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Abstract

An extensive assessment of six density functional approximations has been

undertaken, each of these approximations have their own merits and faults.

Range separated hybrids are the best performing for excited state properties

of those approximations assessed.

There has been an attempt to generate an attenuated form of PBE

(CAM-PBE) which initially had issues which were investigated in detail

regarding the dependence of Hartree–Fock exchange energy on approxima-

tion performance. This attenuated form of PBE had similar performance to

CAM-B3LYP.

The development of a set of benchmark data for excited state geometries

and emission energies was undertaken with a wide range of organic molecules

due to the lack of such benchmark data existing currently. This means

the accuracy of density functional approximations for calculation of such

properties is unknown so there is a clear need for this benchmark data to

be developed and used to assess the accuracy of these approximations.

The benchmark data for excited state geometries and emission energies

was used to assess the performance of a range of density functional approx-

imations for these properties. This assessment has suggested that there are

issues when applying current density functional approximations away from

the ground state where they have been tuned and optimised. This suggests

that there may be some merit in developing specialised density functional

approximations for the calculation of excited state properties.

The existing density functional approximations have been used to as-

sist with experimental investigations of porous polymers and in explaining

the excited state properties of these polymers. This was done using model

systems and has enabled a deeper understanding of the experimental obser-

vations.
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1 Theory and Background

1.1 Quantum Mechanics

Classical mechanics, also known as Newtonian mechanics, is a series of physical

concepts, originated by Newton, used to describe the motion of bodies under the

influence of a system of forces. Classical mechanics allows us to predict how an

object will move in the future or how it moved in the past provided the present

state of the object is known - the systems it describes are deterministic. It is

accurate when used on large objects (but not at a planetary scale) and speeds

which do not approach the speed of light. Classical mechanics can not be accurately

applied to microscopic particles, such as electrons, moving at high speed. Quantum

mechanics arose to describe the behaviour of such particles and is probabilistic in

nature.

1.1.1 Schrödinger Equation

The Schrödinger equation3, in atomic units, (equation 1) is a partial differential

wave equation that describes how a quantum state of a physical system evolves

with time. The wave function (Ψ) is the description of the quantum state of a

system of one or more quantum particles. The wave function is a function of the

degrees of freedom of a chosen set of observables, for example this could be the

position coordinates of the particles over position space.

The time-dependent Schrödinger equation is

ĤΨ = i
∂

∂t
Ψ (1)

In quantum chemistry, the time dependence is usually separated and thus the time-

independent Schrödinger equation (equation 2) and the time-independent energy

and wave function is considered.

ĤΨ = EΨ (2)

The Hamiltonian operator (Ĥ) characterises the total energy, E, of any given

wave function. In the case of molecules with n electrons and N nuclei (equation

3) (capitals for nuclear indices and lower case for electron indices), the Hamilto-

nian contains the nuclear kinetic energy, electronic kinetic energy, electron–nuclei

Coulomb attractions, electron–electron Coulomb repulsions and nuclear–nuclear

Coulomb repulsions.
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∇2
i −
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i=1
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J=1

qJ
riJ
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1

rij
+

N∑
I<J

qIqJ
rIJ

(3)

where mI are the masses of the nuclei, qI are the charges of the nuclei and rij is the

distance between particles i and j (rij = |ri − rj|). The operator ∇I is a notation

of the first derivative of the position of particle I over X, Y and Z coordinates

(which is the velocity of the particles) (∇I =
(
∂
∂X

+ ∂
∂Y

+ ∂
∂Z

)
).

If the Born–Oppenheimer approximation is applied we decouple the motion of

the nuclei and electrons and the electrons move in the field of the nuclei. This

is typically a good approximation because of the large mass difference between

electrons and nuclei, this is an important approximation as it makes the equations

more solvable. This leads us to the electronic Schrödinger equation (equation 4),

where Ĥ0 (equation 5) is the Hamiltonian we obtain, excluding the kinetic energy

of the nuclei, and adding a constant for the internuclear repulsion (VN) the final

term from equation 3 becomes a constant once the nuclei are fixed.

E0Ψ0 = Ĥ0Ψ0 (4)

Ĥ0 = −
n∑
i=1

1

2
∇2
i −

n∑
i=1

N∑
J=1

qJ
riJ

+
n∑
i<j

1

rij
+ VN (5)

The electronic Hamiltonian can thus be specified for an arbitrary molecular system,

but the wave function can only be found in simple closed form for one electron

systems or simple model systems.

1.2 Hartree–Fock Theory

1.2.1 Hartree Product Wave Function

The electronic Schrödinger equation cannot be solved exactly for real molecular

systems due to the electron–electron interaction and the resulting high dimension-

ality. One approximation that can be made is that electron–electron repulsion

is small. For such a case, the electronic Hamiltonian is a sum of one-electron

operators4
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Ĥ0 = −
n∑
i=1

1

2
∇2
i −

n∑
i=1

N∑
J=1

qJ
riJ

+ VN

=
n∑
i=1

ĥi + VN

hi = −1

2
∇2
i −

N∑
J=1

qJ
riJ

(6)

and then the wave function is a simple product of one-electron terms (equation 7)

- the one electron orbitals. Such a wave function is called a Hartree product wave

function,

ψi = ψ1ψ2 · · ·ψn. (7)

Upon substitution of the Hartree product wave function into equation 6, it is

found that the n one-electron orbitals can be obtained by solving n one-electron

Schrödinger equations (equation 8), and the total energy is then simply the sum

of the one-electron energies εi (equation 9).

hiψi = εiψi (8)

E =
n∑
i=1

εi (9)

However, neglecting electron repulsion leads to large errors. Substitution of the

Hartree product wave function into the full electronic Hamiltonian Ĥ0(equation

4) leads to equation 10. As with the one-electron Hamiltonian, each of the n

one-electron orbitals needed can be found by solving a one-electron Schrödinger

equation, with the electron interactions included through a mean-field potential

(equation 11).

[
−

n∑
i=1

1

2
∇2
i −

n∑
i=1

N∑
J=1

qJ
riJ

+ VN +
∑
i<j

1

rij

]
(ψ1 · · ·ψn) = E(ψ1 · · ·ψn) (10)

hi = −1

2
∇2
i −

N∑
J=1

qJ
riJ

+ V eff
i (r) (11)
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The effective potential for electron i, V eff
i (r), is the Coulomb interaction with

the average charge density of all the other electrons. However, the implications

of electron spin are not accounted for, therefore the Hartree product is a poor

approximation for the true electronic wave function.

1.2.2 Slater Determinants

The Hartree product wave function violates the Pauli exclusion principle (that all

electrons must have unique quantum numbers), as there is nothing to prevent the

one-electron orbitals being identical so multiple electrons could occupy the same

state. It also violates the Pauli principle (from which the exclusion principle is

derived), as the total wave function is not antisymmetric with interchange of any

pair of electrons. In order to bypass this behaviour spin functions, α or β, should

be included in the trial Hartree product wave function. Wave functions generated

this way are generally written as Slater determinants.5,6 The spin and spatial parts

of the orbital can be combined to make a spin-orbital, φ(r, σ). The general form

for a Slater determinant for n electrons using spin orbitals is

ψ =
1√
n!

∣∣∣∣∣∣∣∣∣∣
φ1(1) φ2(1) . . . φn(1)

φ1(2) φ2(2) . . . φn(2)
...

...
. . .

...

φ1(n) φ2(n) . . . φn(n)

∣∣∣∣∣∣∣∣∣∣
(12)

where the prefactor ensures normalisation.

1.2.3 Hartree–Fock Energy

Evaluating the expectation value of the electronic Hamiltonian (equation 5 using

the Slater determinant gives the Hartree-Fock energy7 (the energy associated with

a Slater determinant) as equation 13

EHF =
n∑
i=1

〈φi|hi|φi〉+
1

2

n∑
i,j

([φiφi|φjφj]− [φiφj|φjφi])

J = [φiφi|φjφj] =

∫ |φi(1)|2|φj(2)|2
r12

dr1dr2dσ1dσ2

K = [φiφj|φjφi] =

∫
φ∗i (1)φj(1)φ∗j(2)φi(2)

r12
dr1dr2dσ1dσ2

(13)

The Coloumb integral, J , describes the interactions between the electrons and

the exchange integral, K, describes the quantum mechanical exchange.
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This energy equation needs to be minimised in an iterative process, using the

variational principle, it holds that the energy of the trial orbitals is never less than

the true energy. In practice the molecular orbitals that are used to construct are

varied in order to minimise the energy. Invoking an iterative procedure known as

the self–consistent field method solves the problem (figure 1).

Figure 1: A Schematic of the Self–Consistent Field Method.

The variational minimisation of equation 13 leads to the Hartree–Fock equa-

tion, equation 14. The Fock operator, f̂ , is defined in equation 15.

f̂iφi = εiφi (14)

f̂1 = ĥ1 +
n∑
j=1

[Ĵj(1)− K̂j(1)] (15)

The Fock operator for each electron resembles equation 11. There is a one-

electron part, ĥ1, and an effective potential for the electron, [Ĵj(1)− K̂j(1)]. The

one-electron part describes the kinetic energy of the electron and its attraction

to the nuclei. The effective potential describes the Coulomb interactions with all

of the other electrons via the Coulomb Operator, Ĵj and the quantum mechanical

exchange via the exchange operator, K̂j. The form of the operators in the effective

potential mean that each electron only experiences the average interaction of all

other electrons.

1.2.4 Quantum–Mechanical Exchange

Accounting for the Pauli principle naturally introduces a quantum-mechanical ex-

change contribution to the energy. This can be seen when comparing the potential
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energy of two interacting electrons of different spin (singlet) and two interact-

ing electrons of the same spin (triplet). The potential energy for paired spin Vs

(equation 16) and for parallel spin Vt (equation 17) is

Vs =

∫ |ψ1(1)|2|ψ2(2)|2
r12

dr1dr2 (16)

Vt =

∫ |ψ1(1)|2|ψ2(2)|2
r12

dr1dr2 −
∫
ψ∗1(1)ψ2(1)ψ∗1(2)ψ2(2)

r12
dr1dr2 (17)

The Vs integral is just the Coulomb interaction between electron densities in

one electron orbitals 1 and 2. This integral is a Coulomb integral. In the Vt case

there is an additional term which arises due to the electrons having the same spin.

This additional term is an exchange integral and only appears when interacting

electrons have the same spin. As this exchange integral is positive, the exchange

interaction lowers the energy so it is favourable for parallel spins to be in different

orbitals.

1.3 Post Hartree–Fock Methods

1.3.1 Electron Correlation

The origin of the missing electron correlation is due to representing the wave

function as a single Slater determinant, and so the Hartree–Fock method is a mean

field approach. Hartree–Fock theory ignores electron correlation. In the context

of wave function theory electron correlation energy is defined as Ec = Eexact −
EHF. Electron correlation is classified into two primary contributions: dynamic

and static. Dynamic electron correlation represents the correlated instantaneous

motions between electrons; in the Hartree–Fock framework the electron experiences

only an average interaction due to the other electrons, which does not account for

this instantaneous motion. The static electron correlation error stems from the

approximation of the wave function as a single Slater determinant being poor

when there are several electronic states with similar energies (near degeneracies),

this leads to poor descriptions of bond dissociation, the description of delocalised

and/or multiple bonds in systems such as ozone.
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1.3.2 Configuration Interaction

The correlation error can be reduced by representing the wave function as a linear

combination of Slater determinants, each representing a different electron config-

uration, rather than using just a single Slater determinant. Including more Slater

determinants should improve the energy, however not all electron configurations

are important.4 The dynamic correlation error can be improved by considering a

large number of electron configurations, all of which contribute a little and the

static correlation error can be improved by inclusion of a few key determinants.

The simplest method based on this is called configuration interaction (CI). The

standard approach to applying CI is to initially perform a HF calculation from

which a set of M MOs (where M is the number of basis functions) is obtained.

For a closed shell system of n electrons, the lowest n/2 MOs will be occupied,

the rest are unoccupied/virtual orbitals. Alternative Slater determinants can be

formed by replacing one of the occupied MOs with one of the virtual MOs. A de-

terminant with only one such replacement is known as a singly-excited determinant

as only one electron is moved. This process is then repeated whereby each electron

is excited to each virtual MO, leading to a large number of Slater determinants

that can be used for the linear combination representing the many electron wave

function. CI assumes that each Slater determinant is fixed and thus the optimal

coefficients can be calculated by making use of the variational principle.

This process is not limited to single electron excitations, higher numbers of

electrons can be excited, this leads to a hierarchy of CI methods: CIS, CISD,

CISDT . . . full CI. CIS only includes single excitations, CISD includes single and

double excitations, CISDT includes single, double and triple excitations and full

CI contains all possible excitations. It should be noted that CIS cannot be used to

correct the ground state as the single excitations on their own do not mix with the

Hartree–Fock determinant. Full CI is the closest it is possible to get to an exact

solution to the electronic Schrödinger equation for an arbitrary molecule, however

it becomes difficult to perform for any system larger than around 10 electrons.

Complete active space CI (CAS-CI) is a cheaper method of performing config-

uration interaction on larger systems. The orbitals are classified into three groups:

core (always fully occupied), active (partially occupied orbitals) and virtual (al-

ways unoccupied). The many electron wave function is then described as a linear

combination of Slater determinants for these spaces. All possible excitations in

the active orbitals are allowed and determinants are generated for each possible

excitation, however the core and virtual orbitals allow no excitations. This enables

a smaller but key section of the orbitals to have full CI performed on it but without

having the exceptional cost associated with performing full CI on the full set of
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system. However the choice of the active space needs to be carefully consider due

to difficulties associated with the inclusion of a high number of electrons in the

active orbitals (same issues as full CI).

1.3.3 Coupled Cluster

Coupled cluster (CC) theory8 is an alternative method of accounting for the elec-

tron correlation missing from HF. The wave function for coupled cluster is written

via an exponential ansatz

ψ = eT̂φ0 (18)

where φ0 is a reference wave function, usually the Slater determinant from HF

molecular orbitals. T̂ is the cluster operator, which produces a linear combination

of excited determinants based on the reference wave function. The use of the

exponential ansatz leads to size extensivity of the solution which is not guaranteed

in truncated configuration interaction. Size extensivity is the concept that the

method has the correct (linear) scaling with the number of electrons9. However,

truncated CC is not variational.

The cluster operator is expressed in the form shown in equation 19, where T̂1

is the operator of all single excitations; T̂2 is the operator of all double excitations

etc. The form of these two operators is shown in equations 20 and 21, respectively.

T̂ = T̂1 + T̂2 + T̂3 + · · · (19)

T̂1 =
∑
i

∑
a

tai â
aâi (20)

T̂2 =
1

4

∑
i,j

∑
a,b

tijabâ
aâbâj âi (21)

Here, âa and âi are creation and annihilations operators, respectively. Creation

operators increase the number of particles in a given state by one and annihilation

operators decrease the number of particles in a given state by one. The indices i

and j stand for occupied orbitals and the indices a, b for unoccupied orbitals. The

cluster operator governs the type of excitation (single, double, triple etc). They

generate from the reference wave function various excited Slater determinants,

which contribute to a multideterminant linear combination wave function, with

a magnitude controlled by the cluster amplitudes t. Solving for the unknown
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coefficients t is required to find the approximate solution from equation 18.

The exponential cluster operator naturally includes higher excitations at each

level of truncation due to the various products and powers of the T̂n introduced

(this can seen in the Taylor series expansion of (̂e)T , for example T̂1 and T̂2 give

rise to

êT = 1 + T̂ +
1

2!
T̂ 2 + · · · = 1 + T̂1 + T̂2 +

1

2
T̂ 2

1 + T̂1T̂2 +
1

2
T̂ 2

2 + · · · (22)

which is the origin of the size-extensivity, which is the correct scaling behaviour

of the method with the number of electrons9.

Even though this series is finite in practice due to there being a set number

of molecular orbitals (and thus number of possible excitations), the solution of

the full series is too costly for systems bigger than around 10 electrons, therefore

usually only single and double excitations are included [CCSD]. CCSD performs

better10 than the configuration interaction analogue [CISD] due to the exponential

operator in truncated systems (i.e. systems that have > 3 electrons). In order to

obtain more accurate results, some treatment of triple excitations needs to be

included. This is usually done via estimation of the connected triples using many-

body perturbation theory [CCSD(T)]11,12.

