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Abstract—Federated Learning (FL) has been employed for
tremendous privacy-sensitive applications, where distributed de-
vices collaboratively train a global model. In Industrial Internet-
of-Things (IIoT) systems, training latency is the key performance
metric as the automated manufacture usually requires timely
processing. The existing works increase the number of effective
devices to accelerate the training. However, devices in IIoT
systems are usually densely deployed, increasing the number of
clients can potentially cause serious interference and prolonged
training latency. In this paper, we propose RaFed, a resource
allocation scheme for FL. We formulate the problem of reducing
training latency as an optimization problem, which is proved
to be NP-hard. We propose a heuristic to select appropriate
devices to achieve a good trade-off between the interference
and convergence time. We conduct experiments using an RGB-D
dataset in an IIoT system. The results show that compared to the
state-of-the-art works, RaFed significantly reduces the latency by
29.9%.

Index Terms—Federated learning, Industrial Internet of
Things, Wireless communication, Resource allocation

I. INTRODUCTION

Industrial Internet-of-Things (IIoT) has been considered as
one of the key technologies for the implementation of Industry
4.0 [1]. In IIoT systems, each front-end device continuously
generates a large amount of data, which usually requires to
be processed with machine learning approaches. For example,
in the Automatic Sorting System, the images of the indus-
trial products are captured and stored by multiple cameras
from different shooting angles. The images will further be
collected to a centralized server for processing and analysis
with machine learning methods. The results are then used for
automatic decisions along the production assembly lines.

Since the IIoT data from all the front-end devices are col-
lected to the central server, the privacy problem appears as an
important concern in the traditional learning methods, because
the data from some confidential products/objects can involve
sensitive information [2]. For example, multiple factories may
rely on the image identification services provided by the same
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Fig. 1. Automatic Sorting System.

third party [3], [4], but they may do not want to share their data
with the third party to train the centralized machine learning
model. Therefore, Federated Learning (FL) is promising for
privacy-preserving data processing in IIoT systems [5], [6],
where front-end devices are allowed to preserve training data
locally and collaboratively train a global learning model.

However, it is non-trivial to employ FL in IIoT systems,
because IIoT systems rely on the timely completion of each
processing procedure in manufacturing [7], adding a strin-
gent requirement on the training latency of FL. Considering
an Automatic Sorting System as an example, as shown in
Figure 1, where the industrial products first pass through
the checking machines on a conveyor. The machines are
equipped with cameras to collect product images and identify
the product types with certain machine learning models [8],
[9]. The identified products can then be correctly picked
for further assemblage and transportation. Apparently, the
products identification needs to be finished in time before the
products goes into the picking procedure. Otherwise, the whole
manufacturing pipeline will be interrupted or even broken.

There are some existing works on reducing the training
latency of FL in general mobile networks [7], [10]. The main
idea of these works is to use the improved number of FL
clients (active devices) to reduce the convergence time. For
example, the state-of-the-art work [10] tries to increase the
number of powerful FL clients with more local data, so that
the global model can converge with fewer iterations and thus
the training latency is reduced. Considering the datarate of
cellular networks, most of these works assume the updates
can be transmitted with very short time-on-air and there are
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Fig. 2. Motivative example of FL.

few inter-client collisions.
However, as the IIoT devices are usually resource-

constrained and densely deployed (e.g., devices that are de-
ployed within the area of a workshop), the relatively long time-
on-air of the IIoT transmissions can easily cause collisions.
As a result, if we follow the existing works and increase
the number of FL clients, the collision probability can be
drastically increased. The overall training latency will be
further increased as the server has to wait for updates from all
FL clients in each iteration.

