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Abstract 12 

Tropospheric ozone is a dangerous atmospheric pollutant for forest ecosystems when it 13 

penetrates stomata. Thresholds for ozone-risk assessment are based on accumulated stomatal 14 

ozone fluxes such as the Phytotoxic Ozone Dose (POD). In order to identify the effect of ozone 15 

on a Holm oak forest in central Italy, four flux-based ozone impact response functions were 16 

implemented and tested in a multi-layer canopy model AIRTREE and evaluated against Gross 17 

Primary Productivity (GPP) obtained from observations of Eddy Covariance fluxes of CO2. To 18 

evaluate if a clear phytotoxic threshold exists and if it changes during the year, six different 19 

detoxifying thresholds ranging between 0 and 5 nmol O3 m-2 s-1 were tested.  20 

The use of species-specific rather than more general response functions based on plant 21 

functional types (PFT) increased model accuracy (RMSE reduced by up to 8.5%). In the case 22 

of linear response functions, a threshold of 1 nmol m-2 s-2 produced the best results for 23 

simulations of the whole year, although the tolerance to ozone changed seasonally, with higher 24 

tolerance (5 nmol m-2 s-1 or no ozone impact) for Winter and Spring and lower thresholds in 25 

Summer and Fall (0-1 nmol m-2 s-1). A “dynamic threshold” obtained by extracting the best 26 

daily threshold values from a range of different simulations helped reduce model 27 

overestimation of GPP by 213 g C m-2 y-1 and reduce RMSE up to 7.7%. Finally, a nonlinear 28 

ozone correction based on manipulative experiments produced the best results when no 29 

detoxifying threshold was applied (0 nmol O3 m-2 s-1), suggesting that nonlinear functions fully 30 
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account for ozone detoxification. The evidence of seasonal changes in ozone tolerance points 31 

to the need for seasonal thresholds to predict ozone damage and highlights the importance of 32 

performing more species-specific manipulative experiments to derive response functions for a 33 

broad range of plant species. 34 

Keywords 35 

Stomatal ozone fluxes, ozone-risk assessment, POD, AIRTREE, Eddy Covariance, GPP. 36 

 37 

Introduction 38 

Surface ozone (O3) is a powerful oxidant of particular concern for plants. O3 concentrations 39 

have doubled in the Northern Hemisphere since the pre-industrial period (annual mean 11-23 40 

ppb) as a result of the release of precursor compounds through industrial activities (Hartmann 41 

et al., 2013; Vingarzan, 2004). This secondary pollutant is not directly emitted but formed by 42 

sunlight-driven oxidation of other agents, called ozone precursors, like nitrogen oxides (NOx) 43 

and volatile organic compounds (VOCs) (Pinto et al., 2010). The Mediterranean climate 44 

promotes production of tropospheric O3 due to sustained photochemical activity driven by dry-45 

hot and sunny summer conditions (Millán et al. 1996; Ochoa-Hueso et al. 2017; Paoletti 2006). 46 

O3 concentrations tend to be elevated in rural areas downwind of big cities which receive 47 

plumes of O3 precursors favoring ozone formation (NIU et al., 2011; Zong et al., 2018). O3 48 

enters through stomata of leaves where it undergoes oxidation reactions, forming reactive 49 

oxygen species and causing damage to biomolecules, including cell membranes, proteins and 50 

DNA (Contran and Paoletti, 2007; Fares et al., 2017; Leisner and Ainsworth, 2012; Omasa and 51 

Takayama, 2002). This can affect leaf gas exchange and damage the photosynthetic apparatus, 52 

leading to plant growth reduction (Paoletti, 2007).  53 

Direct measurement of gas exchange can be performed by the eddy covariance technique 54 

(Aubinet et al., 2012).  This technique has the advantage that fluxes of a target gas (i.e., CO2, 55 

H2O or O3) are recorded at the ecosystem level and are therefore representative of an entire 56 

plant community in the footprint of an experimental tower (Fares et al., 2017). Its 57 

disadvantages, however, are the lack of direct control over the environmental covariates (i.e. 58 

temperature, relative humidity, solar radiation) influencing the ecophysiological processes of 59 

the ecosystem and that the measured exchange provides a net flux, which must then be 60 

partitioned between stomatal and non-stomatal sources and sinks. Therefore, isolating the 61 

stomatal flux of ozone, and its effect on forest ecophysiology, from direct ecosystem-level 62 
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measurements is challenging especially because the footprint of eddy covariance 63 

measurements is representative of all the sources and sinks in the soil-canopy continuum. 64 

Manipulative experiments can be performed in open-top chambers (OTC) or O3 Free Air 65 

Controlled Exposure (O3-FACE) facilities (Juráň et al., 2021) in order to derive the dose-66 

response functions of a plant’s net photosynthesis (An) and stomatal conductance (gs) to ozone 67 

exposure. In order to include the impact of ozone on leaf gas exchange estimates such functions 68 

can be coupled to empirical and semi-empirical models of An and gs such as the widely used 69 

Jarvis multiplicative algorithm of stomatal conductance (Jarvis, 1976) and the coupled A-gs 70 

model proposed by Ball, Woodrow and Berry (Ball et al., 1987).  71 

To apply these leaf-level relationships to the ecosystem scale then requires a bottom-up 72 

approach. This approach is intrinsic to multi-layer canopy models that combine models of 73 

penetration of light with models of leaf-level photosynthesis and models of transport within 74 

the canopy to estimate the gas exchange of each canopy layer (Lowman and Rinker, 2004).  A 75 

variety of multilayer models differing in spatial scale (i.e. local, regional and global model) 76 

and time resolution is available. Based on their scope and data availability, different approaches 77 

to simulate gs and An can be used within these models. The canopy gas exchange is generally 78 

calculated by integrating the fluxes resulting from various components (i.e. soil, understory, 79 

and crown) interacting with their specific microclimate (i.e. profiles of light, humidity and 80 

temperature) (Lambers et al., 2019).  81 

Various indices have been developed to evaluate the risks for plants exposed to O3 (Musselman 82 

et al., 2006). The earliest were based on mean atmospheric O3 concentration (Tong et al., 2009) 83 

above a threshold at which damage had been observed in sensitive species. Stomatal uptake of 84 

tropospheric ozone is considered a key threat for forest ecosystems (Paoletti, 2007), and 85 

specific parameterizations of the stomatal flux of ozone are required to understand the impacts 86 

at different sites (Emberson et al. 2000; Mills et al. 2011; CLRTAP 2017). 87 

Inter and intra-species variations in ozone impacts have been observed (Furukawa et al., 1990; 88 

