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Sums of squares; triples

Consider the problem of finding triples of numbers (x1, x2, x3) and (y1, y2, y3) satisfying

x1 + x2 + x3 = y1 + y2 + y3 (1)

and

x21 + x22 + x23 = y21 + y22 + y23. (2)

The variables xj, yj are taken to be real numbers (not excluding negative numbers), but we

shall be particularly interested in integer solutions.

It will help to use vector notation. We write x = (x1, x2, x3) and y = (y1, y2, y3). If (1)

and (2) hold, we write x ∼ y, and say that x and y are associates.

Of course, the problem is not really restricted to pairs of vectors. For given S1 and S2,

all solutions of the pair of equations

x1 + x2 + x3 = S1, x21 + x22 + x23 = S2

are associates of each other. Geometrically, this is the intersection of a plane and a sphere in

three-dimensional space. However, it is not at all a pleasant exercise to find solutions (still

less, integer solutions) of this pair of equations for given S1 and S2. Instead, we will outline

a method that generates associate pairs without effort.

Some elementary observations will help to pave the way.

(i) If x ∼ y, then λx ∼ λy for any λ.

(ii) If x ∼ y, then x′ ∼ y for any permutation x′ of x, for example (x2, x1, x3). For

example, we can re-order x so that x1 ≤ x2 ≤ x3 (we will say that x is aligned if this holds).

(iii) If x ∼ y, then (x1 + c, x2 + c, x3 + c) ∼ (y1 + c, y2 + c, y3 + c) for any c, since

3∑
j=1

(yj + c)2 −
3∑

j=1

(xj + c)2 =
3∑

j=1

(y2j − x2j) + 2c
3∑

j=1

(yj − xj).

So it is enough to present a pair normalised so that (for example) x1 = 0. Also, any pair of

vectors containing negative numbers can be converted in this way to a pair with all numbers

non-negative.

Next, we note that the problem for 2-vectors is trivial. Suppose that x1 + x2 = y1 + y2

and x21+x22 = y21+y22. Then y1−x1 = x2−y2 and y21−x21 = x22−y22, so that (y1−x1)(y1+x1) =
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(x2 − y2)(x2 + y2). So either we have x1 = y1 and x2 = y2, or y1 + x1 = x2 + y2, in which

case x1 = y2 and x2 = y1.

Consequently, for 3-vectors, if x ∼ y and any xi equals any yj, then y is simply a

permutation of x.

A given integer triple can have at most a finite number of integer-valued associates,

because condition (2) sets a bound on |yj|. There are plenty of triples that have no integer-

valued associates other than permutations, for example (0, 1, 2) and (0, 1, 3) (this is easily

checked, with the help of the previous remark).

A neat observation (supplied to me by Nick Lord) is that if x ∼ y, then (px + qy) ∼
(qx + py) for any p, q.

We are now ready to describe our method. Suppose that x and y satisfy (1). Let

zj = 1
2
(xj + yj). Then for some a and b, we have

x1 = z1 − a, x2 = z2 + a+ b, x3 = z3 − b, (3)

y1 = z1 + a, y2 = z2 − a− b, y3 = z3 + b. (4)

For non-trivial examples, a and b must be non-zero. Now

3∑
j=1

y2j −
3∑

j=1

x2j = 4az1 − 4(a+ b)z2 + 4bz3,

so for (2) to hold, we must have g(z) = 0, where

g(z) = az1 − (a+ b)z2 + bz3 = a(z1 − z2) + b(z3 − z2). (5)

For a chosen a and b, the set {z : g(z) = 0} is a two-dimensional linear subspace E of

R3. Two obvious members are (0, b, a+ b) and (1, 1, 1). It is easily verified that all elements

of E are linear combinations of these two, in other words, of the form

z = λ(0, b, a+ b) + µ(1, 1, 1). (6)

For each such z, an associate pair x, y is then defined by (3) and (4). All associate pairs

are obtained by allowing λ, µ, a and b to vary freely. However, a good deal of duplication

occurs, in ways which will emerge below.

To normalise with x1 = 0, we take µ = a, with the effect that the scheme becomes

x = λ(0, b, a+ b) + (0, 2a+ b, a− b), (7)

y = λ(0, b, a+ b) + (2a,−b, a+ b). (8)
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Any choice of a, b and λ delivers an associate pair. However, the choice λ = 1 is not

productive: it gives x = (0, 2a + 2b, 2a) and y = (2a, 0, 2a + 2b), a permutation of x.

Similarly for λ = −1.

The xj and yj will be integers if a, b and λ are integers, but more exactly, it is easily

checked that necessary and sufficient conditions are that 2a, 2b, (λ − 1)a and (λ − 1)b are

all integers. Since y− x = (2a,−2a− 2b, 2b), it is entirely natural to consider cases where a

or b is a half integer.