1.3.4 Møller–Plesset Perturbation Theory

Møller–Plesset (MP) perturbation theory13 is a special case of Rayleigh–Schrödinger

(RS) perturbation theory14. RS perturbation theory considers an unperturbed

Hamiltonian operator to which a small perturbation is applied (equation 23). λ is

an arbitrary parameter, which controls the size of the perturbation.

Ĥ = Ĥ0 + λV̂ (23)

If the eigenvalues and eigenfunctions (ψ) of the unperturbed Hamiltonian are

known, it is possible to represent the desired eigenvalues and eigenfunctions of

the full Hamiltonian as a Taylor expansion in λ

ψ = ψ0 + λψi + λ2ψii + · · ·
E = E0 + λEi + λ2Eii + · · ·

(24)

It is straightforward to derive equations for first-order, second-order etc. correc-

tions to the eigenfunctions and eigenvalues. These corrections allow the approx-

imation of the eigenvalues and eigenfunctions of the full Hamiltonian using just

the eigenvalues and eigenfunctions of the zeroth-order Hamiltonian.

In MP perturbation theory, the sum of one-electron Fock operators is the
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zeroth-order Hamiltonian (equation 25). Then the perturbation follows the form

of equation 26.

Ĥ0 =
n∑
k=1

f̂k (25)

V̂ = Ĥ −
n∑
k=1

f̂k (26)

Evaluation of the energy with the Hartree–Fock wave function gives an energy

identical to the sum of the zeroth-order and first-order energies in MP perturbation

theory

EHF = 〈ψSD|H|ψSD〉 = E0 + E1 (27)

Hartree–Fock is exactly correct to the first order of MP perturbation theory. Thus

the first change in energy is seen from the second-order correction (MP2). The

second-order correction to the energy is

E2 =
1

4

∑
i,j

∑
a,b

(ij||ab)(ab||ij)
εi + εj − εa − εb

(ij||ab) =

∫
φi(1)φj(2)φa(1)φb(2)

r12
dr1dr2 −

∫
φi(1)φj(2)φ∗b(1)φ∗a(2)

r12
dr1dr2

(28)

It follows that the second-order MP energy (MP2) is simply the sum of the Hartree–

Fock energy and the second-order energy correction E2. Practically, MP2 calcu-

lations involve an initial Hartree–Fock calculation to obtain a set of one-electron

orbitals (and the associated Hartree–Fock energy) then applying the second-order

correction to determine the MP2 energy. One advantage of this method is the rel-

atively low computational cost (can be performed with large systems). However,

it is important to note that the reference Hartree–Fock determinant is required to

be a good approximation for MP perturbation theory to be a good approximation.

1.4 Localised Basis Sets

A basis set is a set of functions (basis functions) which are used to represent the

electronic wave function, in order to enable efficient implementation on computers.

This enables the single particle states to be expressed as linear combinations of

basis functions.
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There are two major types of basis sets used in quantum chemistry, atom-

centred (localised) and plane wave basis sets. Localised basis sets build from atomic

orbitals as these are a good approximation for molecular orbitals. These basis sets

work according to chemical insight and small basis sets give fairly good results.

They have some issues though, namely they are non-orthogonal, dependant on

atomic positions and are susceptible to basis set superposition error (BSSE). The

calculation of interaction energies is especially susceptible to BSSE. For example,

when two molecules are brought closer together their basis functions will overlap.

Each molecule ”borrows” functions from other nearby components, effectively in-

creasing its basis set size and improving the flexibility of the electron description in

calculation of derived properties such as energy. If the total energy is minimised as

a function of the system geometry, the short-range energies from the mixed basis

sets must be compared with the long-range energies from the unmixed sets, and

this mismatch introduces an error.

Plane wave basis sets are generally used in periodic systems, where localised

basis sets have their own issues. They are dependent on the volume of the simu-

lation cell and independent of the atomic positions (which leads to an elimination

of BSSE). They assume periodic boundary conditions which cause them to be less

suitable for gas-phase molecular calculations than localised basis sets. Due to large

volumes of vacuum needing to be added around each gas-phase molecule to elimi-

nate any interaction between the molecule and its periodic copies, the inclusion of

this extra volume will lead to a vastly increased computational cost compared to

the localised basis sets due to plane wave basis sets being dependent on the vol-

ume of the simulation cell. They are the natural choice for calculation involving

periodic boundary conditions such as interactions on a surface.

The calculation cost increases with the size of the basis set therefore the small-

est basis set possible is desirable. However, in order to obtain accurate results a

large basis set is required; this leads to a compromise between accuracy and cost

when selecting a basis set.

1.4.1 Slater-Type Orbitals

Basis functions are typically based on atomic orbitals as these give a good approx-

imation to molecular orbitals. The atomic orbitals from the one electron hydrogen

atom (figure 2) can be used to make a basis set. However, there is a possible

error introduced when applying these one-electron orbitals to systems with many

electrons interacting. Slater proposed a modification to the hydrogenic orbitals,

so called Slater-type orbitals,15 which have effective nuclear charges chosen to ac-

count for interelectronic interactions and shielding. Slater-type orbitals have the
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general form

χSlater
lm (r, θ, φ) = Nrle−αrYlm(θ, φ) (29)

where N is a normalisation constant, rle−αr is the radial part of the orbital (which

is an exponential multiplied by a polynomial) and Ylm(θ, φ) is the angular part

(here, the spherical harmonics similar to hydrogenic orbitals). The form of Slater-

type orbitals means that ne > 1 which means that the radial part is always positive,

thus they lack radial nodes. Slater-type orbitals reproduce the cusp behaviour close

to the nuclei.

1

Figure 2: Angular parts of the Hydrogen Atomic Orbitals
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1.4.2 Minimal Basis Sets

Practical use of Slater-type orbitals is difficult and inefficient, for example due to

difficulties in calculating the 2-electron Coulomb and Exchange integrals, which

occur in the Fock matrix. Boys16 in 1950 noticed that calculating 2-electron in-

tegrals for Gaussian orbitals is straightforward due to the Gaussian product rule.

Gaussian orbitals have the general form

χGTO
lm (r, θ, φ) = Nrle−αr

2

Ylm(θ, φ) (30)

where N is a normalisation constant, rle−αr
2

is the radial part and Ylm(θ, φ) is

the angular part. Pople17 in 1969 suggested fitting n Gaussian orbitals to a single

Slater-type orbital which could then be used as a basis set. The result is commonly

known as a STO-nG basis set where n has a value of between 2 and 6. These are

examples of a minimal basis set, as they only include enough orbitals to represent

all the electrons on a neutral atom, e.g 1s for H, 1s 2s 2p for C.

1.4.3 Split Valence Basis Sets

In molecular bonding, it is primarily the valence electrons that take part. Due

to this, it is common practice to represent valence orbitals by more than one ba-

sis function but still represent the core orbitals by a single basis function. The

behaviour of the core electrons does not change much as a result of the environ-

ment, for example the 1s orbital of a carbon in a benzene ring is much like the

1s orbital of a carbon atom (comparatively to the valence electrons). Core basis

functions are typically comprised of a linear combination of Gaussian functions.

Basis sets in which there are more than one basis function for each valence orbital

are called valence double/triple/quadruple-ζ basis sets. This refers to how many

basis functions each valence orbital is ’split’ into.18

1.4.4 Polarisation and Diffuse Functions

Polarisation and diffuse functions are additional functions added to improve the

flexibility of a basis set. Polarisation functions add atomic orbitals of higher angu-

lar momentum to atoms. This helps improve the description of bonding between

molecules by allowing polarisation of the electron density on an atom. Diffuse

functions improve the description of diffuse electron densities, e.g. anions, by the

addition of higher shell functions (e.g. 2s to H).
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1.4.5 Correlation-Consistent Basis Sets, cc-pVnZ

Dunning and coworkers developed a set of basis sets starting in 1989,19 which

are designed to converge systematically to the complete-basis-set limit. For first

and second row atoms the basis sets are cc-pVnZ where n=D, T etc (D=double,

T=triples). The cc-p stands for correlation consistent polarised, this means they

include incrementally larger shells of polarisation functions (d, f etc). These can

be augmented with additional diffuse functions to improve different calculation

types.

1.5 Density Functional Theory

Reliable wave function theory methods are computationally expensive, due to the

variational problem in optimising the electron energy in wavefunction theory being

3N -dimensional (where N is the number of electrons). Therefore, it is useful to

consider alternatives in order to reduce this potentially large computational cost

when considering chemically relevant systems. Using a density based method is

most common alternative to wavefunction based method. Density based methods

have a few advantages over wavefunction based methods, they are easier to visualise

for systems beyond one electron due to the wavefunction being a 3N -dimensional

entity whereas the density is always 3-dimensional. Useful wavefunction techniques

have poor scaling with the number of electrons, which leads to large costs when

considering medium sized chemical systems, the scaling is not as poor with density

based methods.

1.5.1 Ground-State Density Functional Theory

Density functional theory (DFT) has its basis in the Hohenburg–Kohn theorems

set out in 1964.20 The first theorem states that the ground-state charge density

of a system of interacting electrons determines the external potential to within

an additive constant (the ground state electronic energy is completely determined

by the electron density ρ(r)). There are representability problems apparent from

this first theorem. Given a trial ground-state charge density that integrates to N

electrons, are we sure that the density is coming from an N -electron wave function

and sure that it is the ground-state density for an external potential. There is also

a problem with how to calculate nontrivial properties such as the ground-state

energy of the trial density. The second Hohenburg–Kohn theorem establishes a

variational principle, giving that the energy from a trial density is greater than or
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equal to the true ground-state energy

F [ρ] +

∫
vext(r)ρ(r)dr > E0 (31)

The functional F [ρ] is universal in the sense that it is independent of the external

potential. However the form of F [ρ] in general is unknown and therefore it must

be approximated in order to obtain a practical theory. Approximations derived

purely from the Hohenburg–Kohn theorems are pure density functional or orbital-

free theories.

1.5.2 Hohenburg–Kohn–Sham

The Kohn–Sham21–23 formulation of DFT introduces a fictious system of nonin-

teracting electrons with the same density as the real system. For such a system, a

single Slater determinant is sufficient to exactly represent the exact wavefunction.

The density is given as

ρ(r) =
n∑
i=1

|φi(r, σ)|2 (32)

The total energy expression in this formulation is

E = Ts + Vne + J + Exc

=
n∑
i=1

∫
φi(r1)(−1

2
∇2)φi(r1)dr1 −

N∑
J=1

∫
qJρ(r1)

r1J

dr1 +
1

2

∫
ρ(r1)ρ(r2)

r12

dr1dr2

+ Exc[ρ]

(33)

This equation is similar in form to the Hartree–Fock energy expression, which

of course is also based on single determinant. Exc is the exchange-correlation

(xc) energy functional; this term contains all the parts of the energy we cannot

express exactly (i.e. the quantum effects). The total electronic energy, E, is

exact when the exact xc-functional is used. The xc-functional contains not only

the exchange and correlation energies but also the difference between the kinetic

energy of the interacting and noninteracting systems. The exchange–correlation

functional must be approximated as its exact form is unknown (as with F [ρ]).

Such approximations are known as density functional approximations (DFA). The

use of the self-consistent field method to get the orbitals and construct the density

from these.
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1.5.3 Perdew’s ’Jacob’s Ladder’

In 2001, Perdew organized these DFAs into a hierarchy, the ’Jacob’s Ladder’ of

DFAs for exchange–correlation24 (figure 3). The basis of this hierarchy is that

as more information about the behaviour of the density is included (e.g. reduced

gradient, local kinetic energy), the functionals produced have the potential to

be more accurate. The lower rungs of the ladder are pure density functionals,

which follow the original basis of Hohenburg–Kohn–Sham DFT, considering only

the density as the working variable for describing Exc. As the higher rungs are

reached more information is included however this comes at an increased cost

of calculation. It should be noted that although there is a tendency to higher

accuracy in the higher rungs, there is no guarantee of higher accuracy.

Figure 3: A schematic of Perdew’s Jacob’s Ladder of DFAs.

1.5.4 Local Density Approximation

Local density approximations (LDA) are the most basic DFA on Jacob’s ladder.

They express the xc energy in terms of only the density. The form of Exc is

derived from the homogeneous/uniform electron gas model. The general form of

the LDA Exc (excluding spin effects) is given in equation 34, where ρ is the electron

density and εxc is the exchange–correlation energy per particle from a homogeneous

electron gas of charge density ρ.

ELDA
xc [ρ] =

∫
ρ(r)εxc(ρ)dr (34)

16



The exchange–correlation energy is generally a combination of exchange and corre-

lation terms. The exchange-energy density of a homogeneous electron gas is known

analytically.25 The LDA assumes that the exchange-energy in non-homogenous sys-

tems can be obtained by applying the homogeneous electron gas exchange-energy

pointwise, giving

ELDA
x [ρ] = −3

4

(
3

π

) 1
3
∫
ρ(r)

4
3 dr (35)

Analytical expressions of the correlation energy for the homogeneous electron gas

are only known in the high and low density limits, corresponding to infinitely weak

and infinitely strong correlation26,27. Highly accurate simulations for the energy of

the homogeneous electron gas have been performed for several intermediate values

of density, providing accurate values for the correlation energy28. The most pop-

ular correlation energy LDAs interpolate between these values while reproducing

the known behaviour at the high and low density limits. There are several ap-

proaches that use different forms to represent Ec (the correlation energy). These

approaches include Vosko–Wilk–Nusair (VWN)29 and Perdew–Wang (PW92)30

approximations to ELDA
c .

1.5.5 Generalised Gradient Approximations

In the LDA, the density at point r is used to calculate the exchange–correlation

energy, with the expressions based on the known behaviour for a homogeneous

density. Real systems however have an inhomogeneous spatially varying density

[ρ(r)], thus information about how varying the density affects the energy, should

be included to improve the accuracy of calculations. The first attempt to do this

was via gradient–expansion approximations (GEA)20. This approximation tries to

systematically include gradient-corrections of the form |∇ρ(r)|, |∇ρ(r)|2,∇2ρ(r)

etc. to the LDA. The inclusion of low-order gradient corrections had limited

success, and the higher order corrections of this type are difficult to calculate.

This lead to the concept that instead of a systematic gradient expansion, more

general functions of ρ(r) and ∇ρ(r) should be used. Such approaches are known as

generalised gradient approximations and take the general form for spin unpolarised

systems as shown in equation 36 and the general form for spin polarised systems

as shown in equation 37.

EGGA
xc [ρ] =

∫
f(ρ,∇ρ)dr (36)
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EGGA
xc [ρα, ρβ] =

∫
f(ρα, ρβ,∇ρα,∇ρβ)dr (37)

There is a large variety of choice for the functional f(ρ,∇ρ) leading to a large

number of GGAs. A broader discussion of the construction of functionals can

be found in chapter 2. Example GGAs include: PBE31 (using Perdew, Burke

and Ernzerhof’s exchange and correlation functionals), BLYP (combining Becke’s

exchange functional32 and Lee, Yang and Parr’s correlation functional33) and BP86

(combining Becke’s exchange functional32 and Perdew’s 1986 gradient corrected

correlation functional34).