Pääkkönen et al., 1996). The nature and magnitude of the response can depend on leaf 89 

morphological adaptations, methods for water saving (Feng et al. 2018; Nali et al. 2004; 90 

Paoletti 2006) and different strategies of ozone stress resistance such as avoidance of uptake 91 

by stomatal narrowing and tolerance to damage in terms of repair and detoxification capacities 92 

(Hoshika et al. 2020; Matyssek et al. 2008; Oksanen et al. 2007). Therefore, a better 93 

understanding of the flux of O3 entering through the stomata (i.e. thresholds of detoxification - 94 



4 
 

phytotoxic dose of ozone (PODY) (CLRTAP, 2017)) that leads to the observed O3 effects on 95 

forests and crops stimulates research on ozone-risk assessment.  96 

Based on the premise that new metrics could be evaluated by combining results from 97 

manipulative experiments, long-term measurements of O3, carbon (CO2) and water (H2O) 98 

fluxes, ancillary measurements and ecophysiological models (Fares et al., 2017), we used the 99 

AIRTREE model (Fares et al., 2019) developed to study forest ecosystem services such as 100 

carbon sequestration, ozone and particle deposition. AIRTREE uses a coupled A-gs sub-model, 101 

based on the analytical solution of the Ball-Woodrow-Berry model (hereafter BWB) proposed 102 

by Baldocchi (1994) to simulate both gross primary productivity (GPP) and stomatal flux of 103 

ozone. Specifically for this study, AIRTREE was implemented with two multiplicative factors 104 

for An and gs as proposed by Lombardozzi et al. (2013, 2015) to improve the predictive ability 105 

in simulating the ecophysiological impacts of ozone.  106 

We focused on the Castelporziano eddy covariance forest site in Rome (Italy), for which the 107 

AIRTREE model has been calibrated in a previous study (see Fares et al., 2019). The site is 108 

characterized by an evergreen Mediterranean Holm oak forest growing in a Mediterranean 109 

climate under relatively high ozone concentrations. Using linear and nonlinear responses to 110 

ozone exposure derived from species-specific manipulative experiments, four different 111 

parameterizations of ozone dose-response relationship were applied in AIRTREE under the 112 

assumption that these can provide better model skill than those based on generic formulation 113 

for specific PFTs. The goals of this study were to test:  1. which stomatal ozone flux 114 

detoxification threshold (PODY) best reproduces Holm oak’s vulnerability to ozone and if these 115 

vary during the season, and 2. if a dynamic function reflecting daily changes in PODY can be 116 

applied. 117 

  118 

1. Materials and Methods 119 

 120 

1.1 Study site 121 

The Presidential Estate of Castelporziano, located on the coast of the Tyrrhenian Sea ~25 km 122 

from Rome, represents a hotspot for biodiversity in the Mediterranean area, hosting more than 123 

1000 plants species (Davison et al., 2009). It is a protected area of about 4800 ha, of which 124 

85% are forests. The study site, “Grotta di Piastra” (Fluxnet code IT-Cp2 - 125 

10.18140/FLX/1440233; hereafter referred to as CPZ), is located in a wild coastal rear dune 126 

https://doi.org/10.18140/FLX/1440233


5 
 

ecosystem within the Estate, 1.5 km from the seashore (41°70’42’’N, 12°35’72’’E). The 127 

vegetation at CPZ is dominated by an even-aged (49 years) evergreen Holm oak forest 128 

(Quercus ilex L). The mean height of the forest is 14 m and the average Leaf Area Index (LAI), 129 

measured using a portable instrument (mod. LAI 2000, Licor, USA) is 3.00 m2 leaf m-2 ground. 130 

The understory vegetation is poorly developed and predominately small mock privet shrubs 131 

(Phillyrea latifolia L.). The land has a flat topography and the soil is a calcareous Regosoil 132 

having a mean depth of 0.45 m, sandy texture and low water-holding capacity. Wind circulation 133 

follows a sea-land breeze regime; the dominant wind direction is S-SW during the morning 134 

and N-NE during the afternoon. The site is characterized by the typical Mediterranean climate, 135 

with pronounced seasonality. Summers are hot and dry, and Winters are moderately cold with 136 

mean temperatures of the coldest and warmest months of 7 and 24 °C. Precipitation occurs 137 

mostly during Spring and Fall with mean annual precipitation around 700-1100 mm y-1. Here 138 

we focus on the year 2013 and 2014, of which, 2013 is considered a moderately dry year with 139 

an annual precipitation of 848 mm, while 2014 was wet with an annual precipitation of 1100 140 

mm. 141 

 142 

2.2 Meteorological and flux data 143 

A two-year dataset (2013 and 2014) was used to parameterize and evaluate the model. Air 144 

temperature, precipitation, relative humidity, net solar radiation, wind direction, soil humidity 145 

and soil temperature were recorded every minute and averaged for 30 min intervals with a 146 

Davis meteorological station (Davis Instruments Corp. CA, USA, mod. Vantage Pro). 147 

Continuous eddy covariance measurements of fluxes from the top of a 21-m scaffold tower 148 

started in 2012 and measurements are still ongoing. A tridimensional sonic anemometer (Gill 149 

mod. wind master) was used to measure instantaneous wind speed and temperature 150 

fluctuations. CO2 concentrations were measured with an infrared gas analyzer (Licor LI-7200). 151 

Air was drawn at 10 l min-1 through a 25 m ¼ “ teflon line to an ozone fast analyzer developed 152 

by the National Oceanic and Atmospheric Administration (NOAA, Silver Spring, MD) using 153 

a chemiluminescence method. The chemiluminescence detector was calibrated against 30 min 154 

average ozone concentrations from a factory calibrated UV ozone monitor (Thermo 155 

Scientific™ Model 49i). Data were recorded at 10 Hz for all gases using data loggers (CR-156 

3000, Campbell Scientific, Shepshed, UK). In this study GPP was calculated from ecosystem 157 

scale fluxes of CO2 (NEE) by adding the ecosystem respiration term (Reco) to NEE, since NEE 158 

represents the balance between CO2 sequestrated and emitted by the photosynthetic (GPP) and 159 
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respiratory (Reco) processes of the ecosystem. For more details on the site and meteorology, see 160 

Fares et al. (2014) and Conte et al. (2019).  161 

 162 

2.3 Leaf-level gas exchange measurements in an O3 FACE facility 163 

We derived O3 dose-response functions for An and gs accordingly to Lombardozzi et al. (2012, 164 

2013) using published leaf gas exchange data for 2 years-old Q. ilex seedlings measured in an 165 

O3-FACE experiment (Hoshika et al., 2020). The experiment was carried out at the 166 

experimental garden of the National Research Council at Sesto Fiorentino (43° 48’ 59” N, 11° 167 

