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Abstract—Modern computing systems typically relax execution
determinism, for instance by allowing the CPU scheduler to inter-
leave the execution of several threads. While beneficial for perfor-
mance, execution non-determinism affects programs’ execution
traces and hampers the comparability of repeated executions. We
present TraceSanitizer, a novel approach for execution trace com-
parison in Error Propagation Analyses (EPA) of multi-threaded
programs. TraceSanitizer can identify and compensate for non-
determinisms caused either by dynamic memory allocation or by
non-deterministic scheduling. We formulate a condition under
which TraceSanitizer is guaranteed to achieve a 0% false posi-
tive rate and automate its verification using Satisfiability Modulo
Theory (SMT) solving techniques. TraceSanitizer is comprehen-
sively evaluated using execution traces from the PARSEC and
Phoenix benchmarks. In contrast with other approaches, Trace-
Sanitizer eliminates false positives without increasing the false
negative rate (for a specific class of programs), with reasonable
performance overheads.

I. INTRODUCTION

To maximize resource utilization and system throughput,
computing systems often relax the determinism of program ex-
ecutions provided it does not affect the program’s functionality.
A prominent example are preemptive CPU schedulers that dy-
namically assign CPUs to executable programs and revoke such
assignments at any point of the programs’ executions. Simi-
larly, dynamic memory allocators, which assign memory to a
program upon request, have the freedom to decide at which
memory address the requested memory region is located.

EPA analyzes how software faults affect program control
and data flow at run time. It has many uses such as error
detector placement [1], [2] and robustness testing [3]. EPA is
typically performed by injecting faults into the program, and
comparing the fault-affected (faulty run) against the fault-free
(golden run) execution traces, i.e., records of which program
instructions have been executed in which order.

Unfortunately, EPA is adversely affected by relaxing execu-
tion determinism [4], [5] as instructions from different threads
can appear in different orders, and referenced memory ad-
dresses may differ. Such deviations between fault-free and
fault-containing traces, which are caused by relaxed execu-
tion determinism, constitute false positives in EPA since they
do not indicate the effects of actual faults, but only occur to
benign execution non-determinism.

Deterministic replay techniques [6] can eliminate the de-
viations due to non-determinism across program executions.

However, they potentially render EPA results invalid, as the
comparison of executions in EPA is not across identical copies
of a program, but across an original and a mutated version.
For example, if CPU schedules are affected by time-intensive
operations introduced by the mutation, enforcing the original
schedule can lead to false conclusions in EPA.

In this paper, we propose an automated technique to per-
form execution trace comparisons for EPA in the presence of
execution non-determinism, without resorting to deterministic
replay-like techniques. We address both memory and schedul-
ing non-determinism and find the latter to be significantly more
difficult to handle because of possible inter-thread data depen-
dencies, i.e., concurrent accesses to a shared memory object
with at least one write. Furthermore, non-deterministic schedul-
ing decisions directly impact the data values and the instructions
seen by each thread, in the presence of data-dependent instruc-
tions between threads. Therefore, the order in which these
instructions are observed allows deviations of the values and
instructions in the trace, and the number of correct golden runs
for a program grows exponentially with the number of threads
executing data-dependent instructions.

The main insight in our work is that EPA in the presence
of non-determinism, while being very challenging in the gen-
eral case, becomes solvable for a specific but important class
of programs that satisfy two conditions: (1) exhibit identical
externally observable behavior across repeated executions, and
(2) are not affected by non-deterministic external functions.

The first condition excludes both programs with data races
and intentionally non-deterministic programs. For the latter,
reference executions generally cannot serve as an oracle, and
hence no differential testing technique (including EPA) is suited
for these types of programs. Races are more problematic, as
they can result in non-deterministic behavior of intentionally
deterministic programs, i.e., it is difficult to know apriori if a
program meets our postulated condition. To determine whether
a program meets this condition, we introduce an automated test
for data races and order violations based on maximal causality
models [7] derived from a reference execution (Section IV-C3).

The second condition excludes programs that deliberately
make use of non-deterministic external libraries (e.g., random
number generators) because these pose a similar problem as
intentionally non-deterministic programs. Hence, this condition
only imposes an additional constraint on externally determin-
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istic programs, i.e., the second condition excludes programs
that process non-deterministic data, but for which this non-
deterministic data has no effect on the program’s externally
observable behavior. A corresponding check could be imple-
mented via a black-listing mechanism for such external calls.

We term programs that satisfy the above conditions to be
pseudo-deterministic, e.g., programs following the MapReduce
paradigm, where a master thread distributes partitioned data
chunks to worker threads that process these chunks identically
and report the results back to the master thread. The worker
threads’ operations are independent since they operate on dis-
joint chunks of data. While the master thread does interact with
the worker threads, this interaction always follows the same pat-
tern leading to the same behavior of each thread. Consequently,
programs that follow this pattern, which is often referred to as
data parallelism (as opposed to task parallelism) or SPMD (sin-
gle program, multiple data), are pseudo-deterministic. SPMD
is considered the dominant style of parallel programming in
NIST’s Dictionary of Algorithms and Data Structures [8], and
has been identified as the most common pattern in the usage
of parallel libraries [9]. Therefore, we expect many parallel
programs to satisfy the pseudo-deterministic condition.

Prior work on performing EPA for non-deterministic traces
either skips the non-deterministic parts of the trace [10], or
uses statistical properties and likely invariants to capture the
non-determinism [11], [12]. The former techniques may miss
error propagation in important parts of the execution. The latter
techniques are unsound, as they may classify deviations from
the invariants or statistical measures as errors, although they
are legitimate behaviors. To the best of our knowledge, ours
is the first technique to perform EPA for (a class of) non-
deterministic programs that is (1) is sound, (2) covers error
propagation in non-deterministic parts of the execution, and
(3) requires neither programmer support nor annotations.
Contributions. We make the following contributions:
• Develop a novel reversibility check based on SMT solv-
ing techniques to reliably identify pseudo-deterministic
programs for which EPA is sound despite relaxed execu-
tion determinism.
• Introduce a trace sanitizing approach for pseudo-

deterministic multi-threaded programs that abstracts away
the non-determinism due to both dynamic memory allo-
cation and non-deterministic scheduling.
• Implement our trace sanitizing algorithm in TraceSani-
tizer, a trace comparison tool for EPA of multi-threaded
programs, and evaluate its effectiveness on a set of five
widely used benchmarks. We show that TraceSanitizer re-
duces the rate of false positives to 0 % and achieves a high
fault coverage, at a reasonable performance overhead.

II. RELATED WORK

Deterministic Execution. The effects of non-determinism due
to multi-threading can be mitigated through the use of determin-
istic execution. Examples of this approach are Dthreads [13]
and Deterministic Parallel Java (DPJ) [14]. These approaches
work by constraining either the set of possible interleavings

that the OS scheduler interposes on the program or the set of
possible programming language constructs that the developer
is allowed to use. The former imposes performance overheads
as the scheduler has less flexibility in ordering the program’s
threads to optimize for performance, while the latter imposes a
burden on the programmer as they need to ensure their program
is free of the “problematic” constructs.
Error Propagation Analysis (EPA). EPA has traditionally
been performed by comparing the faulty execution trace to a
golden run (i.e., fault-free execution) of the program [15], [1].
Most papers in this area assume that a fault-free golden run
trace is deterministic and hence perform a simple line-by-line
comparison of a fault-injected run with the golden run [11].
Unfortunately, this is not the case for multi-threaded programs.