1.5.6 Meta-Generalised Gradient Approximations

GGA functionals are a notable improvement over LDA for many chemically rele-

vant properties but they can still be improved. One approach is via dependence

not only on the electon density and its derivatives but also on the Kohn–Sham

kinetic-energy density, τ(r)

τ(r) =
1

2

∑
i

|∇φi(r)|2 (38)

The addition of the kinetic energy density allows additional constraints on Exc to

be satisfied, for example a finite exchange potential at the nucleus. An example

meta-GGA is Tao–Perdew–Staroverov–Scuseria (TPSS).35

1.5.7 Hybrid Functionals

The functionals covered above are all semi-local functionals, i.e. they primarily

depend on ρ and its derivatives. Hybrid functionals incorporate a certain amount

of non-local HF exchange. Becke introduced this hybrid approach in 199336 based

on arguments developing a functional based in the adiabatic correction formal-

ism. This first hybrid was the so-called ’half and half’ functional (it includes 50%

HF exchange). Hybrid functionals improve several molecular properties such as

atomisation energies and bond lengths37. Hybrid xc functionals are written as

a combination of the HF exact exchange functional, EHF
x (the Hartree–Fock ex-

change evaluated using the Kohn Sham orbitals), and any number of the exchange

and correlation density functionals discussed above (LDA, GGAs). The general

form for Exc in hybrid functionals is shown in equation 39

Exc = a0E
HF
x + (1− a0)EDFA

x + EDFA
c (39)
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The most widely used hybrid functional is B3LYP,38,39. This incorporates 20% HF

exchange (a0 = 0.2) and uses the Becke 88 gradient correction exchange functional

(EB88X
x ), the Lee, Yang and Parr correlation functional33 (EGGA

c ) and the Vosko–

Wilk–Nusair local density approximation29 to the correlation functional (ELDA
c ).

The xc functional for B3LYP is defined as

EB3LYP
xc = 0.8ELDA

x + 0.72EB88X
x + 0.2EHF

x + 0.19EVWN
c + 0.81ELYP

c (40)

Other notable hybrid functionals include PBE040 and M0641 amongst others.

PBE0 involves mixing PBE exchange and HF exchange in a 3 to 1 ratio, i.e.

a0 = 0.25, 25% HF exchange, along with full PBE correlation. The form of the

PBE0 xc functional is therefore

EPBE0
xc = 0.25EHF

x + 0.75EPBE
c + EPBE

c (41)

1.5.8 Range-Separated Hybrids

When the a0 in equation 39 is a constant, the hybrid is called a conventional or

global hybrid. It is possible to generate a more general mixing of exchange, where

the mixing is not constant but some more general function. One approach uses

the interelectron distance r12 to determine the ratio of exchange missing. Using

such an approach, the exchange can be partitioned into short-range and long-range

components. This is typically done by splitting the Coulomb operator using the

standard error function, erf (equation 42). The left hand term is for short-range

interactions and the right hand term is for long-range interactions. The parameter

ω defines the range of the separation.

1

r
=

1− erf(ωr)

r
+

erf(ωr)

r
(42)

Given a set ω value, the HF and DFA exchange energies can be split into short-

range (SR), long-range (LR) and full-range (FR) components, following the scheme

in equations 43 and 44.

EHF
x = ESR-HF

x (ω) + ELR-HF
x (ω) + EFR-HF

x (ω) (43)

EDFA
x = ESR-DFA

x (ω) + ELR-DFA
x (ω) + EFR-DFA

x (ω) (44)
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When the short-range, long-range and full-range parts are mixed separately, a

general expression for the Exc of a range-separated hybrid functional is obtained,

Exc = aESR-HF
x (ω) + (1− a)ESR-DFA

x (ω) + bELR-HF
x (ω) + (1− b)ELR-DFA

x (ω)

+ cEFR-HF
x (ω) + (1− c)EFR-DFA

x (ω) + EDFA
c

(45)

The choice of the parameters a, b and c in equation 45 can lead to several different

applications of range-separated hybrids. Setting b = 0, removes the long-range HF

exchange. This reduces computational cost greatly for extended systems, enabling

hybrid DFT calculations on bulk metals. A functional of this type developed by

Heyd, Scuseria and Ernzerhof42 (HSE) has been shown to be effective for solid-

state studies.43

Setting b = 1, where long-range exchange is completely described by HF, gives

a completely different application of range-separated hybrid functionals. This

scheme means the long-range HF exchange serves as an asymptotic correction to

the exchange potential. This method has been shown to improve some properties44.

An example of this type of range-separated hybrid functional is LC-ωPBE,45 which

has parameters c = 0, b = 1, a = 0 and ω = 0.4. Another functional of this type

is ωB97XD46, which has parameters c = 0.22, b = 1, a = 0 and ω = 0.2.

The thermochemical performance of a functional can be influenced by the long-

range correction, thus fitting the parameters (a, b) independently between the val-

ues of 0 and 1 (i.e. not enforcing a + b = 1) could lead to better thermochemical

accuracy47. This would remove the asymptotic behaviour of having a+b = 1. One

functional of this type is CAM-B3LYP,48 the parameters used in this functional

are c = 0.19, b = 0.46, a = 0 and ω = 0.33.

1.6 Excited States of Molecules

The properties of excited states, in particular their energies, character and ge-

ometries, are important for explaining electronic spectra. They are of particular

relevance for applications such as dye-sensitised solar cells, luminescent transition

metal complexes and bioimaging49. However, it is difficult to explain the experi-

mental results of investigation of these properties, therefore computational meth-

ods are used to rationalise the results. The most commonly used methods for the

calculation of excited state properties are the linear response formulations of wave

function-based methods and density-based methods of ground state calculations.

The most commonly used of these methods is linear response time-dependent DFT

(TDDFT).
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1.6.1 Time-Dependent Density Functional Theory

The linear response formulation of time-dependent density functional theory (TDDFT)50,51

is the most widely used method for the calcuclation of excited state properties

for medium/large molecular systems52. There are two major components for the

foundation of TDDFT: the Runge–Gross Theorem53,54 and the time-dependent

Kohn–Sham equation54.

1.6.1.1 Runge–Gross Theorem

The Runge–Gross Theorem53,54 is seen as the time-dependent analogue of the

first Hohenburg–Kohn theorem and such is the formal basis of the time-dependent

Kohn–Sham formalism. The derivation of the Runge–Gross theorem begins with

the time-dependent Schrödinger equation (equation 1) where the time-dependent

Hamiltonian has the form given in equation 46. The operators T̂ (r), V̂ee(r) and

V̂ne(r) correspond to the kinetic energy operator and potentials corresponding to

the electron–electron repulsion and the electron–nuclei attraction, respectively.

Ĥ(r, t) = T̂ (r) + V̂ee(r) + V̂ne(r) + V̂ext(t) (46)

V̂ext(t) =
n∑
i

v̂(ri, t) (47)

The term V̂ext(t) is the time-dependent external potential, which is given by the

sum of time-dependent one-particle potentials, equation 47. The number of elec-

trons, n, is constant with time. The Runge–Gross theorem assumes V̂ext(t) is

Taylor expandable around intial time t0. The theorem53 states that two solutions

Ψ(t) and Ψ′(t) to the time-dependent Schrödinger equation which evolve from a

fixed initial state [Ψ0] under the influence of the potentials v(r, t) and v′(r, t) re-

spectively, always lead to different electron densities ρ(r, t) and ρ′(r, t), provided

the two potentials v(r, t) and v′(r, t) differ by more than a purely time-dependent

function [C(t)] (equation 48).

v(r, t) 6= v′(r, t) + C(t) (48)

The proof of this theorem has two parts. The first part shows a one-to-one map-

ping between an external potential and a current density, the second part shows

a one-to-one mapping between a current density and an electron density. Thus

overall there is a one-to-one correspondence between an external potential and an

electron density. Demonstrating the one-to-one correspondence between an exter-
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nal potential and a current density is accomplished by expanding two potentials

(equation 48) in a Taylor series around t0, which differ by more than a purely time-

dependent function53 Assuming there exists some non-negative integer k such that

equation 49 is satisfied,

∂k

∂tk
[v(r, t)− v′(r, t)]

∣∣∣∣∣
t=t0

6= constant (49)

Consider the current densities arising from each potential, the current density is

given by equation 50. The system corresponding to each potential differs from

the other by their single-body potential, the equation-of-motion for the difference

between the two current densities is given in equation 51 where ρ(r, 0) is the initial

electron density.

j(r, t) =
1

2i
[Ψ∗(r, t)∇Ψ(r, t)−∇Ψ∗(r, t)Ψ(r, t)] (50)

∂

∂t
{j(r, t)− j′(r, t)}t=0 = −i

〈
Ψ0

∣∣∣[ĵ(r, t), {Ĥ(0)− Ĥ ′(0)}
]∣∣∣Ψ0

〉
= −i

〈
Ψ0

∣∣∣[ĵ(r, t), {v(r, 0)− v′(r, 0)}
]∣∣∣Ψ0

〉
= −ρ(r, 0)∇{v(r, 0)− v′(r, 0)}

(51)

If at time t0 the potentials differ by more than just a constant, the first derivative

of each of the currents must differ. This leads to a difference in currents when

t > t0. A similar relation for higher derivatives can also be derived (equation 52).

∂k+1

∂tk+1
{j(r, t)− j′(r, t)}t=0 = −ρ(r, 0)∇ ∂k

∂tk
{v(r, t)− v′(r, t)}t=0 (52)

Since equation 49 is valid and the potentials are both Taylor expandable about

t0, there exists a positive integer, k, such that −ρ(r, 0)∇{v(r, 0) − v′(r, 0)} 6= 0

(equation 53). This establishes the one to one mapping of potentials and current

densities.

j(r, t) 6= j′(r, t) (53)

The one-to-one mapping of current densities and electron densities still needs to

be proven. This connection is made by initially taking the gradient of equation 52

and the continuity of the Schrödinger equation which leads to equation 54.
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∂k+2

∂tk+2
{ρ(r, t)− ρ′(r, t)}t=0 = ∇ ·

[
−ρ(r, 0)∇ ∂k

∂tk
{v(r, t)− v′(r, t)}t=0

]
(54)

The right hand side of equation 54 must be non-zero for some integer, k, such

that the density difference is non-zero. The proof of this is through contradiction.

Setting f(r) = ∂k

∂tk
{vext(r, t)− v′ext(r, t)}|t=0 and considering equation 55.

∫
f(r)∇ · [ρ0(r)∇f(r)] dr =

∫ {
∇ · [f(r)ρ0(r)∇f(r)]− ρ0(r)|∇f(r)|2

}
dr (55)

The first term on the right hand side of equation 55 is recognisable as a surface

integral at r =∞. This surface integral decays at least as fast as −1/r, such that

it vanishes. The other term on the right hand side of equation 55 will be less than

zero, which means the left hand side will be non-zero somewhere. Provided ∇f(r)

is non zero somewhere, ∇(ρ0∇f(r)) can not vanish everywhere. As a result of this

the densities ρ(r, t) and ρ′(r, t) will differ by more than a time dependent phase

factor.

1.6.1.2 Time-Dependent Kohn–Sham Equation

The Runge–Gross theorem53 is valid for arbitrary time-dependent potentials, which

enables comparison between the interacting system and a fictitious non-interacting

system with the same time-dependent density. Considering a system of interact-

ing particles with a time-dependent density ρ(r, t) and a non-interacting system

with the same time-dependent density, the one-to-one mapping of densities and

potentials means that a local effective potential vKS[ρ](r, t) for the non-interacting

system gives the same density as the interacting system. This was shown by van

Leeuwen.54

The time-dependent Kohn–Sham equation as defined in reference 55 has the

form shown in equation 56 with ρ(r, t) the density of both the interacting and

non-interacting system (equation 57).

i
∂ϕj(r, t)

∂t
=

[
−∇

2

2
+ vKS[ρ](r, t)

]
ϕj(r, t) (56)

ρ(r, t) =
N∑
j=1

|ϕj(r, t)|2 (57)
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Due to the one-to-one mapping of the density and potentials as discussed above,

the potential vKS[ρ](r, t) is determined from this density (equation 57) and takes

the form shown in equation 58, where vH(r, t) is a the time-dependent Hartree

potential and fxc(r, t) is the exchange-correlation kernel (i.e. the second derivative

of Exc with respect to ρ).

vKS = vext(r, t) + vH(r, t) + fxc(r, t)

vH[ρ](r, t) =

∫
ρ(r′, t′)

|r− r′|
(58)

This exchange–correlation kernel is the analogue of the exchange–correlation

functional in ground state DFT, hence the exact form is unknown but when it

is known the TDDFT equation will give exact results. The first approximation

made is usually the adiabatic local density approximation (ALDA), which has

the non-local time-dependent exchange–correlation kernel replaced with a time-

independent local one due to the density varying slowly with time. This approxi-

mation leads to the ability to use standard ground-state xc functionals in TDDFT.

1.6.1.3 Linear Response Formalism

The cost of calculating the full solution to the time-dependent Kohn–Sham equa-

tion can be very high for medium size systems. In order to reduce this cost the

linear response of the system can be used as an approximation to the full solu-

tion. Linear response will produce exact excitation energies when using the exact

exchange-correlation kernel56. Calculating the linear response can be reached us-

ing perturbation theory57.

The Hohenburg–Kohn theorem gives that the initial ground-state is determined

by the ground-state density ρ0, thus the time-dependent density ρ(r, t) is a func-

tional of the external potential only (ρ(r, t) = ρ[vext](r, t)). The Runge–Gross

theorem implies that the functional ρ[vext] can be inverted; that the external po-

tential is a functional of the density. Within perturbation theory, when a small

perturbation v1(r, t) is applied, the functional ρ[vext] can be expanded as a Taylor

series (equation 59)57 where the subscripts indicate the order of the perturbation

and ρ0(r, t) is the ground state density.

ρ(r, t)− ρ0(r, t) = ρ1(r, t) + ρ2(r, t) + ρ3(r, t) + · · · (59)

The first order response is shown in equation 60 where χ is the density response

of the interacting system.57 Due to the Hohenburg–Kohn theorem, the intial po-
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tential v0 is a functional of the ground-state density ρ0, thus the response function

χ is also a functional of the ground-state density.

ρ1(r, t) =

∫∫
χ(r, t, r′, t′)v1(r′, t′)dr′dt′

χ(r, t, r′, t′) =
δρ [vext] (r, t)

δvext(r′, t′)

∣∣∣∣∣
v0

(60)

The Runge–Gross theorem holds for non-interacting particles in external po-

tentials vs(r, t), thus the functional ρ(r, t) = ρ[vs](r, t) can be inverted to vs(r, t) =

vs[ρ](r, t). The Kohn–Sham response function is given by equation 61.57

χs(r, t, r
′, t′) =

δρ[vs](r, t)

δvs(r′, t′)

∣∣∣∣∣
vs[ρ0]

(61)

Due to the Runge–Gross theorem holding for both the interacting and non-

interacting particles; a unique functional vs[vext] can be made such that the time-

dependent density of the non-interacting and interacting particles is identical. The

potential vs(r, t) corresponsing to a given vext(r, t) is the Kohn–Sham potential

(equation 58)57.

Applying the functional chain rule, the functional derivative of vs with respect

to vext enables a link between the interacting response function (equation 60) to

its non-interacting counterpart (equation 62).57

χ(r, t, r′, t′) =

∫∫
δρ(r, t)

δvs(x, τ)

δvs(x, τ)

δvext(r′, t′)

∣∣∣∣∣
v0

dxdτ (62)

Taking the functional derivative of equation 58 with repsect to the external

potential and inserting it into equation 62 gives equation 63 where χs(r, t, r
′, t′)

is the Kohn–Sham response function (equation 61) and fxc[ρ0](r, t, r′, t′) is the

exchange–correlation kernel (equation 64).57

χ(r, t, r′, t′) = χs(r, t, r
′, t′) +

∫∫∫∫
χs(r, t,x, τ)

×
(
δ(τ − τ ′)
|x− x′| + fxc[ρ0](x, τ,x′, τ ′)

)
χ(x′, τ ′, r′, t′)dxdτdx′dτ ′

(63)
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fxc[ρ0](r, t, r′, t′) =
δvxc[ρ](r, t)

δρ(r′, t′)

∣∣∣∣∣
ρ0

(64)

Equation 63 relates the non-interacting and interacting systems, thus is the

key equation of TDDFT.57 In order to get the linear response of the density,

equation 63 is inserted into equation 60 giving equation 65. The effective potential

vKS,1(r′, t′) holds the external perturbation v1(r, t), the Hartree Coulomb potential

and the unknown exchange–correlation function.

