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Machine learning is a branch of artificial intelligence, and it has been widely used in
many science and engineering areas, such as data mining, natural language process-
ing, computer vision, biological analysis and so on. Quantum computer is considered
as one of the most promising technologies of human beings in the near future. With
the development of machine learning and quantum computing, researchers consider
to combine these two aspects to gain more benefits. As a result, a novel interdis-
ciplinary subject has emerged—quantum machine learning. This paper reviews the
state-of-the-art research of algorithms of quantummachine learning and shows a path
of the research from the basic quantum information to quantum machine learning
algorithms from the perspective of people in the field of computer science.
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1 INTRODUCTION

Machine learning has been developed for more than half a century, and with the improvement of computational ability, it has
become a very important part of computer science. Ignoring the definition of machine learning, the learning is usually divided
into three types: supervised learning, unsupervised learning and reinforcement learning. Since these three types of learning have
already been clearly defined in the learning theory, here the concepts will not be emphasised in this review, but we only focus
on the corresponding machine learning algorithms. Although the computing power has increased quite fast over a couple of
decades and new algorithms have come up continuously, the increment of data is much greater than the growth of the computers’
performance. Therefore, the lack of computing power becomes deficiency gradually in the field of machine learning, which
relies on big data in many cases.
Quantum computing is based on phenomena of quantum mechanics, such as superposition and entanglement. Because of the

paramount feature for high speed computing, the parallelism can be designed into specific algorithms to solve specific problems.
These classical problems usually cannot be solved as efficient as they are in the quantum system. Shor’s algorithm1 shows that
the quantum computing is able to provide an exponential speedup to solve the problem of big integer factorisation, which is
impossible by using any classical method. After that, a plenty of quantum algorithms are proposed to solve the specific problems.
For instance, Grover’s algorithm is proved that it can give a quadratic speedup in searching an unstructured database2.
Sincemachine learning is under pressure from lack of computing power and quantum computing has this strong computational

ability, people consider the possibilities of the combination of quantum computing and machine learning. The development
of quantum computer has made some progress recently. For example, D-wave special-purpose quantum computer, which can
perform quantum annealing, allows some classical machine learning algorithms to run efficiently3. On the other hand, some
companies and research institutions have produced actual prototype machines of universal quantum computers based on the
quantum circuit model, which make experiments are able to be carried out with quantum computational operations on a small
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FIGURE 1 The basic structure of quantum machine learning. The learning process deal with the quantum data.

number of qubits via cloud platforms. Nowadays, the general large-scale quantum computer is still being developed. However, the
research of potential quantum machine learning algorithms has got some progress. Several famous machine learning algorithms
have got their quantum counterparts, such as quantum support vector machine (QSVM), quantum k-means clustering etc. In
addition, some algorithms have been implemented and tested on the forementioned real quantum computer4,5,6,7.
Obviously, there are two essential parts in machine learning—the data and the learning process. Likewise, in quantum domain,

it also includes these two parts. Looking back to history, the quantum computer was proposed and supposed to simulate the
quantum system in physics in the earliest days to solve the problem that some "data and actions" in quantum system are very hard
to be simulated by classical computers. Therefore, in early days, only quantum data was considered. However, people consider
to make it more useful in many other areas since it has unprecedented computing power. Because the quantum computing is
supposed to deal with the quantum data, the classical data should be pre-processed into quantum data, so that quantum computing
can work as it is imagined. In daily life, it is believed that most information people deal with is classical, so it is necessary to
do this pre-processing. However, there is a special case that the quantum data may be processed directly. For example, quantum
communication has become a hot topic in recent years, and in quantum channels, there may be some noise itself is quantum8.
Fig. 1 illustrates the structure of quantum machine learning.
There have been some survey papers whichmainly overview general ideas of differentmachine learning algorithms in quantum

version9,10,11,12,13. In our review work, we would like to provide a different perspective on this interdisciplinary area, which
introduces the quantum computing in machine learning from fundamentals to applications. The rest of this paper is organised
as follows. In section 2, we review some basic knowledge of quantum information, which is the underpinning of quantum
computing and even quantummachine learning. In section 3, we introduce some basic algorithms for quantummachine learning,
namely the subroutines of whole machine learning algorithms in quantum version, which are the core parts of quantum machine
learning algorithms and mainly provide the speedup over classical machine learning algorithms. In section 4, we introduce some
popular machine learning algorithms and their quantum conterparts as the application of quantum machine learning, including
both supervised and unsupervised cases. Finally, the conclusion is given in section 5 which introduces the practical problems
and challenges in the area of quantum machine learning.

2 BACKGROUND

2.1 Qubit and quantum state
Like the bit in the classical information, qubit is the fundamental unit of quantum information, which is usually denoted by Dirac
notation:

|0⟩ =
(

1
0

)

, (1)

and
|1⟩ =

(

0
1

)

. (2)

Unlike classical bits, qubits can exist in a superposition state:

|Ψ⟩ = � |0⟩ + � |1⟩ =
(

�
�

)

, (3)

where �, � ∈ ℂ and |�|2 + |�|2 = 1. It means that the state |Ψ⟩ is in both |0⟩ and |1⟩ simultaneously, but when it is measured,
it will collapse to the state |0⟩ with probability |�|2, or to the state |1⟩ with probability |�|2. Similarly, a two-qubit system can
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be expressed as:

|Ψ⟩ = a |00⟩ + b |01⟩ + c |10⟩ + d |11⟩ =

⎛
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⎜

⎜
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⎟

⎟

⎟
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⎠

, (4)

where a, b, c, d ∈ ℂ and |a|2 + |b|2 + |c|2 + |d|2 = 1.
Suppose that we have a two-qubit system which is expressed as:
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⎠
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√