To our knowledge, there have been only three approaches that
have attempted to address the issue of non-deterministic golden
traces for EPA. First, DeLemos et al. [10] used biological se-
quence alignment algorithms to compare non-deterministic
golden traces with faulty executions, effectively skipping the
non-deterministic sections of the trace. The underlying implicit
assumption is that most parts of the trace are deterministic, and
hence skipping the non-deterministic portions is acceptable.
Unfortunately, this need not be the case for multi-threaded pro-
grams as the OS scheduler has considerable freedom to vary the
thread interleaving and memory ordering from one execution
to another. Second, Leeke et al. [11] attempted to characterize
a golden run using statistical techniques such as clustering, and
perform a coarse-grained comparison of the faulty run with
reference to these statistical characteristics. Only if there is a
significant deviation in the characteristics do they consider it
as an erroneous execution. However, their approach requires
significant manual intervention to annotate the clusters, and
also requires that the system’s outputs conform to well-known
statistical distributions. Further, they may not detect subtle er-
rors that violate the event orderings of the program unless the
errors result in significant deviations from the characteristics.
Finally, Chan et al. [12] used dynamic invariants to character-
ize a non-deterministic golden run, and consider any execution
that violates the invariants as an erroneous execution. This ap-
proach is, however, unsound as the invariants are only likely
invariants extracted using Daikon [16].

Unlike such state of the art approaches, our goal is to develop
a sound EPA approach in the presence of non-determinism
arising from multi-threading in programs. We do not attempt
to constrain the set of execution orderings imposed by the
OS scheduler nor do we constrain the language features used
by the programmer. Furthermore, our approach incurs low
performance overheads and requires no programmer effort.

III. MOTIVATING EXAMPLE

While the performance-driven relaxation of execution deter-
minism does not affect the correctness of a program execution,
it may affect the execution trace recorded from that execution.
In that case, a direct comparison of such non-deterministic
traces for EPA leads to false positives. To illustrate this problem



1 #include <stdio.h>
2 #include <pthread.h>
3 int arr[2];
4 void *inc(void* arg) {
5 arr[0]++;
6 pthread_exit(NULL);
7 }
8 void *dec(void* arg) {
9 arr[1]--;

10 pthread_exit(NULL);
11 }
12 void main(int argc, char **argv) {
13 pthread_t id1, id2;
14 arr[0] = 3;
15 arr[1] = 6;
16
17 pthread_create(&id1, NULL, inc, NULL);
18 pthread_create(&id2, NULL, dec, NULL);
19 pthread_join(id1, 0);
20 pthread_join(id2, 0);
21 printf("Result: %d\n", arr[0]+arr[1]);
22 }

Fig. 1. Example multi-threaded program.

in multi-threaded programs, Figures 1 and 2 show the effects
of memory allocation and thread scheduling non-determinism.

Figure 1 is a typical MapReduce-like program, an important
class of programs that fulfills our first definition criterion of
pseudo-determinism. It defines a global array arr (line 3) to
store the data to be processed, initializes its contents (lines 14
and 15) and then spawns two threads (lines 17 and 18) that
independently operate on different partitions of the data. The
initial thread waits for the two worker threads to return (lines 19
and 20) before it aggregates the results from their operations
by printing the sum of the array elements (line 21).

Figure 2 depicts two shortened execution traces recorded
from repeated executions of that program. The traces were
recorded using the EPA framework LLFI [17], [18] and con-
tain one line for each executed instruction of the program’s
LLVM intermediate representation (IR). The line starts with
the index of the instruction in the trace. The second number
is a (simplified) ID of the executing thread, followed by the
instruction’s name, and its return and operand values.

Despite being functionally identical, an EPA on the two
traces would identify them as deviating because of differing
memory addresses, i.e., any number with more than one digit
in Figure 2. Moreover, the different interleaving of instructions
from different threads causes EPA to falsely identify deviations
between the two execution traces. For instance, while the
instructions from thread 1 and 2 are interleaved in the first
trace, they are executed in groups in the second trace. Note that
while the threads share global memory locations (a source of
dependency), the accesses are not concurrent in any interleaving.
For instance in Figure 1, although the main thread and the
first thread access the first slot in arr at lines 5 and 21, there
can be no other execution of the program where line 21 is
executed before line 5 due to the explicit synchronization call
pthread_join (line 19).

The goal of TraceSanitizer is to transform these traces in
a way that preserves functionally relevant deviations, e.g., de-
viating variable values, and eliminates functionally irrelevant
deviations, e.g., deviating addresses of memory objects repre-

0 0 call-main 0 1 7ffcfe3287e8
...
1 0 alloca 7ffcfe3282e8 8
2 0 alloca 7ffcfe3282e0 8
...
3 0 store 3 603d74
4 0 store 6 603d78
5 0 call-pthread_create 0

↪→ 7ffcfe3282e8 0 400ae0 0
6 0 call-pthread_create 0

↪→ 7ffcfe3282e0 0 4012c0 0
7 1 call-inc 0
8 1 alloca 7f0ccbc55d58 8
9 0 load 7f0ccbc56700 7ffcfe3282e8
10 1 alloca 7f0ccbc55d50 8
11 1 store 0 7f0ccbc55d50
12 1 load 3 603d74
13 2 call-dec 0
14 2 alloca 7f0ccb454d58 8
15 1 store 4 603d74
16 2 alloca 7f0ccb454d50 8
17 2 store 0 7f0ccb454d50
18 2 load 6 603d78
19 0 call-pthread_join 0 7f0ccbc56700 0
20 0 load 7f0ccb455700 7ffcfe3282e0
21 2 store 5 603d78
22 0 call-pthread_join 0 7f0ccb455700 0
...

0 0 call-main 0 1 7ffda8e0e598
...
1 0 alloca 7ffda8e0e098 8
2 0 alloca 7ffda8e0e090 8
...
3 0 store 3 603d74
4 0 store 6 603d78
5 0 call-pthread_create 0

↪→ 7ffda8e0e098 0 400ae0 0
6 0 call-pthread_create 0

↪→ 7ffda8e0e090 0 4012c0 0
7 0 load 7fd5571d9700 7ffda8e0e098
8 1 call-inc 0
9 1 alloca 7fd5571d8d58 8
10 1 alloca 7fd5571d8d50 8
11 1 store 0 0 7fd5571d8d50
12 1 load 3 603d74
13 1 store 4 603d74
14 2 call-dec 0
15 2 alloca 7fd5569d7d58 8
16 2 alloca 7fd5569d7d50 8
17 2 store 0 7fd5569d7d50
18 2 load 6 603d78
19 2 store 5 603d78
20 0 call-pthread_join 0 7fd5571d9700 0
21 0 load 7fd5569d8700 7ffda8e0e090
22 0 call-pthread_join 0 7fd5569d8700 0
...

Fig. 2. Execution traces from two executions of the program in Figure 1.

senting these variables. TraceSanitizer leverages the explicit
synchronization in multi-threaded programs to simplify the
comparison in EPA.

In summary, TraceSanitizer addresses two sources of execu-
tion non-determinism that cause spurious trace deviations.

1. Non-deterministic memory allocations: For portability
reasons, programs should not make assumptions about memory
layout, and leave memory management entirely to the OS.
Consequently, the addresses of memory objects that programs
operate on should be irrelevant to the program’s functionality,
and should not distort execution trace comparisons for EPA, nor
any other analysis reasoning about the program’s functionality.