To address the above challenge for FL in IIoT systems, in
this paper, we propose RaFed, a resource allocation scheme
for FL in industrial IoT, to reduce the training latency of FL.
We first analyze the latency of different distributed devices
uploading their model updates to the server, where both the
computation latency and the wireless transmission latency is
considered. RaFed jointly considers the selection of active
devices and the allocation of wireless resources such as the
channels, to minimize the training latency of the global model,
which is formulated as an optimization problem, where the
optimization goal is to minimize the longest device latency.
The problem is proved to be NP-hard, and a heuristic algorithm
is proposed to gradually reduce the training latency. We
evaluated the proposed method in comparison with the state-
of-the-art works using a public IIoT dataset, T-LESS, which
is the data for identifying the industry-relevant objects in IIoT
systems like Automatic Sorting Systems.

In summary, this paper makes the following contributions.
• We formulate the problem of reducing training latency of

FL for IIoT systems by allocating the active devices and
wireless resources, which is proved to be NP-hard.

• We propose a heuristic algorithm to iteratively improve
the training latency until the latency reduction is accept-
able.

• We conduct experiments using an RGB-D dataset of
texture-less objects in an IIoT automatic sorting system.
The results show that compared to the state-of-the-art
works, RaFed significantly reduces the FL latency by
29.9%.

II. MOTIVATION

In this section, we use two illustrative examples to discuss
the bottleneck of the FL training latency, as well as the impact

TABLE I
TRAINING LATENCY OF DIFFERENT ALLOCATION

Device ID Random
selection (s)

Shortest local
latency (s)

Least
iteration (s)

Shortest training
latecny (s)

a 7 12
b 5.5 8 6.33
c 5 6.5 5.67
d 7.5 6.67

max{a,b,c,d} 7 5 12 6.67
Training latency (s) 56 50 48 40

of resource allocation on this latency.
Figure 2 illustrates the basic architecture of FL, with four

distributed devices running industrial IoT systems and a cen-
tralized server that is responsible for training a global model.
Basically, these four devices iteratively receive the global
model from the server. After training locally, they update their
local models and upload these updates to the server. In this
paper, we mainly focus on the latency through the training
process.

In Figure 2, the numbers under the four devices denote
their computation latency under different processing capability
of their hardware, and the numbers beside the links between
the devices and the server are the wireless communication
latency under different signal fading conditions. For wireless
communication latency, we consider the impact of multiple
devices interfering with each other. By selecting more devices
to upload their model updates, the transmissions will be
more likely to fail, so we prolong the communication latency
with different packet reception ratio. Specifically, with one
to four selected devices, the packet reception ratio is set to
100%, 80%, 60% and 40%, respectively. Besides, the training
requires multiple iterations, and the number of iterations is
related to the number of selected devices (i.e., selecting more
devices leads to faster convergence thus fewer iterations). For
simplicity, we follow the assumption in [11], where increasing
the number of selected devices can linearly speed up the
convergence. Specifically, with one to four devices selected,
the number of iterations is set to 10, 8, 6, and 4, respectively.

Training latency of different allocation. We first consider
the random device selection, where devices a and b are se-
lected. Their training latency is calculated by the computation
latency plus the transmission latency, i.e., ta = 2 + 4

0.8 = 7s,
and tb = 3+ 2

0.8 = 5.5s. Since the training latency is limited by
the device with longer latency, this random selection scheme
leads to 7× 8 = 56s training latency in total.

To explore different selection schemes which reduce the
wireless interference and the transmission latency, we consider
the scenario that only one device with the least local latency,
i.e., device c. The training latency will be 5×10 = 50s, which
is shorter than the above random selection scheme. On the
other hand, if we consider the allocation which uses the least
number of iterations, all four devices are selected to compute
and upload their local model updates to the server. The latency
of them can also be calculated as the method above and the



3

results are: ta = 2 + 4
0.4 = 12s, tb = 3 + 2

0.4 = 8s, tc =

4 + 1
0.4 = 6.5s, and td = 5 + 1

0.4 = 7.5s, respectively. As a
result, the training latency is 48s.