2
(|01⟩ + |10⟩), (5)

where the subscripts 1, 2 are the order number of these two qubits. It turns out that the composite system |

|

 12⟩ cannot be
expressed as a tensor product of two independent qubits. In this case, it is called Entanglement. Amuch more detailed instruction
of quantum information can be found in Nielsen and Chuang’s book14.
Another representation of quantum states is called density matrix. The density matrix can be used to describe part of a

composite systems as well. It is given by the outer product of the state with itself:

� = | ⟩ ⟨ | =
(

a
b

)

(

a∗ b∗
)

=
(

|a|2 ab∗

a∗b |b|2

)

. (6)

The quantum state | ⟩ is a pure state. In addition, the density matrix can also describe a set of pure states |
|

 i⟩, which is a mixed
states, with probabilities pi 14,15:

� =
∑

i
pi || i⟩ ⟨ i|| , (7)

where
∑

i pi = 1.

2.2 Quantum gates
In the quantum circuit model of computation, the quantum gate is the basic quantum circuit operating on qubits, which is the
building blocks of quantum circuits like the classical logic gate is for conventional digital circuits. Unlike classical logic gates,
quantum gates are all reversible14,16. Therefore, quantum gates are represented by unitary matrices. That means the quantum
gates in the circuits always have the same number of inputs and outputs. Quantum gates are actually operators—unitary matrices
that act on a quantum state and transform the quantum state into another quantum state, which has the form

U | ⟩ =
(

u11 u12
u21 u22

)(

�
�

)

=
(

a
b

)

= |�⟩ . (8)

Table 1 lists some basic quantum gates.
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0 1

1 0

⎞

⎟

⎟

⎟

⎟

⎠

≡ �x
It maps |0⟩ to |1⟩ and |1⟩ to |0⟩. It is
equialent to NOT gate.

Pauli-Y Y =

⎛

⎜

⎜

⎜

⎜

⎝

0 −i

i 0

⎞

⎟

⎟

⎟

⎟

⎠

≡ �y It maps |0⟩ to i |1⟩ and |1⟩ to −i |0⟩.

Pauli-Z Z =

⎛

⎜

⎜

⎜

⎜

⎝

1 0

0 −1

⎞

⎟

⎟

⎟

⎟

⎠

≡ �z
It leaves the basis state |0⟩ unchanged and
maps |1⟩ to − |1⟩. It is also called
phase-flip.

Hadamard H = 1
√

2
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⎜

⎜
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1 1

1 −1

⎞

⎟

⎟

⎟

⎟

⎠

It creates a superposition by mapping |0⟩
to |0⟩+|1⟩

√

2
and |1⟩ to |0⟩−|1⟩

√

2
.

Phase shift S =

⎛
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⎜

⎜

⎜

⎝

1 0

0 ei�

⎞

⎟

⎟

⎟

⎟

⎠

It leaves the basis state |0⟩ unchanged and
maps |1⟩ to ei� |1⟩.

Tw
o-
qu
bi
tg

at
es

Controlled NOT CNOT =

⎛
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⎜

⎜
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⎝

1 0 0 0
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0 0 0 1

0 0 1 0

⎞

⎟

⎟

⎟

⎟

⎟
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⎟

⎟

⎟

⎠

It acts on 2 qubits, and performs the NOT
operation on the target qubit only when
the control qubit is |1⟩.

SWAP SWAP =

⎛
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⎜
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⎜

⎜

⎜

⎜

⎜
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1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

It acts on 2 qubits, and swaps these two
qubits.

TABLE 1 Basic quantum gates

2.3 Measurement
In quantum mechanics, the definition of measurement is the core problem of the interpretation of quantum mechanics. However,
the interpretation of quantummechanics is currently no consensus. Here we do not need to worry about philosophical differences,
but just consider the practical physics measurement.
According to quantum postulate 314, quantum measurements are described by a collection Mm of measurement operators.

These operators are acting on the state space of the system being measured. The indexm refers to the measurement outcomes that
may occur in the experiment. If the state of the quantum system is | ⟩, then the probability that the result m occurs is given by:

p(m) = ⟨ |M†
mMm | ⟩ , (9)
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and the state of the system after the measurement is:
Mm | ⟩

√

⟨ |M†
mMm | ⟩

. (10)

The measurement operators satisfy the completeness equation
∑

m
M†

mMm = I. (11)

The completeness equation expresses the fact that probabilities sum to 1:

1 =
∑

m
pm =

∑

m
⟨ |M†

mMm | ⟩ . (12)

For instance, the measurement of a qubit in the computational basis is defined as operatorsM0 = |0⟩ ⟨0| andM1 = |1⟩ ⟨1|.
Thus the operatorM is Hermitian and obeys the completeness: I =M†

0M0 +M
†
1M1. Suppose that the state being measured is

| ⟩ = a |0⟩ + b |1⟩. Then the probabilities of obtaining measurement outcome 0 and 1 are seperately

p(0) = ⟨ |M†
0M0 | ⟩ = |a|2 (13)

and
p(1) = ⟨ |M†

1M1 | ⟩ = |b|2. (14)
In addition, the states after measurement that corresponding to those two cases are

M0 | ⟩
|a|

= a
|a|

|0⟩ (15)

and
M1 | ⟩
|b|

= b
|b|

|1⟩ , (16)

where the multipliers a
|a|

and b
|b|

that related to phase factor can be securely ignored.