2. Non-deterministic thread scheduling: To maximize
CPU utilization and thereby improve throughput, the CPU
scheduler may suspend threads that execute blocking instruc-
tions, e.g., when waiting for I/O or lock access, and schedule
another thread. The decision of which thread is executed after
some other thread has been suspended is dynamically made
by the CPU scheduler at run time, and may differ across re-
peated program executions depending on system load and other
factors. As a result, the sequence of instructions in the execu-
tion trace can deviate across repeated executions. For thread
safe programs, these deviations do not affect their function-
ality and should not affect trace comparisons. A deviation in
the order of instructions in an execution trace does not neces-
sarily result in non-deterministic values read or written by the
program (as shown in Figure 2). In this case, re-executing the
program might result in a different interleaving of instruction,
but still lead to the same effects on the program’s data, which
holds especially for programs that implement the MapReduce
paradigm.

The problem of whether a program is thread safe is outside
the scope of this work, and is covered elsewhere [19], [7].

IV. SANITIZING ALGORITHMS

We present a novel approach to address non-deterministic
memory allocation and thread scheduling in EPA. The core idea
behind our approach is to leverage the structure of a pseudo-
deterministic programs to apply two trace sanitizing algorithms,
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each dealing with a specific source of non-determinism. We
first introduce the notion of pseudo-deterministic traces and
describe a corresponding automated reversibility check. We
then describe TraceSanitizer, our prototype implementation,
and show how it soundly compares traces.

A. Overview

Figure 3 overviews TraceSanitizer’s workflow. To obtain a
fault-free execution trace (golden run), we first instrument the
program to log the executed instructions (step 1 ) and generate
a trace by running the instrumented program 2 . These first
two steps are fundamental building blocks of EPA and we can
reuse the existing implementation of LLFI EPA tool [17], which
we only slightly modify to deal with multi-threaded programs
and include more data in the traces. Next, we run our trace
sanitizing algorithms on the generated trace in step 3 . We then
run the reversibility check to verify whether the generated trace
satisfies the pseudo-deterministic condition. If the condition
holds, the comparison of its traces is guaranteed to be free
from false positives induced by scheduling non-determinism. In
case it does not satisfy it, we abort the process. It is important
to note that the reversibility check is run only once on the
fault-free trace and its results are valid for comparison with
any faulty trace given the same inputs. To perform EPA, we
inject multiple faults into the instrumented program, re-run
steps 2 - 3 to generate faulty execution traces (faulty runs),
and compare that trace against the fault-free trace (step 5 ) to
identify how the program execution has been affected by each
injected fault.

We introduce our notation and the pseudo-deterministic con-
dition in Section IV-B, followed by the sanitizing algorithms
and the reversibility check in Section IV-C.

B. System Model

We adopt a general and simple model to describe execution
traces of a multi-threaded program. An execution trace is a
sequence of events σ = e1, e2, ..., en. An execution trace is
said to be feasible for a program if its sequence of events
follows an order that is allowed by the program’s semantics.
Every event can be directly mapped to an executed instruction
such as spawning a new thread or synchronizing with other
threads. For simplicity, we focus on read and write events. We
write e ∈ σ for any event that has been executed by σ. To
refer to the total order of events incurred by a trace σ, we
write ei ≺σ ej if i < j and ei, ej ∈ σ. We refer to the thread
that executed an event e as Tid(e) ∈ T where T is the set of
threads that are spawned during execution.

We define a binary dependency relation D between events
based on the memory objects they access. Two events e and e′

are said to be dependent if they both access the same object
o and at least one of them is a write event. In that case, we
write (e, e′) ∈ D. We write Dtr to refer to the transitive
closure of D. That is, if (ei, ej) ∈ Dtr and (ej , ek) ∈ Dtr

then (ei, ek) ∈ Dtr, and if (ei, ek) ∈ D then (ei, ek) ∈ Dtr.
For our sanitizing algorithms to be sound and to result in a

false-positive free EPA, the considered execution traces need
to satisfy the pseudo-deterministic condition.

Definition 1 (pseudo-deterministic traces): A trace σ =
e1, e2, ..., en is said to satisfy the pseudo-deterministic condi-
tion if and only if:

1) for every event e ∈ σ, the next event executed by Tid(e)
and the value it reads or writes are solely determined by
the events e′ ≺σ e such that (e′, e) ∈ Dtr or Tid(e) =
Tid(e′) (local determinism), and

2) for every two dependent events (ei, ej) ∈ D such that
ei ≺σ ej , there is no other feasible interleaving of the
trace σ′ where ej ≺σ′ ei (reversibility).

The local determinism condition excludes programs with inher-
ent non-deterministic behavior. The nature of an event (control
flow) and the value it reads/writes (data flow) is solely deter-
mined by the events it depends on or events executed by the
same thread. Threads in a multi-threaded program act accord-
ing to the data they read. Intuitively, the next instruction to
be executed by each thread and how it modifies the program’s
data depends the values it has read and its program counter
position. That is, given two interleavings of a program, for a
certain thread t at a certain program counter position, if all
the values read by t so far are the same, the next instruction
to be executed by that same thread and the value it reads or
writes are guaranteed to be the same in both interleavings. For
instance, the value generated by invoking a random number
generator is neither determined by the events it depends on
nor the events executed by the same thread. We refer to the
subsequence of events that fully specify an event as its deter-
mining events. For a trace σ = e1, e2, . . . , en and event ei ∈ σ,
its determining events subsequence σei contains only events
ej ≺σ ei such that (ej , ei) ∈ Dtr or Tid(ej) = Tid(ei). Thus,
given a feasible interleaving σ′ of σ such that σe = σ′e for a
common event e, the value written/read by e is guaranteed to
be the same.

A trace satisfies the reversibility condition if there can be
no interleaving σ′ where two dependent events (ei, ej) ∈ D
occur in a reversed order. This implies that σ′ej 6= σej since
ei /∈ σ′ej and ei ∈ σej . In this case, it is possible for event ej
to read/write a different value (data deviation). Thus, different
data values may be observed over repeated executions.

C. Algorithms

If a trace satisfies the pseudo-deterministic condition, mem-
ory addresses are allocated in the same order by each thread.
The threads are spawned in the same order by the same parent
threads for any feasible interleaving of the trace. In this sec-
tion, we present our two sanitizing algorithms: 1) A memory



Algorithm 1: Memory abstraction algorithm.
input : Execution trace σ
output : Set O of symbolic memory objects, such that each

concrete memory object referenced in σ is mapped
to exactly one symbolic memory object

1 O ← ∅;
2 foreach e ∈ σ do
3 g idx ← e.getGlobalIndex();
4 t ← e.getThread();
5 if e.isAllocation() then
6 size ← e.getSize();
7 bAddr ← e.getBaseAddr();
8 val ← [g idx, ];
9 l idx ← e.getLocalIndex();

10 s ← e.isStackAllocation();
11 o ← (bAddr, t, l idx, size, val, s);
12 append o to O;
13 if e.isDeAlloaction() then // for heap objects
14 o ← getObject(e.getBaseAddr());
15 o.updateValidity(g idx);
16 if e.isNewScope() then
17 sp[t] ← g idx;
18 if e.isExitScope() then // for stack objects
19 foreach o ∈ O s.t. o.getThread()

= t ∧ o.s ∧ o.getValidityStart() > sp[t] do
20 o.updateEndValidity(g idx);
21 sp[t] ← restoreStackPointer();

object abstraction algorithm that deals with memory alloca-
tion non-determinism by tracking the order in which memory
addresses are allocated to achieve a canonical naming where ev-
ery object is uniquely identified by its position in the sequence
of allocated objects (Section IV-C1), and 2) a thread identity
abstraction algorithm that handles non-deterministic scheduling
by tracking the order in which threads are spawned relatively to
their spawning thread and naming them accordingly to achieve
consistent IDs across multiple executions (Section IV-C2).