ρ1(r, t) =

∫∫
χs(r, t, r

′, t′)vs,1(r′, t)dr′dt′

vs,1(r, t) = v1(r,t) +

∫
ρ1(r′, t)

|r− r′| dr′ +

∫ ∫
fxc[ρ0](r, t, r′, t′)ρ1(r′, t′)dr′dt′

(65)

Taking the Fourier transform with respect to time gives the frequency depen-

dent linear density response (equation 66). The frequency-dependent Kohn–Sham

response function, which is expressed as a sum over all states (equation 67) where

fk is the occupation number of the ground state Kohn–Sham orbital ψk(r) with

orbital energy εk.
57

ρ1(r, ω) =

∫
χs(r,y, ω)v1(y, ω)dy

+

∫∫
χs(r,y, ω)

(
1

|y− y′| + fxc[ρ0](y,y′, ω)

)
ρ1(y′ω′)dydy′

(66)

χs(r, r
′, ω) =

∑
j,k

(fk − fj)
ψj(r)ψ∗k(r)ψ∗j (r

′)ψk(r′)

ω − (εj − εk) + iη
(67)

1.6.1.4 Matrix Formulation of Linear Response

Casida58 showed that equation 67 can be transformed into a matrix representation.

To begin expand equation 67 into equation 68 where i takes values from 1 to N ,

representing the occupied orbitals, and a takes values fromN+1 to∞, representing

the virtual orbitals.
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χs(r, r
′, ω) =

∑
j,k

(fk − fj)
ψj(r)ψ∗k(r)ψ∗j (r

′)ψk(r′)

ω − (εj − εk) + iη

=
N∑
k=1

∞∑
j=1

ψj(r)ψk(r
′)ψ∗k(r)ψ∗j (r

′)

ω − (εj − εk)
−

N∑
k=1

∞∑
j=1

ψk(r)ψj(r
′)ψ∗j (r)ψ∗k(r

′)

ω − (εj − εk)

=
∑
i,a

(
ψa(r)ψi(r

′)ψ∗i (r)ψ∗a(r
′)

ω − (εa − εi)
− ψi(r)ψa(r

′)ψ∗a(r)ψ∗i (r
′)

ω − (εa − εi)

)
(68)

Setting Pai and Pia as defined in equation 69 lets the linear response be written

as equation 70.

Pai =

∫
ψi(r

′)ψ∗a(r
′)vs,1(r′, ω)dr′

ω − (εa − εi)

Pia =

∫
ψa(r

′)ψ∗i (r
′)vs,1(r′, ω)dr′

−(ω + (εa − εi))

(69)

ρ1(r, ω) =
∑
i,a

ψa(r)ψ∗i (r)Pai + ψi(r)ψ∗a(r)Pia (70)

Rearranging equation 69 gives equation 71. The Hartree and exchange–correlation

peotentials can be written as equation 72 which allows definition of matrix elements

vai (equation 73) and Kkl,mn (equation 74).

(ω − (εa − εi))Pai =

∫
ψi(r

′)ψ∗a(r
′)vs,1(r′, ω)dr′

(ω + (εa − εi))Pia = −
∫
ψa(r

′)ψ∗i (r
′)vs,1(r′, ω)dr′

(71)

fHxc(r, r
′, ω) =

1

|r− r′| + fxc(r, r
′, ω) (72)

vai =

∫
ψi(r)v1(r, ω)ψ∗a(r)dr (73)
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Kkl,mn =

∫ ∫
ψk(r)ψ∗l (r)fHxc(r, r

′, ω)ψm(r′)ψ∗n(r′)drdr′ (74)

This gives two matrix forms of the linear response of the density depending if

using vai (equation 75) or via (equation 76).

∑
j,b

{[δijδab(εa − εi − ω) + Kai,bj] Pbj + Kai,bjPjb} = −vai (75)

∑
j,b

{[δijδab(εa − εi − ω) + Kai,jb] Pjb + Kai,bjPbj} = −via (76)

This enables the construction of a compact notation of equations 75 and 76

(equation 77) with definitions shown in equation 78.

[(
A B

B∗ A∗

)
− ω

(
1 0

0 −1

)](
X

Y

)
=

(
−vai
−via

)
(77)

Xjb = Pjb

Yjb = Pbj

Aia,jb = δijδab(εa − εi) + Kai,jb

Bia,jb = Kia,bj

(78)

When equation 77 is solved at an excitation energy, the right hand side becomes

0. Thus the excitation frequencies must satisfy a non-Hermitian pseudo-eigenvalue

problem (equation 79).

[
A B

B∗ A∗

](
X

Y

)
= ω

[
1 0

0 −1

](
X

Y

)
(79)

The matrix B couples the positive and negative eigenvalue solutions, which can

be interepted as excitation and de-excitation energies59. Assuming that this cou-

pling is small, the B matrix can be set to zero. This leads to a complete decoupling

of the excitation and de-excitations. The resulting Hermitian eigenvalue equation

(equation 80) can be solved for the excitation energies, doing this is referred to as

the Tamm–Dancoff approximation60,61.
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AX = ωX (80)

1.6.1.5 Properties and Limitations of TDDFT

Results from TDDFT are sensitive to the choice of xc functional as with ground-

state DFT, especially between local/GGA functionals and hybrid functionals.62,63

This means the reliability of TDDFT calculations should be checked against bench-

mark calculations/experimental data. Ground state xc functionals can be used in

TDDFT due to the ALDA shown in section 1.6.2.3.

Even with the approximate functionals used in TDDFT, the excitation energies

obtained via TDDFT are generally accurate. The reason for this is that the dif-

ference between the Kohn–Sham orbital energies are usually good approximations

for the excitation energies.

TDDFT still has problems with certain classes of excitations: Rydberg states,

charge-transfer states64–67 and molecules with extended π-systems.68,69 Rydberg

states are states in which one electron has been excited into a high energy virtual

orbital. Charge transfer states are states in which the electron ‘moves’ a long

distance, effectively generating a positively charged and negatively charged part

of the molecule. Charge transfer states are usually underestimated using TDDFT;

this is again due to incorrect long-range behaviour.

The problem with Rydberg states can be linked to incorrect long-range be-

haviour of standard XC functionals, as they decay faster than 1/r. Range-separated

functionals that correct this long-range behaviour and should lead to improved de-

scription of Rydberg states.

1.7 Overview of Thesis

Chapter 2 describes the assessment, development and tuning of density-functional

approximations over ground state and excited state properties. Specifically looking

at hybrid functionals of both global and range-separated types. Chapter 3 is

concerned with the development of an excited state geometry and emission energy

benchmark and the implementation of this benchmark to assess the performance of

several density functional approximations for emission energies. Chapter 4 contains

a broader applications of TDDFT techniques to porous materials in order to aid

understanding of interesting experimental properties of these materials. All DFT

and TDDFT calculations were performed using Gaussian 0970 and all RI-CC2

calculations were performed using TURBOMOLE V6.671.
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2 Benchmarking and Development of Function-

als

The Kohn–Sham framework developed provides a universal Exc that can provide

the exact exchange correlation energy in terms of the density. However, the exact

form of Exc is unknown, therefore it is necessary to develop useable approximations

to Exc. There are two complementary approaches in the development of such

approximations:

1. Use exact conditions that it is known Exc must satisfy, to constrain the form

of the functional (see reference 72 for some such conditions).

2. Use known exact data that Exc should reproduce to constrain the form.

The use of exact conditions generally has more success in solid-state physics/condensed

matter applications72. These conditions tend to be more relevant for extended sys-

tems than molecular systems as the conditions are generally valid limiting cases of

Exc with respect to some scaling or limiting property of the density, e.g. uniform

density limit72. Such conditions are relevant for solid-state physics/condensed

matter, but are less so for molecular systems. Fewer conditions are known that

are specifically relevant for molecular systems. Regardless of the origin of the

functional, approximate Etextxcs seldom perform uniformly for solid state and

molecular applications.

Perdew, Burke and Erzenhof31 developed a GGA (PBE) to give an accurate

description of the response of uniform gas and correct density scaling. Becke32 de-

veloped an exchange GGA (B88 exchange) to get the correct asymptotic behaviour

of the exchange energy density. Lee, Yang and Parr33 developed an approximation

for the correlation energy (LYP). BLYP is a commonly used GGA which combines

B88 exchange and LYP correlation. PBE is a commonly used GGA which com-

bines PBE exchange and correlation.

The exact data approach is more commonplace when considering approximate

Excs for chemical applications. Typically some physically motivated form is chosen

that satisfies some fundamental properties of Exc, and then parameters are intro-

duced that allow it to be calibrated against reference data. A key parameter in the

development of hybrid functionals is that controlling the amount of exact orbital

exchange (Hartree–Fock exchange, HFx). For example, B3LYP38 was fitted to re-

produce a series of atomisation energies, ionisation potentials and proton affinities

accurately; the functional form has been adjusted to minimise the error of these

values relative to reference data. The optimisation leads to good performance for

the property/reference data that the functional is optimised against but is not
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a guarantee of good performance for other properties. This ’exact’ data is either

derived from experiment or high-level wave function based benchmark calculations

in atomic and molecular systems, so is directly relevant to the types of systems

that will be studied

The Minnesota family of functionals, developed by the Truhlar group, have

complicated forms that are parameterised against various benchmark sets. These

families of functionals have different functional forms for different properties. They

are based on one underlying GGA and are parameterised to perform well for dif-

ferent properties, no single Minnesota functional is the most robust, it depends on

the property of interest. However, assessments of these functionals against other

properties raises questions about the accuracy of these functionals for properties

not related to those which have been used to parameterise the functionals. These

functionals aim for a balanced description for both main group and transition

metal chemistry. Comparison to functionals that are optimised solely for main

group chemistry on main group chemistry may lead to the poor performance seen

with Minnesota functionals. One of families of Minnesota functionals is the Min-

nesota 06 family41, based on the GGA M06-L73. Global hybrid functionals have

been parameterised based on this GGA (M0641 with 27% HFx, M06-2X41 with

54% HFx and M06-HF74,75 with 100% HFx) for accurate performance on different

properties. For example, M06-2X is good for main group thermochemistry but less

good for transition metal thermochemistry; whereas M06 is fairly good for both

main group and transition metal thermochemistry (worse than M06-2X for main

group)

Koopmans theorem76 states that the first ionisation energy is equal to the neg-

ative of the HOMO energy. The ionisation energy calculated via the neutral and

positively charged species should be equal to this (this is referred to as Koop-

mans condition). This condition is not usually held in most commonly used DFT

approximations, in some cases having a several eV difference between these two

values. Baer, Neuhauser and Livshits77,78 (BNL) parameterised an approximation

which satisfies the Koopmans condition.

The standard approach for the development of functionals attempts to have

multiple properties described with reasonable accuracy across multiple molecules

with a single functional form and a single set of parameters. A key part in the

assessment of approximate Excs is investigating for which properties they display

good performance and which properties they display poor performance.

In order to optimise and assess the performance of approximate Excs, there

exist benchmark sets of various properties ranging from thermochemical (for ex-

ample atomisation energies) to geometric (for example diatomic bond lengths) to

absorptions (for example triplet absorptions). These benchmark sets have a large

31



quantity of high level theoretical/experimentally derived values for the property

that the benchmark set is interested in. These benchmark sets are used to opti-

mise/train the parameters in Exc approximations. However, the use of these sets to

optimise does not guarantee the performance of the approximation on other prop-

erties (the approximation is not guaranteed to be robust). Therefore, the use of

other benchmark sets to assess the performance on other properties is another im-

portant use of these benchmark sets, as it enables comparison of the performance

of approximations against the computational cost (where is the additional cost of

more complicated approximated necessary for accurate description of properties).

Grimme and coworkers have carried out a large amount of work in the field

of assessing the performance of approximate Excs. They combined various bench-

mark sets into a series of databases, which cover thermochemical, kinetic and

non-covalent interaction-based properties. These databases are then used to as-

sess the performance of a large range of approximate Excs. The first database is

the GMTKN2479 (which collected 24 benchmark sets), the second is the so called

GMTKN3080 (which expanded the database to 30 benchmark sets) and the most

recent database is the GMTKN5581 database (which has expanded the database

to 55 benchmark sets). This most recent benchmark database is separated by the

various property types in the assessment performed by Grimme. This leads to a

large amount of information about the performance of various approximate Excs

across many different properties along with all the properties combined. It should

be noted however that all the properties in the Grimme benchmark databases are

ground state properties.

2.1 Benchmarking and Assessment of Functionals

Benchmarking against data not used when developing the functional (i.e. data not

included in the tuning set) can test the versatility of functionals and their perfor-

mance. Peach et al. performed an assessment of CAM-B3LYP in 200682. The

assessment included a range of properties including: atomisation energies and ion-

isation potentials, reaction barriers, diatomic bond lengths, harmonic vibrational

wavenumbers, electronic polarisabilities and excitation energies. The assessment

compared B3LYP and CAM-B3LYP, and their behaviour relative to reference val-

ues. The assessment of several functionals for the same set of properties and

molecules is beneficial as it can suggest the type of functionals (i.e. GGA, global

hybrid, range-separated hybrid) that will perform well for each property assessed,

along with giving an overall idea of the general performance of each functional on

an equivalent set of data.

An assessment of a series of 6 functionals has been undertaken over a range
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of properties. The functionals tested are B3LYP, PBE0, B97-2, CAM-B3LYP,

LC-ωPBE and ωB97-XD. These functionals are all hybrid functionals, but are

separated into two main categories, global hybrid functionals and range-separated

hybrid functionals. These functionals differ in the way the HFx is introduced,

global hybrids have a constant percentage of Hartree–Fock exchange (HFx) in-

cluded and the range-separated hybrids scale the percentage of HFx included by

the interelectron distance (r); the parameters that scale the HFx percentage are

the full range HFx (a), the long range HFx (a+ b) and the scaling parameter (ω).

The global hybrids are B3LYP, PBE0 and B97-2 and the range-separated hybrids

are CAM-B3LYP, LC-ωPBE and ωB97-XD. PBE0, B3LYP and CAM-B3LYP were

chosen, as there is comparison to results obtained in reference 82 and thus can be

used to verify the calculations undertaken are consistent. LC-wPBE was chosen

as it is a range-separated hybrid based on PBE, as PBE0 is based on PBE. B97-

2 and wB97-XD were chosen to expand the scope of the functionals tested with

functionals that had not been assessed in reference 82. This will give a good idea

of the differences between the underlying functionals along with which properties

it is important to undertake the additional computational cost associated with the

range-separated hybrids, which it has little to no affect on the accuracy and which

properties it may be detrimental.

B3LYP is a global hybrid with 20% HFx; CAM-B3LYP is a range separated

hybrid based on B3LYP which scales the HFx percentage with a=19%, a+ b=65%

and ω=0.33a−1
0 . PBE0 is a global hybrid with 25% HFx; LC-ωPBE is a range

separated hybrid based on PBE0 which scales HFx with a=0%, a + b=100% and

ω=0.40a−1
0 . B97-2 is a global hybrid with 21% HFx; ω-B97-XD is a range separated

hybrid based on B97-2 which scales HFx with a=22.2%, a+b=100% and ω=0.2a−1
0 .

The properties chosen to assess the functionals are split into two main cate-

gories: ground state properties and excited state properties. The ground state

properties assessed are: ionisation potentials, electron affinities, atomisation ener-

gies, diatomic bond lengths, vibrational frequencies, isotropic electric polarisabili-

ties and reaction barriers. These are the same properties as those investigated in

reference 82. The excited state properties assessed are a series of singlet absorp-

tions of organic molecules and a series of triplet absorptions of organic molecules.

Details about each property will be given as they are introduced.

2.1.1 Thermochemical Data

The assessment of the functionals will begin with considering some ground state

thermochemical properties, these are properties related to the energetics of the

atoms or molecules studied, such as the ionisation energies, electron affinities and

atomisation energies.
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2.1.1.1 Ionisation Energy

The ionisation energy of an atom (or molecule) is defined as the energy required

to remove a single electron from an atom (or molecule), if not otherwise specified

it refers to the most easily removed electron. The set of atoms and molecules

for which we consider are listed in table 1. They are the same molecules studied

in reference 82. The ionisation energies are calculated using the energy difference

between of a neutral species and a positively charged species (one with one electron

removed). All the ionisation potentials are quoted in eV, and the size of the

ionisation energies ranges between 5-20 eV.

Table 1: Systems whose ionisation potentials were studied.