3 BASIC ALGORITHMS FOR QUANTUM MACHINE LEARNING

3.1 Grover’s algorithm
Grover’s algorithm is a famous quantum algorithm, since it uses the quantum parallelism to give the speedup which has no
corresponding counterparts in the classical computation. Grover’s algorithm solves the problem of unstructured or unsorted
database search. Specifically, the problem can be described as, given a set of N elements X = {x1...xn}, and also given a
boolean function f ∶ X → {0, 1}, the goal is to find an element x∗ in X to satisfy that f (x∗) = 1. Classically, solving linear
search problem has the complexity of O(N) in time. Grover’s algorithm is proved that it takes up O(

√

N) in time and is the
fastest possible quantum algorithm17. It provides quadratic speedup, while some other quantum algorithms can give exponential
speedup over their classical counterparts. However, even quadratic speedup is considerable whenN is large.

FIGURE 2 The sketch of an unstructured database. x∗ is the item that needs to be searched.

As it is mentioned above, the boolean function f ∶ X → {0, 1} can tell whether the result it searched is right if f (x∗) = 1,
otherwise wrong if f (x) = 0. The oracle is actually a unitary operator that is used for the function which checks if the searched
result is right. The oracle operator is usually represented as O, and meets the relation

O |x⟩ = (−1)f (x) |x⟩ . (17)

From this equation, it is clear to see that the phase of the quantum state |x∗⟩ would be flipped since only x∗ makes the function
f (x∗) outputs 1, where x∗ is which item it is searching for. In another word, the problem of database searching is given the input
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x, finding the entry that corresponds to x. Thus, in reality, the quantum oracle is already given to the algorithm so that it can be
used to determine or test if the processing returns true.
For a list of items in the database, there is no idea where the target one is before looking at the list. Thus, any guess of its

location is the same, which can be expressed as a superposition of a quantum state. That is

|s⟩ = 1
√

N

N−1
∑

x=0
|x⟩ . (18)

Where |x⟩ is the standard basis. If it is measured at this point, this superposition will collapse to any one of the basis states with
the same probability of 1

N
, where N is 2n. So if we want to pick the target state, enhancing the probability amplitude of the target

state is a spontaneous thought. This is called amplitude amplification. The amplitude amplification can cause the collapse to
skew to the state that has the amplified probability amplitude. Therefore, what makes Grover’s algorithm work is to find ways
to increase the probability amplitude of the particular state. Fig. 3 shows the flow of the algorithm.

FIGURE 3 The flow of Grover’s algorithm.

In Fig. 3 (a), it initialises n qubits at the state |
|

 0⟩ = |0⋯ 0⟩ and then create a superposition with all qubits that are with the
same probability amplitude:

|

|

 1⟩ = H⊗n
|0⋯ 0⟩ = 1

√

2n

N−1
∑

k=0
|k⟩ . (19)

Then the quantum oracle O is applied to flip the sign of searched input:

|

|

 2⟩ =
1

√

2n
O
N−1
∑

k=0
|k⟩ . (20)

This is an iterative operation that the result gets closer to the target in every process, which means the probability amplitude of
the searched item increases in each iteration.
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Then, for implementing the inversion about the average, a G gate (representing Grover iteration, more details in14), which is
H⊗n(2 |

|

0⊗n
⟩⟨

0⊗n|
|

− I⊗n)H⊗n, is applied on the state |
|

 2⟩. It gets
|

|

 3⟩ = H⊗n (2 |
|

0⊗n
⟩⟨

0⊗n|
|

− I⊗n
)

H⊗n
|

|

 2⟩ . (21)

Finally, after repeating steps corresponding to the Eq. (20) and Eq. (21), the measurement of the state |

|

 3⟩ will give the
target searched item with a high probability. The times of Grover iteration is proved as iterationmax =

�
4

√

2n times. A thorough
derivation of the iteration times is given in18. Thus, the full circuit of Grover’s algorithm can be expressed as the Fig. 4.

FIGURE 4 The structure of Grover’s algorithm.

Grover’s algorithmwas applied on the optimisation problem, which is of finding the minimum19. It applies Grover’s algorithm
with quantum oracles that tells which items are smaller than the threshold and performs it several times to find out the solution.
In addition, some researchers made significant improvements in the quantum search algorithm based on Grover’s algorithm20,21.

3.2 Swap-test
Swap-test is a simple and basic algorithm that is able to evaluate the overlap of two states. The overlap is a measure of similarity
between two quantum states, and it is noted as ⟨ |�⟩. Fig. 5 shows the quantum circuit of this algorithm.

FIGURE 5 The circuit of swap-test algorithm.

For describing the procedure of swap-test algorithm, suppose there are two states | ⟩ and |�⟩, as well as a control qubit |0⟩,
which constitute a quantum state

|

|

s0⟩ = |0⟩1 ⊗ | ⟩2 ⊗ |�⟩3 = |0,  , �⟩ . (22)
The subscripts represent what number of the state it is.
First of all, a Hadamard gate is applied on the control qubit that initialised as |0⟩. It results in a superposition:

|

|

s1⟩ = (H1 ⊗ I2 ⊗ I3) || 0⟩

= 1
√

2
(|0⟩1 | ⟩2 |�⟩3 + |1⟩1 | ⟩2 |�⟩3)

= 1
√

2
(|0,  , �⟩ + |1,  , �⟩). (23)

Then, the SWAP gate is applied on both | ⟩ and |�⟩ to swap | ⟩ and |�⟩ with the control qubit in state |1⟩. For how to
construct the SWAP gate is another question, we would not talk about it here. This controlled-SWAP gate is also called Fredkin
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gate. As the result, following state will be achieved:

|

|

s2⟩ =
1
√

2
(|0⟩1 | ⟩2 |�⟩3 + |1⟩1 |�⟩2 | ⟩3)

= 1
√

2
(|0,  , �⟩ + |1, �,  ⟩). (24)