Now let us exploit a better selection scheme that can
further reduce the training latency. If we select the devices
b, c and d, with the packet reception ratio 60% and 6 itera-
tions, we can calculate their corresponding training latency
as: tb = 3 + 2

0.6 = 6.33s, tc = 4 + 1
0.6 = 5.67s, and

td = 5+ 1
0.6 = 6.67s, respectively. Therefore, the total training

latency will be 6.67× 6 = 40s. These examples indicate that
the lossy nature of wireless links for industrial IoT systems
makes the selection of active devices have a great impact on
the training latency of FL. Furthermore, if we consider the
resource allocation of the wireless channels, i.e., the three
devices in the last example can use different channels so
that their transmissions do not interfere with each other, the
communication latency can be further reduced. Specifically,
the packet reception ratio of them will be 100%, and their
training latency becomes: tb = 5s, tc = 5s and td = 6s. The
total training time will be 36 seconds.

The results of the above examples are concluded in Table
I. It can be inferred from these examples that both the
active devices and the wireless resources should be carefully
allocated such that the wireless environment can contribute to
the reduction of total training latency of FL. We analyze the
impact that the device selection and wireless resource alloca-
tion have on the training latency and develop a mathematical
model to represent this impact. To solve the optimization
of minimizing the training latency, a heuristic algorithm is
proposed to get the resource allocation.

III. DESIGN OF RAFED

In this section, we present the design of RaFed in detail. The
objective of RaFed is to optimize the latency for the server to
collect all the local model updates from the industrial front-end
devices. We first analyze the uploading latency and the impact
of the resources such as wireless channels on this latency for
an front-end device, which consists of the computation latency
of local training and the communication latency with a given
wireless channel condition. With the uploading latency, we
formulate the problem of reducing the collection latency on
the server as an optimization problem. With the NP-hardness
of the optimization problem, a heuristic algorithm is proposed.
The notations used in this paper are summarized in Table II.

A. System model

We consider an industrial wireless network for industrial
4.0 applications, basically consisting of one server and a set
of distributed devices N . Each device i owns its local data
set, which is generated via the actions of the device such
as monitoring, and its size is denoted by Di. With these
local datasets, we can implement different applications like
analyzing and predicting the condition of the environment.

TABLE II
NOTATIONS USED IN THIS PAPER

Symbols Notations
The set of distributed devices

Size of data on device i
Total size of the data samples
Loss function of data sample j

Global accuracy threshold
Cycles for executing one sample

Frequency of the computation unit
The size of updated local model

B Bandwidth of the wireless transmission
The transmit power on device i

Threshold of the received signal SNR
Packet reception ratio on device i

The set of active devices
The channel used on device i

Communication distance of device i
Path loss exponent

Data distribution characteristics parameters
n The number of iterations for training

The set of available channels
Minimum available transmit power
Maximum available transmit power

𝜎𝜎

𝛾𝛾

𝐷𝐷𝑁𝑁
𝐷𝐷𝑖𝑖

𝑙𝑙𝑗𝑗

𝑦𝑦𝑖𝑖
𝑓𝑓𝑖𝑖
𝐷𝐷𝑢𝑢𝑢𝑢

𝑝𝑝𝑖𝑖

𝑞𝑞𝑖𝑖

𝑐𝑐𝑖𝑖
𝑑𝑑𝑖𝑖
𝛼𝛼
𝛽𝛽, θ

𝑝𝑝𝑚𝑚𝑖𝑖𝑚𝑚
𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

1) Model updating in Federated Learning: FL algorithms
involve multiple distributed devices learning locally and com-
municating with a central server periodically to reach a global
consensus. During the training, the distributed devices utilize
the local datasets to train the model received from the server
instead of uploading the privacy-sensitive data in the tradi-
tional way. In particular, the loss function of device i based
on its local dataset is defined as follows:

Fi(ω) :=
1

Di

∑
j∈Di

lj(ω), (1)

where lj() represents the loss function of the data sample j.
With the local loss function, the goal of the learning model is
typically to minimize the global loss function:

min
ω
f(ω) :=

N∑
i=1

Di

DN
Fi(ω), (2)

where DN denotes the total number of the data samples, and
can be calculated as DN =

∑N
i=1Di.

