbf{x})=0$. However, by (3) and the fact that $g(\mathbf{z})=0$, we have $g(\mathbf{x})=-a^{2}-(a+b)^{2}-b^{2}$. Hence $a=b=0$, so there are no associates other than \mathbf{x} itself.

Second, a fact about the possible interweaving of x_{j} and y_{j}. Suppose that associates \mathbf{x} and \mathbf{y} are aligned and $x_{3}<y_{3}$. We show that $x_{1}<y_{1}$, hence also $x_{2}>y_{2}$. Now $b>0$, and since \mathbf{y} is not a permutation of \mathbf{x}, we have $a \neq 0$. We have to show that $a>0$. By (5), $a\left(z_{2}-z_{1}\right)=b\left(z_{3}-z_{2}\right)$. If $z_{1}=z_{2}=z_{3}$, then, since \mathbf{x} and \mathbf{y} are aligned, $x_{1}=x_{2}=x_{3}$ and $y_{1}=y_{2}=y_{3}$: this is not possible with $x_{3}<y_{3}$. So $z_{1}<z_{2}<z_{3}$, hence $a>0$.

Now let us address the different problem of finding associates of a given vector x. For this, we vary the previous method slightly. Any y satisfying (1) can be expressed as follows:

$$
\begin{equation*}
y_{1}=x_{1}+a, \quad y_{2}=x_{2}-a-b, \quad y_{3}=x_{3}+b \tag{9}
\end{equation*}
$$

for some a, b (note that a replaces the previous $2 a$). Then $\sum_{j=1}^{3}\left(y_{j}^{2}-x_{j}^{2}\right)=2 R+2 S$, where

$$
\begin{gathered}
R=a^{2}+a b+b^{2} \\
S=a x_{1}-(a+b) x_{2}+b x_{3}=a\left(x_{1}-x_{2}\right)+b\left(x_{3}-x_{2}\right) .
\end{gathered}
$$

We have to choose a and b so that $R+S=0$. Write $b=q a$. Then $R=Q a^{2}$, where $Q=1+q+q^{2}$, and the condition $R+S=0$ equates to

$$
\left(x_{1}-x_{2}\right)+q\left(x_{3}-x_{2}\right)+Q a=0,
$$

so

$$
\begin{equation*}
a=\frac{1}{Q}\left[\left(x_{2}-x_{1}\right)+q\left(x_{2}-x_{3}\right)\right] . \tag{10}
\end{equation*}
$$

To obtain associates, we choose q freely, then define a by (10) and \mathbf{y} by (9), with $b=q a$. If the x_{j} are integers and a and q are rational, then the y_{j} may or may not be integers, but they will certainly be rational. Integer-valued associate pairs can then be derived by multiplying through by the denominator.

Example 2: Associates of $(0,3,3)$. We have seen the associate $(1,1,4)$ in Example 1. Using the principle that the y_{j} must be distinct from the x_{j}, it is easily checked that (apart from permutations), this is the only integer-valued associate. We record some rational associates. By (10), we have $a=3 / Q$.

q	Q	\mathbf{y}
1	3	$(1,1,4)$
2	7	$\left(\frac{3}{7}, \frac{12}{7}, \frac{27}{7}\right)$
3	13	$\left(\frac{3}{13}, \frac{27}{13}, \frac{48}{13}\right)$
4	21	$\left(\frac{1}{7}, \frac{16}{7}, \frac{25}{7}\right)$

Multiplying through by 7, we can exhibit the following example of multiple integer-valued associates:

$$
(0,21,21) \sim(7,7,28) \sim(3,12,27) \sim(1,16,25)
$$

The reader might care to verify the following fact: if $\left(y_{1}, y_{2}, y_{3}\right)$ is derived from q in this way, then the associate derived from $1 / q$ is $\left(y_{2}, y_{1}, y_{3}\right)$, and the associate derived from $-q-1$ is $\left(y_{1}, y_{3}, y_{2}\right)$.

Equal sums and products

We digress briefly to consider the problem of finding triples \mathbf{x} and \mathbf{y} such that $\sum_{j=1}^{3} x_{j}=$ $\sum_{j=1}^{3} y_{j}$ and $x_{1} x_{2} x_{3}=y_{1} y_{2} y_{3}$. To be of any interest, the x_{j} and y_{j} must be non-zero. This can be done very simply. Having chosen x_{1}, x_{2}, y_{1} and y_{2} however we like, we require x_{3} and y_{3} to satisfy $y_{3}-x_{3}=b$, where $b=x_{1}+x_{2}-y_{1}-y_{2}$, and $y_{3}=c x_{3}$, where $c=\left(x_{1} x_{2}\right) /\left(y_{1} y_{2}\right)$.