12’ 01” E), 300 km north from CPZ site. The FACE facility consists of a network of vertical 168 

Teflon tubes which fumigate plants with controlled concentrations of O3. The FACE system 169 

was described in detail in Paoletti et al. (2017). Plants were exposed to two levels of ozone 170 

concentration (ambient air, AA, as control; 1.4 times ambient ozone concentration, 1.4 × AA) 171 

and two levels of water treatments (WW [well-watered]: 100 % field capacity (FC) on average; 172 

and WS [water-stressed]: 40% FC on average). There were three replicated plots (Length × 173 

Width × Height: 5 m × 5 m × 2 m) in each O3 treatment (n = 3 replicated plots), with three 174 

plants per each combination of O3 and water. Leaf gas exchange measurements were made by 175 

a portable gas analyzer (mod. CIRAS-2, PP Systems, Herts, UK) in a light-saturated condition 176 

(photosynthetic active radiation = 1500 µmol m-2 s-1) with a constant leaf temperature (25 °C), 177 

CO2 concentration (380 ppm) and air humidity (vapor pressure deficit = 1.0 to 1.8 kPa) during 178 

May to September 2015. Other details were described in previous papers (e.g. Hoshika et al., 179 

2020). 180 

 181 

2.5 The AIRTREE model 182 

The Aggregated InteRpreTation of the eneRgy balance and water dynamics for Ecosystem 183 

sErvices assessment (AIRTREE) model is a multi-layer model that couples soil, plant and 184 

atmospheric processes to simulate exchanges of CO2, H2O, O3, and PM between leaves and the 185 

atmosphere. A detailed description of the AIRTREE model can be found in Fares et al. (2019, 186 

2020), so here we confine ourselves to a description of the coupled stomatal conductance-187 

photosynthesis parameterization and ozone deposition scheme. 188 

In-situ measurements of solar radiation (PPFD+NIR, Near Infrared Radiation), air temperature, 189 

relative humidity, wind speed, CO2, O3 and PM concentrations were used to determine the leaf 190 

temperature, stomatal conductance, and radiative transfer at five heights from the top to the 191 
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bottom of the canopy crown. Individual leaf gas exchange is estimated at each layer and 192 

integrated to obtain fluxes at the canopy level. The sensible (H) and latent (λE) heat fluxes 193 

inside each canopy layer from the leaves to the atmosphere are computed as described by 194 

Lhomme (1988); see Table S1. 195 

The leaf photosynthetic rate (An) was calculated following the Farquhar-von Caemmerer-Berry 196 

(FvCB; Farquhar et al., 1980) model as the minimum of the carboxylation rate when ribulose 197 

bisphosphate (RuBP) carboxylase/oxygenase is saturated (Wc) and when RuBP regeneration is 198 

limited by electron transport (Wj). This is coupled with the stomatal conductance model of 199 

Ball, Woodrow and Berry (the BWB model), and the two are simultaneously solved following 200 

the methodology of Baldocchi (1994) to calculate An and gs. Canopy-scale An and gs were 201 

obtained by integrating values calculated for each layer according to the fraction of sunlight 202 

and shaded leaf area.  203 

 204 

In-canopy, soil, cuticular, atmospheric and leaf boundary layer resistances to ozone deposition 205 

for each layer were calculated as proposed by Zhang et al. (2002). Fluxes of CO2 (GPP), water 206 

(λE), and stomatal ozone reported in this study resulted from the integration of each layer 207 

contribution.  208 

As soil moisture significantly affects stomatal control, in this study the hydrological sub-model 209 

implemented in AIRTREE was deactivated and direct measurements of SWC collected at CPZ 210 

were used. The physiological response to drought stress was modelled following Keenan et al. 211 

(2010), such that the CO2 carboxylation rate (Vc) is: 212 

𝑉𝑉𝑉𝑉 =  𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 ∗  𝑊𝑊𝑓𝑓𝑓𝑓𝑓𝑓  eq. 1 

 213 

where 214 

𝑊𝑊𝑓𝑓𝑓𝑓𝑓𝑓 = �
1,                                    𝑖𝑖𝑖𝑖 Θ ≥ Θ𝑚𝑚𝑚𝑚𝑚𝑚

�
Θ − Θ𝑚𝑚𝑚𝑚𝑚𝑚

Θ𝑚𝑚𝑚𝑚𝑚𝑚 − Θ𝑚𝑚𝑚𝑚𝑚𝑚
�
𝑞𝑞

,    𝑖𝑖𝑖𝑖Θ < Θ𝑚𝑚𝑚𝑚𝑚𝑚
 

 eq. 2  

 215 

𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖 maximum CO2 carboxylation rate, ϴ is volumetric soil water content, ϴmax is the 216 

critical soil water content at which reductions of GPP are first evident and ϴmin is the minimum 217 

SWC at which GPP was observed (Figure S1). The exponent q is a measure of the non-linearity 218 
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of the effects of soil water stress on physiological processes (a value of 0.3 was found to best 219 

replicate the response at Castelporziano).  220 

 221 

2.6 Ecophysiological response to ozone flux  222 

POD is the phytotoxic ozone dose (Emberson et al., 2001), a metric used to standardize plant 223 

responses to chronic ozone exposure by integrating ozone flux into the leaf through time. 224 

Within the AIRTREE model, PODY is calculated using modelled gs and the accumulated ozone 225 

concentrations during daylight hours, following the approach of Lombardozzi et al (2012): 226 

 227 

𝑃𝑃𝑃𝑃𝑃𝑃𝑌𝑌 = 𝐶𝐶𝐶𝐶𝐶𝐶3 × 𝑔𝑔𝑠𝑠 × 1.67 × 3600 × 10−6  eq. 3 

 228 

Where CEO3 is the cumulative ozone exposure above a threshold derived from the 229 

manipulative experiment (see Section 2.3) by multiplying the enhanced treatment ozone hourly 230 

concentration (1.4*Ambient Air (AA)) for the daily hours of exposure and for the number of 231 

days between the start of the exposure and each measurement.  232 

The impact of the stomatal ozone flux, represented by PODY, on a plant’s ecophysiological 233 

processes is simulated in the AIRTREE model by two dose-response factors (FcO3 and FpO3) 234 

representing the response of An and gs, respectively, to the phytotoxic ozone dose (PODY) 235 

taken up through the stomata (Lombardozzi et al. 2013 and 2014). The dose-response factors 236 

are derived from the regression line fitted to correlations between the treatment to control ratio 237 

of An and gs and the calculated phytotoxic ozone dose POD0. 238 

  The photosynthesis dose-response factor (fp) is calculated as:  239 

𝐹𝐹𝑝𝑝𝑝𝑝3 =  𝑎𝑎𝑝𝑝  •  𝑃𝑃𝑃𝑃𝑃𝑃𝑌𝑌  + 𝑏𝑏𝑝𝑝  eq. 4 

𝐹𝐹𝑐𝑐𝑐𝑐3  =  𝑎𝑎𝑐𝑐  •  𝑃𝑃𝑃𝑃𝑃𝑃𝑌𝑌 + 𝑏𝑏𝑐𝑐  eq. 5 

 240 

Where ap and ac are the slopes and bp and bc are the intercepts of the linear regression of An 241 

and gs vs. PODY, respectively (see Table 1). 242 

The ozone-impacted photosynthesis and stomatal conductance are then estimated as: 243 
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𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴 •  𝐹𝐹𝑝𝑝𝑝𝑝3  eq. 6 