Example 1. Take a = b = 1
2
. By (7) and (8), we have x = (0, 1

2
(λ + 3), λ) and

y = (1, 1
2
(λ− 1), λ+ 1). For integer values, we need λ to be an odd integer. Note that x and

y will be aligned if λ ≥ 3. We record a few such cases:

λ x y

3 (0, 3, 3) (1, 1, 4)

5 (0, 4, 5) (1, 2, 6)

7 (0, 5, 7) (1, 3, 8)

9 (0, 6, 9) (1, 4, 10)

11 (0, 7, 11) (1, 5, 12)

Meanwhile, λ = 4 gives x = (0, 7
2
, 4) and y = (1, 3

2
, 5), which we can double to give the

integer-valued pair (0, 7, 8) and (2, 3, 10). Also, λ = 2, after doubling, gives x = (0, 5, 4) and

y = (2, 1, 6), permutations of the pair derived from λ = 5. This is actually an instance of

a more general fact: one can check that if λ > 3 generates the pair (x1, x2, x3), (y1, y2, y3)

and µ = (λ+ 3)/(λ− 1), then µ < 3 and µ generates the pair α(x1, x3, x2) and α(y2, y1, y3),

where α = 2/(λ− 1).

The reader may care to write out some examples delivered by other choices of a and b.

We mention some further consequences of our reasoning. First, if x1 = x2 = x3, then

g(x) = 0. However, by (3) and the fact that g(z) = 0, we have g(x) = −a2 − (a + b)2 − b2.
Hence a = b = 0, so there are no associates other than x itself.

Second, a fact about the possible interweaving of xj and yj. Suppose that associates

x and y are aligned and x3 < y3. We show that x1 < y1, hence also x2 > y2. Now b > 0,

and since y is not a permutation of x, we have a 6= 0. We have to show that a > 0. By (5),

a(z2 − z1) = b(z3 − z2). If z1 = z2 = z3, then, since x and y are aligned, x1 = x2 = x3 and

y1 = y2 = y3: this is not possible with x3 < y3. So z1 < z2 < z3, hence a > 0.

Now let us address the different problem of finding associates of a given vector x. For

this, we vary the previous method slightly. Any y satisfying (1) can be expressed as follows:

y1 = x1 + a, y2 = x2 − a− b, y3 = x3 + b (9)
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for some a, b (note that a replaces the previous 2a). Then
∑3

j=1(y
2
j − x2j) = 2R+ 2S, where

R = a2 + ab+ b2,

S = ax1 − (a+ b)x2 + bx3 = a(x1 − x2) + b(x3 − x2).

We have to choose a and b so that R + S = 0. Write b = qa. Then R = Qa2, where

Q = 1 + q + q2, and the condition R + S = 0 equates to

(x1 − x2) + q(x3 − x2) +Qa = 0,

so

a =
1

Q
[(x2 − x1) + q(x2 − x3)]. (10)

To obtain associates, we choose q freely, then define a by (10) and y by (9), with b = qa. If

the xj are integers and a and q are rational, then the yj may or may not be integers, but they

will certainly be rational. Integer-valued associate pairs can then be derived by multiplying

through by the denominator.

Example 2: Associates of (0, 3, 3). We have seen the associate (1, 1, 4) in Example

1. Using the principle that the yj must be distinct from the xj, it is easily checked that

(apart from permutations), this is the only integer-valued associate. We record some rational

associates. By (10), we have a = 3/Q.

q Q y

1 3 (1, 1, 4)

2 7 (3
7
, 12

7
, 27

7
)

3 13 ( 3
13
, 27
13
, 48
13

)

4 21 (1
7
, 16

7
, 25

7
)

Multiplying through by 7, we can exhibit the following example of multiple integer-valued

associates:

(0, 21, 21) ∼ (7, 7, 28) ∼ (3, 12, 27) ∼ (1, 16, 25).

The reader might care to verify the following fact: if (y1, y2, y3) is derived from q in this way,

then the associate derived from 1/q is (y2, y1, y3), and the associate derived from −q − 1 is

(y1, y3, y2).

Equal sums and products

We digress briefly to consider the problem of finding triples x and y such that
∑3

j=1 xj =∑3
j=1 yj and x1x2x3 = y1y2y3. To be of any interest, the xj and yj must be non-zero. This

can be done very simply. Having chosen x1, x2, y1 and y2 however we like, we require x3 and

y3 to satisfy y3−x3 = b, where b = x1 +x2− y1− y2, and y3 = cx3, where c = (x1x2)/(y1y2).
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If c = 1, then x3 = y3, and as before, we see that x1 and x2 coincide with y1 and y2 in either

order. So assume that c 6= 1. Then (c− 1)x3 = b, so

x3 =
b

c− 1
, y3 =

bc

c− 1
.

If the chosen numbers are integers, then a sufficient (but not necessary) condition for x3 and

y3 to be integers is c = 1 + 1
k
, where k is an integer. Also, x3 and y3 will be positive if

x1 + x2 > y1 + y2 and x1x2 > y1y2, or if the opposite inequalities hold.