In a representative implementation of Federated Stochastic
Gradient Descent, each device i computes average gradient
gi = ∇Fi(ωt) on its local data, with its loss function Fi(ωt)
and current model parameters ωt of the tth iteration. And
then central server aggregates gradients obtained from these
N devices to update model parameters:

ωt+1 ← ωt − η
N∑
i=1

Di

D
· gi, (3)
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where η is the learning rate. Federated Averaging method
(FedAvg) proposed in [5] adds gradient descent step to each
device for improving communication efficiency. Therefore, the
local training process in devices i is:

ωit+1 ← ωt − η∇Fi(ωt), (4)

The server receives update ω(t + 1)i from N scattered
devices and averages them with weight to update global model

ωt+1 ←
N∑
i=1

Di

D
· ωit+1. (5)

After this, the server starts the next iteration round and sends
the result model of the previous round to the distributed
devices for training new updates. The above process repeats
until a global accuracy σ is achieved, i.e., ||∇f(ωt+1)|| ≤
σ · ||∇f(ωt)||.

By systematic description, it is clear that the last arriving
device could be the paramount bottleneck of Federated Learn-
ing due to the severe situation of network resource demand in
the iteration. Therefore, we then analyze the collection latency
at the server, as well as the component of the latency at the
distributed devices.

2) Latency of one training iteration: The latency of one
training iteration mainly consists of two parts: computation
latency on local devices and communication latency when
uploading model updates to the server. The distributed devices
are equipped with computation units with different capabili-
ties, so the time for training locally on them is different from
each other. Specifically, a device i consumes yi cycles of the
computation unit to execute a sample in its dataset, which can
be obtained and known as a priori [12]. Therefore, this device
i will consume yi · Di cycles of computation unit for local
training in one iteration. With the frequency of computation
unit fi of the device i, we can obtain the computation latency
at the device i as follows,

tic = bi ·
yi ·Di

fi
, (6)

where bi is a binary indicating whether the device i is selected
to upload its local model updates, i.e., bi = 1 if device i upload
its data to the server, and vice versa. After the computation
of local model training, the distributed devices will upload the
updates of their local models to the server via wireless links.
Due to the lossy nature of wireless links and the possible
conflicts between multiple transmissions, the uploading of the
model updates may fail and causing unacceptable waiting time
at the server. We rely on the reliability of a transmission
in terms of packet reception ratio to consider the wireless
communication latency. Specifically, with the size of uploading
packets (i.e., the updates of the local model) Dup, the commu-
nication latency of a distributed device i wirelessly uploading
packets to the server is defined as:

tiw = bi ·
Dup

ri · qi
, (7)

where ri denotes the bit rate of device i, and qi represents the
packet reception ratio of device i. The transmission bit rate is
defined as follows,

ri = Bln(1 +
hi · pi
N0

), (8)

where B is the bandwidth, N0 is the background noise, pi
is the transmission power at device i, and hi is the channel
gain of the device i. According to [13], hi can be treated
as random variable and constant during the learning time by
adding the outage probability constraint, e.g., for Rayleigh
fading channel:

P (
hi · pi
N0

< γ) < ζ, (9)

where γ is the signal-interference noise ratio (SINR) threshold
of the received signals, and ζ is the bounded probability. This
constraint is equivalent to pi ≥ −γN0

log(1−ζ) .
Packet reception ratio can be affected by both the channel

quality and the interference from other devices. Since the
devices in IIoT systems are usually resource-limited, we
consider the network model in low power wireless networks
in [14], where the distributed devices experience competing
transmission environment, and their signals would conflict
with each other if they are using the same wireless channel.
Generally, the packet reception ratio can be represented by:

qi = P{SINR ≥ γ}

= P{ pi · hi · ai
S∑

cj=ci,
j 6=i

pj · hj · a(dj) +N0

≥ γ}

= P{hi ≥

γ

 S∑
cj=ci,
j 6=i

pj · hj · a(dj) +N0


pi · ai

}

= exp(−

γ

 S∑
cj=ci,
j 6=i

pj · hj · a(dj) +N0


pi · ai

),

(10)

where S is the set of selected devices with S = {i ∈ N|bi =
1}, ci represents the channel that device i uses for uploading,

and
S∑

cj=ci,
j 6=i

pj · hj · a(dj) indicates the cumulative interference

on device i. ai denotes the path loss attenuation function and
can be defined as

ai =
v

4πfcdαi
, (11)

where di is the distance between the sender and receiver,
v is the velocity of electromagnetic wave, fc is the carrier
frequency and α is the path loss exponent.