𝑔𝑔𝑔𝑔 = 𝑔𝑔𝑔𝑔 •  𝐹𝐹𝑐𝑐𝑐𝑐3  eq. 7 

 244 

Critical ozone thresholds are defined in this study as the critical stomatal ozone fluxes above 245 

which ozone stress occurred. Consequently, dose-response factors were applied only when 246 

stomatal ozone flux was above the selected thresholds.  247 

Four different parameterizations of the dose-response factors were implemented into the 248 

AIRTREE model. The first two, represent the linear response function of generic broadleaves 249 

characterized by low (BL) and high (BH) vulnerability to ozone, developed by Lombardozzi 250 

et al. (2015). The third parameterization (LI) was calculated using the same linear approach 251 

(Table 1) from specific dose-response studies on Quercus ilex by Alonso et al. (2014) and  252 

Fares et al. (2019).  253 

Finally, a fourth parameterization (NI) representing the non-linear response function based on 254 

an ad-hoc fumigation experiment on Quercus ilex in the O3-FACE facility was developed. A 255 

non-linear regression was fitted to estimates of POD0 and measurements of An and gs from doy 256 

148 to 252 (n=10) similarly to Lombardozzi et al. (2013, 2015). The function providing the 257 

best fit, based on lowest RMSE (Figure S. 2, S. 3) was used in this study, giving expressions 258 

for dose-response factors of:  259 

𝐹𝐹𝑝𝑝𝑝𝑝3 =  0.998 •  𝑒𝑒(−0.0003 • 𝑃𝑃𝑃𝑃𝑃𝑃𝑌𝑌)    eq. 8 

 260 

𝐹𝐹𝑐𝑐𝑐𝑐3  =  
(0.841 •  𝑃𝑃𝑃𝑃𝑃𝑃𝑌𝑌 +  31.29)

(𝑃𝑃𝑃𝑃𝑃𝑃𝑌𝑌 +  32.4)  
 eq. 9 

 261 

which were applied to An and gs as in eq. 6-7.  262 

As can be seen from eq. 4 and 5, this method modifies the optimal rates of An and gs calculated 263 

in the model, separating the responses of gs and An to ozone (Lombardozzi et al., 2015).  264 

With the goal to identify (if one exists) the threshold that best reproduces the Eddy Covariance 265 

observations at CPZ, simulations for each model parameterization (BH, BL, LI and NI) were 266 
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repeated 6 times (for a total of 24 model runs), only changing the critical ozone threshold value 267 

(ranging from 0 to 5 nmol m-2 s-1) representing high to low sensitivity to ozone, respectively.  268 

Quercus ilex is an evergreen broadleaf forest species with a vegetative period which can last 269 

all year long in particularly warm years (Conte et al. 2019).  Exposure of leaves to ozone is 270 

therefore continuous and the turn-over of leaves, on average, is three years. In order to evaluate 271 

if a “memory effect” exists (i.e. the cumulative effects of ozone for more than one year), a 272 

value of CEO3 corresponding to one year of exposure was tested as a starting point; all model 273 

simulations were repeated with differing CEO3 values. Finally, these “memory effect” 274 

simulations were compared with simulations with “no memory effect” (i.e. assuming ozone 275 

stress starts anew at doy 1).  276 

 277 

2.7 Modeling and Statistics 278 

AIRTREE was calibrated for Castelporziano using the 2013-2014 dataset, following the 279 

iterative approach explained in detail in Fares et al. (2019).  In order to detect and evaluate 280 

possible effects of O3 on the forest’s ecophysiological processes (here represented by GPP), 281 

data collected when half-hourly O3 concentration were considered potentially threatening for 282 

the vegetation (≥40 ppb) were excluded from the calibration process.  283 

The first model simulation (hereafter named Control) was performed without any ozone effect 284 

on An and gs (i.e. with FpO3 and FcO3 set to unity) and then used as a reference for the other 285 

model runs. For each of the four ozone corrections (i.e. BL, BH, LI, NI), six additional model 286 

simulations, differing only by the critical ozone dose threshold (hereafter named thr0, thr1, thr2, 287 

thr3, thr4, thr5) were run.  Model performance was assessed by regression analysis of observed 288 

vs simulated GPP. The “best” model run was identified as that which gave the highest 289 

coefficient of determination (R2) and maximum accuracy (lowest RMSE).  290 

 291 

Following the approach adopted during model calibration, to avoid double-counting of ozone 292 

impacts, we focused on data collected when half-hourly ozone concentration was above 40 ppb, 293 

considered the threshold for ozone impacts. To evaluate if the application of the ozone 294 

thresholds would have a seasonal positive or negative effect, linear regressions were performed 295 

on filtered data for both the whole year and for each season. 296 

Once the best model had been selected, half-hourly values of GPP obtained from each 297 

simulation (thri) were compared with observations. At each model time step, the simulation 298 
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with values closer to the observations (Obs) was identified and a daily (i.e. n was set to 48 as 299 

the number of half-hourly data in one day) threshold variable (THR, with values ranging 300 

between 0 and 5 nmol O3 m-2 s-1) was finally derived. 301 

𝑇𝑇𝑇𝑇𝑇𝑇 =  
1 
𝑛𝑛
�  
𝑛𝑛

𝑖𝑖=1

𝑚𝑚𝑚𝑚𝑚𝑚 |𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑡𝑡ℎ𝑟𝑟𝑖𝑖| 
 eq. 10 

Pearson’s correlation coefficients (r) >0.5 between THR and daily mean values of 302 

photosynthetically active radiation (PAR), vapour pressure deficit (VPD), soil water content 303 