Li, Be, B, C, N, O, F, Na, Mg, Al, CH4, NH3, H2, HF, HCl, C2H2, C2H4, CO, N2, Cl2, ClF

The calculated results are compared to reference values from reference 1. The

reference values are derived from experiment, vibrational effects have been removed

from the experimental values. The errors (calculated − reference) for B3LYP,

CAM-B3LYP and PBE0 are compared to the errors found in references 82 and 1.

Following reference 1, we use MP2/6-31G* geometries. Also following reference 1,

the 6-311+G(3df,2p) is used. The mean error (d), mean absolute error (|d|) and

standard deviations (σ) for the functionals studied are presented in table 2.

Table 2: Mean error (d), mean absolute error (|d|) and standard deviation (σ) for
ionisation potentials (all values in eV), reference values taken from reference 1.

Reference Reference Reference
B3LYP B3LYP CAM-B3LYP CAM-B3LYP PBE0 PBE0 LC-ωPBE B97-2 ωB97-XD

d/eV 0·00 0·00 0·11 0·10 −0·02 −0·02 0·07 −0·11 −0·09
|d|/eV 0·17 0·17 0·17 0·18 0·18 0·18 0·20 0·17 0·19
σ/eV 0·20 0·21 0·18 0·25 0·25 0·29

The mean errors and mean absolute errors for ionisation potentials are repro-

duced for B3LYP, CAM-B3LYP and PBE0. This shows that the calculations being

performed are consistent with previous results.

B3LYP and CAM-B3LYP

Despite the mean error in the ionisation potentials increasing from 0.00 eV to 0.10

eV between B3LYP and CAM-B3LYP, the mean absolute error remains almost

constant, 0.17 eV to 0.18 eV respectively. The mean errors reflect that the range

separation tends to increase the ionisation potentials, leading to an average over-

estimation with CAM-B3LYP. The mean absolute error and standard deviation
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shows that the spread for the two functionals is similar. Thus the inclusion of

range-separation leads to no change in the accuracy of ionisation potentials cal-

culated, however B3LYP has ionisation potentials spread fairly uniformly around

zero (as many are underestimated as overestimated) whereas CAM-B3LYP pre-

dicts higher ionisation potentials.

PBE0 and LC-ωPBE

The observations made with B3LYP and its range-separated analogue are also seen

between PBE0 and LC-ωPBE. The mean error increases from −0.02 eV to 0.07

eV between PBE0 and LC-ωPBE; again highlighting the range-correction showing

a tendency to overestimate ionisation potentials. The mean absolute error also

remains similar, 0.18 eV to 0.20 eV respectively.

B97-2 and ωB97-XD

There is a very small decrease in the mean error between B97-2 and ωB97-XD, from

−0.11 eV to −0.09 eV and the mean absolute error and standard deviation remain

similar. This is contrary to the results for the other range-separations as ωB97-XD

still underestimates the ionisation potentials, but this reflects that less extra exact

exchange is put into the functional compared to the other range-separated hybrids.

Overall Comparison

The errors for B3LYP and PBE0 are comparable but the errors for B97-2 are

increased compared to the other two global hybrid functionals. This suggests that

B97-2 has a tendency to underestimate ionisation energies as compared to B3LYP

and PBE0.

Conversely to the case of the global hybrid functionals, the range-separated

hybrids all show similar mean errors and mean absolute errors. This suggests that

all the range-separated hybrids are of an equivalent accuracy for the calculation

of ionisation potentials. However it is important to bear in mind that the range-

separated hybrids overestimate (apart from ωB97-XD) whereas the hybrids tend

to underestimate ionisation potentials. All the functionals tested perform well for

ionisation energies; there is not a ’stand out’ functional for ionisation energies due

to the good performance of all functionals tested.

2.1.1.2 Electron Affinities

The electron affinity of an atom (or molecule) is the energy change when an electron

is added to the neutral species. It is a measure of how favourable it is for the neutral

atom (or molecule) to gain an electron. The set of atoms and molecules studied
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are listed in table 3. They are the same molecules studied in reference 82. All the

electron affinities are quoted in eV, the reference values of the electron affinities

lies between 0–4 eV.

Table 3: Systems whose electron affinities were studied.
C, O, F, Si, P, S, Cl, CH, CH2, CH3, NH, NH2, OH, SiH

SiH2, SiH3, PH, PH2, SH, O2, NO, CN, PO, S2, Cl2

The calculated results are compared to reference values from reference 1. The

reference values are from experiment. The geometries are from reference 1. The

errors for B3LYP and PBE0 are compared to previous errors from reference 1.

The basis set used in reference 1 was 6-311+G(3df,2p), the same basis set is used

for the electron affinities calculated. The mean error, mean absolute error and

standard deviations for the functionals studied are given in table 4.

Table 4: Errors for electron affinities (all values in eV).
Reference Reference Reference
B3LYP B3LYP CAM-B3LYP CAM-B3LYP PBE0 PBE0 LC-ωPBE B97-2 ωB97-XD

d/eV −0·01 −0·01 0·04 −0·05 −0·04 0·00 −0·09 0·00
|d|/eV 0·09 0·09 0·10 0·13 0·13 0·13 0·11 0·08
σ/eV 0·12 0·13 0·22 0·15 0·09 0·09

B3LYP and CAM-B3LYP

As with the ionisation potentials, the electron affinity errors between B3LYP and

CAM-B3LYP remain almost constant, with a small increase in mean error (under-

estimation with B3LYP and overestimation with CAM-B3LYP) but mean absolute

errors and standard deviations remain constant (same spread of values). This again

suggests that the range-separation has no overall detrimental or beneficial effect

on the accuracy of electron affinities calculated.

PBE0 and LC-ωPBE

The range separation of PBE0 shows a slight improvement to the mean errors

(−0.04 eV to 0.00 eV), again eliminating the underestimation of the global hybrid,

however the mean absolute error is unchanged. Thus again the range-separation

has little to no influence on the overall accuracy of calculated electron affinities.

B97-2 and ωB97-XD

The long range correction to B97-2 shows an improvement to the mean errors

(−0.09 eV to 0.00 eV), again eliminating the underestimation of the hybrid, and a
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small improvement in the mean absolute error (0.11 eV to 0.08 eV). This suggests

that unlike the other range-separations, there is a small benefit to using ωB97-

XD in the case of electron affinities, again due to lower quantity of extra exact

exchange in this functional.

Overall Comparison

The three global hybrid functionals have a defined hierarchy for the mean errors,

B3LYP then PBE0 then B97-2 reflecting increased underestimation but the mean

absolute errors are similar. Therefore as with ionisation potentials the choice

between these three functionals seems arbitrary for the accuracy of the calculation

of electron affinities.

As with the standard hybrid functionals the mean errors for the RSH show

a hierarchy, LC-ωPBE and ωB97-XD then CAM-B3LYP (0.00 eV, 0.00 eV to

0.04 eV); the mean absolute errors also show a hierarchy ωB97-XD then CAM-

B3LYP then LC-ωPBE (0.08 eV to 0.10 eV to 0.13 eV). The best performing

range-separated hybrid and the overall best performing functional of those tested

for electron affinity is ωB97-XD.

2.1.1.3 Atomisation Energies

An atomisation energy is defined as the energy difference between the molecule

and the constituent atoms i.e. for benzene, the energy difference between a ben-

zene molecule and 6 isolated carbon and hydrogen atoms. The set of molecules

studied are listed in table 5. They are the same molecules studied in reference 82.

Atomisation energies quoted in kcal mol−1. The range of values of the reference

values is between 20 and 1300 kcal mol−1.

Table 5: Systems whose atomisation energies were studied.
Acetamide, acetic acid, acetone, acetyl chloride, acetyl fluoride, acrylonitrile, AlCl3, allene,
aziridine BCl3, BeH, benzene, BF3, bicyclobutane C2H2, C2H3, C2H4, C2H5, C2H6, CCH,
CF3CN, CF4, CH, CH2, CH2CHF, CH3, (CH3)2CH, (CH3)3C, CH3CH2O, CH3Cl, CH3CO,
CH3O, CH3OH, CH4, CHF3, Cl2, ClF, ClNO, CO, CO2, cyclobutene, cyclopropene, dimethyl-
amine, dimethylether, ethanol, ethylchloride, F2, F2O, formic acid, furan, H2, H2CO, H2COH,
H2O, H2O2, HCl, HCO, HF, HOCl, isobutane, isopropanol, ketene, Li2, LiF, LiH, methyl cyanide,
methyl ethylether, methyl formate, methyl nitrite, methylamine, methylene cyclopropane, N2,
N2O, Na2, NaCl, NF3, NH3, nitromethane, NO2, O3, OH, oxirane, propane, propylchloride,
propyne, pyridine, pyrrole, trans-ethylamine, trimethylamine, 2-butyne, vinylchloride

The calculated results are compared to reference values from reference 1. The

reference values are experimental values. The basis set used in reference 1 was

6-311+G(3df,2p), the same basis set is used for the atomisation energies calcu-

lated. The errors for B3LYP, CAM-B3LYP and PBE0 are compared to previous
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errors1,82. The mean error, mean absolute error and standard deviations for the

functionals studied are in table 6. The mean errors and mean absolute errors for

atomisation energies are reproduced for B3YLP, CAM-B3LYP and PBE0. This

shows that the calculations being performed are consistent with previous results.

Table 6: Errors for atomisation energies (all values in kcal mol−1).
Reference Reference Reference
B3LYP B3LYP CAM-B3LYP CAM-B3LYP PBE0 PBE0 LC-ωPBE B97-2 ωB97-XD

d/kcal mol−1 −2·7 −2·8 1·5 1·5 2·3 2·3 0·4 0·3 0·0
|d|/kcal mol−1 3·5 3·5 3·3 3·2 4·4 4·4 3·2 2·9 1·8
σ/kcal mol−1 3·5 3·7 5·4 4·1 3·6 2·5

B3LYP and CAM-B3LYP

Despite the mean error in the atomisation energies showing a large change from

−2.8 kcal mol−1 to 1.5 kcal mol−1 between B3LYP and CAM-B3LYP, highlighting

an average underestimation with B3LYP and overestimation with CAM-B3LYP,

the mean absolute error only shows a small decrease between B3LYP and CAM-

B3LYP, 3.5 kcal mol−1 to 3.2 kcal mol−1 respectively. Thus the range-separation

leads to overestimation compared to the underestimation of B3LYP but has min-

imal effect on the overall spread of the errors observed.

PBE0 and LC-ωPBE

The mean error decreases by a significant amount from 2.3 kcal mol−1 to 0.4 kcal

mol−1 between PBE0 and LC-ωPBE. Overestimation is seen with PBE0 and is

almost eliminated with LC-ωPBE. The mean absolute error also decreases by a

significant amount from 4.4 kcal mol−1 to 3.2 kcal mol−1 respectively. The range-

separated functional shows a decrease in the errors thus an apparent increase in

the accuracy of atomisation energies calculated by a decrease in the spread of the

values along with an elimination of the overestimation seen with PBE0.

B97-2 and ωB97-XD

There is a small decrease in the mean error between B97-2 and ωB97-XD (0.3 kcal

mol−1 to 0.0 kcal mol−1), both functionals seem to on average get the atomisation

energies about correct, no over/underestimation, and a larger decrease in the mean

absolute error between B97-2 and ωB97-XD (2.9 kcal mol−1 to 1.8 kcal mol−1).

This is a similar trend to that seen with PBE0 and LC-ωPBE, thus the range-

separation again shows an improvement to the accuracy of atomisation energies

by a decrease in the spread of the values.
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Overall Comparison

There is a well-defined hierarchy of the hybrid functionals, B97-2 has the lowest

error and PBE0 and B3LYP have similar errors. The errors suggest that the hybrid

of choice for atomisation energies is B97-2.

As with the standard hybrid functionals the range-separated functionals show

a hierarchy, ωB97-XD to LC-ωPBE to CAM-B3LYP. The most accurate range-

separated hybrid studied for atomisation energy is ωB97-XD due to its low errors

compared to the other range-separated hybrids. The functional of choice of those

tested for atomisation energies is ωB97-XD due to the low errors.

2.1.1.4 Classical Reaction Barriers

The barriers of a series of simple reactions were studied. The reaction barrier is the

energy difference between the reactants and the transition state of the reaction.

The set of reactions studied are listed in table 7. They are the same reactions as

those studied in reference 82. The units are kcal mol−1, typical values of classical

reaction barriers are 0–20 kcal mol−1.
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Table 7: Systems whose classical reaction barriers were studied.

CH3 + H2 → CH4 + H

OH + CH4 → CH3 + H2O

H + H2 → H2 + H

OH + NH3 → H2O + NH2

HCl + CH3 → Cl + CH4

OH + C2H6 → H2O + C2H5

F + H2 → HF + H

O + HCl → OH + Cl

NH2 + CH3 → CH4 + NH

NH2 + C2H5 → C2H6 NH

NH2 + CH4 → CH3 + NH3

C5H8 → C5H8

H2 + Cl → H + HCl

CH4 + H → CH3 + H2

H2O + C2H5 → OH + C2H6

OH + CH3 → O + CH4

PH2 + H2 → H + PH3

H2 + HS → H + H2S

OH + Cl → O + HCl

NH3 + C2H5 → NH2 + C2H6

CH3 + NH3 → NH2 + CH4

The calculated results are compared to reference values from reference 1. The

reference values are from a combination of experimental and theoretical data (see

reference 1 and references within). The errors for B3LYP, CAM-B3LYP and PBE0

are compared to previous errors. The mean error, mean absolute error and stan-

dard deviations for the functionals studied are in table 8.

Table 8: Errors for classical reaction barriers (all values in kcal mol−1).
Reference Reference Reference

B3LYP B3LYP CAM-B3LYP CAM-B3LYP PBE0 PBE0 LC-ωPBE B97-2 ωB97-XD

d/kcal mol−1 −3·7 −3·6 −2·6 −2·5 −4·3 −4·3 0·0 −3·5 −2·4
|d|/kcal mol−1 3·8 3·7 2·7 2·8 4·3 4·3 1·2 3·6 2·5
σ/kcal mol−1 2·4 2·1 1·6 1·7 2·3 1·6

The mean errors and mean absolute errors for the reaction barriers are repro-

duced for B3LYP, CAM-B3LYP and PBE0. This shows that the calculations being

performed are consistent.
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B3LYP and CAM-B3LYP

The mean errors decrease between B3LYP and CAM-B3LYP by a significant

amount from −3.6 kcal mol−1 to −2.5 kcal mol−1, reaction barriers are still un-

derestimated but to a lesser degree. The mean absolute errors also decrease by a

significant amount from 3.7 kcal mol−1 to 2.8 kcal mol−1. This error data suggests

that the range-separation has a beneficial effect on the accuracy of the reaction

barriers calculated.

PBE0 and LC-ωPBE

The trend observed between B3LYP and CAM-B3LYP is seen between PBE0 and

LC-ωPBE. The mean error decreases by a significant amount between PBE0 and

LC-ωPBE (−4.3 kcal mol−1 to 0 kcal mol−1), underestimation is eliminated by use

of LC-ωPBE. The mean absolute errors decrease by a significant amount between

PBE0 and LC-ωPBE (4.3 kcal mol−1 to 1.2 kcal mol−1). This suggests again that

the range-separation has a benefit to the accuracy of reaction barriers calculated.

B97-2 and ωB97-XD

The trend seen with B3LYP and CAM-B3LYP and with PBE0 and LC-ωPBE is

observed between B97-2 and ωB97-XD. The mean error decreases from −3.5 kcal

mol−1 to −2.4 kcal mol−1 and the mean absolute error decreases from 3.6 kcal

mol−1 to 2.5 kcal mol−1. The range-separation against shows improvement of the

accuracy of reaction barriers calculated.

Overall Comparison

The three hybrid functionals show a defined hierarchy with B97-2 and B3LYP

providing similar accuracy results and with PBE0 giving less accurate answers.

This suggests that of the three hybrids either B97-2 or B3LYP should be used for

calculation of reaction barriers.

The three range-separated hybrids also show a hierarchy with LC-ωPBE being

the most accurate and CAM-B3LYP and ωB97-XD showing similar accuracy. This

suggests that the range-separated hybrid that should be used for the calculation of

reaction barriers is LC-ωPBE. As shown above the range-separated hybrids have

lower errors that the standard hybrid functionals therefore the functional of choice

of those studied is LC-ωPBE for calculation of reaction barriers.
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2.1.2 Other Properties

The assessment continues by considering a series of other ground state properties,

not directly related to the relative energies of the atoms or molecules (for example

related to the geometries).