At the third stage, another Hadamard gate is applied on the control qubit and result in the state:

|

|

s3⟩ =
1
√

2
H1(|0,  , �⟩ + |1, �,  ⟩)

= 1
√

2
(H1 |0⟩1 | ⟩2 |�⟩3 +H1 |1⟩1 |�⟩2 | ⟩3)

= 1
√

2
(
|0⟩1 + |1⟩1

√

2
| ⟩2 |�⟩3 +

|0⟩1 − |1⟩1
√

2
|�⟩2 | ⟩3)

= 1
2
(|0⟩1 | ⟩2 |�⟩3 + |1⟩1 | ⟩2 |�⟩3) +

1
2
(|0⟩1 |�⟩2 | ⟩3 − |1⟩1 |�⟩2 | ⟩3)

= 1
2
|0⟩ (| , �⟩ + |�,  ⟩) + 1

2
|1⟩ (| , �⟩ − |�,  ⟩). (25)

Finally, the control qubit is measured. The probability of getting state |0⟩ that measures the control qubit with the basis state
|0⟩ is given by:

P (|0⟩) = |

1
2
⟨0|0⟩ (| , �⟩ + |�,  ⟩) + 1

2
⟨0|1⟩ (| , �⟩ − |�,  ⟩)|2

= 1
4
|(| , �⟩ + |�,  ⟩)|2

= 1
4
(| , �⟩ + |�,  ⟩)†(| , �⟩ + |�,  ⟩)

= 1
4
(⟨�,  | + ⟨ , �|)(| , �⟩ + |�,  ⟩)

= 1
4
(⟨�,  | , �⟩ + ⟨�,  |�,  ⟩ + ⟨ , �| , �⟩ + ⟨ , �|�,  ⟩)

= 1
4
(⟨�| ⟩ ⟨ |�⟩ + ⟨�|�⟩ ⟨ | ⟩ + ⟨ | ⟩ ⟨�|�⟩ + ⟨ |�⟩ ⟨�| ⟩)

= 1
4
(| ⟨ |�⟩ |2 + 1 + | ⟨ |�⟩ |2 + 1)

= 1
2
+ 1
2
| ⟨ |�⟩ |2. (26)

From this equation, the probability P (|0⟩) = 0.5 means that the state | ⟩ and the state |�⟩ are orthogonal, and the probability
P (|0⟩) = 1 means that these two states are identical. Likewise, the probability of getting state |1⟩ that using the basis state |1⟩
to measure the control qubit is:

P (|1⟩) = 1
2
− 1
2
| ⟨ |�⟩ |2. (27)

Thus, the overlap ⟨ |�⟩ makes a connection with the measurement probability of the control qubit successfully in the final
quantum state.

3.3 Phase Estimation
Phase estimation is one of the core components of HHL-like algorithms. HHL algorithm is proposed by Harrow, Hassidim and
Lloyd22, thus the algorithm is abbreviated by these three researchers. Particularly, HHL algorithm solves the problem of solving
linear equations, and it is able to achieve the exponential acceleration over classical algorithms under some specific conditions
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additionally. Therefore, it has a widely use in the area of quantum machine learning. Here we would like to talk about the key
part of HHL algorithm—Phase Estimation.
Consider this equation,

I |0⟩ =
[

1 0
0 1

] [

1
0

]

=
[

1
0

]

= 1 ⋅ |0⟩ , (28)

This is a simple example to explain that 1 is the eigenvalue of the given eigenvector |0⟩. In general, the problem is that given an
equation

U | ⟩ = � | ⟩ , (29)
where U is an unitary quantum gate, we would like to find an eigenvalue � of the eigenvector | ⟩ satisfying it. Because U is
unitary, the eigenvalue can be expressed as:

� = e2�i� , (30)
where the phase � is in [0, 1). Go back to Eq. (28) and (30), from the eigenvalue � equals 1, it is clear that the phase � is estimated
as 0. Thus, the target of phase estimation is to estimate the unknown phase � that the unitary U has an eigenvector which has
an eigenvalue e2i�� .

FIGURE 6 The structure of phase estimation algorithm.

Fig. 6 shows the fundamental structure of the whole algorithm. It includes two parts. In the left parts, the states are initialised
as

|

|

 0⟩ = |0⟩⊗n |u⟩ , (31)
where |u⟩ is the eigenvector state. Here the state |0⟩ includes n qubits and the state |u⟩ is also n-dimentional. Then the Hadamard
gate is applied on the initialised basis state |0⟩ and it gets the state

|

|

 1⟩ = (H ⊗ I) |0⟩⊗n |u⟩ = 1
√

2n
(|0⟩ + |1⟩)⊗n |u⟩ . (32)

After this, a controlled U gate is applied on the eigenvector state |u⟩ and results in the state

|

|

 2⟩ =
1

√

2n

(

|0⟩ + U 2n−1
|1⟩

)

⊗
(

|0⟩ + U 2n−2
|1⟩

)

⊗…⊗
(

|0⟩ + U 20
|1⟩

)

⊗ |u⟩

= 1
√

2n

(

|0⟩ + e2�i2n−1� |1⟩
)

…⊗
(

|0⟩ + e2�i20� |1⟩
)

⊗ |u⟩ . (33)

At this point, the left part has been completed and it stores the eigenvalues of the operator U into the probability amplitude of
the first n-qubit state.
In the right-hand part, for fitting some particular patterns when it implements the inverse quantum Fourier transform, the last

equation can be re-written as:

|

|

 2⟩ =
1

√

2n

2n−1
∑

k=0
e2�i

k2n�
2n

|k⟩ |u⟩ . (34)