1) Memory Object Abstraction: Algorithm 1 outlines the
pseudo-code for the memory object abstraction algorithm.
Given an execution trace σ, the program outputs a set of
symbolic memory objects O that can be used to replace the
concrete addresses in the original execution trace.

For every event e ∈ σ, the algorithm first stores a global
index (its position in the trace sequence) as well as the executing
thread t (lines 3-4). If e is a memory allocation event, a
memory object o = (bAddr, t, l idx, size, val, s) is created
where bAddr is its concrete base address, l idx is a thread local
index that is incremented with every new instruction executed
by t, size is the size of the object, val is its initial validity
range starting from g idx, and s is a Boolean value indicating
whether the allocation is a stack allocation (as opposed to
heap) (lines 6-11). The object o is then added to O (line 12).
The initial validity range of every added object has to be
updated according to the scope where it was defined. If e is a
memory de-allocation event, e.g., a call to the free function,
the algorithm updates the validity range of the object o ∈ O
with the same base address (lines 14-15). Note that in this
case o must be a heap object, and if it is never de-allocated
the default range is still valid and also covers, for instance,

Algorithm 2: Thread abstraction algorithm.
input : Execution trace σ
output : A map M of concrete thread IDs in σ to canonical

IDs that are deterministic across traces from
repeated executions, as long as the
pseudo-deterministic condition holds

1 M ← 〈〉;
2 Q ← ∅;
3 T ← σ.getAllThreads();
4 G ← (T, ∅);
5 foreach t ∈ T do
6 foreach t′ ∈ t.getSpawnedThreads() do
7 append (t, t′) to G;
8 tc ← G.getRootNode();
9 M [tc] ← “T 0”;

10 push tc to Q;
11 while Q 6= ∅ do // breadth-first search
12 tc ← Q.pop();
13 i ← 0;

// Get the spawned threads in their order of creation.
14 foreach t ∈ tc.getOrderedChildren() do
15 M [t] ← M [tc]“ ”i;
16 push t to Q;
17 i ← i+ 1;

global variables. In this case, the object is accessible from its
creation until the end of the trace.

Memory objects on the stack are handled separately. If a
new scope event for thread t is encountered, e.g., entering a
function, the current global index is stored in sp[t] for later
use (line 17). In case e is an exit scope event, the algorithm
updates the validity of all objects that were added after sp[t]
and restores the previous stack pointer (lines 19-21). Objects
that were added after sp[t] represent the objects that have to be
de-allocated because the program is leaving the scope where
they were defined. The restored stack pointer is assigned the
global index of the last new scope event by thread t so that
once that scope is exited, the validity range of the objects
defined within it can be accordingly updated.

Once the set of objects O is generated, TraceSanitizer re-
places each reference to a concrete memory address by a
corresponding object eliminating trace deviations due to mem-
ory locations. An address is replaced by an object if it lies
within its allocated space specified by its base address and size.
If a memory address matches more than one memory object,
we use the validity range to identify the correct object.

2) Thread Identity Abstraction: Algorithm 2 provides the
pseudo-code for the thread identity abstraction that enables
the matching of threads in different execution traces. The
algorithm’s goal is to achieve canonical thread IDs such that
for every two executions of the same programs with the same
input it is guaranteed that the same threads will receive the
same id. Given a sequence of events σ, the algorithm builds a
mapping function M that maps each thread ID to a canonical
ID. The algorithm works by building a thread tree G where the
nodes represent the spawned threads and the edges a spawning
relation. If a thread t1 ∈ T spawns a thread t2, we add a
directed edge (t1, t2) between these two nodes (lines 5-7). The



next step consists of breadth-first traversing the tree G, starting
from the root node such that for every node the children are
visited in their order of creation (lines 11-17). The canonical
thread IDs are then recursively generated as follows:
• The root node is the main thread and is assigned the ID
“T 0” (lines 9-10).
• Every node is assigned an ID that consists of its parent

node’s ID as a prefix and its position in the list of children
(lines 15-17).

After running the thread identity abstraction algorithm, we
use the mapping function M to rename the threads by their
canonical names, and replace every reference to a thread
ID in the execution trace. If a program satisfies the pseudo-
deterministic condition, it is guaranteed that the canonical
thread IDs match exactly, enabling the matching of all spawned
threads across multiple traces in the trace comparison phase.

3) Reversibility Check: We developed an automated re-
versibility check to test whether an execution trace σ satisfies
the pseudo-deterministic condition. The automated check fo-
cuses on the reversibility condition from Definition 1. While
we manually checked the local determinism condition, the pro-
cess can easily be automated using a black-listing approach to
such external libraries or functions.

The reversibility check is based on the maximal causality
technique which has been used for race detection in prior
work [7]. A maximal causality formula encodes the maximal
number of interleavings of a given trace that are guaranteed to
be feasible, i.e., that are valid executions of the same program
with the same input. Our reversibility check uses a modified
version of the maximal causality formula that omits the con-
straints that ensure that only valid executions are encoded.

We utilize a reversibility formula Φσ whose satisfying solu-
tions encode executions that are not necessarily valid, while
preserving the soundness and completeness of the check. The
formula defines integer variables xi for every event ei ∈ σ.
The variables are then constrained in their order such that only
the set of interleavings that are guaranteed to be feasible are
allowed. For instance, if ei is an event spawning a new thread,
the formula adds a constraint xi < xj for the first event ej
executed by the spawned thread. To guarantee the sequential-
ity of every thread t, a condition xi < xj is added for every
successive event by t. To prevent an overlap of two critical
sections in the trace that are guarded by the same mutex, the
formula adds a constraint xj < x′i ∨ x′j < xi where ei and
e′i are two mutex acquiring events and ej and e′j are the two
corresponding mutex release events.

Finally, we add additional constraints to encode our pseudo-
deterministic condition:

R :=
∨

(ei,ej)∈D∧ei≺σej
xj ≤ xi

Intuitively, the constraint encodes the fact that any two depen-
dent events in the trace occur in a reversed order.

In the last step, we check the satisfiability of formula Φσ∧R
using an SMT solver. If the solver does not return a solution,
we have a proof that there cannot be any two dependent events

that can occur in a reversed order and therefore the trace
satisfies the pseudo-deterministic condition. If, however, the
formula has been proven satisfiable, the solver returns a solution
that encodes an execution trace where at least two dependent
events are reversed. In this case, the trace does not satisfy the
pseudo-deterministic condition.
Correctness. In our check, we omit the constraints that reduce
the set of allowed interleavings to only those that are guaranteed
to be feasible (i.e., the read conditions in [7]). Furthermore, the
maximal causality model, upon which the reversibility formula
is based, does not cover all feasible interleavings since it does
not include executions that take new control flow paths [20].
These limitations, however, affect neither the soundness nor
the completeness of the reversibility check as outlined next1.

The soundness of the check is based on the fact that our
reversibility formula can only contain infeasible interleavings
if the execution is reversible. Let us assume that the check is
unsound, i.e., for a trace σ that does not satisfy the reversibility
condition, the reversibility formula is wrongly satisfiable. This
means that the event order encoded by the reversibility formula
describes an infeasible execution σ′ due to the missing read
conditions from [7]. Let e′ be the first event in σ′ that is
not feasible and e the last event in the feasible prefix of σ′

such that Tid(e) = Tid(e′). Because of local determinism we
have σe 6= σ′e since otherwise e′ (the next event by the same
thread) would be executable in σ′. This would mean that σ′e,
and therefore also the feasible prefix of σ′, contains at least a
set of reversed dependent events. But this contradicts our initial
assumption that σ does not satisfy the reversibility condition
since the prefix of σ up to event e′ is feasible.