2.1.2.1 Geometry Optimisations - Diatomic Bond Lengths

The bond lengths of a series of diatomic molecules were optimised. The set of

molecules studied are listed in table 9. They are the same molecules studied in

reference 82. Bond lengths quoted in Å. The reference bond lengths fall in the

range of 1–3.5 Å.

Table 9: Systems whose bond lengths were studied.

Li2, LiNa, LiK, Na2, NaK, K2, N2, NP, NAs, P2, PAs, As2, F2, FCl, FBr, Cl2, ClBr, Br2,

LiF, LiCl, NaF, NaCl, NaBr, KF, KCl, BCl, BBr, AlF, AlCl, AlBr, CO, CS, CSe, SiO, SiS,

SiSe, GeO, GeS

The calculated results are compared to reference values from reference 1. The

reference values are experimental values. The errors for B3LYP, CAM-B3LYP and

PBE0 are compared to previous errors1,82. The mean error, mean absolute error

and standard deviations for the functionals studied are in table 10.

Table 10: Errors for diatomic bond lengths (all values in Å).
Reference Reference Reference
B3LYP B3LYP CAM-B3LYP CAM-B3LYP PBE0 PBE0 LC-ωPBE B97-2 ωB97-XD

d/Å 0·013 0·013 −0·007 −0·006 0·007 0·007 −0·001 0·017 0·002
|d|/Å 0·017 0·017 0·011 0·013 0·014 0·015 0·027 0·023 0·015
σ/Å 0·017 0·018 0·023 0·039 0·035 0·019

The reference error values, both mean and mean absolute, are reproduced, thus

the calculations performed are consistent with those performed previously.

B3LYP and CAM-B3LYP

The mean errors decrease between B3LYP and CAM-B3LYP (0.013 Å to −0.006

Å respectively), overestimation when using B3LYP is eliminated with use of CAM-

B3LYP. The mean absolute errors also decrease, albeit by a smaller amount, be-

tween B3LYP and CAM-B3YLP (0.017 Å to 0.013 Å respectively). The range-

separation slightly improves the accuracy of bond lengths calculated.
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PBE0 and LC-ωPBE

The mean errors follow the trend seen in B3LYP and CAM-B3LYP, i.e. a decrease

in error between PBE0 and LC-ωPBE (0.007 Å to −0.001 Å respectively). The

overestimation when using PBE0 is eliminated with LC-ωPBE. The trend observed

in mean absolute errors between PBE0 and LC-ωPBE is the opposite to that seen

between B3LYP and CAM-B3LYP. Namely the error increases between PBE0 and

LC-ωPBE (0.015 Å to 0.027 Å respectively), increase in spread of values (standard

deviation also increases between PBE0 and LC-ωPBE). This suggests that range-

separation has a detrimental effect on the accuracy of bond lengths.

B97-2 and ωB97-XD

The trend observed between B3LYP and CAM-B3LYP is again seen between B97-2

and ωB97-XD. The mean error decreases between B97-2 and ωB97-XD (0.017 Å to

0.002 Å respectively), again overestimation is eliminated. The mean absolute error

also decreases but by a smaller amount (0.023 Å to 0.015 Å), resulting in a decrease

in the spread of values (the standard deviation also decreases between B97-2 and

ωB97-XD). This decrease in error suggests that range-separation corresponds to

an increase in accuracy of bond lengths calculated.

Overall Comparison

The mean errors between the three hybrids show a hierarchy, with PBE0 to B3LYP

to B97-2. The mean absolute errors also show this trend however it is not as

pronounced. The data suggests that the most accurate hybrid tested for bond

lengths is PBE0.

The mean errors between the three range-separated hybrids show a hierarchy,

with LC-ωPBE to ωB97-XD to CAM-B3LYP. However the mean absolute errors

show a completely different trend, with CAM-B3LYP to ωB97-XD to LC-ωPBE.

This error data suggests that the most accurate range-separated hybrid for bond

lengths is CAM-B3LYP or ωB97-XD due to the similarities in the errors seen. The

functional of choice of those tested for bond lengths is CAM-B3LYP due to the

low errors observed and small spread of values.

2.1.2.2 Vibrational Frequencies of Diatomic Molecules

The harmonic vibrational wavenumbers (the vibration frequency divided by the

speed of light in a vacuum) of a series of diatomic molecules were studied. The

set of diatomics studied are listed in table 11. They are the same molecules

studied in reference 82. Harmonic vibrational wavenumbers quoted in cm−1, the
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Table 11: Systems whose harmonic vibrational wavenumbers were studied.
Li2, LiNa, LiK, Na2, NaK, K2, N2, NP, NAs, P2, PAs, As2, F2, FCl, FBr, Cl2, ClBr, Br2,
LiF, LiCl, NaF, NaCl, NaBr, KF, KCl, BCl, BBr, AlF, AlCl, AlBr, CO, CS, CSe, SiO, SiS,
SiSe, GeO, GeS

vibrational wavenumbers studied fall between 90 and 2400 cm−1. The calculated

results are compared to reference values from reference 1. The reference values are

experimentally derived values. The errors for B3LYP, CAM-B3LYP and PBE0 are

compared to previous errors. The mean error, mean absolute error and standard

deviations for the functionals studied are in table 12.

Table 12: Errors for harmonic vibrational wavenumbers (all values in cm−1).
Reference Reference Reference
B3LYP B3LYP CAM-B3LYP CAM-B3LYP PBE0 PBE0 LC-ωPBE B97-2 ωB97-XD

d/cm−1 6 4 34 33 24 23 51 15 27
|d|/cm−1 22 22 37 37 30 30 56 29 43
σ/cm−1 34 47 43 61 41 53

The reference error values, both mean and mean absolute, are reproduced, thus

the calculations performed are consistent with those performed previously1,82.

B3LYP and CAM-B3LYP

Both the mean and mean absolute errors increase between B3LYP and CAM-

B3LYP. The mean errors increase by a large amount between B3LYP and CAM-

B3LYP (4 cm−1 to 33 cm−1), CAM-B3LYP overestimates by a significant amount,

and the mean absolute errors increase by a smaller but still significant amount

between B3LYP and CAM-B3LYP (22 cm−1 to 37 cm−1). This suggests that the

range-separation has a detrimental effect on the accuracy of calculated vibrational

wavenumbers.

PBE0 and LC-ωPBE

The trend observed between B3LYP and CAM-B3LYP is seen between PBE0 and

LC-ωPBE. The mean error increases by a large amount between PBE0 and LC-

ωPBE (23 cm−1 to 51 cm−1). The mean absolute errors increase by a large amount

between PBE0 and LC-ωPBE (30 cm−1 to 56 cm−1). This suggests again that the

range-separation has a detrimental effect on the accuracy of calculated vibrational

wavenumbers.

B97-2 and ωB97-XD

The trend observed between B3LYP and CAM-B3LYP and between PBE0 and

LC-ωPBE is seen between B97-2 and ωB97-XD. The mean error increases by a
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large amount between B97-2 and ωB97-XD (15 cm−1 to 27 cm−1). The mean

absolute errors increase by a large amount between B97-2 and ωB97-XD (29 cm−1

to 43 cm−1). This suggests that the range-separation has a detrimental effect on

the accuracy of calculated vibrational wavenumbers.

Overall Comparison

The three hybrids show a well-defined hierarchy of accuracy for the calculation

of harmonic vibrational wavenumbers. The errors increase from B3LYP to B97-2

to PBE0. This suggests that the most accurate hybrid tested is B3LYP as it has

the lowest errors. It is noted in literature that B3LYP gives particularly good

harmonic vibrational wavenumbers so B3LYP being the best of the three hybrids

for harmonic vibrational wavenumbers is expected83.

The mean errors between the three range-separated hybrids show a hierarchy,

with ωB97-XD to CAM-B3LYP to LC-ωPBE. However the mean absolute errors

show a different trend, with CAM-B3LYP to ωB97-XD to LC-ωPBE. This error

data suggests that the most accurate range-separated hybrid for harmonic vibra-

tional wavenumbers is CAM-B3LYP or ωB97-XD due to the similarities in the

errors seen and the large increase in error with LC-ωPBE.

2.1.2.3 Isotropic Electric Polarisabilities

The isotropic electric polarisabilities (a measure of the amount the electron density

of a molecule can be distorted by an external electric field) of a series of molecules

were examined. The set of molecules examined are listed in table 13. They are the

same molecules studied in reference 82. The units are atomic units. The range of

reference polarisabilities is 6–30 au.

Table 13: Systems whose isotropic electric polarisabilities were studied.
HF, F2, CO, N2, CH4, CO2, C2H4, PH3, H2O, H2S, SO2, HCl, Cl2

The calculated results are compared to reference values from reference 1. The

reference values are from Brückner doubles (BD) calculations using an augmented

Sadlej basis set. The errors for B3LYP, CAM-B3LYP and PBE0 are compared to

previous errors. The mean error, mean absolute error and standard deviations for

the functionals studied are in table 14.

Table 14: Errors for isotropic electric polarisabilities (all values are in au).
Reference Reference Reference
B3LYP B3LYP CAM-B3LYP CAM-B3LYP PBE0 PBE0 LC-ωPBE B97-2 ωB97-XD

d/au 0·36 0·45 0·15 0·24 0·03 0·14 −0·25 0·05 0·14
|d|/au 0·45 0·51 0·30 0·37 0·25 0·31 0·35 0·28 0·31
σ/au 0·43 0·36 0·38 0·41 0·41 0·39
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The reference errors are not reproduced with the calculations performed. This

is due to a different basis set being used for the calculations, Sadlej84 was used

in the reference calculations compared to daug-cc-pVTZ. The daug-cc-pVTZ basis

set has more basis functions than the previously used Sadlej basis set. For example

C in the Sadlej is made up of 20 functions (10s, 6p and 4d); C in daug-cc-pVTZ

is made up of 34 functions (20s, 7p, 4d, 3f). As there are more basis functions

the results of the calculations are closer to the basis set limit. The errors are

larger than the reference errors despite of this because the reference values being

compared to are calculated using the Sadlej basis set not the daug-cc-pVTZ. As the

same basis set is used for all the calculations the error introduced from comparing

to reference values calculated the Sadlej basis set is consistent for all functionals

tested, therefore comparison between the functionals can be made.

B3LYP and CAM-B3LYP

The mean errors decrease between B3LYP and CAM-B3LYP by a significant

amount from 0.45 au to 0.24 au. The mean absolute errors also decrease by a

significant amount from 0.51 au to 0.37 au. This error data suggests that the

range-separation has a beneficial effect to the accuracy of polarisabilities calcu-

lated. Long range behaviour is important for polarisabilities when using BLYP

based functionals

PBE0 and LC-ωPBE

The trend seen between B3LYP and CAM-B3LYP is not seen between PBE0 and

LC-ωPBE. The mean errors increase between PBE0 and LC-ωPBE by a signif-

icant amount from 0.14 au to −0.25 au, LC-ωPBE underestimates and PBE0

overestimates. The mean absolute errors are almost constant, 0.31 au to 0.35

au respectively. The range-separation overcorrects the overestimation seen with

PBE0, which leads to underestimation.

B97-2 and ωB97-XD

The trend seen between PBE0 and LC-ωPBE is observed between B97-2 and

ωB97-XD. The mean errors increase between B97-2 and ωB97-XD from 0.05 au

to 0.14 au, the mean absolute errors remain almost constant between B97-2 and

ωB97-XD from 0.28 au to 0.31 au. This suggests that the range-separation leads

to a slight decrease in accuracy.

46



Overall Comparison

The three hybrids show a well-defined hierarchy of accuracy for the calculation of

polarisabilities. The errors increase from B97-2 to PBE0 to B3LYP. This suggests

that the most accurate hybrid for the calculation of polarisabilities tested is B97-2

as it has the lowest errors.

The range-separated hybrids all show similar error values. This suggests that

the choice between which of the three range-separated hybrids is fairly arbitrary

when accurate calculation of the polarisability is wanted. The polarisability is

expected to be linked to the excited state energy accuracy as they are both related

to changes in the electron density).

2.1.3 Ground State Properties Summary

A summary table of the mean error and mean absolute error for all the ground

state properties assessed with each functional is shown in table 15. This will

enable easier comparison between the functionals studied across all the ground

state properties and thus show what features of a functional is important for each

property and across all properties.

Table 15: Summary of errors for all functionals tested across ground state prop-

erties.
Property B3LYP CAM-B3LYP PBE0 LC-ωPBE B97-2 ωB97-XD

Ionisation d/eV 0·00 0·10 −0·02 0·07 −0·11 −0·09

Energy |d|/eV 0·17 0·18 0·18 0·20 0·17 0·19

Electron d/eV −0·01 0·04 −0·05 0·00 −0·09 0·00

Affinity |d|/eV 0·09 0·10 0·13 0·13 0·11 0·08

Atomisation d/kcal mol−1 −2·7 1·5 2·3 0·4 0·3 0·0
Energies |d|/kcal mol−1 3·5 3·2 4·4 3·2 2·9 1·8
Diatomic d/Å 0·013 −0·006 0·007 −0·001 0·017 0·002

Bond Lengths |d|/Å 0·017 0·013 0·015 0·027 0·023 0·015

Vibrational d/cm−1 4 33 23 51 15 27

Wavenumbers |d|/cm−1 22 37 30 56 29 43

Isotropic d/au 0·45 0·24 0·14 −0·25 0·05 0·14

Polarisabilities |d|/au 0·51 0·37 0·31 0·35 0·28 0·31

Reaction d/kcal mol−1 −3·6 −2·5 −4·3 0·0 −3·5 −2·4
Barriers |d|/kcal mol−1 3·7 2·8 4·3 1·2 3·6 2·5

There are 2 main differences between the global hybrid functionals and the

range separated hybrid functionals: the underlying functional (e.g. BLYP for

B3LYP and CAM-B3LYP) and the percentage of HFx contained in the functional.

Global hybrids have a constant percentage of HFx included, B3LYP has 20%

HFx, PBE0 has 25% HFx and B97-2 has 21% HFx. The percentage in the range

separated hybrids is not so straightforward to ascertain as it varies dependent
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on the interelectron distance. The scaling of the HFx depends on a number of

parameters and these are different in the three range separated hybrids. The

parameters are the full range HFx (a) which is a constant quantity of HFx across

all distances, the long range HFx (a + b) which is the maximum percentage HFx

allowed at long distances (asymptotic value) and the scaling factor (ω) which

governs how rapidly the HFx percentage is attenuated over distance. CAM-B3LYP

has a = 19%, a+ b = 65% and ω = 0.33a−1
0 , LC-ωPBE has a = 0%, a+ b = 100%

and ω = 0.4a−1
0 and ωB97-XD has a = 22.2%, a+b = 100% and ω = 0.2a−1

0 . These

two main differences mean that it is possible to understand the influence of the

percentage of HFx on the calculated values (the actual values and the accuracy),

along with which underlying functional performs better for each property.

Ionisation potentials show higher calculated values with range separated hy-

brids compared to global hybrids across all the functionals. This is seen in the

increase in the mean error values between the global and range separated hybrids.

Thus increasing the percentage of HFx increases the calculated ionisation poten-

tials. There is no change in the accuracy of the calculated values as the mean

absolute errors remain almost constant between the global and range separated

hybrids (there is no change to the spread of the data points).

Electron affinities again show higher calculated values with range separated

hybrids compared to global hybrids across all the functionals. Therefore, as with

ionisation potentials, increasing the percentage of HFx increases the calculated

ionisation potentials. The mean absolute errors remain constant between B3LYP

and CAM-B3LYP and PBE0 and LC-ωPBE, thus there is no change in the accu-

racy of the calculated values with these functionals. However, there is a decrease

in the mean absolute error between B97-2 and ωB97-XD, thus an increase in the

accuracy of the calculated values. The differences in the trends seen here are due

to underlying differences in the functionals.