Example 3. Let x1 = 10, x2 = 8, y1 = 12, y2 = 5. Then b = 1 and c = 80
60

= 4
3
, so

x3 = 3 and y3 = 4. The triples are (10, 8, 3) and (12, 5, 4).

Is it possible for such triples also to satisfy (2)? We can use our earlier work to show

that is is not. Suppose that x and y are given by (3) and (4). With a bit of algebra, we find

that the condition x1x2x3 = y1y2y3 is equivalent to

az3(z2 − z1) + bz1(z2 − z3) = ab(a+ b).

If (2) is satisfied, then z is given by (6). With these values substituted, the left-hand side

becomes

λab[λ(a+ b) + µ]− λabµ = λ2ab(a+ b).

Hence λ = ±1. As mentioned earlier, this implies that y is a permutation of x.

Sums of cubes: 4-vectors

What happens if we demand that
∑3

j=1 x
3
j =

∑3
j=1 y

3
j in addition to (1) and (2)?

With 3-vectors, there are no non-trivial solutions. This fact is not obvious, but it is a

case of the following result proved in [1]: if x and y are aligned associates with x3 < y3,

then
∑3

j+1 f(xj) <
∑3

j=1 f(yj) for all functions f with strictly convex derivative f ′, so in

particular for f(x) = x3.

So we will try our luck with 4-vectors. We wish them to satisfy

4∑
j=1

xj =
4∑

j=1

yj,
4∑

j=1

x2j =
4∑

j=1

y2j ,
4∑

j=1

x3j =
4∑

j=1

y3j . (11)

As before, the property is preserved if all xj and yj are mutliplied by λ or increased by c.

We will not attempt anything like a general solution. Instead, we will describe solutions

that satisfy the extra condition x1 + x2 = y1 + y2 (hence also x3 + x4 = y3 + y4). This will

be enough to deliver a plentiful supply of examples.

Let zj = 1
2
(xj +yj). Any pair x, y satisfying the conditions can be expressed as follows:

x1 = z1 − a, x2 = z2 + a, x3 = z3 − b, x4 = z4 + b, (12)
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y1 = z1 + a, y2 = z2 − a, y3 = z3 + b, y4 = z4 − b (13)

for some a, b (both non-zero for non-trivial solutions). Then

4∑
j=1

y2j −
4∑

j=1

x2j = 4a(z1 − z2) + 4b(z3 − z4),

so

a(z1 − z2) = b(z4 − z3). (14)

So if z1 = z2, then z3 = z4 and y is a permutation of x. Assume that z1 6= z2. Now

y31 − x31 = 6az21 + 2a3, hence

y31 − x31 + y32 − x32 = 6a(z21 − z22),

y33 − x33 + y34 − x34 = 6b(z23 − z24).

So

a(z21 − z22) = b(z24 − z23).

With (14), this implies

z1 + z2 = z3 + z4. (15)

So z has to satisfy (14) and (15). One could solve this pair of equations following the rules,

but it is very easy to spot two solutions: (−b, b, a,−a) and (1, 1, 1, 1). Other solutions are

linear combinations of these two: z = λ(−b, b, a,−a) + µ(1, 1, 1, 1). Corresponding to each

such z, a pair x, y is delivered by (12) and (13), However, it is easily checked that if a = b,

or if λ = 1, then y is just a permutation of x.

We illustrate this by working through the case a = 1, b = 3 (the reader might like to

investigate the case a = 1, b = 2).

Example 4. Let a = 1, b = 3. Then z = λ′(−3, 3, 1,−1) + µ′(1, 1, 1, 1) for some λ′

and µ′. To arrange for non-negative x and y, we modify this to λ(0, 6, 4, 2) + µ(1, 1, 1, 1),

and choose µ to make the smallest xj or yj zero. (Alternatively, one could do without these

modifications and adjust x and y afterwards.) Also, it is now natural to take half-integer

values for λ. The results are set out in the following table.

λ µ z x y

1
2

2 (2, 5, 4, 3) (1, 6, 1, 6) (3, 4, 7, 0)
3
2

1 (1, 10, 7, 4) (0, 11, 4, 7) (2, 9, 10, 1)
5
2

1 (1, 16, 11, 6) (0, 17, 8, 9) (2, 15, 4, 3)

One might now choose to rewrite these vectors in increasing order. Also, recall that any

multiple of (1, 1, 1, 1) can be added to x and y. To reassure ourselves that the process has

worked, note that in the first example
∑4

j=1 xj = 14,
∑4

j=1 x
2
j = 74 and

∑4
j=1 x

3
j = 434,

with the same values for y.
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A different perspective on these examples is given by considering
∑4

j=1 x
p
j −

∑4
j=1 y

p
j

as a function of p: denote it by F (p) (now assuming that the xj and yj are all positive). We

have ensured that F (1) = F (2) = F (3) = 0. Clearly, also F (0) = 0. It is shown in [2], by a

generalisation of Descartes’ rule of signs, that a function F (p) of this kind can have at most

four zeros. So F (p) is non-zero for all other values of p, and alternates signs on the intervals

between 0, 1, 2 and 3.
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