Similarly, the completeness of the check follows from the
fact that the set of interleavings covered by the formula is
not complete only if the considered trace is reversible. Let us
assume the check is incomplete, i.e., for a trace σ that satisfies
the reversibility condition, the reversibility formula is wrongly
unsatisfiable. This means that there is a feasible interleaving σ′

of execution σ where two dependent events occur in reversed
order and that is not covered by the reversibility formula. These
two events cannot both be included in σ because otherwise
the reversibility formula would be satisfiable. If at least one
of the events, e, is not included in σ, its determining events
σ′e must include two events that occur in reversed order and
are in σ, assuming that e is the first such an event in σ′.
This means, however, that the reversibility formula will be
satisfiable, contradicting our initial assumption.

4) An Example Trace Comparison: We use the example
from Figure 1 to illustrate the working of TraceSanitizer. Given
the execution trace from Figure 4 (upper right), the sanitizing
algorithms produce a sanitized trace (upper left) and a memory
object set and thread identity mapping (bottom left).

5) Memory Object Abstraction: Initially, the set of identified
memory objects is empty. The algorithm starts by iterating
over all events in the execution trace σ. After reaching an
allocation instruction (line 1), a new object o4 is created and

1We refer the reader to [21] for a fuller discourse



0 T_0 call-main 0 1 o0
...
1 T_0 alloca o4
2 T_0 alloca o5
...
3 T_0 store 3 g0
4 T_0 store 6 g0+4
5 T_0 call-pthread_create-u 0 o4

↪→ 0 400ae0 0
6 T_0 call-pthread_create-u 0 o5

↪→ 0 4012c0 0
7 T_0_0 call-inc 0
8 T_0_0 alloca o6 1 8
9 T_0 load T_0_0 o4
10 T_0_0 alloca o7 1 8
11 T_0_0 store 0 o7
12 T_0_0 load 3 g0
13 T_0_1 call-dec 0
14 T_0_1 alloca o8 1 8
15 T_0_0 store 4 g0
16 T_0_1 alloca o9 1 8
17 T_0_1 store 0 o9
18 T_0_1 load 6 g0+4
19 T_0 call-pthread_join 0 T_0_0 0
20 T_0 load T_0_1 o5
21 T_0_1 store 5 g0+4
22 T_0 call-pthread_join 0 T_0_1 0
...

0 0 call-main 0 1 7ffcfe3287e8
...
1 0 alloca 7ffcfe3282e8 8
2 0 alloca 7ffcfe3282e0 8
...
3 0 store 3 603d74
4 0 store 6 603d78
5 0 call-pthread_create 0 7ffcfe3282e8

↪→ 0 400ae0 0
6 0 call-pthread_create 0 7ffcfe3282e0

↪→ 0 4012c0 0
7 1 call-inc 0
8 1 alloca 7f0ccbc55d58 8
9 0 load 7f0ccbc56700 7ffcfe3282e8
10 1 alloca 7f0ccbc55d50 8
11 1 store 0 7f0ccbc55d50
12 1 load 3 603d74
13 2 call-dec 0
14 2 alloca 7f0ccb454d58 8
15 1 store 4 603d74
16 2 alloca 7f0ccb454d50 8
17 2 store 0 7f0ccb454d50
18 2 load 6 603d78
19 0 call-pthread_join 0 7f0ccbc56700 0
20 0 load 7f0ccb455700 7ffcfe3282e0
21 2 store 5 603d78
22 0 call-pthread_join 0 7f0ccb455700 0
...

g0 := {ba=603d74, t=_, l_idx=0, s=8, v=[0,33]}
...
o0 := {ba=7ffcfe3287e8, t=T_0, l_idx=0, s=8, v=[0,33]}
o4 := {ba=7ffcfe3282e8, t=T_0, l_idx=1, s=8, v=[1,33]}
o5 := {ba=7ffcfe3282e0, t=T_0, l_idx=2, s=8, v=[2,33]}
o6 := {ba=7f0ccbc55d58, t=T_0_0, l_idx=0, s=8, v=[8,15]}
o7 := {ba=7f0ccbc55d50, t=T_0_0, l_idx=1, s=8, v=[10,15]}
o8 := {ba=7f0ccb454d58, t=T_0_1, l_idx=0, s=8, v=[14,21]}
o9 := {ba=7f0ccb454d50, t=T_0_1, l_idx=1, s=8, v=[16,21]}

M(0) := T_0
M(1) := T_0_0
M(2) := T_0_1

T_0

T_0_1T_0_0

Fig. 4. Trace sanitizing example. Execution trace from Figure 2 after sanitizing
(upper left). We show the first trace on the upper right side along with the
generated memory object set and thread identity mapping on the bottom left.
At the bottom right we present the thread tree generated by our algorithm.

added to the set of memory objects O. The object structure
contains information about the base address returned by the
LLVM-IR alloca instruction (7ffcfe3287e8), the size of
the allocated object (8), the thread executing the instruction
(0), the local index reflecting the position of the instruction in
the sequence executed by the thread (1) and the initial validity
range of the object ([1,33]) where 33 is the total number
of instructions in the trace.

At the invocation of the inc function (line 7), a new scope
is created and the stack pointer for thread 1 is updated to the
index of the event where the scope was entered (7). This value
will be used later to update the validity range of every new
object created within the new scope. Similarly, at the call to
dec in line 13, the algorithm updates the stack pointer for
thread 2 to 13. At the end of each of the functions, the scope
for both inc and dec ends and the validity range for the
objects created within that scope has to be updated. Every
object that has been added to O after the value in the stack
pointer has to be updated. For instance, the validity range of
object o6, added at line 8 within inc’s scope, is updated be
to [8,15] where 8 is the index of its allocation instruction in
the trace and 15 the end of the scope. The stack pointer also
has to be updated to the start of the previous scope. However,
thit is unnecessary since only one scope has been created by
this thread.

Finally, TraceSanitizer replaces the concrete addresses with
the generated objects in every instruction in the trace. In this
example there are also global variables that are accessed by the

program. While Algorithm 1 does not include the handling of
global variables, our implementation, however, handles these
variables separately. Before iterating over the instructions, we
add a memory object with maximal validity range for each
global variable. The object g0 in Figure 4 (bottom left) repre-
sents the global array arr defined in the example. Note that
accesses to g0 are not always at the base address. For instance,
the access at line 18, occurs on the second element in the array,
hence the reference g0+4 with an int type of byte length 4.
Encountering an address that has not been explicitly allocated
leads to the creation of a new object with default size, e.g.,
the argument of the main function results in the creation of
object o0 (bottom left).

6) Thread Identity Abstraction: The algorithm first fetches
the set of threads in the trace 0, 1, and 2 and adds nodes
for these threads to G. We show the resulting spawning tree
at the bottom right of Figure 4 (The nodes are renamed by
their canonical IDs). Since thread 0 spawns threads 1 and 2,
edges (0, 1) and (0, 2) are added to G. Next, the algorithm
traverses the generated tree G to map concrete thread IDs
to deterministically calculated thread IDs. The initial thread
0 is mapped to ID T_0. Every time a new node is reached
in the tree, its child nodes are traversed in the order of the
corresponding threads’ creation. For instance, since thread 1
was created before 2, it will be traversed first. Following the
renaming pattern presented in Algorithm 2, thread 1 is mapped
to an ID consisting of its parent node ID (T_0) concatenated
with an index indicating its creation order 0: T_0_0. Likewise,
thread 2 is mapped to ID T_0_1 as shown in Figure 4. Finally,
TraceSanitizer replaces every reference to a thread’s ID in the
program using the generated map M .