Compare the control qubit state 1
√

2n
∑2n−1
k=0 e

2�i k2
n�
2n

|k⟩ with the form of Fourier-transformed state

|j⟩ = 1
√

N

N−1
∑

k=0
e2�i

kj
N
|k⟩ , (35)
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whenN = 2n and j = 2n�, the state |j⟩ = |2n�⟩ can be recovered by applying an inverse Fourier transform. Namely, it will get
the state:

|

|

 3⟩ = QFT −1 1
√

2n

2n−1
∑

k=0
e2�i

k2n�
2n

|k⟩ |u⟩

= 1
2n

2n−1
∑

j=0

2n−1
∑

k=0
e2�ik�e−2�i

kj
2n
|j⟩ |u⟩

= 1
2n

2n−1
∑

j=0

2n−1
∑

k=0
e2�i

k(2n�−j)
2n

|j⟩ |u⟩ . (36)

Because the state |j⟩ is the basis state, it can only be encoded discretely. While the phase � is a continuous variable which should
be 0 ≤ � < 1.

3.4 HHL Algorithm
HHL algorithm is designed by Aram Harrow, Avinatan Hassidim and Seth Lloyd, and named after them22. This algorithm, pub-
lished in 2009, led to a real take-off in the field of quantummachine learning, and HHL-based machine learning algorithms have
emerged in a number of papers over the past few years. HHL is a famous quantum algorithm for solving linear systems. Linear
system is the core of many scientific and engineering fields. Because HHL algorithm achieves the exponential speedup over
classical algorithm under specific conditions, it can be widely used in data processing, machine learning, numerical calculation
and other scenarios in the future.
The core steps of HHL algorithm are shown in Fig. 7. As it is shown, HHL algorithmmainly includes three subroutines—phase

estimation, controlled rotation and inverse phase estimation. The description of this procedure is summarised as below.

FIGURE 7 The procedure of HHL algorithm.

1. Encode the vector b⃗ into the quantum state:

|b⟩ =
N
∑

i=1
bi |i⟩ . (37)

2. Apply the unitary operator eiAt to |b⟩, where A is a Hermitian matrix and A =
∑

j �juju
†
j . After the processing of the

phase estimation, the state becomes into

eiAt |b⟩ =
N
∑

j=1
�j
|

|

|

uj
⟩

|

|

|

�j
⟩

, (38)

where ||
|

uj
⟩

is the eigenvector of A, �j is the eigenvalue of A, and

|b⟩ =
N
∑

j=1
�j
|

|

|

uj
⟩

. (39)
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It is worth noting that if A is not Hermitian, in the paper22, a method to deal with this problem is presented. Define a
Hermitian matrix C as the input, and make C

C =
(

0 A
A† 0

)

. (40)

Solve the equation

Cy⃗ =
(

b⃗
0

)

(41)

to obtain
y⃗ =

(

0
x⃗

)

, (42)

so it can solve for x⃗ for the original problem Ax⃗ = b⃗.

3. Then the key step is the rotation gate in the middle of the circuit. Rotate the ancilla qubit with ||
|

�j
⟩

as the control qubit,
and after the rotation, it will get the state:

N
∑

j=1

(
√

1 − C2

�2j
|0⟩ + C

�j
|1⟩

)

�j
|

|

|

�j
⟩

|

|

|

uj
⟩

, (43)

which means it performs the linear map taking the state ||
|

�j
⟩

to C
�j

|

|

|

�j
⟩

, where C is a normalising constant.

4. The final step is the inverse phase estimation. In this step, it performs the linear map taking the state ||
|

�j
⟩

to the state |0⟩.
Observe Eq. (43), there is a proportion left of the state:

N
∑

j=1
�j
|

|

|

�j
⟩

|

|

|

uj
⟩

. (44)

If the result of the measurement of the ancilla qubit is 1, the final result of |x⟩ will be

|x⟩ =
√

1
∑N
j=1 C2|�j|2∕|�j|2

N
∑

j=1
�j
C
�j

|

|

|

uj
⟩

. (45)

Here, the |x⟩ it obtains is a quantum way to represent the desired solution of vector x⃗. At this stage, it cannot read out all
components of x⃗. However, most of cases are one is not interested in x⃗ itself, but rather the expectation value of a linear operator
M acting on x⃗. By making a measurementM , it allows to obtain an estimation of the expectation value ⟨x|M |x⟩. This indicates
that a variety of useful features of the vector x⃗, such as normalisation, weights in different parts of the state space, and so on,
can be extracted without actually computing all values of the solution vector x⃗. To sum up, HHL is not exactly an algorithm
for solving a system of linear equations in logarithmic time, but rather an algorithm for appoximately preparing a quantum
superposition of the form |x⟩, where x is the solution of a linear system Ax⃗ = b⃗23.

4 APPLICATION ALGORITHMS FOR QUANTUM MACHINE LEARNING

For using the basic quantum algorithms as subroutines, machine learning algorithms will be able to get speedup in different
degrees, since the subroutines such as HHL and amplitude amplification can provide exponential speedup and quadratic speedup
separately. Table 2 lists the speedup of some quantum machine learning algorithms24,22,25,26,27.
Although the speedup occurs in different ways in different machine learning settings25, it still can be perceived intuitively. As

it is known, classical data is in the form ofN-dimensional vectors. To map theseN-dimensional vectors onto a quantum state,
it needs only log2N qubits, which means if the data is stored in a quantum random access memory (QRAM), this mapping will
take O(log2N) steps28. Some researchers have already addressed the time complexity of specific steps of quantum operations.
For instance, quantum Fourier transform and matrix inversion take time O(poly(logN)), and distance estimation and inner
product take time O(logN)22,14. In addition, the problem of clustering, be more specific, assigningN-dimensional vectors into
one of clusters ofM states, takes time O(log (MN)) on a quantum computer. It is an exponential speedup due to that the best
known classical algorithm takes time O(poly(MN))25.
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Algorithms Subroutines Speedup
Quantum support vector machine HHL Exponential
Quantum k-means clustering Phase estimation, swap-test, Grover’s

algorithm
Quadratic

Quantum principle component analysis HHL Exponential
Quantum linear discriminant analysis HHL Exponential