Basically, we consider the packet reception ratio model as
in the low-power wireless networks, which is used to reflect
the transmission reliability. As a result, this model can be
alternated by other models for different networks such as
802.11b-based systems [15] and LTE systems [16].
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B. Problem formulation

Considering different latency of the distributed devices, the
objective is to minimize the training latency so that the learn-
ing time can be reduced and the FL can be efficient enough
to meet the requirement of more Industrial IoT systems.

Training latency of FL. The training latency is defined by
the number of iterations and the collection latency in an iter-
ation. Specifically, the number of iterations is related to both
the number of participated devices and data distribution. Since
different FL applications can have various data distribution
characteristics, the number of iterations required to achieve a
certain accuracy [17] can be approximated as follows that can
adapt to different data distributions:

n = µ(λ+
1

|S|
), (12)

where the parameters µ and λ are determined through ex-
periments to reflect data distribution characteristics, and we
set their values according to the experiments in [17]. Since
the wireless communication introduces packet error, we limit
the maximum retransmission number for each device, if the
transmission of a device finally fails, the global training
accuracy will decrease in this iteration, and more iterations
will be needed to achieve the expected global model accuracy,
increasing the total training latency of FL.

According to [13], [17], since the downlink (i.e., trans-
missions from the server to the devices) bandwidth is much
larger than that of uplinks, and basically the server power
is considered to be large enough, the downlink latency of
the server broadcasting the global model is considered to be
negligible compared to the collection latency of uplinks and
is not considered in this paper. As a result, the latency at each
iteration is limited by the worst device. Therefore, the problem
of reducing the training latency is formulated as:

minmax
i∈N

n · (tic + tiw),

s.t. ∀i ∈ N , ci ∈ C (C1)

∀i ∈ N , pmin ≤ pi ≤ pmax (C2)

(13)

where C is the set of available wireless channels, pmin and
pmax denote the minimum and maximum transmission power
at the industrial front-end devices. Eq. 13 indicates that the
training latency of FL can be greatly impacted by the alloca-
tion of wireless resources and the active devices selection (the
device selection can be considered as an allocation which we
can use a vector d = {b1, b2, ..., bN} to represent it).

In the optimization problem in Eq. 13, we have to consider
both the allocation of wireless resources and the selection
of the active distributed devices. With a large number of
distributed devices (e.g., thousands of them) in the industrial
IoT systems, as well as the multiple available wireless resource
sets, the solution space can be very large. For N devices, with
the number of available channels and transmission power nc
and np, respectively, there are totally

∑N
k=1

(
N
k

)
(nc + np)

k

possible allocations and it is extremely difficult to traverse all
of them. The above problem of searching for the best resource

Algorithm 1: RaFed procedure

1 Initial() = Random(d,C,P);#Initial allocation
2 Told = max(Initial());#Training latency
3 do
4 T0 = Told;
5 for each i ∈ N do
6 for each bi ∈ {0, 1} do
7 for each (pi, ci) ∈ (P,C) do
8 maxt = max(Alloc(pi, ci));
9 if maxt > T0 then

10 T0 = maxt
11 Alloc(i) = (pi, ci)

12 while(Told − T0 > δ)
13

14 #Calculate maximum training latency on devices
15 Function max(Alloc)
16 temp = 9999;
17 for each i ∈ N do
18 Told = Calc(i);
19 if Told < temp then
20 temp = Told;
21 Return temp;

allocation is a min-max optimization and is NP-hard [14],
which is difficult to solve for large scale IoT networks.

To solve the above problem, RaFed performs resource
allocation for FL in industrial IoT networks to reduce the
learning latency and improve learning efficiency.