If $c=1$, then $x_{3}=y_{3}$, and as before, we see that x_{1} and x_{2} coincide with y_{1} and y_{2} in either order. So assume that $c \neq 1$. Then $(c-1) x_{3}=b$, so

$$
x_{3}=\frac{b}{c-1}, \quad y_{3}=\frac{b c}{c-1} .
$$

If the chosen numbers are integers, then a sufficient (but not necessary) condition for x_{3} and y_{3} to be integers is $c=1+\frac{1}{k}$, where k is an integer. Also, x_{3} and y_{3} will be positive if $x_{1}+x_{2}>y_{1}+y_{2}$ and $x_{1} x_{2}>y_{1} y_{2}$, or if the opposite inequalities hold.

Example 3. Let $x_{1}=10, x_{2}=8, y_{1}=12, y_{2}=5$. Then $b=1$ and $c=\frac{80}{60}=\frac{4}{3}$, so $x_{3}=3$ and $y_{3}=4$. The triples are $(10,8,3)$ and $(12,5,4)$.

Is it possible for such triples also to satisfy (2)? We can use our earlier work to show that is is not. Suppose that \mathbf{x} and \mathbf{y} are given by (3) and (4). With a bit of algebra, we find that the condition $x_{1} x_{2} x_{3}=y_{1} y_{2} y_{3}$ is equivalent to

$$
a z_{3}\left(z_{2}-z_{1}\right)+b z_{1}\left(z_{2}-z_{3}\right)=a b(a+b)
$$

If (2) is satisfied, then \mathbf{z} is given by (6). With these values substituted, the left-hand side becomes

$$
\lambda a b[\lambda(a+b)+\mu]-\lambda a b \mu=\lambda^{2} a b(a+b)
$$

Hence $\lambda= \pm 1$. As mentioned earlier, this implies that \mathbf{y} is a permutation of \mathbf{x}.

Sums of cubes: 4-vectors

What happens if we demand that $\sum_{j=1}^{3} x_{j}^{3}=\sum_{j=1}^{3} y_{j}^{3}$ in addition to (1) and (2)? With 3 -vectors, there are no non-trivial solutions. This fact is not obvious, but it is a case of the following result proved in [1]: if \mathbf{x} and \mathbf{y} are aligned associates with $x_{3}<y_{3}$, then $\sum_{j+1}^{3} f\left(x_{j}\right)<\sum_{j=1}^{3} f\left(y_{j}\right)$ for all functions f with strictly convex derivative f^{\prime}, so in particular for $f(x)=x^{3}$.

So we will try our luck with 4 -vectors. We wish them to satisfy

$$
\begin{equation*}
\sum_{j=1}^{4} x_{j}=\sum_{j=1}^{4} y_{j}, \quad \sum_{j=1}^{4} x_{j}^{2}=\sum_{j=1}^{4} y_{j}^{2}, \quad \sum_{j=1}^{4} x_{j}^{3}=\sum_{j=1}^{4} y_{j}^{3} . \tag{11}
\end{equation*}
$$

As before, the property is preserved if all x_{j} and y_{j} are mutliplied by λ or increased by c.
We will not attempt anything like a general solution. Instead, we will describe solutions that satisfy the extra condition $x_{1}+x_{2}=y_{1}+y_{2}$ (hence also $x_{3}+x_{4}=y_{3}+y_{4}$). This will be enough to deliver a plentiful supply of examples.

Let $z_{j}=\frac{1}{2}\left(x_{j}+y_{j}\right)$. Any pair \mathbf{x}, \mathbf{y} satisfying the conditions can be expressed as follows:

$$
\begin{equation*}
x_{1}=z_{1}-a, \quad x_{2}=z_{2}+a, \quad x_{3}=z_{3}-b, \quad x_{4}=z_{4}+b \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
y_{1}=z_{1}+a, \quad y_{2}=z_{2}-a, \quad y_{3}=z_{3}+b, \quad y_{4}=z_{4}-b \tag{13}
\end{equation*}
$$

for some a, b (both non-zero for non-trivial solutions). Then

$$
\sum_{j=1}^{4} y_{j}^{2}-\sum_{j=1}^{4} x_{j}^{2}=4 a\left(z_{1}-z_{2}\right)+4 b\left(z_{3}-z_{4}\right)
$$