TABLE 2 Speedup for some given machine learning algorithms

4.1 Quantum Support Vector Machine
The support vector machine (SVM) algorithm is a popular supervised machine learning algorithm, which is used to solve
problems of binary classification. The main idea of this algorithm is to find a hyperplane that can distinguish two classes of data
including different features and be used as a decision boundary for more data classification in the future29,30,31. Fig. 8 illustrates
this kind of classification problems. In mathematics, this classification problem is formulated as finding the maximum margin

FIGURE 8 The illustration of SVM for classification problems

between the hyperplane and the closest data points to it, so that the classifier hyperplane makes these two classified classes have
the maximummargin. Thus, SVM is also called maximummargin classifiers. In Fig. 8, there are two classes of data—45-degree
cross as class 1 and vertical-horizontal cross as class 2. Imagine that this is a sectional view and one is looking at it from the
side, then this data set is linearly separable in some dimensions. The data points in the parallel dashed lines are called support
vectors. In addition, the line in the middle of these two classes is actually a hyperplane, which is corresponding to the equation:

w⃗ ⋅ x⃗ + b = 0, (46)

where w⃗ is the normal vector of the hyperplane and b is a constant that represents the offset. Therefore, it has the relationship:
w⃗ ⋅ x⃗i + b ≥ 1, for x⃗i in the positive class,
w⃗ ⋅ x⃗i + b ≤ −1, for x⃗i in the negative class.

(47)

Here, the problem turns into an optimisation problem and the optimisation objective is to estimate parameters w⃗ and b that
makes:

max
w⃗,b

2
|w⃗|

s.t. yi(w⃗ ⋅ x⃗i + b) ≥ 1,
(48)
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where 2
|w⃗|

is the margin between these two classes.Once the parameters w⃗ and b have estimated, the classification result of a
new vector x⃗0 can be determined by

y(x⃗0) = sgn(w⃗ ⋅ x⃗0 + b). (49)
In the classical SVM, it will traverse all the samples and the features of every sample which will result in a polynomial

complexity ofO(poly(NM)), whereN is the number of training data points andM is the number of features. However, QSVM
alogorithm is able to provide an exponential speedup, which isO(log(NM))24. In addition, QSVM is one of themachine learning
algorithms which has already been implemented on quantum computing hardware4. Actually, there are two versions of QSVM
that gives quadratical and exponential speedup separately. One of them focuses on solving non-convex optimisation problems
by involving Grover’s algorithm as a subroutine32. The other one focuses on the analasis of the least-squares approximation of
SVM24. In this paper, we will summarise and explain the latter method.
The normal vector w⃗ can be represented as

w⃗ =
N
∑

i=1
�ix⃗i, (50)

where �i is the weight of the ith training vector x⃗i. Then the parameters need to be optimised turn to �i and b. There is a detailed
description of QSVM algorithm in24. The main idea of that work is to employ the least-squares reformulation of SVM that
circumvents the quadratic programming and obtains the parameters from solving a linear equation:

F
(

b
�⃗

)

≡
(

0 1
I K + −1IN

)(

b
�⃗

)

=
(

0
y⃗

)

. (51)

Here, K is the linear kernel matrix that defined as Ki,j = x⃗i ⋅ x⃗j .
First of all, by applying the training-data oracle, the classical training data is encoded as

|

|

x⃗i
⟩

= 1
|x⃗i|

M
∑

i=1
(x⃗i)j |j⟩ . (52)

From the initial state (1∕
√

M)
∑M
i=1 |i⟩ and the training-data oracle, we can prepare the state

|s⟩ = 1
√

Ns

M
∑

i=1
|x⃗i| |i⟩ ||x⃗i

⟩

(53)

Then to optimise the hyperplane parameters b and ai, useHHL algorithm to solve the linear equations. The hyperplane parameters
are determined by the matrix inversion:

(b, a⃗T )T = F −1(0, y⃗T )T . (54)
Due to the quantum register is initialised as

|0, y⟩ = 1
√

N0,y

(

|0⟩ +
M
∑

i=1
yi |i⟩

)

, (55)

by performing the matrix inversion of F , the quantum state is transfered to

|b, a⟩ = 1
√

Nb,a

(

b |0⟩ +
M
∑

i=1
ai |i⟩

)

. (56)

With the optimised parameters b and ai, the classification result then can be represented as

y(x⃗0) = sgn

( M
∑

i=1
ai(x⃗i ⋅ x⃗0) + b

)

. (57)

4.2 Quantum K-means Clustering
K-means clustering is one of the typical unsupervised machine learning algorithms. The clustering is a method to automatically
divide a pile of unlabeled data into several classes. This method should ensure that the data of the same class has similar features.
K-means algorithm has the property that the number of classes should be given in advance. In addition, there is an important
assumption of k-means that the similarity between data can be measured by Euclidean distance, which means that the smaller the
Euclidean distance, the higher the similarity between two data. The most important step in k-means algorithm is the calculation
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of Euclidean distance between given centroids of each cluster and data points33,34,35. For calculating Euclidean distance in
quantum k-means, the basic algorithm swap-test is employed36,25. The whole quantum k-means algorithm is decribed as follows.
As it is in classical case, number of k clusters must be determined in advance. The initialisation of these k cluster centroids

can be done by any methods that adopted in classical k-means algorithm. To access the data in quantum way, the information in
vector a⃗ is encoded as:

a⃗
|a⃗|

→ |a⟩ =
N
∑

j=1

aj
|a|

|j⟩ . (58)