C. RaFed algorithm

With the difficulty of NP-hard optimization problem, we
propose a heuristic algorithm to allocate wireless resources
and the active devices which provides the most reduction in
collection latency.

Specifically, an initial allocation is randomly generated for
the industrial networks, i.e., we randomly select the active
devices and their corresponding wireless resources. Then the
algorithm iteratively runs the following processing to approach
to the optimal allocation. In each iteration, RaFed traverses
all the devices and greedily allocate the preferred resources
for each of them. For each device, the training latency of
all the possible allocation is calculated on the premise of
the allocation of other devices remaining constant. RaFed
calculates the training latency according to the proposed model
by either selecting this device, and with both of the selections,
the longest training latency of those devices maxt can be
selected. In this way, the wireless resources and active devices
selection with the minimum maxt are determined on this
device where local optimal is achieved. After one iteration
with traversing all the devices, the algorithm will calculate the
improvement of the training latency compared to the latency
before this iteration. If the latency improvement is large
enough (i.e., larger than a threshold δ), it is believed that we
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can further reduce the training latency with the improvement in
another iteration and next loop begins. Otherwise, the iteration
will stop. δ can be set by the network operators according
to the expectation of the allocation accuracy. The detailed
description of the processing is shown in Algorithm 1.

IV. EVALUATION

In this section, we validate the performance of RaFed with
the public dataset, T-LESS [18], and compare the perfor-
mance with different resource allocation schemes. T-LESS
is a standard dataset employed for industry-relevant objects
identification in Industrial IoT. The dataset features thirty
industrial electrical products without significant texture, dis-
tinctive color or reflectance properties, and basically have
similarities on their shape and size. T-LESS includes training
and test images obtained with several sensors, which are
captured automatically, systematically sampling the images
from a view sphere. Basically, it includes 1296 training image
samples per object and 504 test image samples per object, and
there are 30 industry-relevant objects in total in the dataset.

A. Experimental setting

We implement RaFed in Tensorflow [19], simulating a
federated network with one server and a varying number of
distributed devices, and we adopt FedAvg, the widely-used
aggregation algorithm on the server to aggregate the uploaded
model updates. To simulate the wireless communication envi-
ronment, we consider that the distributed devices are uniformly
located in a cell, and a central server is located at the center
of the cell.

Following [13], the distance between these devices and the
wireless access point is uniformly distributed between 2 and
50 m, and the transmit power of devices is limited from 0.2 to
1 W. The wireless bandwidth is set to B = 250kHz, and the
path loss exponent is α = 3.76 [17]. The transmit power of the
devices pi is set to be integers between 0 to 20dBm, and the
power spectrum density of the additive Gaussian noise is N0

= -114 dBm/MHz. The computation capability of a distributed
device yi is uniformly distributed in 10-30 cycles/bit, and
the frequency of a device fi is uniformly distributed in 1.0-
2.0 GHz. The size of data on device Di is set as uniform
distribution in 5-10 MB, and the size of uploading packets
among the devices are similar and around 4.5 KB. The data
distribution characteristics parameters are µ = 89.154 and
λ = 0.00934 [17]. We randomly split data on each local device
into 80% training set, 10% testing set, and 10% validation set.

We evaluated the performance and compared RaFed with
different allocation schemes:

1) q−FFL [20] that tries to achieve the fairness of training
accuracy among the devices in FL.

2) FEDL [13] that considers the wireless communication
latency to maximize the training accuracy. The above
two state-of-the-art works do not involve the device
selection and randomly select active devices for local
model training.

3) FedCS [21] that considers the impact of device selec-
tion in FL while does not consider the collisions between
wireless transmissions.

For each dataset, we randomly pick up five subsets for
training, testing and validating. Repeating the process, the
mean and standard deviation across these five runs where
applicable is reported.