7) Reversibility Check: To build the reversibility check for-
mula, a unique variable is assigned to every instruction in the
trace. First, we encode the allowed interleavings of the trace
by imposing constraints on the order of the formula variables.
In addition to the constraints encoding the sequentiality of ev-
ery thread, we add constraints for inter-thread synchronization.
The call pthread_join at line 19 in Figure 4, for instance,
forces the invoking thread 0 to wait for the termination of
thread 2 before executing the next instruction. In this case, we
add a constraint x′ < x for the call e to pthread_join and
e′ being the last instruction executed by thread 2.

Next, we identify all the dependencies between load and
store instructions that read from or write to the same memory
location. Consider the instructions e and e′ at lines 4 and 18,
respectively. Instruction e′ reads from the same memory object
g0, with the same offset, that e writes to. Therefore, both
instructions are dependent on each other. Since e occurs before
e′ in the trace, we add the constraint x′ ≤ x to the reversibility
formula to check whether the two dependent instructions can
occur in the reverse order. However, the formula does not allow
any interleaving of the trace where instruction e occurs after
e′ as that would mean that the thread executing e′ would start
executing before it has been spawned. Since no such pair of
instruction can be found for the trace, the generated reversibility
formula cannot be satisfied and the trace will be declared to



satisfy the reversibility condition. Note that our check ignores
dependencies between instruction from the same thread as
these can obviously not be reversed. Moreover, the reversibility
formula only considers instructions that have “global” effects
in the trace such as a synchronizing events and writes/reads on
memory objects that are accessible by more than one thread.

8) Trace Comparison: After passing the reversibility check,
we can safely compare the sanitized fault-free trace against
sanitized traces from fault injection experiments with the same
program processing the same input. The second trace, referred
to as the faulty trace, is obtained by performing fault injection
on the original program and re-executing it with the same in-
put parameters. Since the threads are renamed systematically,
the set of created thread ids in both traces are guaranteed to
be the same. We start by dividing the sanitized traces into
subsequences where each sequence contains only instructions
belonging to a single thread. Next, we match the subsequences
belonging to the same thread and compare every instruction.
Since the threads are renamed identically in traces from dif-
ferent executions with the same input, the set of created IDs
in both traces should match in a comparison of fault-free
executions. Furthermore, if the first trace had passed the re-
versibility check and the second trace is a re-execution of
the same program with the same input, then every pair of
two such subsequences should be identical unless one of the
traces is affected by an injected fault. This is guaranteed by
the local determinism property of every thread induced by
the pseudo-deterministic condition of the first trace. If depen-
dent instructions cannot occur in a reversed order, every thread
will be created in the same order by the same parent thread,
and memory objects will also be allocated in the same order
and by the same thread. Therefore, a deviation between both
traces implies that the injected fault has been activated in the
experiment and its effects on the execution show in the com-
parison. Concretely, the comparison algorithm checks whether
instructions in both subsequences occur in the same order and
whether they access the same objects with the same offsets.
Applying the sanitizing algorithms on both traces from fig. 2
results in pairs of identical subsequences for every thread in
the trace (T_0, T_0_0 and T_0_1) since the first trace satis-
fies the pseudo-deterministic condition and the second trace is
not faulty.

V. TRACESANITIZER IMPLEMENTATION

The publicly available TraceSanitizer implementation2 con-
sists of two modules: (1) an instrumentation and fault injection
module that is implemented as an extension of the LLFI EPA
tool [17], and (2) a sanitization and trace comparison mod-
ule. The first module adds more logging information in the
trace generation process and thread safety to the LLFI tool.
The instrumentation and fault injection parts are performed
at the level of the intermediate level representation of the
LLVM compiler infrastructure. We implemented the second
module in the Rust programming language and used the Z3

2https://github.com/DEEDS-TUD/TraceSanitizer

TABLE I
OVERVIEW OF THE BENCHMARK PROGRAMS. SLOC REPORTS THE SOURCE

LINES OF CODE, #TH THE SUM OF SPAWNED THREADS AND #INST THE
NUMBER OF EXECUTED INSTRUCTIONS IN ONE RUN.

MEM-SOUND/SCHED-SOUND WHETHER FALSE POSITIVES OCCURRED DUE
TO MEMORY/CPU NON-DETERMINISM (7) OR NOT (3).

Program SLOC #Th #Inst Mem-Sound Sched-Sound

Naı̈ve TSAN Naı̈ve TSAN

quicksort 198 72 45 k 7 3 7 3
pca 301 17 89 k 7 3 7 3
kmeans 425 65 44 k 7 3 7 3
blackscholes 393 3 91 k 7 3 7 3
swaptions 1118 4 1.1M 7 3 7 3

SMT solver [22], [23] for the reversibility check. Since the
reversibility formula we generate uses the standard SMT-LIB
format [24], TraceSanitizer can use most existing solvers.

VI. EVALUATION

We first enumerate the research questions we aim to answer,
followed by the experimental setup and obtained results. We
conducted all of the experiments on machines with an Intel Core
i7-4790 CPU, 16 GiB of RAM, and a 500 GB SSD running
Debian 8.11 with a Linux 3.16 kernel.

A. Research Questions

The goal of our evaluation is to show that the TraceSanitizer
approach eliminates all false positives in EPA due to execution
non-determinism, and to measure the performance overhead
of TraceSanitizer. Four research questions (RQs) are pertinent.
RQ 1 What are the false positive rates resulting from non-

determinism in dynamic memory allocations with and
without TraceSanitizer?

RQ 2 What false positive rates result from CPU scheduling
non-determinism with and without TraceSanitizer?

RQ 3 What is the rate of false negatives with TraceSanitizer?
RQ 4 What is the performance overhead of TraceSanitizer?

B. Target Programs and Execution Environment

Our evaluation targets five C/C++ programs listed in Table I,
four of which are taken from the PARSEC [25] and Phoenix
benchmarks [26], that satisfy the pseudo-deterministic condi-
tion. These programs were also used in prior work on using
likely invariants for EPA to counter non-determinism [12].

Table I reports the number of SLOCS of each program
along with the total number of instructions and spawned
threads. quicksort is a parallel implementation of the
well-known sorting algorithm. pca and kmeans are two
machine-learning algorithms taken from the Phoenix bench-
mark suite [26]. kmeans is an implementation of the Kmeans
clustering algorithm and pca implements the Principal Com-
ponent Analysis statistical procedure. Additionally, we used
the blackscholes and swaptions programs from the
PARSEC benchmark suite [25]. The blackscholes pro-
grams solves the blackscholes partial differential equa-
tion used in pricing a portfolio of European-style stock op-
tions. swaptions uses Monte-Carlo simulations to compute

https://github.com/DEEDS-TUD/TraceSanitizer
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Fig. 5. Results from 5000 runs of each combination of target and fault type. The error bars indicate the 95% confidence interval.

swaptions, a form of financial derivatives. We verified that
all five programs satisfy the pseudo-deterministic condition.

C. RQ 1: False Positives from Memory Addresses

Our work is motivated by the observation that non-
determinism can lead to false positives if a naive execution
trace comparison is applied for EPA. As such benign non-
determinism can affect execution traces differently depending
on the origin, TraceSanitizer employs different analyses, which
we evaluate separately. We separately evaluate the effectiveness
of TraceSanitizer in eliminating false positives in EPA that
are due to dynamic memory allocation and non-deterministic
scheduling. We begin with an evaluation of the impact that
dynamic memory allocation non-determinism has on execu-
tion traces, and how well TraceSanitizer can deal with those
cases. We then evaluate false positives resulting from CPU
scheduling non-determinism in Section VI-D.