To calculate the Euclidean distance |a⃗ − b⃗|2, two states are prepared and initialised as:

| ⟩ = 1
√

2
(|0, a⟩ + |1, b⟩), (59)

|�⟩ = 1
√

Z
(|a| |0⟩ − |b| |1⟩), (60)

where Z = |a|2 + |b|2. From the prepared state | ⟩ and |�⟩, the overlap of these two states is

⟨�| ⟩ = 1
√

2Z
(|a| |a⟩ − |b| |b⟩). (61)

Refer to the quantum information encoding at Eq. (58), the overlap can be further expressed as

⟨�| ⟩ = 1
√

2Z
(a − b). (62)

Swap positions, it is
a − b =

√

2Z ⟨�| ⟩ . (63)
Therefore, the Euclidean distance |a⃗ − b⃗|2 is

|a − b|2 = 2Z| ⟨�| ⟩ |2. (64)
By using the basic algorithm swap-test, the overlap ⟨�| ⟩ can be evaluated and then the Euclidean distance is obtained.
After all the distance between the data point and each cluster centroid obtained, the data point can be subsumed under the

cluster that has the minimum distance with it and new centroids should be recalculated. To complete the algorithm, the whole
procedure should be repeated several times until the result reaches convergence.

4.3 Quantum Dimensionality Reduction
In the field of machine learning, dimensionality reduction means that some mapping methods are used to map the data points
in the original high-dimensional space to the low-dimensional space. Dimensionality reduction is actually to learn a mapping
function f ∶ x→ y, where x is the original data points, which is usually represented by the vector, and y is the low-dimensional
vector representation after data points mapping. Additionally, the dimension of y is usually less than the dimension of x. The
reasonwhy the dimensionality reduction is needed is that in the original high-dimensional space, amass of redundant information
and noise information is included, so that errors and the low accuracy are caused in practical applications. By dimensionality
reduction, it hopes to reduce the errors caused by redundant information and improve the accuracy of identification. On the
other hand, it hopes to find the essential structural characteristics of data through the dimensionality reduction algorithms as
well37,38,39. In this paper, we mainly focus on two popular dimensionality reduction algorithms in quantum machine learning—
Quantum Principal Component Analysis (QPCA) and Quantum Linear Discriminant Analysis (QLDA).

4.3.1 QPCA
Principal component analysis (PCA) is a widely used dimensionality reduction method. It is an unsupervised dimensional-
ity reduction method, which compresses high dimensional eigenvectors into low dimensional eigenattributes. The goal of this
algorithm is to map high-dimensional data to low-dimensional space representation through some linear projection, and expect
that the variance of data on the projected dimension is the largest, so as to use smaller data dimension and retain more char-
acteristics of original data points40. QPCA involves the quantum phase estimation subroutine to deal with eigenvectors and
eigenvalues. This algorithm is proved that it is able to provide exponential speedup over any known classical algorithm26. the
procedure of QPCA is described as below.
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Firstly, the classical data should be normalised and encoded as quantum states. For a set of N dimensional vectors xi with
i = 1, 2, ...M , we subtract the mean x̄:

xi → xi − x̄

x̄ = 1
M

M
∑

i=1
xi,

(65)

and normalise as

xi → xi

|xi|

|x| =

√

√

√

√

N
∑

k=1
x2k.

(66)

Then encode the classical data as quantum states:

x→ |x⟩ =
N
∑

k=1
xk |k⟩ . (67)

As the core of QPCA algorithm, phase estimation requires to construct two input parts in advance—quantum state � and
controlled U operator. Here, the quantum state � can be defined by the following density matrix:

� = 1
M

M
∑

i=1

|

|

xi
⟩⟨

xi|
|

= 1
M

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∑M
i=1 x

i
1x

i
1

∑M
i=1 x

i
1x

i
2 ⋯

∑M
i=1 x

i
1x

i
N

∑M
i=1 x

i
2x

i
1

∑M
i=1 x

i
2x

i
2 ⋯

∑M
i=1 x

i
2x

i
N

⋮ ⋮ ⋱ ⋮

∑M
i=1 x

i
Nx

i
1
∑M
i=1 x

i
Nx

i
2 ⋯

∑M
i=1 x

i
Nx

i
N

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (68)

while the controlled U operator can be generated as e−i�t according to the reference26.
After we have these inputs, the quantum phase estimation subroutine can be applied. For QPCA algorithm, the unitary operator

U = e−i�t is not applied on the eigenvector, but density matrix � instead. The output of this application of quantum phase
estimation is:

M
∑

j=1
�j ||

|

�̃j
⟩⟨

�̃j||
|

⊗ |

|

xj
⟩⟨

xj|
|

. (69)

Lastly, sampling from this state is able to help us obtain features of eigenvectors.