(SWC), air temperature (Tair) and ozone concentration (O3) were arbitrarily used to identify 304 

environmental variables which affected THR. In order to derive response functions, a boundary 305 

line analysis (Gerosa et al., 2009; Webb, 1972) was performed by fitting non-linear regressions 306 

to THR and the selected variables. We tested six non-linear functions (tables S 6,7) and selected 307 

the one providing the best fit with THR, based on lowest RMSE. We finally adopted the best 308 

function for each variable to develop a Jarvis-like multiplicative algorithm to predict potential 309 

THRp: 310 

𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝 = 𝑇𝑇𝑇𝑇𝑇𝑇max* fPAR*f Tair * f VPD* f SWC * f O3  eq. 11 

Where THRmax was set at 5 nmol m-2 s-1 and each function ranged between 0 and 1. 311 

 312 

3. Results 313 

3.1 Ozone response intercomparison 314 

In general, incorporating ozone dose-response functions produced a better prediction of GPP 315 

for both 2013 and 2014 compared with model simulation when ozone impacts were neglected 316 

(Figures 1, S. 4), with low or no differences observed in R-squares and more evident differences 317 

observed in the RMSE and slopes of the correlation between model simulations and control.  318 

 319 

By applying the BL correction (i.e. the linear correction for generic Broadleaf trees with low 320 

vulnerability to ozone), no significant variation in model accuracy was observed among the 321 

different thresholds tested for the year 2013. R2
adj remained the same while model accuracy 322 

(RMSE) reduced by only 1.2% when a threshold of 1 nmol m-2 s-1 was applied (Table S. 2). On 323 

a seasonal level, when compared to the Control run, for both 2013 and 2014 an improvement 324 

in RMSE of ≤3 % was observed in Summer and Fall, when the thresholds of 0 and 1 nmol O3 325 

m-2 s-1 were applied (Table S. 2).  326 
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 327 

By applying the BH response (i.e. the linear correction for generic Broadleaf trees with High 328 

vulnerability to ozone) the model accuracy in simulating GPP increased, compared to the 329 

Control run, by 2.5% for the year 2013 when a threshold of 1 nmol m-2 s-1 was applied (Tables 330 

S. 3). For 2014, BH corrections increased model accuracy but reduced the slope of the 331 

correlation with control values. On a seasonal level the application of ozone corrections during 332 

Winter and Spring reduced model accuracy up to 27% in 2013, while a 4% increase in RMSE 333 

was observed in Spring 2014 using a threshold of 5 nmol m-2 s-1. In Summer and Fall 2013 334 

ozone correction reduced RMSE up to 20 and 11%, respectively, compared to the Control run 335 

when a threshold of 1 nmol m-2 s-1 was applied. In Summer and Fall 2014, the higher thresholds 336 

(4-5 nmol m-2 s-1) increased model accuracy in simulating GPP.  337 

 338 

We found no improvement in simulated GPP when thresholds of 0-1 nmol m-2 s-1 were applied 339 

for either year with the LI function for the entire year in 2013 (i.e. the species-specific linear 340 

response function for Quercus ilex), while we observed a slight 2 % improvement in RMSE in 341 

2014 when thresholds of 4-5 nmol m-2 s-1 were applied (Table S. 4). No amelioration from 342 

ozone corrections were observed in Winter and Spring 2013, while slight improvements in 343 

RMSE were observed in Spring 2014 when thresholds of 4-5 nmol m-2 s-1 were applied. In 344 

Summer 2013, model accuracy in simulating GPP increased up to 28% when a threshold of 1 345 

nmol m-2 s-1 was applied relative to the Control run, while model predictions in 2014 were all 346 

underestimated.  347 

 348 

Similarly, the NI species-specific nonlinear response function for Quercus ilex did not improve 349 

model predictions when applied over the full year 2013 (Table S. 5), except for a slight 350 

improvement of model accuracy (RMSE) in simulating GPP by 4.5% relative to the Control 351 

run when no tolerance threshold was applied (thr0). In 2014, model correction improved RMSE 352 

by up to 4 % at thresholds of 2-5 nmol m-2 s-1, although GPP resulted slightly underestimated. 353 

More relevant effects of ozone corrections were observed in Summer and Fall 2013, with a 354 

model accuracy which increased by up to 9.6 % at thr0 relative to the Control run. In Winter 355 

and Spring, no significant increases were observed (R2
adj and RMSE improved by <2%). In 356 

2014, the biggest improvement in simulated GPP was seen in Spring and Fall, with thresholds 357 

of 0 and 2 nmol m-2 s-1, respectively, increasing model accuracy by up to 8%. 358 

 359 
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3.2 Dynamic critical ozone threshold 360 

 By focusing on cumulative values, deviations (%) between simulated and observed GPP for 361 

each season are shown in Figure 2 for both the LI and NI model parameterizations, which were 362 

found to be the approaches that produced GPP values closer to observations in our 363 

intercomparison. The LI parameterization produced values closer to observations in Summer 364 

(below 10% when thr0 and thr1 were applied), and in Fall when thr2, thr3 and thr1 were 365 

applied. None of the thresholds resulted in an improvement in model-observation fit in Winter 366 

or Spring, with an underestimation of GPP up to 30%. 367 

Similarly, for the NI model we found GPP values closer to observations when thr0 was applied 368 

in both Summer and Fall. The application of a critical threshold in Winter and Spring was either 369 

ineffective (similar as the Control run) or, in the case of thr0, slightly worsened the model 370 

results compared with observations. Of the two approaches, the LI model appeared more 371 

dependent on threshold variation among seasons than the NI model, suggesting that plants 372 

response varies during the year and that a non-linear model better accounts for the processes 373 

underlying the seasonal dependence of the critical ozone threshold.   374 

Such seasonality was evaluated on a daily scale for the LI model (Figure 3). While the daily 375 

threshold value (THR) showed some correlation with PPFD (r= -0.48 p<0.05) and SWC (r= 376 

0.37 p<0.05), no correlation was found with O3 concentration. THR values were found to be 377 

relatively strong correlated to VPD (r= -0.69 p<0.05) and air temperature (r= -0.64 p<0.05) and 378 

for this reason response functions of THR were developed taking into account these two 379 

variables only (Figure 4). THRp was then calculated dynamically within the model as follows:  380 

THRp=𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚∗𝑓𝑓𝑇𝑇air∗𝑓𝑓𝑉𝑉𝑉𝑉𝑉𝑉;  eq. 12 

 381 

where THRmax is the maximum threshold for ozone tolerance (5 nmol m-2 s-1), fTair and fVPD, 382 

describe the relationships between THR and changes in air temperature (°C) and vapor pressure 383 

deficit (kPa) as shown in Figure 3. 384 

The response of THR to changes in VPD was found to be best described by the Fourier function 385 