B. Federated Learning Performance

Training latency. We first compared the total training
latency of RaFed with the three state-of-the-art works. Figure
3 illustrates the training latency of these methods, where five
experiments are repeated. In the experiments, 40 distributed
devices and four wireless channels are available for selection.
Experimental results in Figure 3 show that the RaFed can
achieve shorter training latency than the other three methods
(e.g., RaFed outperforms q-FFL, FEDL and FedCS by about
28.2%, 29.9% and 15.8%, respectively). This is because RaFed
jointly considers the allocation of active devices and the
wireless resources to reduce the training latency, while the
benchmarks ignore the benefits of either of the allocations. We
also extract the latency of wireless communication to illustrate
the comparison between RaFed and native FL (i.e., Native
in Figure 3). It can be seen that the wireless communication
accounts for large proportion of the total training latency. It
can be seen that the training latency of q-FFL and FEDL is
shorter than that of FedCS, which indicates that the allocation
of wireless resources can provide more performance gain than
the allocation of active devices.

Convergence of FL. Different allocation methods lead to
different convergence speed for training the FL model. Figure
4 illustrates the convergence of different methods as the num-
ber of iterations varies. It can be seen that the training accuracy
of all the four methods first increase as the number of iterations
increases, and remains unchanged since a certain number of
iterations, which demonstrates that the FL converges. From
Figure 4, we can also see that the increasing speed in the
training accuracy is different for these different allocation
methods. This is because that they choose different sets of
active devices (even some of them select the same number of
active devices, the selected devices will be different due to the
wireless communication consideration). Since RaFed focuses
on reducing the training latency, its training accuracy does not
outperform than the other three allocation schemes.

C. Performance decomposition

As described in Section III, RaFed reduces the training
latency of federated learning by jointly considering the allo-
cation of wireless resources and active devices for uploading
model updates. To further analyze the performance gain of
RaFed, we evaluate the driving factors leading to its gain.

Impact of channel resources. Figure 5 depicts the training
latency with a different number of available channels. Since
FedCS assumes that the distributed devices upload their data
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one by one, which does not involve the channel allocation, we
implement FedCS scheme by randomly selecting a channel
in this experiment. Figure 5 illustrates that RaFed achieves
shorter training latency than other methods with different
number of available channels. The reason is that q-FFL and
FEDL do not consider the benefits of device selection to re-
duce the training latency, and FedCS randomly select wireless
channels thus cannot exploit the benefits of wireless resources.
The training latency of q-FFL and FEDL is generally longer
than that of FedCS, which means that the wireless resource
allocation can provide more benefits than the active devices
allocation. Furthermore, it can be inferred that as the number
of available channels increases, the training latency is reduced,
and this reduction tends to converge. This is due to the less
collision probability with more channels, until the channels
are enough for reliable data uploading of the devices.

Impact of transmit power allocation. Figure 7 depicts the
performance gain of the transmit power allocation. RaFed−
min and RaFed−max denote the simplified version of RaFed
without transmit power allocation, where the devices all use
the minimum and maximum transmit power. It can be observed
that RaFed without power allocation significantly increases the
training latency, compared with RaFed with power allocation.
Furthermore, RaFed with maximum transmit power shows
shorter training latency than RaFed with minimum transmit
power, which comes from the stronger received signal power
at the receiver.

Impact of device selection. We evaluated the impact of
device selection on the training latency with Figure 6. It can
be seen that, the training latency can be reduced with more
available devices, because with more available devices, there is

more optimization space by considering the trade-off between
the number of active devices and wireless collisions to reduce
the training latency. Similarly with Figure 6, the training
latency also tends to be stable as the number of available
devices increases. This indicates that the number of devices is
large enough to minimize the training latency, and cannot be
further improved by continuing to increase this number. Figure
6 also shows that q-FFL and FEDL perform shorter training
latency than FedCS, which is because the number of channels
is not enough for FedCS to provide expected performance
gain.

Average number of active devices. To further analyze the
device allocation, Figure 8 shows the average number of active
devices under different number of available devices. We can
see that the average number of active devices increases with
more available devices. This implies that RaFed can utilize
the benefits of multiple front-end devices for faster training.
Besides, the increasing of the number of active devices slows
down after the number of available devices reaches 80, which
indicates that the number of available devices is large enough
for optimizing the training latency.