Atomisation energies show a different story to that shown by ionisation po-

tentials and electron affinities, atomisation energies are more dependent on the

underlying functional that the percentage of HFx. There is an increase in the

calculated values between B3LYP and CAM-B3LYP (mean error increases), thus

a higher percentage of HFx leads to higher calculated atomisation energies. There

is a decrease in the calculated values between PBE0 and LC-ωPBE (mean error

decreases), thus a higher percentage of HFx leads to lower calculated atomisa-

tion energies. The atomisation energies calculated by B97-2 and ωB97-XD remain

almost constant showing little to no influence from increasing the HFx in the func-

tional. The spread decreases between the global hybrids and the range-separated

hybrids, thus a higher percentage of HFx leads to improved accuracy.

Diatomic bond lengths show lower calculated values with range-separated hy-
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brids compared to global hybrids, due to a decrease in the mean errors. Thus

increasing the percentage of HFx decreases the calculated bond lengths. The

spread decreases between the global and range separated hybrids for B3LYP and

CAM-B3LYP along with B97-2 and ωB97-XD but increases between PBE0 and

LC-ωPBE. The differences in the trends in accuracy are due to underlying differ-

ences in the functionals. Vibrational wavenumbers show a higher calculated value

with range-separated hybrids compared to global hybrids, thus more HFx leads

to an increase in calculated values. As all the global hybrids overestimate the

vibrational wavenumbers, the range-separated hybrids make this overestimation

worse. The spread of the data is higher with range-separated hybrids compared

to global hybrids, thus there is a decrease in the accuracy with more HFx. Vi-

brational wavenumbers are a property that is worsened with more HFx (global

hybrids perform better than range-separated hybrids).

Isotropic polarisabilities again shows a greater dependence on the underlying

functional than the percentage of HFx. There is a decrease in the calculated

values between B3LYP and CAM-B3LYP and PBE0 and LC-ωPBE, thus more

HFx decreases the calculated values. There is a increase in the calculated values

between B97-2 and ωB97-XD, thus more HFx increase the calculated values. The

spread decreases between B3LYP and CAM-B3LYP, thus more HFx improves the

accuracy. However there is little to no change in the spread between PBE0 and

LC-ωPBE and B97-2 and ωB97-XD.

Reaction Barriers show an increase in the calculated values when HFx is in-

creased due to the global hybrid mean errors being lower than those of the range-

separated hybrids. The spread decreases with higher HFx as the mean absolute

error decreases between the global hybrids and the range-separated hybrids, thus

there is higher accuracy when more HFx is included in the functional.

A ranking of the performance (lowest error is 0, highest error is 5) of all the

hybrids across the individual properties along with an overall ranking is shown in

table 16.
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Table 16: Ranking of the performance of the functionals tested across ground state

properties.

Property B3LYP CAM-B3LYP PBE0 LC-ωPBE B97-2 ωB97-XD

Ionisation Potentials 0 3 2 5 1 4

Electron Affinities 1 2 5 4 3 0

Atomisation Energies 4 3 5 2 1 0

Diatomic Bond Lengths 3 0 2 5 4 1

Vibrational Wavenumbers 0 3 2 5 1 4

Isotropic Polarisabilities 5 4 1 2 0 1

Reaction Barriers 4 2 5 0 3 1

Totals /35 17 17 22 23 13 11

Using the ranking of each functionals performance for each property is it pos-

sible to tell which functional performs the best across the ground state properties

(by summing the ranking, the lowest sum is the best performing functional). The

ranking of performance across all the ground state properties is: ωB97-XD > B97-

2 > B3LYP ∼ CAM-B3LYP > PBE0 > LC-ωPBE. The underlying functional

is important to the general performance across ground state properties with the

ranking of general performance separated by the underlying functional (B97 is

best, BLYP is second and PBE based is worst).

2.1.4 Excited State Energies

An electronic excited state of a molecule is when an electron is moved from the

ground state configuration into a higher energy excited state, here restricted to

single excitations, where 1 electron is excited, although it is possible to examine

double excitations etc., all the molecules considered are closed shell ground state

molecules. There are two types of excitations that are studied, singlet and triplet

excitations. A singlet excitation is when the electron retains its spin as it is excited

(i.e. in a closed shell system the total spin angular momentum is conserved in the

excitation, same number of α and β spin electrons) and a triplet excitation the

spin of the electron changes as it is excited. A schematic for the two types of

excitation studied is shown in figure 4. Excitation energies can be used as another

property to benchmark functionals.
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Figure 4: Schematic of singlet and triplet excitations.

2.1.4.1 Singlet Excitations

The set of singlet excitations studied is the same as those in reference 47. The

molecules and excitations are listed in table 17. The calculated values are compared

to reference excitation energies from reference 47 and references within.

Table 17: Singlet excitations that were studied.

Dipeptide [n1 → π∗2, π1 → π∗2, n1 → π∗1, n2 → π∗2], β-dipeptide [n1 → π∗2, π1 → π∗2, n1 → π∗1, n2 → π∗2]

Tripeptide [π1 → π∗2, π2 → π∗2, π1 → π∗2, n1 → π∗3, n2 → π∗3, n1 → π∗2, n1 → π∗1, n2 → π∗2, n3 → π∗3]

Acene (n=1–5) [B2u,B3u], PP [1B2, 2A1, 2B2, 3A1], DMABN [B,A] PA oligomer (n=2–5) [Bu]

N2 [Πu,Σ
+
u ,Πu,Σ

+
g ,∆u,Σ

−
u ,Πg], CO [FΣ+,EΠ,CΣ+,BΣ+,D∆, IΣ−,AΠ], HCl [Π]

H2CO [A2, A2, B1, B2, A1, B2, A2]

The excitations are split into 3 types, Local, Rydberg and Charge-Transfer.

The excitations of each type are noted in table 18. Local excited states are states

in which the excitation is localised i.e. the electron does not move a long distance.

Rydberg excited states are states in which the electron is excited to a high lying

virtual orbital. Charge-Transfer excited states are states in which the electron

‘moves’ a long distance, effectively generating a partially positively and negatively

charged part of the molecule.
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Table 18: Categorisation of singlet excitations.

Local Rydberg Charge Transfer

Dipeptide [n1 → π∗1, n2 → π∗2] N2 [Πu,Σ
+
u ,Πu,Σ

+
g ] Dipeptide [n1 → π∗2, π1 → π∗2]

β-dipeptide [n1 → π∗1, n2 → π∗2] CO [FΣ+,EΠ,CΣ+,BΣ+] β-dipeptide [n1 → π∗2, π1 → π∗2]

Tripeptide [n1 → π∗1, n2 → π∗2 H2CO [A2, A2 Tripeptide [π1 → π∗2, π2 → π∗2
n3 → π∗3] B2, A1, B2] π1 → π∗2, n1 → π∗3, n2 → π∗3, n1 → π∗2]

PP [1B2, 2A1] PP [2B2, 3A1]

DMABN [B] DMABN [A]

Acene (n=1–5) [B2u,B3u] HCl [Π]

PA oligomer (n=2–5) [Bu]

N2 [∆u,Σ
−
u ,Πg]

CO [D∆, IΣ−,AΠ]

H2CO [B1, A2]

The mean and mean absolute errors and standard deviations for each group of

excitation for the 3 hybrid and the 3 range-separated hybrid functionals are shown

in table 19.

Table 19: Errors for singlet excitations (all values are in eV).

Excitation Type B3LYP CAM-B3LYP PBE0 LC-ωPBE B97-2 ωB97-XD

Local d −0·12 0·02 −0·04 0·14 −0·05 0·04

|d| 0·21 0·21 0·19 0·23 0·19 0·19

σ 0·26 0·29 0·26 0·27 0·27 0·26

Rydberg d −1·08 −0·48 −0·87 −0·02 −0·90 −0·61

|d| 1·08 0·48 0·81 0·14 0·90 0·61

σ 0·23 0·18 0·28 0·17 0·22 0·22

Charge Transfer d −1·34 −0·18 −1·11 0·11 −1·25 −0·13

|d| 1·36 0·27 1·14 0·68 1·27 0·25

σ 0·86 0·31 0·75 0·81 0·83 0·31

Local Excitations

The mean error of the set of local excitations decreases between B3LYP and CAM-

B3LYP (−0.12 eV to 0.02 eV). However the mean absolute errors remain constant

(0.21 eV). This suggests that the range-separation shows no overall improvement

or deterioration in the accuracy of the excitation energies for local excitations,

however it eliminates the underestimation of B3LYP. This is understandable as a

local excitation does not have an obvious long-range influence.

The mean error of the local excitations increases between PBE0 and LC-ωPBE

(−0.04 eV to 0.14 eV), again eliminating but overcorrecting the average underes-

timation but overcorrects it. The mean absolute error also increases slightly (0.19

eV to 0.23 eV). This shows that this range-separation (LC-ωPBE) has a small

detrimental effect to the accuracy of local excitations.

The mean error is almost constant between B97-2 and ωB97-XD (−0.05 eV to

0.04 eV), again eliminating and overcorrecting the average the underestimation.
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The mean absolute error is constant between the hybrid and range-separated hy-

brid (0.19 eV). This again shows that the long range-separation shows no improve-

ment to the local excitations due to their nature.

The three hybrid functionals show a well-defined hierarchy for the mean errors,

B3LYP with the largest, then B97-2 and PBE0 with similar mean errors. The mean

absolute errors for the three hybrid functionals are similar. This suggests that the

three hybrids are all of similar accuracy for the calculation of local excitations.

The three range-separated hybrids have a well-defined hierarchy for the mean

errors from LC-ωPBE to ωB97-XD to CAM-B3LYP. The mean absolute errors of

the three range-separated hybrids are all similar. This again suggests that not one

of the range-separated hybrids is more accurate than the others for the calculation

of local excitations.

Rydberg Excitations

The errors decrease between B3LYP and CAM-B3LYP. The mean error improves

from −1.08 eV to −0.48 eV and the mean absolute error drops from 1.08 eV to

0.48 eV. This shows that the range-separation leads to an increase in the accuracy

of Rydberg excitations, this has been noted in previous literature47 and the results

confirm it. Both functionals underestimate all of the Rydberg excitations studied.

The errors again decrease between PBE0 and LC-ωPBE. The mean error im-

proves significantly from −0.87 eV to −0.02 eV and the mean absolute error drops

from 0.81 eV to 0.14 eV. This shows that the range-separation leads to an increase

in the accuracy of Rydberg excitations; this is again concurrent with the effect

of range-separation on Rydberg excitations. The LC-ωPBE range separation has

eliminated the underestimation from PBE0. 100% long range HFx is important

for the accurate calculation of Rydberg states.

The errors again decrease between B97-2 and ωB97-XD. The mean error drops

from −0.90 eV to −0.61 eV and the mean absolute error drops from 0.90 eV to

0.61 eV. This shows that again the range-separation leads to an increase in the

accuracy of Rydberg excitations.

The three hybrid functionals show a well-defined hierarchy for the errors,

B3LYP with the largest, then B97-2 and PBE0 with similar errors. This suggests

that B3LYP is less accurate than the other two hybrids for Rydberg excitations.

The three range-separated hybrids have a well-defined hierarchy for the errors,

ωB97-XD with the largest, then CAM-B3LYP then LC-ωPBE. This suggests that

the most accurate range-separated hybrid tested is LC-ωPBE. The error values

observed reflects that the accuracy of Rydberg excitations is almost completely

dependent on the amount of HF exchange included at long range (LC-ωPBE has

the highest amount with a+ b = 1 and ω = 0.4).
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Charge Transfer Excitations

The errors decrease between B3LYP and CAM-B3LYP. The mean error drops from

−1.34 eV to −0.18 eV (underestimation from B3LYP is almost eliminated) and

the mean absolute error drops from 1.36 eV to 0.27 eV. This shows that the range-

separation leads to an increase in the accuracy of charge transfer excitations; this

has been noted in previous literature47.

The errors again decrease between PBE0 and LC-ωPBE. The mean error drops

from −1.11 eV to 0.11 eV (again underestimation is eliminated but overcorrected)

and the mean absolute error drops from 1.14 eV to 0.68 eV. This shows that the

range-separation leads to an increase in the accuracy of Charge Transfer excita-

tions; this is again concurrent with the effect of range-separation on charge transfer

excitations47.

The errors again decrease between B97-2 and ωB97-XD. The mean error drops

from −1.25 eV to −0.13 eV and the mean absolute error drops from 1.27 eV to

0.25 eV. This shows that the range-separation leads to an increase in the accuracy

of charge transfer excitations.

The three hybrid functionals show a well-defined hierarchy for the errors,

B3LYP with the largest, then B97-2 then PBE0 with the smallest errors. This

suggests that PBE0 is the hybrid of choice of those tested for Charge Transfer

excitations.

The three range-separated hybrids have a well-defined hierarchy for the errors,

LC-ωPBE with the largest, then CAM-B3LYP and ωB97-XD with similar errors.

This suggests that LC-ωPBE is the least accurate range-separated hybrid of those

tested for charge-transfer excitations.

2.1.4.2 Triplet Excitations

The set of triplet excitations studied are the same as those studied in reference

85. This set of triplet excitations is usually referred, in literature, to as the Thiel

set due to the senior author of the benchmark set86–88. The molecules in this set

are listed in table 20. The molecules are a series of small organic molecules.

Table 20: Thiel set of triplet excitations.
Ethene [B1u], Butadiene [Bu, Ag], Hexatriene [Bu, Ag], Octatetraene [Bu, Ag], Cyclopropene [B2, B1], Cyclopentadiene [B2, A1]

Norbornadiene [A2, B2], Benzene [B1u, E1u, B2u, E2g], Napthalene [B2u, B3u, B1g, B2u, B3u, Ag, Ag, B1g, B1g, Ag], Furan [B2, A1]

Pyrrole [B2, A1], Imidazole [A′, A′, A′′, A′], Pyridine [A1, B1, B2, A1, A2, B2], Tetrazine [B3u, Au, B1g, B1u, B2u, B2g, Au, B1u]

Formaldehyde [A2, A1], Acetone [A2 A1], Benzoquinone [B1g, Au, B1u, B3g], Formamide[A′′, A′], Acetamide[A′′, A′], Propanamide [A′′, A′]

The literature values for B3LYP and CAM-B3LYP errors are used from refer-

ence 85. Calculations of some of these molecules have been undertaken and the
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error values are reproduced so the calculations performed are consistent and the

reference errors can be used for comparison to the other functionals tested, PBE0,

LC-ωPBE, B97-2 and ωB97-XD.

There is a well-documented problem with the triplet excitation energies calcu-

lated using TDDFT when the excitation is associated with an orbital transition

that has low stability, such low stability excitations have a HF stability of less than

2 eV as reported in references 85,89,90. The method employed to correct this error

is the Tamm Dancoff approximation to TDDFT (TDA-TDDFT). Further infor-

mation about the stability problem for triplet excitations can be seen in references

85,89,90. Both TDDFT and TDA-TDDFT have been used for the calculation of

the triplet excitation energies. The mean errors from the 6 functionals using both

methods are summarised in table 21.

Table 21: Errors for triplet excitations (all values in eV).
B3LYP CAM-B3LYP PBE0 LC-ωPBE B97-2 ωB97-XD

TDDFT TDA TDDFT TDA TDDFT TDA TDDFT TDA TDDFT TDA TDDFT TDA

d/eV −0·43 −0·26 −0·39 −0·16 −0·48 −0·26 −0·48 −0·14 −0·34 −0·17 −0·29 −0·09

|d|/eV 0·43 0·27 0·40 0·18 0·48 0·26 0·53 0·22 0·34 0·20 0·30 0·14

TDDFT vs TDA-TDDFT

The reference error values for B3LYP and CAM-B3LYP show a large improvement

by applying the TDA-TDDFT method. Further information can be seen in refer-

ences 85,89,90. This result is confirmed with the 4 additional functionals tested.

Both the mean error and mean absolute errors drop drastically between TDDFT

and TDA-TDDFT. The excitations that show the largest improvement with the

TDA-TDDFT method are those with low HF stabilities (less than or around 2

eV) as observed previously85,89,90. The TDA-TDDFT method should be used for

triplet excitations.