To evaluate the impact of dynamic memory allocation non-
determinism independently from CPU scheduling effects, we
conduct a number of trace comparisons on single-threaded ex-
ecutions of our target programs without any fault injections.
For this purpose, we use single-threaded versions of the five
programs from Table I. As we do not inject any faults, any
observed deviation across repeated executions of the same pro-
gram must be a false positive. Moreover, since CPU scheduling
cannot cause deviations in single-threaded programs, any ob-
served false positive is likely due to memory non-determinism.

To simulate an “unlucky” injection campaign with numer-
ous unactivated faults, we generate 10 000 fault-free execution
traces for each of the single-threaded programs by performing
steps 1 and 2 in Figure 3, and perform a line-by-line com-
parison, just as conventional EPA approaches would compare
golden run and fault injection traces. We then run TraceSani-
tizer’s memory abstraction algorithm on the same traces – the
results are in the Mem-Sound column of Table I.

The results show that no execution trace is identical to any
other from the 10 000 repetitions, and that TraceSanitizer is
able to eliminate all of these spurious deviations for all of
the benchmarks. Besides demonstrating the effectiveness of
our memory abstraction, this result confirms that the second
criterion from our definition of the pseudo-deterministic condi-

tion in Section I is satisfied for the chosen program input. If
non-deterministic external functions affect the execution, this
would lead to trace deviations across the repeated executions.

D. RQ 2: False Positives from CPU Scheduling
To assess the effectiveness of TraceSanitizer to compensate

for the effects of non-deterministic CPU scheduling, we recom-
piled the target programs to use multiple threads, and generate
10 000 fault-free execution traces for each program. We sani-
tized the effects of memory allocation non-determinism in the
execution traces and compared the resulting traces of the re-
peated executions. As no faults are injected in these executions,
any deviations between traces constitute false positives. More-
over, as the effects of memory allocation non-determinism are
sanitized, all deviations must result from CPU scheduling.

We again compare the obtained traces in a line-by-line fash-
ion without TraceSanitizer, and observe deviations in each
comparison. We then run TraceSanitizer’s thread abstraction
algorithm on the traces and perform the comparison again.
The results shown in the Sched-Sound column of Table I
demonstrate that TraceSanitizer is able to fully eliminate false
positives resulting from non-deterministic CPU scheduling for
pseudo-deterministic programs.

E. RQ 3: False Negatives Introduced by TraceSanitizer
Accurately measuring false negative rates in EPA experi-

ments is challenging, because there is no oracle to distinguish
between true and false negatives. If a fault is injected and no
effect is observed, it is unclear whether no effect has occurred
(true negative), or an effect has occurred and it was missed by
the detection mechanism (false negative). Moreover, differen-
tial testing using different detection mechanisms is difficult to
apply in the case of EPA for multi-threaded programs, because
other approaches are not sound, and their false positives would
distort the results. Therefore, we base our evaluation of false
negatives on a conservative estimate.

Assuming that each injected fault leads to error propaga-
tion (this may not always hold [27]), each succeeding trace
comparison between an injection and a fault-free run consti-
tutes a false negative. We term the fraction of these succeeding
comparisons from all comparisons the maximal possible false
negative rate (MPFNR).



To ensure that TraceSanitizer does not achieve soundness
at the cost of an increased false negative rate, we executed
a number of fault injection experiments following the steps
outlined in Figure 3 and discussed in Section IV-A and as-
sessed the MPFNR. We used the multi-threaded versions of the
benchmark programs from Section VI-D, and first generated
and sanitized execution traces from one fault-free execution
of each program. We then ran our memory and thread abstrac-
tion algorithms (cf. Section IV-C) on the trace and performed
the reversibility check to ensure that comparisons against this
trace yield sound results if the same program inputs are used.

To obtain traces from faulty executions, we repeated the
execution of the program with the same inputs and injected one
fault per execution using the LLFI fault injection framework.
The injection points for the faults are decided dynamically
by the LLFI framework. In total we executed 25 000 such
experiments, consisting of 5000 fault instances for each of the
fault types listed in Table II (these were also used in prior
work [12]). We then sanitized each of the resulting execution
traces using TraceSanitizer.

Figure 5 shows the fault coverage of EPA using TraceSani-
tizer, i.e., the fraction of experiments for which the sanitized
fault-injection traces differed from the fault-free trace and, thus,
indicate error propagation. The MPFNR is the difference be-
tween 1 and the reported fault coverage and ranges between
44 % and 9 % depending on the program and fault type. While
we cannot tell whether any of the succeeded comparisons was
due to the lack of error propagation or due to a false negative
of our approach, we can tell if TraceSanitizer has any obvi-
ous blind spots by investigating the false negative rates for
experiments that led to program failures (i.e., externally observ-
able deviation from correct behavior). If the program behavior
deviates from correct behavior as observed in the fault-free
execution, an error must have propagated, and missing such
propagation in the traces would be a false negative.

To assess the error propagations that we missed, we have
calculated the MPFNR for different classes of experiment
outcomes that are indicated by different colors in Figure 5. A
crash denotes cases where the program terminated abnormally
after a fault was injected, whereas SDC (silent data corruption)
indicates cases where the program terminated without error
indication, but its results differed from the fault-free case. For
both crashes and SDCs, we found the MPFNR to be 0 %.
This demonstrates that there were no obvious cases of error
propagation that were missed by TraceSanitizer.

To the best of our knowledge, TraceSanitizer is the first to
achieve a 0 % false positive rate for EPA on multi-threaded
programs without increasing the false negative rate for known
cases of error propagation (observed crashes and SDCs).

F. RQ 4: TraceSanitizer Overhead

Achieving a high fault coverage and fully eliminating false
positives comes at the cost of (a) running the reversibility check
on the golden run to ensure the soundness of the approach,
and (b) running the sanitization algorithms on the traces.

TABLE II
OVERVIEW OF INJECTED FAULT TYPES

Fault Type Short Description

BitFlip Flips single bits in arbitrary data values.
FileSize Increases the size parameter in fread and

fwrite function calls for file I/O.
MallSize Decreases the size parameter in malloc and

calloc function calls for memory allocation.
CallCorr Corrupts the first parameter of function calls.
InvalPtr Corrupts the returned pointers from malloc and

calloc function calls.

TABLE III
PERFORMANCE RESULTS FOR TSAN. REVERSIBILITY CHECK TIMES ARE

REPORTED IN MINUTES AND EPA TIMES IN SECONDS. EPA TIMES ARE
MEDIAN VALUES OVER 5000 RUNS.

Program
Rev. Check EPA

#Obj. #Dep. Solver Total San. Cmp.
[m] [m] [s] [s]

quicksort 38 24 650 30.36 30.38 1.57 0.3
pca 64 12 126 150.41 150.43 1.29 0.17
kmeans 31 13 460 81.93 81.94 0.79 0.13
blackscholes 13 2810 0.87 0.99 1.58 0.2
swaptions 16 22 630 116.66 144.61 8.57 2.86

It is important to note that the time overhead incurred by the
reversibility check is a one-time cost as the check needs to be
run only once. Further, the fault injection experiments can be
run in parallel with the checks. On the other hand, running the
sanitization algorithms needs to be done for each fault that is
injected (typically thousands of times for obtaining statistically
significant estimates). We measure the time it takes to run each
of these two steps – the results are shown in Table III.

1) Reversibility Check: To assess the run time overhead of
the reversibility check we performed it on a golden run of each
of the benchmarks. We report the total run time along with
time taken by the SMT solver, the number of memory objects
accessed in the trace, and the inter-thread dependencies on
these objects in Table III. For all programs, the overall time for
the reversibility check ranges from approximately 1 min for
blackscholes to 150 min for pca, and is strongly domi-
nated by the SMT solver’s execution time. For swaptions,
which is the only program showing a notable difference be-
tween these times, building the formula takes considerably
longer due to the higher number of instructions in the trace.