(Table S. 6): 386 

𝑓𝑓𝑉𝑉𝑉𝑉𝑉𝑉 = 0.56 +  0.40 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥 ∗ 1.64)  +  0.059 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥 ∗ 1.64)  eq. 13 

with R2 = 0.92 and RMSE = 0.37, 387 

While the response to air temperature (Table S. 7) was best modelled as: 388 
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 389 

𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = (−0.026 ∗ 𝑥𝑥^2 +  1.45 ∗ 𝑥𝑥 + −6.08) / (𝑥𝑥 +  −3.92)  eq. 14 

with R2 = 0.82 and RMSE = 0.068. 390 

The linear correlation between observed daily threshold THR and simulated dynamic threshold 391 

derived by the multiplicative model THRp (eq. 10) is shown in Figure 5 (R2 =0.5 p<0.05). The 392 

application of the multiplicative model to LI led to an increase in model accuracy (R2 increased 393 

by up to 5.9% and RMSE reduced up to 7.7%) in simulating GPP (Figure 6) compared to the 394 

Control run.  395 

 396 

4. Discussion 397 

4.1.1 Ozone dose-response factors 398 

The critical ozone thresholds applied here represent the maximum stomatal ozone flux that a 399 

plant is able to tolerate before a toxic dose would start to accumulate. A range of thresholds 400 

from 0 (POD0) in the most sensitive species (Musselman et al., 2006) up to 5 nmol m-2 s-1  in 401 

more tolerant PFT have been observed. Lombardozzi et al. (2012, 2015) conducted a series of 402 

sensitivity analyses to test the importance of the O3 threshold value to projected ozone impacts 403 

by applying critical values of 0, 0.8, 1.6 and 5 nmol m-2 s-1 for each PFT in the Community 404 

Land Model (CLM) (Lawrence et al., 2012; Oleson et al., 2013). The authors concluded that a 405 

threshold of 0.8 nmol m-2 s-1 could be applied to all PFTs. Sitch et al. (2007), applied thresholds 406 

of 1.6 and 5 nmol m-2 s-1 for woody and grass PFTs in the MOSES-TRIFFID vegetation module 407 

of the UK Met Office Unified Model (Cox et al., 1999; Essery et al., 2003). The authors 408 

deduced that ozone tolerance in crops varied through the growing period, and the possibility 409 

that the same variation occurs in forests is still an open debate (Sitch et al., 2007). 410 

Mediterranean evergreen broadleaf tree species are typically considered tolerant to O3 because 411 

of their sclerophyllous leaves, their water saving strategy and ability to tolerate oxidative stress 412 

(Hoshika et al. 2020; Nali et al. 2004; Paoletti 2006). Therefore, the Mediterranean climate is 413 

a perfect candidate to test the effect of ozone on forests exposed to an oxidative environment.  414 

 415 

 In this study, four different ozone dose-response functions were evaluated: two PFT-based 416 

linear functions (BH and BL) representing broadleaf trees with high and low vulnerability to 417 

ozone exposure, respectively; a species-specific linear function (LI) based on field observations 418 

of Quercus ilex (Fares et al., 2019); and a species-specific non-linear function (NI) based on 419 
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trials in an O3 FACE facility. The inter-comparison between PFT-based and species-specific 420 

ozone corrections enabled us to evaluate if the well-known ozone tolerance of Quercus ilex 421 

(Fares et al., 2014, 2019) could be accounted for by standard PFT-based corrections. 422 

Unsurprisingly, model performance was substantially better when species-specific parameters 423 

were used. Of the three linear approaches used in this study, the Quercus ilex-specific LI 424 

function outperformed the PFT-based functions by 7% in simulating GPP. In contrast with the 425 

previously reported high tolerance of Quercus ilex toward oxidative stress (Paoletti, 2006), 426 

however, AIRTREE performed better when the high vulnerability (BH) PFT-based formulation 427 

was used.  428 

 429 

The species-specific ozone dose-response functions derived here from experimental data on 430 

Quercus ilex provided interesting insights. The lower intercepts (0.79 and 0.86 for An and gs, 431 

respectively) of the regression line between % change from control and ozone-corrected model 432 

data translate into a higher correction factor for gs than for An (Table 1), thus denoting a strong 433 

decoupling (about 7%) between the two parameters as previously observed (Fares et al. 2013 434 

GCB; Lombardozzi et al. 2012). At first glance, these results may suggest that Quercus ilex is 435 

an ozone sensitive species. Quercus ilex showed an adaptation strategy with stomatal regulation 436 

(avoidance strategy with lower FcO3) to ozone entry in the intercellular spaces. However, the 437 

lower values of FpO3 suggests that avoidance does not actively prevent this species from ozone 438 

damage (Hoshika et al. 2020).  439 

 440 

Overall, when different ozone detoxification thresholds were compared, a stomatal ozone flux 441 

threshold corresponding to 1 nmol O3 m-2 s-1 provided the best results when considered on an 442 

annual basis. Similarly, Gerosa et al. (2015) identified thresholds of 1 and 4 nmol m-2 s-1 for 443 

Quercus ilex in open top chambers (OTC) experiments when considering total biomass and for 444 

roots and leaf biomass, respectively. This result also appears to be in line with the UNECE 445 

manual for assessing the impact of ozone on vegetation that suggests the adoption of a threshold 446 

for forest vegetation of 1 nmol O3 m-2 s-1 (i.e. POD1) (CLRTAP 2017; Mills et al., 2010). 447 

However, when assessed on a seasonal basis, the use of an ozone detoxification threshold 448 

improved model performance only in Summer and Fall (when ozone concentration is high), 449 

with negligible or even deleterious effects when applied in Spring and Winter (Figure 2). This 450 

appears to suggest that the detoxifying capacity of Quercus ilex changes over the seasons and 451 

that a fixed threshold of 1 nmol m-2 s-1 may not represent the proper metric for this species. 452 

Indeed, by focusing on cumulative seasonal values (Figure 2), the use of a fixed threshold for 453 
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the entire year (i.e. thr1 for each season) introduced in the LI correction seems to play as a 454 

compensation factor which attenuates the impact of ozone damage among seasons at least in 455 

2013 (i.e. the real impact should be very moderate in cold seasons and more pronounced in 456 

warm seasons). Moreover, the slopes (ac and ap) of the linear correction factors (Table 1) are 457 

close to 0, leading to a fixed reduction of 21% and 14% for An and gs, respectively (intercepts). 458 

In the wet year 2014, the LI correction did not ameliorate model predictions probably due to a 459 

possible overestimation of reducing effect of soil water stress which led to a model 460 

underestimation when accounting for ozone effect. 461 

 462 

Decoupling the drought effects during warm seasons from ozone effects is a grand challenge 463 

which we tried to solve with the use of neural network analysis in a recent work (Savi et al. 464 