So

$$
\begin{equation*}
a\left(z_{1}-z_{2}\right)=b\left(z_{4}-z_{3}\right) \tag{14}
\end{equation*}
$$

So if $z_{1}=z_{2}$, then $z_{3}=z_{4}$ and \mathbf{y} is a permutation of \mathbf{x}. Assume that $z_{1} \neq z_{2}$. Now $y_{1}^{3}-x_{1}^{3}=6 a z_{1}^{2}+2 a^{3}$, hence

$$
\begin{aligned}
& y_{1}^{3}-x_{1}^{3}+y_{2}^{3}-x_{2}^{3}=6 a\left(z_{1}^{2}-z_{2}^{2}\right) \\
& y_{3}^{3}-x_{3}^{3}+y_{4}^{3}-x_{4}^{3}=6 b\left(z_{3}^{2}-z_{4}^{2}\right)
\end{aligned}
$$

So

$$
a\left(z_{1}^{2}-z_{2}^{2}\right)=b\left(z_{4}^{2}-z_{3}^{2}\right)
$$

With (14), this implies

$$
\begin{equation*}
z_{1}+z_{2}=z_{3}+z_{4} \tag{15}
\end{equation*}
$$

So \mathbf{z} has to satisfy (14) and (15). One could solve this pair of equations following the rules, but it is very easy to spot two solutions: $(-b, b, a,-a)$ and $(1,1,1,1)$. Other solutions are linear combinations of these two: $\mathbf{z}=\lambda(-b, b, a,-a)+\mu(1,1,1,1)$. Corresponding to each such \mathbf{z}, a pair \mathbf{x}, \mathbf{y} is delivered by (12) and (13), However, it is easily checked that if $a=b$, or if $\lambda=1$, then \mathbf{y} is just a permutation of \mathbf{x}.

We illustrate this by working through the case $a=1, b=3$ (the reader might like to investigate the case $a=1, b=2$).

Example 4. Let $a=1, \quad b=3$. Then $\mathbf{z}=\lambda^{\prime}(-3,3,1,-1)+\mu^{\prime}(1,1,1,1)$ for some λ^{\prime} and μ^{\prime}. To arrange for non-negative \mathbf{x} and \mathbf{y}, we modify this to $\lambda(0,6,4,2)+\mu(1,1,1,1)$, and choose μ to make the smallest x_{j} or y_{j} zero. (Alternatively, one could do without these modifications and adjust \mathbf{x} and \mathbf{y} afterwards.) Also, it is now natural to take half-integer values for λ. The results are set out in the following table.

λ	μ	\mathbf{z}	\mathbf{x}	\mathbf{y}
$\frac{1}{2}$	2	$(2,5,4,3)$	$(1,6,1,6)$	$(3,4,7,0)$
$\frac{3}{2}$	1	$(1,10,7,4)$	$(0,11,4,7)$	$(2,9,10,1)$
$\frac{5}{2}$	1	$(1,16,11,6)$	$(0,17,8,9)$	$(2,15,4,3)$

One might now choose to rewrite these vectors in increasing order. Also, recall that any multiple of $(1,1,1,1)$ can be added to \mathbf{x} and \mathbf{y}. To reassure ourselves that the process has worked, note that in the first example $\sum_{j=1}^{4} x_{j}=14, \quad \sum_{j=1}^{4} x_{j}^{2}=74$ and $\sum_{j=1}^{4} x_{j}^{3}=434$, with the same values for \mathbf{y}.

A different perspective on these examples is given by considering $\sum_{j=1}^{4} x_{j}^{p}-\sum_{j=1}^{4} y_{j}^{p}$ as a function of p : denote it by $F(p)$ (now assuming that the x_{j} and y_{j} are all positive). We have ensured that $F(1)=F(2)=F(3)=0$. Clearly, also $F(0)=0$. It is shown in [2], by a generalisation of Descartes' rule of signs, that a function $F(p)$ of this kind can have at most four zeros. So $F(p)$ is non-zero for all other values of p, and alternates signs on the intervals between $0,1,2$ and 3 .

Acknowledgment: The author is grateful to the referee for some useful suggestions.

References

1. G. J. O. Jameson, Monotonicity of the mid-point and trapezium estimates for integrals, Math. Gazette 101 (2021), to appear.
2. G J. O. Jameson, Counting zeros of generalised polynomials: Descartes' rule of signs and Laguerre's extensions, Math. Gazette 90 (2006), 223-234.

13 Sandown Road, Lancaster LA1 4LN, UK
e-mail: pgjameson@talktalk.net