In addition to the solving time, the total overhead consists of
the time it takes TraceSanitizer to build the formula, including
the identification of data-dependencies in the trace. While
the number of dependencies and objects, along with the total
number of instructions hint at the size and complexity of the
formulas generated, they do not directly correspond to the
measured execution times. For instance, quicksort has a
higher complexity than kmeans in terms of memory objects
and dependencies in the traces with a comparable trace size,
but takes significantly less time for the check.

To understand how our technique performs for target pro-
grams of different complexity, we conducted a scalability study
for one of the benchmarks (blackscholes). For this pur-
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pose, we generated execution traces of the benchmark with
inputs of varying size (2,4,8,16,32 inputs) and varying numbers
of threads (1,2,4,6,8,12,16) handling these inputs. We have re-
peated the reversibility check four times for each input/thread
count combination to account for execution time variations.

We divide the execution time into building and solving the
reversibility formula. Figure 6 shows the average time of Trace-
Sanitizer for constructing the reversibility formula in relation
to input size and thread count for the blackscholes bench-
mark. As blackscholes intrinsically limits the number of
worker threads to the number of inputs, the plot only shows
data points where the number of threads is higher than or equal
to the number of inputs. As can be seen, the formula build
time increases with the input size, but remains below 15 min
in all cases. The number of threads only has a relatively small
influence; for example, for input sizes 16 and 32, the time
taken for 12 threads is lower than the time for fewer threads.

For brevity, we do not report on solver times in detail, but
summarize our findings.
• The solver time significantly exceeds the formula building

time (by an average factor of 191), with a maximum
average solver time of almost 103 h (32 inputs, 16 threads).

• Although we observed the highest solver time for the
most complex configuration, we find that solver time does
not strictly increase with thread count or input size.

• We find solver time to vary strongly across repetitions
with a coefficient of variation of up to 32.4 %.

From our scalability analysis we conclude that (1) building
reversibility formulas for TraceSanitizer is not a performance
bottleneck, (2) solving reversibility formulas dominates the
overall time for the reversibility check and may become a bottle-
neck, but is a one time cost for TraceSanitizer and will improve
as SMT solvers evolve.and (3) solver time can vary strongly
in unforeseen ways for different execution configurations.

2) Trace Sanitizing: Once the golden run has passed the re-
versibility check, TraceSanitizer proceeds with the sanitization

and comparison of faulty runs. Next, we measured the addi-
tional overhead incurred by running the sanitizing algorithms
and the actual comparison on each faulty run.

Table III shows a break-down of the median time across
5000 experiments that TraceSanitizer requires to perform these
sanitization (column 6) and comparison (column 7) steps. The
median time for trace sanitization ranges between 0.79 s and
8.75 s with a median absolute deviation (MAD) of 1.9 s for
swaptions and less than 0.4 s for the other benchmarks.
The trace comparison of a sanitized golden run and a faulty
run takes between 0.17 s and 2.86 s with a MAD of 0.2 s for
swaptions and under 0.02 s for the other benchmarks.

While we cannot directly compare these results to existing
approaches due to the strong impact of machine configurations
on performance measurements, we can provide an indirect com-
parison. As TraceSanitizer is the only sound tool for EPA trace
comparisons, it does not require any manual inspection of the
obtained comparison results to check for false positives, which
are required by unsound tools. To beat TraceSanitizer’s perfor-
mance for 5000 injections in the slowest case of swaptions,
4400 trace diffs (5000 · 0.88, the smallest coverage in Fig-
ure 5) would need to be inspected (manually) in less time
than 5000·8.57 s+144.61·60 s

4400 , which is less than 12 seconds for
a diff across traces with more than a million lines (Table I).
An analogous calculation yields less than 4 seconds for man-
ual inspection of any other benchmark. Such small times are
almost impossible to achieve for any realistic program trace,
including those in our evaluation. Moreover, the time taken
by TraceSanitizer will become smaller as computing becomes
faster, which is not the case for manual inspection.

VII. CONCLUSION

In this paper, we introduced a class of multi-threaded pro-
grams that we termed pseudo-deterministic, and for which EPA
can be sound in the presence of non-deterministic memory
allocations and CPU scheduling. We have developed an au-
tomated technique to determine whether a program belongs
to this class as well as a novel trace sanitizing approach that
soundly handles non-determinism. We implemented the tech-
nique in an automated tool called TraceSanitizer using the
LLVM compiler, and Satisfiability Modulo (SMT) Solvers.

We empirically evaluated our TraceSanitizer prototype on
five benchmark programs and demonstrated that it is able to
fully eliminate false positives. Further, it achieves a high fault
coverage in an EPA study, across five different fault types.
Finally, TraceSanitizer provides reasonable performance, and
compares very favourably with unsound EPA tools that require
manual inspection of false-positives.
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sequentially consistent systems,” in International Conference on Runtime
Verification. Springer, 2012, pp. 136–150.

[21] H. Saissi, “On the Application of Formal Techniques for Dependable
Concurrent Systems,” Ph.D. dissertation, Technische Universität,
Darmstadt, 2019. [Online]. Available: http://tuprints.ulb.tu-darmstadt.de/
8600/

[22] https://github.com/Z3Prover/z3, 2019.
[23] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Inter-

national conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2008, pp. 337–340.

[24] C. Barrett, A. Stump, C. Tinelli et al., “The smt-lib standard: Version
2.0,” in Proceedings of the 8th International Workshop on Satisfiability
Modulo Theories (Edinburgh, England), vol. 13, 2010, p. 14.

[25] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:
Characterization and architectural implications,” in Proceedings of the
17th international conference on Parallel architectures and compilation
techniques. ACM, 2008, pp. 72–81.

[26] https://github.com/kozyraki/phoenix, 2016.
[27] W. Masri and R. A. Assi, “Prevalence of Coincidental Correctness and

Mitigation of Its Impact on Fault Localization,” ACM Trans. Softw. Eng.
Methodol., vol. 23, no. 1, pp. 8:1–8:28, Feb. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2559932

http://dl.acm.org/citation.cfm?id=3155562.3155612
http://doi.acm.org/10.1145/2790077
https://www.nist.gov/dads/HTML/singleprogrm.html
https://www.nist.gov/dads/HTML/singleprogrm.html
http://doi.acm.org/10.1145/2393596.2393660
http://www.sciencedirect.com/science/article/pii/S016764230700161X
http://www.sciencedirect.com/science/article/pii/S016764230700161X
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1564
http://tuprints.ulb.tu-darmstadt.de/8600/
http://tuprints.ulb.tu-darmstadt.de/8600/
https://github.com/Z3Prover/z3
https://github.com/kozyraki/phoenix
http://doi.acm.org/10.1145/2559932

	Introduction
	Related Work
	Motivating Example
	Sanitizing Algorithms
	Overview
	System Model
	Algorithms
	Memory Object Abstraction
	Thread Identity Abstraction
	Reversibility Check
	An Example Trace Comparison
	Memory Object Abstraction
	Thread Identity Abstraction
	Reversibility Check
	Trace Comparison


	TraceSanitizer Implementation
	Evaluation
	Research Questions
	Target Programs and Execution Environment
	RQ1: False Positives from Memory Addresses
	RQ2: False Positives from CPU Scheduling
	RQ3: False Negatives Introduced by TraceSanitizer
	RQ4: TraceSanitizer Overhead
	Reversibility Check
	Trace Sanitizing


	Conclusion
	References