2020). However, a low plasticity was described for Quercus ilex by Limousin et al. (2010), 465 

who found that xylem hydraulic and anatomical properties exhibit a limited plasticity under 466 

drought stress. Our findings may suggest that drought alone is unlikely to be responsible for gs 467 

reduction, but that ozone may play a significant role. The reduction of ozone tolerance in 468 

Summer is reasonably explained by the high ozone concentrations combining with high gs 469 

(Gerosa et al., 2009), with concurrent decrease of the antioxidant defense (Dizengremel et al., 470 

2008). Possible changes in plant’s responsiveness to oxidative stress among seasons 471 

(Dizengremel et al., 2008; Luwe and Heber, 1995; Sitch et al., 2007) could be accounted for 472 

by identifying the proper seasonal thresholds as we show in next section.  473 

 474 

 475 

4.1.2 Adoption of a dynamic threshold to implement linear approaches 476 

Results of this study suggest that when a linear correction is applied, a fixed threshold may 477 

lead to unrealistic estimation of ozone effects on Quercus ilex and that a dynamic rather than a 478 

fixed threshold may better reflect the actual plant strategies to face ozone stress through the 479 

growing season. Significant correlations between daily thresholds (THR) and environmental 480 

parameters allowed us to derive a simple empirical model to describe changes in plant 481 

sensitivity to ozone due to variation in environmental conditions (i.e. VPD and air temperature) 482 

(Figure 3). To simulate these dynamics, a multiplicative empirical approach was tested. 483 

Although the weak points of a multiplicative approach are well known (Damour et al., 2010; 484 

Tardieu et al., 1996), the choice of an empirical approach for this exercise was driven by data 485 

availability and the simplicity of using a formulation based on changes in environmental 486 
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parameters. THR showed significant correlations with VPD and temperatures (Pearson’s 487 

r>0.6), but also with soil moisture (0.37) and solar radiation (-0.48). While high radiation and 488 

temperatures favor ozone formation (Millán et al., 2000) and a correlation with THR is 489 

expected, water availability (SWC) and VPD seem to be more related to the drought stress 490 

period typical of the Mediterranean climate, thus suggesting that ozone may exacerbate the 491 

effect of oxidative stress due to drought (Alonso et al., 2014; Hoshika et al. 2020).  492 

 493 

Relatively low but statistically significant linear correlations (R2 =0.5) between the observed 494 

best daily threshold (THR) and the dynamic thresholds estimated by the multiplicative model 495 

(THRp) were obtained. Such a poor fit can be explained by the fact that in this work only six 496 

thresholds were used while intermediate values could best represent shifts in ozone tolerance 497 

during the day, and that other important variables might not have been included in the analysis 498 

(i.e. phenology).   499 

The cumulative values (Figure 6) resulting from the application of the empirical dynamic 500 

threshold model (THR) provided promising results. Using a dynamic threshold helped reducing 501 

model overestimation in comparison with control by 213 g C m2 y-1 for GPP. This translates 502 

into simulated cumulative GPP values much closer to observations (with an underestimation 503 

of 0.5% compared with observed GPP) than results obtained by applying the best fixed 504 

threshold (LI correction at thr1) identified after this iterative approach. 505 

 506 

4.2 Performances of non-linear correction factors 507 

A non-linear correction (NI) was estimated from a manipulative fumigation experiment in an 508 

ozone FACE facility specifically carried out on Quercus ilex saplings of the same genotype of 509 

those adult trees at the Castelporziano Estate. As expected, by comparing linear and non-linear 510 

approaches, the NI correction resulted to be the best option, increasing model accuracy in 511 

simulating GPP for the whole year up to 8.5%. With the application of NI correction, we found 512 

the application of either a fixed or dynamic threshold for detoxifying ozone to be unnecessary 513 

(i.e. thr0 provided the best results with NI), suggesting that all the ozone entered into the 514 

stomata has an effect but its impact changes during the year by following a nonlinear trend (Fig. 515 

S2-S3). When considering the seasonal dynamics of the response to ozone, the non-linear 516 

model, similar to LI, showed that ozone correction should not be applied during Winter and 517 

Spring, while it provides better estimates in Summer and Fall (Figure 2). 518 

 519 
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So, we hypothesize that NI accounts for both the tolerance and avoidance strategies, providing 520 

the best description of the Quercus ilex responsiveness to ozone. A recent study by 521 

Agathokleous et al. (2019) supports the hypothesis that an hormetic-like biphasic dose-522 

response function would be more representative of the plant’s adaptive responses to ozone 523 

exposure, including a compensation phase. This may explain why our nonlinear ozone 524 

correction based on species-specific manipulative experiments (NI) provided better results and 525 

a detoxification threshold was not necessary. 526 

 527 

We would therefore recommend this approach be adopted for modelling the response of all 528 

forest ecosystems to ozone exposure. However, in the absence of the necessary species-specific 529 

dose-response relationships, a linear response with dynamic threshold based on the 530 

multiplicative empirical approach would be the best alternative. 531 

 532 

4.3 Is a memory effect relevant? 533 

We hypothesized that a plant’s response to ozone might last beyond a season, given that 534 

Quercus ilex is an evergreen species with a three-year cohort of leaves (Barbeta and Peñuelas, 535 

2016), and it would be reasonable to expect that leaves from previous years could have a 536 

different sensitivity to ozone exposure than leaves from the current year (Zhang et al., 2014). 537 

The previous simulations were repeated by assuming an additional year of cumulated exposure 538 

to ozone (CEO3), in order to evaluate if the responses to ozone exposure could be affected by 539 

a “memory effect” from the previous growing season. Since ozone damage cannot accumulate 540 

in BH and BL (slope equal to 0), we applied this hypothesis only to the LI and NI response 541 

functions. However, no significant improvements in model performance were observed (not 542 

shown), thus indicating that a memory effect is not expected for Quercus ilex. Most likely, 543 

periods of low ozone concentrations and low stomatal conductance during Fall and Winter 544 

allow for full restoration of antioxidant molecules of thick and wax-coated leaves of Quercus 545 

ilex.  546 

 547 

5. Conclusions 548 

 549 

A bottom-up integrated model-measurement approach was used to evaluate the effect of ozone 550 

exposure on plant ecophysiological processes. By integrating leaf level measurements of gas 551 

exchange, manipulative experiments, meteorological data and multi-layer canopy models, this 552 
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effect was upscaled to the canopy level and compared with GPP derived from Eddy Covariance 553 

fluxes of carbon. To define a threshold of phytotoxic ozone dose for trees with known ozone 554 

sensitivity, we tested four approaches ranging from high to low ozone vulnerability, from PFTs 555 

to species-specific responses, from linear to nonlinear approaches. The implementation of 556 

ozone dose-response functions into the AIRTREE model improved the accuracy of the 557 

simulations of GPP by as much as 8.5% and allowed us to identify which formulation was most 558 

appropriate for a Holm oak (Quercus ilex) forest growing in a Mediterranean climate, where 559 

ozone concentrations are relatively high and seasonal droughts common.  560 

We observed that, as expected, species-specific linear and nonlinear dose-response functions 561 

performed better than PFT-based ones. Linear response functions derived for An and gs 562 

revealed that Quercus ilex response to ozone exposure is not only driven by stomatal control 563 