4.3.2 QLDA
LDA is an another dimensionality reduction algorithm designed for classification. For the problem of classification, the feature
space of input data is mapped from high dimension to low dimension, so as to achieve the dimensionality reduction. LDA retains
the information of classes discrimination as much as possible, that is, data belongs to a class in the original high-dimensional
space also belongs to a class in the low-dimensional space, and vice versa. The goal of LDAdimensionality reduction algorithm is
to find a mapping, which can maximise the distance between classes and minimise the distance within classes41,42. Consider that
there areM real value input data vectors xi ∈ ℝN , 1 ≤ i ≤M that each belongs to one of k classes, we have the between-class
scatter matrix of the dataset

SB =
k
∑

c=1
(�c − x̄)(�c − x̄)T , (70)

where �c is the within-class mean of class c and x̄ denotes the mean of all data vectors x. And also, we have the within-class
scatter matrix of the dataset

SW =
k
∑

c=1

∑

x∈c
(x − �c)(x − �c)T . (71)
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Then the goal is to find a direction of projection w⃗ ∈ ℝN that maximises the between-class variance w⃗TSBw⃗ relative to
the within-class variance w⃗TSW w⃗. In mathematics, it is assumed that the classes have approximate multi-variable Gaussian
distribution and the covariance is similar additionally, it is the problem of maximising the objective function

J (w⃗) =
w⃗TSBw⃗
w⃗TSW w⃗

. (72)

And the equivalent optimisation problem is
min
w⃗

−w⃗TSBw⃗,

s.t. w⃗TSW w⃗ = 1.
(73)

Then minimise the Lagrangian
P = −w⃗TSBw⃗ + �(w⃗TSW w⃗ − 1), (74)

where � is the desired Lagrange multiplier. Following the Karush-Kuhn-Tucker (KKT) conditions, we have
SB
SW

w⃗ = �w⃗. (75)

It means that w⃗ is an eigenvector of SB
SW

. Therefore, the objective function can be obtained as J (w⃗) = �. In general case, keeping
p eigenvecotrs for each data is necessary, thus a projection subspace with N × p dimensions is needed. Then the objective
function is generalised as:

J (W ) =
W TSBW
W TSWW

, (76)

whereW is anN × p matrix.
The goal of QLDA is to speed up the classical LDA algorithm. Compared with the classical LDA algorithm, the exponential

speedup is achieved on the number of training vectorsM and dimensionN of feature space27. In the paper27, the author proposes
the algorithm as 4 steps as follows:

1. Construct SB:

SB =
1
A

k
∑

c=1
|�c − x̄|2 ||�c − x̄⟩ ⟨�c − x̄|| , (77)

and SW :

SW = 1
B

k
∑

c=1

∑

i∈c
|xi − �c|2 ||xi − �c⟩ ⟨xi − �c|| . (78)

2. Use the method proposed in the paper26, to construct density matrix S1∕2B S−1W S1∕2B .

3. Apply quantum phase estimation algorithm to solve the problem

S1∕2B S−1W S1∕2B � = ��. (79)

It can obtain an approximation to the state

� =
∑

i
�i ||�i⟩ ⟨�i||⊗ |

|

�i⟩ ⟨�i|| , (80)

where �i is the eigenvalue of S1∕2B S−1W S1∕2B and �i is the eigenvector of S1∕2B S−1W S1∕2B . Furthermore, it obtains the
corresponding p principal eigenvectors �r of S

1∕2
B S−1W S1∕2B .

4. Again, use the technique in26 to obtain eigenvectors of S−1W SB

wr = S
−1∕2
B �r. (81)
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FIGURE 9 Single neuron model.

4.4 Quantum Neural Networks
Researchers have studied a number of quantum machine learning algorithms that corresponding to their classical counterparts,
some of them are able to achieve exponential speedup, while some of them are able to obtain quatratical speedup. However,
the benefits of quantum neural networks are not yet specified in comparing with the classical one. The first step in creating a
usable quantum neural network is to model a single quantum neuron. In 2018, researchers from the university of Pavia in Italy
implemented the first single-layer neural network on a quantum computer43. In a classical neural network with a single neuron,
the output is a weighted sum that maps the input vector to the binary output through the activation function. In quantum neural
networks, the first layer encodes input vectors as quantum states. Then the second layer performs the unitary transform on the
input, similar to the way the weight vector works in classical neural networks. Finally, the output is written on the ancilla qubit,
producing the final output. It shows the quantum circuit in Fig. 10. They proposed the quantum neuron model and designed the

FIGURE 10 The quantum scheme of artificial neuron on quantum processor.

unitary transform.
Some other work such as44 and45 are also inspiring. In44, a small quantum circuit defines a building block as the quantum

neuron which can natually simulate neurons with threshold activation. In45, it proposes a model of a quantum neural network
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based on the quantum neuron by the subroutine of a swap test. In addition, Google’s Quantum AI team has built a theoretical
model of a deep neural network that could be trained on a quantum computer46. Although there is no current hardware to actually
implement this model, their results are encouraging. Once the hardware is available in the future, the framework they created
will allow people to adopt quantum machine learning immediately.
In general, the reason why people develop quantum neural networks is to compare with classical neural networks, quantum

neural networks have many advantages, including exponential memory capacity, fewer hidden neurons but higher performance,
faster learning and processing speed, smaller scale and higher stability. These advantages are able to solve most of the limitations
of classical neural networks. At present, people are trying to realise fully functional quantum neural network.

5 CONCLUSION

This paper reviews some of the current research on quantum machine learning. It is worth noticing that this is not a complete
review, but focused on the quantum version of some given supervised and unsupervised machine learning algorithms, which
is based on the quantum circuit model. Even though some quantum versions of machine learning algorithms have been shown
by many researchers to provide speedup over their classical conterparts, there are still some problems in this area. For instance,
the problem of data input and output. It means that in some cases, reading the classical data may dominate the cost of quantum
algorithms, so that it cannot speedup the whole algorithm at the macro level, and exactly reading out the data may be infeasible,
which cannot meet the computing needs in some tasks of learning. Due to these problems, it is believed that applying quantum
computing to quantum data directly is much more effective and efficient than to classical data. Therefore, quantum machine
learning is better suited to solving problems in quantum systems themselves. However, with the development of research and
theory, in the near future, we can verify whether these quantum machine learning algorithms can effectively help people solve
problems about the data and decision-making that encountered today.
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