V. RELATED WORK

In this section, we study the existing works on the resource
allocation and wireless communication in federated learning.

Federated Learning in wireless networks. Federated
Learning is gaining traction in the field of wireless networks.
Chen et al. [22] considers the impact of wireless packet errors
on FL performance, and pose an optimization problem of
FL over wireless networks to minimize the training loss and
improve the training accuracy. Yang et al. [23] optimize the
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energy consumption on the devices in FL under the constraint
of training latency.

To accelerate the FL global model training, existing work
mainly focuses on improving the transmission efficiency for
those devices uploading model updates. Considering the fading
channels, Mohammad et al. [24] put forward an analog scheme
to exploit gradient sparsification and achieve more efficient
use of limited channel bandwidth. Yang et al. [25] leverage
the signal superposition property of wireless multiple-access
channel, and design a novel over-the-air computation approach
to yield faster global model aggregation. Seungeun et al.
[26] adopt Federated Distillation and propose FL framework
to enable the devices to exchange the average output logit
vectors and reduce communication cost. However, the above
researches overlooked the impact of wireless interference
and active devices allocation. Chen et al. [27] considers the
wireless resource allocation and device selection scheme to
reduce the training latency, while the solution first allocates the
active devices selection, and then perform wireless resource
allocation based on the device selection results. This paper
considers the severe interference in IIoT scenarios, and jointly
allocate the wireless resource, as well as the active devices to
optimize the training latency of FL.

Device selection in Federated Learning. At the beginning
of each global round, FL will select merely a fraction of
clients to participate in model updating. In vanilla FL [5], the
clients are selected randomly based on a goal count of par-
ticipants. To mitigate communication overhead and improve
the performance of FL, Nishio et al. [21] consider cellular
bandwidth limitation and propose a resource-aware selection
algorithm which maximizes the number of participants in each
round with resource constraints. Luping et al. [28] identify if
the model updates of the devices are relevant enough to the
global tendency of model improvement, and exclude irrelevant
updates before clients reporting them. This work aims to
accelerate convergence of global model and thus reduces com-
munication rounds. With the same intent, Wang et al. [7] offer
a reinforcement learning based framework that intelligently
selects devices participated in a round. The above researches
consider the allocation of active devices, but ignore the impact
of collisions between wireless transmissions, so RaFed jointly
takes the allocation of wireless resources allocation and active
devices into account, to reduce the training latency of FL.

VI. DISCUSSION

RaFed is based on a static wireless network topology where
the devices are pre-deployed and do not move. However, in
some IIoT applications such as smart robotics, the mobility
of devices will introduce more dynamics. We can analyze the
pattern of device mobility and predict the packet reception
ratio to adaptively reduce the training latency. Besides, RaFed
is based on the conflict between the limited wireless resources
and increasing number of devices. Future wireless network can
use mmWave and THz bands that have abundant bandwidth,
and the resource allocation reduces to the allocation of active

devices. The rising problem is that IIoT devices with mmWave
or THz bands would have shorter communication distance, so
they would require more hops to reach the server, thus the
active devices allocation should consider the impact of packet
relaying and becomes more complex.

VII. CONCLUSION

In this paper, we proposed RaFed that reduces the training
latency of FL in IIoT systems. Increasing the number of active
devices can improve the training latency, as more local models
can be trained to accelerate the training of global model.
As the IIoT systems often consist of dense-deployed devices
and limited communication/computation resources, increasing
the number of active FL devices can easily cause serious
interference and leads to prolonged training latency. RaFed
characterizes FL’s latency performance and we formulate the
problem as an optimization problem, which is proved to be
NP-hard. We then proposed a heuristic algorithm to select the
most appropriate clients to achieve a good trade-off between
the interference and training time. We conduct experiments
using an RGB-D dataset of texture-less objects in an IIoT
automatic sorting system. Experimental results showed that
RaFed can achieve shorter training latency of FL in IIoT
systems, compared to other existing methods.
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