(avoidance strategy) but also detoxification thresholds play a significant role in describing 564 

Quercus ilex responsiveness to ozone stress. Such a role may be interpreted as: 1) the plant 565 

capacity to produce antioxidants to face oxidative stress induced by ozone entered into stomata 566 

(tolerance strategy), or 2) a compensation factor necessary to regulate the impact of ozone 567 

corrections for periods during which the oxidative stress may be less relevant (i.e. Winter for 568 

the Mediterranean climate).  569 

Recognizing critical stomatal ozone fluxes (i.e. critical ozone thresholds), is crucial for a 570 

realistic quantification of its impact on plant ecophysiological processes. Our results, 571 

describing plant responsiveness to oxidative stress, identified a critical threshold of 1 nmol m-572 
2 s-1 (POD1) as the most appropriate for the Holm oak forest when a linear approach was used, 573 

thus confirming the guidelines provided by the UNECE manual (CLRTAP 2017; Mills et al. 574 

2010). However, this was not the case when considered on a seasonal rather than annual basis. 575 

Differences in the most effective threshold value during different seasons were observed, 576 

suggesting that a possible way to implement metrics for ozone-risk assessment could be to 577 

derive a dynamic threshold which takes into account possible changes in ozone sensitivity at 578 

different time scales during the vegetative period. This is plausible, based on previous work 579 

describing different responses to oxidative stress according to the hour of the day and the 580 

season (Dizengremel et al., 2008; Luwe and Heber, 1995; Sitch et al., 2007). Changes in ozone 581 

tolerance were found to be correlated with environmental parameters that affect ozone 582 

formation (temperature and radiation) and plant stomatal regulation (soil moisture and vapour 583 

pressure deficit). Therefore, a simple empirical model to predict changes in ozone tolerance 584 



20 
 

was developed for use with the linear response function, providing substantially better model-585 

measurement fit.  586 

In conclusion however, this study suggests that the development of species-specific non-linear 587 

ozone dose-response functions represent a key for improving metrics for ozone risk assessment. 588 

Since existing literature data does not always allow the derivation of nonlinear functions, new 589 

manipulative experiments are highly needed and it is crucial to find a synergy between 590 

modelling needs and manipulative experimental design. This synergy would allow the retrieval 591 

of useful data (i.e. number of replicates and coherent experimental conditions) to derive reliable 592 

dose-response function usable in process models, which would substantially improve our 593 

understanding of the impact of ozone on forest ecosystems.  594 

 595 

Tables and Figures 596 

Table 1 - Values used to parameterize plants’ sensitivity to ozone (fc, fp) by applying a linear 597 

approach. Slopes and intercepts are unitless. BL and BH represents the linear corrections for 598 

broadleaves characterized by low and high vulnerability to ozone, respectively. LI represents 599 

the species specific linear model for Quercus ilex. 600 

 601 

Parameterization Slope (ap) Intercept 

(bp) 

Slope (ac) Intercept 

(bc) 

Reference 

BL 0 0.9798 0 0.9425 Lombardozzi 

et al., 2015 

BH 0 0.8502 0 0.89 Lombardozzi 

et al., 2015 

LI -0.00027 0.79 -0.0009 0.86 Fares et al., 

2019 

 602 

 603 

 604 
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 605 

Figure 1: Taylor diagram including statistics on the ozone correction intercomparison. The 606 

figure shows the accuracy of the AIRTREE model in simulating GPP for the year 2013. 607 

Different symbols represent the performance (Pearson’s r, standard deviation and root-mean-608 

square error) of each ozone correction when compared to the observation (Ref). The Control 609 

simulation (Cont.) represents a model simulation without any ozone correction. BH and BL 610 

are the high and low tolerance parameterization for the broadleaves PFTs suggested by 611 

Lombardozzi et al (2015) when a threshold of 1 nmol m-2 s-1was applied. LI and NI are the 612 

linear and non-linear parameterization of the response of Quercus ilex to ozone when a 613 

threshold of 1 and 0 nmol m-2 s-1 were applied, respectively. 614 

 615 

 616 



22 
 

 617 

 618 

Figure 2: For each season, bars show percent deviation from measured values of Gross 619 

Primary Productivity (GPP) using the LI and NI models. Coloured bars refer to increasing 620 

critical ozone threshold. Control (C) represents differences between measured and control 621 

values when ozone correction was not applied (i.e. negative values mean model 622 

underestimation compared with observations). Threshold (T) represents differences between 623 

measured and modelled values in response to different levels of ozone tolerance (i.e. thri, from 624 

0 to 5 nmol O3 m-2 s-1).  625 

 626 
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 627 

Figure 3: Pearson’s r correlation coefficients (in red) between the best daily threshold THR 628 

(empty circles) and the vapor pressure deficit VPD (top left), the Air temperature (Top right), 629 

the photosynthetic photon flux density PPFD (bottom left) and soil water content SWC (Bottom 630 

right) for Castelporziano site for the year 2013.  631 
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 632 

Figure 4: response function of the daily threshold variable (THR) derived by the boundary line 633 

analysis to environmental parameters for which significant correlations (p < 0.05) were 634 

observed. Best non-linear models with goodness of fit is reported in Tables S. 6 and S. 7. 635 

 636 

 637 
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 638 

Figure 5: Comparison (top) between the ozone daily threshold THR variable observed (in red) 639 

in this study (Ob.) the dynamic threshold model THRp derived (in black) by the multiplicative 640 

model. The linear correlation (blue line) between observed THR and simulated THRp is shown 641 

on the bottom figure. 642 
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 643 

Figure 6: Cumulative values of Gross Primary Productivity (GPP) simulated by applying the 644 

dynamic threshold multiplicative correction. The black dashed line represents observations 645 

(Obs.). The orange line represents the modelled values without any ozone correction. The 646 

yellow line (expected) represents the best modelled values identified by the dynamic threshold 647 

at each model time step. 648 
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