B3LYP and CAM-B3LYP

The mean and mean absolute errors for B3LYP and CAM-B3LYP for the TDDFT

method are comparable (−0.43 eV to −0.39 eV and 0.43 eV to 0.40 eV). This

suggests that for TDDFT the range-separation shows no improvement to the ac-

curacy of excitation energies calculated. The mean and mean absolute errors

for B3LYP and CAM-B3LYP for the TDA-TDDFT method decrease going from

B3LYP to CAM-B3YLP (−0.26 eV to −0.16 eV and 0.27 eV to 0.18 eV). This

shows that for the more accurate method (TDA-TDDFT) the range-separation

shows an improving effect on the accuracy of the excitations calculated. Both

methods underestimate triplet excitations (TDDFT and TDA-TDDFT).
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PBE0 and LC-ωPBE

The TDDFT mean and mean absolute errors for PBE0 and LC-ωPBE follow the

same trend as B3LYP and CAM-B3LYP, i.e. the errors are similar for both func-

tionals. This again suggests that the range-separation has no effect on the accu-

racy of triplet excitations calculated with TDDFT. The TDA-TDDFT errors and

mean absolute errors also follow the trend seen with B3LYP and CAM-B3LYP,

although the difference between the two functionals is much smaller (0.04 eV for

mean absolute error). Both methods still underestimate triplet excitations.

B97-2 and ωB97-XD

The two methods again show the same trend as with the other functionals. TDDFT

has similar errors for both the hybrid and range-separated hybrid. TDA-TDDFT

has slightly improved error for the range-separated hybrid with a similar improve-

ment seen between PBE0 and LC-ωPBE (0.06 eV for mean absolute error). Both

methods still underestimate triplet excitations.

Overall Comparison

The three hybrids show a well-defined hierarchy for the errors, B3LYP and PBE0

with similar and largest errors and B97-2 with the smallest errors. This suggests

that the hybrid of choice of those studied for triplet excitation energies is B97-2.

The three range-separated hybrids show a well-defined hierarchy for the errors,

LC-ωPBE with the largest error, then CAM-B3LYP and B97-2 with similar and

the smallest errors. This suggests that the range-separated hybrid of choice of

those studied for triplet excitation energies is CAM-B3LYP and B97-2.

2.1.4.3 Excited State Properties Summary

A summary table of the mean error and mean absolute error for all the absorp-

tions assessed with each functional is shown in table 22. This will enable easier

comparison between the functionals studied across all the absorptions and thus

show what features of a functional is important for absorptions.
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Table 22: Summary of Errors for all functionals tested across absorptions (all

values in eV).

Property B3LYP CAM-B3LYP PBE0 LC-ωPBE B97-2 ωB97-XD

Singlet d −0·12 0·02 −0·04 0·14 −0·05 0·04

Local |d| 0·21 0·21 0·19 0·23 0·19 0·19

Singlet d −1·08 −0·48 −0·87 −0·02 −0·90 −0·61

Rydberg |d| 1·08 0·48 0·81 0·14 0·90 0·61

Singlet d −1·34 −0·18 −1·11 0·11 −1·25 −0·13

Charge Transfer |d| 1·36 0·27 1·14 0·68 1·27 0·25

Triplet d −0·43 −0·39 −0·48 −0·48 −0·34 −0·29

TDDFT |d| 0·43 0·40 0·48 0·53 0·34 0·30

Triplet d −0·26 −0·16 −0·26 −0·14 −0·17 −0·09

TDA-TDDFT |d| 0·27 0·18 0·26 0·22 0·20 0·14

Singlet local excitations show similar performance across all the hybrid func-

tionals tested. The calculated values with the range-separated hybrids are higher

than those calculated with global hybrids (mean error is higher for range-separated

hybrids), thus the calculated values are increased with higher percentages of HFx.

The spread of the data remains constant across all the functionals tested. Singlet

local excitations are a property which are calculated to a similar degree of accuracy

regardless of the functional used.

Singlet Rydberg excitations show significantly lower calculated values with

global hybrids compared to range-separated hybrids. The values of Rydberg exci-

tations are greatly underestimated by global hybrids and this is corrected to some

degree by the use of range-separated hybrids (more HFx is better for Rydberg

states). There are higher calculated values with higher HFx. The spread of the

data decreases between global hybrids and range-separated hybrids, thus more

HFx increases the accuracy.

Singlet charge transfer excitations show lower calculated values with global hy-

brids compared to range-separated hybrids. A higher percentage of HFx increases

the calculated values. With global hybrids again underestimating the values of

these excitations, more HFx is required for these excitations as with Rydberg

excitations. The spread decreases between global hybrids and range-separated hy-

brids, again showing that increasing the percentage of HFx improves the accuracy.

Triplet TDDFT excitations remain on average fairly constant between the

global and range-separated hybrids of each underlying functional. There is some

difference between the underlying functionals, with B97 performing best, BLYP in

the middle and PBE performing worse. There is a greater influence seen when the
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triplet excitations are calculated using TDA-TDDFT, the calculated values are

increased with more HFx (range-separated hybrid values are higher than global

hybrid values). The spread is also decreased between the global hybrids and range-

separated (more HFx has lower spread). Again there is a dependence on the un-

derlying functional with the trend seen when using TDDFT preserved. There is

a larger effect seen when using TDA-TDDFT than between the global and range-

separated hybrids (there is some improvement seen with the range-separared hy-

brids and TDA-TDDFT). This follows from the known triplet stability issues,

which it is known that TDA-TDDFT can improve85,89,90.

A ranking of the performance (lowest error is 0, highest error is 5) of all the

hybrids across the individual properties along with an overall ranking is shown in

table 23.

Table 23: Ranking of the performance of the functionals tested across excited state

properties.

Property B3LYP CAM-B3LYP PBE0 LC-ωPBE B97-2 ωB97-XD

Singlet Local 1 1 0 2 0 0

Singlet Rydberg 5 1 3 0 4 2

Singlet Charge Transfer 5 1 3 2 4 0

Triplet TDDFT 3 2 4 5 1 0

Triplet TDA-TDDFT 5 1 4 3 2 0

Totals /25 19 6 14 12 11 2

There is some definite advantage to having a range-separated hybrid compared

to a global hybrid for excited state calculations as all the range-separated hybrids

outperform their global counterparts. There also seems to be some advantage to

having a percentage of full range HFx included in the range-separated hybrid as

CAM-B3LYP and ωB97-XD outperform LC-ωPBE. The performance of LC-ωPBE

is lacking compared to the other range-separated hybrids. The performance of LC-

ωPBE may be improved by the changing of parameters that govern this range-

separation i.e. attenuation in a similar way to CAM-B3LYP (a+ b 6= 100%).

2.2 CAM-ωPBE

We have seen that range-separated hybrids offer significant advantages over con-

ventional global hybrid functionals for the study of excited states, and may offer

reasonable performance for ground state properties. Notably however, LC-ωPBE

often overcorrects the underlying PBE functional, giving rise to overestimated ex-

citation energies, along with other problems. This is attributed to the amount

of long-range HFx as RSH with less than 100% long range HFx do not display
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this same overestimation, such as CAM-B3LYP. Therefore, a new range-separated

was attempted to be generated by changing the range-separation parameters of the

LC-ωPBE range-separated hybrid to be like those used in CAM-B3LYP (a = 0.19,

b = 0.46 and ω = 0.33) . This functional will be referred to as CAM-ωPBE. CAM-

ωPBE was initially tested on the various properties tested in and the errors

are compared to those from CAM-B3LYP and LC-ωPBE. The mean and mean

absolute errors for the three functionals are in table 24.

It would be expected that the errors for this new functional would be a little

higher than those for CAM-B3LYP and LC-ωPBE due to not optimising the pa-

rameters of the CAM- type correction. This is not what is seen; the errors are

infact much larger for CAM-ωPBE apart from the errors in the classical reaction

barriers. The errors in the classical reaction barriers are similar to those from

the LC-ωPBE functional. This is potentially an artifact of the range-separation

LC-ωPBE being a large improvement to the errors of the reaction barriers over

PBE0. It is obvious though that optimisation of the 3 parameters is required to

improve the performance of this new functional.
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Table 24: Errors for CAM-ωPBE.
Ionisation Potentials CAM-B3LYP LC-ωPBE CAM-ωPBE

d/eV 0·10 0·07 −0·57

|d|/eV 0·18 0·20 0·57

σ/eV 0·21 0·25 0·32

Atomisation Energies

d/kcal mol−1 1·5 0·4 29·6
|d|/kcal mol−1 3·2 3·2 31·4
σ/kcal mol−1 3·7 4·1 25·7
Diatomic Bond Lengths

d/Å −0·006 −0·001 −0·032

|d|/Å 0·013 0·027 0·066

σ/Å 0·018 0·039 0·066

Classical Reaction Barriers

d/kcal mol−1 −2·5 0·0 −0·4
|d|/kcal mol−1 2·8 1·2 1·9
σ/kcal mol−1 2·1 1·7 2·4
Vibrational Wavenumbers

d/cm−1 33 51 131

|d|/cm−1 37 56 131

σ/cm−1 47 61 117

Isotropic Polarisabilities

d/au 0·24 −0·25 −1·13

|d|/au 0·37 0·35 1·13

σ/au 0·36 0·41 0·66

Electron Affinities

d/eV 0·04 0·00 −0·95

|d|/eV 0·10 0·13 0·95

σ/eV 0·13 0·15 0·22

2.2.1 Calibration of CAM-ωPBE

The calibration of the CAM-ωPBE functional was carried out on a small subset of

the atomisation energies in a similar manner to reference 91 (the reduced subset

is listed in table 25) and the best performing (lowest error parameter sets) are

carried forward to the complete set of properties.

Table 25: Reduced set of atomisation energies that were studied.

C2H2, C2H4, CH3NH2, CH3OH, CH4, CO, CO2, H2O, H2O2, LiH, N2, N2O, NH3, NO2
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The a and ω parameters were varied and the b parameter is varied under the

constraint that a + b = 0.65 as with CAM-B3LYP. The parameter a was varied

from 0.04 to 0.40 in increments of 0.04 and the parameter ω was varied from 0.1

a−1
0 to 0.8 a−1

0 in increments of 0.1 a−1
0 . The mean absolute errors were plotted

against these two parameters, and this can be seen in figure 5.
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Figure 5: Plot of a and ω against mean absolute error.

The lowest error (of the parameters tested) occurs at a = 0.08 and ω = 0.4

a−1
0 . These parameters are carried forward and evaluated for the full set of prop-

erties. The range-separated functional using these parameters is referred to as

CAM-ωPBEa. The errors from this functional are compared to the CAM-ωPBE

functional as well as LC-ωPBE and CAM-B3LYP. The errors are shown in table

26.
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Table 26: Errors for CAM-ωPBEa.

Ionisation Potentials CAM-B3LYP LC-ωPBE CAM-ωPBE CAM-ωPBEa

d/eV 0·10 0·07 −0·57 −1·17

|d|/eV 0·18 0·20 0·57 1·16

σ/eV 0·21 0·25 0·32 0·24

Atomisation Energies

d/kcal mol−1 1·5 0·4 29·6 3·0
|d|/kcal mol−1 3·2 3·2 31·4 5·4
σ/kcal mol−1 3·7 4·1 25·7 6·5
Diatomic Bond Lengths

d/Å −0·006 −0·001 −0·032 0·016

|d|/Å 0·013 0·027 0·066 0·046

σ/Å 0·018 0·039 0·066 0·082

Classical Reaction Barriers

d/kcal mol−1 −2·5 0·0 −0·4 −1·7
|d|/kcal mol−1 2·8 1·2 1·9 2·1
σ/kcal mol−1 2·1 1·7 2·4 1·8
Vibrational Wavenumbers

d/cm−1 33 51 131 58

|d|/cm−1 37 56 131 63

σ/cm−1 47 61 117 71

Isotropic Polarisabilities

d/au 0·24 −0·25 −1·13 0·27

|d|/au 0·37 0·35 1·13 0·44

σ/au 0·36 0·41 0·66 0·51

Electron Affinities

d/eV 0·04 0·00 −0·95 −1·22

|d|/eV 0·10 0·13 0·95 1·22

σ/eV 0·13 0·15 0·22 0·17

It is noticeable that the calibrated functional, CAM-ωPBEa, has hugely im-

proved errors over some properties (atomisation energies, diatomic bond lengths,

vibrational frequencies and polarisabilities) compared to CAM-ωPBE. The error

of the reaction barriers has remained somewhat similar between CAM-ωPBE and

CAM-ωPBEa. The errors for ionisation potentials and electron affinities have

increased between CAM-ωPBE and CAM-ωPBEa, this is contrary to what is ex-

pected due to the optimisation of the parameters. The energy of hydrogen was

tested as part of the calibration. A lone hydrogen atom should have single point

energy of −0.5 Ha. The results from a selected set of these calibration calculations

are shown in table 27. This shows that there is a potential problem in varying

parameters due to the range of hydrogen energies obtained. CAM-B3LYP has a

hydrogen atom energy of −0.4988 Ha, the variance in the hydrogen atom energy
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suggest that the parameters used may be fundamentally flawed.

Table 27: Hydrogen atom energies from the calibration of CAM-ωPBE, all values

in Ha.
ω/a−1

0 a = 0.08 a = 0.16 a = 0.24 a = 0.32 a = 0.40

0.1 −0.5018 −0.5230 −0.5449 −0.5674 −0.5906

0.2 −0.4822 −0.4993 −0.5170 −0.5353 −0.5542

0.3 −0.4667 −0.4802 −0.4942 −0.5088 −0.5240

0.4 −0.4544 −0.4651 −0.4762 −0.4877 −0.4998

0.5 −0.4448 −0.4532 −0.4620 −0.4711 −0.4806

0.6 −0.4371 −0.4439 −0.4509 −0.4582 −0.4657

0.7 −0.4311 −0.4365 −0.4422 −0.4480 −0.4541

0.8 −0.4263 −0.4307 −0.4353 −0.4401 −0.4450

The errors of CAM-ωPBEa are still larger than those for CAM-B3LYP and

LC-ωPBE for atomisation energy which is confusing considering that the func-

tional was optimised to a small set of atomisation energies, however the larger set

contains different types of molecules which could lead to an elevated error. The

errors for some of the other properties are larger (ionisation potentials, diatomic

bond lengths, vibrational frequencies, electron affinities). The remaining proper-

ties (reaction barriers and polarisabilities) have similar errors to the established

range-separated hybrids. This suggests that the functional CAM-ωPBEa has some

potential but requires more work to fully optimise the parameters of the functional.

2.2.2 Singlet Excitations using CAM-ωPBE and CAM-ωPBEa

The two new range-separated hybrids are tested on the set of singlet excitations

and the errors are compared to each other and to CAM-B3LYP and LC-ωPBE.

The mean and mean absolute errors can be seen in table 28.

Table 28: CAM-ωPBE and CAM-ωPBEa errors for singlet excitations, all values

are in eV.
Excitation Type CAM-B3LYP LC-ωPBE CAM-ωPBE CAM-ωPBEa

Local d 0·02 0·14 0·10 0·02

|d| 0·21 0·23 0·23 0·20

σ 0·29 0·27 0·29 0·27

Rydberg d −0·48 −0·02 −0·46 −0·73

|d| 0·48 0·14 0·47 0·81

σ 0·18 0·17 0·27 0·65

Charge Transfer d −0·18 0·11 −0·11 −0·26

|d| 0·27 0·68 0·22 0·32

σ 0·31 0·81 0·28 0·35
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The local excitations show similar errors between the two new range-separated

hybrids. The mean error is 0.10 eV for CAM-ωPBE and 0.02 eV for CAM-ωPBEa.

The mean absolute error is 0.23 eV for CAM-ωPBE and 0.20 eV for CAM-ωPBEa.

The errors are also comparable to those for CAM-B3YLP and LC-ωPBE. This is

as expected as discussed previously due to the short-range nature of the local

excitations.

The Rydberg excitations show an increased error going from CAM-ωPBE to

CAM-ωPBEa. The mean error increases from −0.46 eV to −0.73 eV, the mean

absolute error increases from 0.47 eV to 0.81 eV. This suggests that while the

CAM-ωPBEa hybrid is optimised for some properties, as stated above, it does not

perform as well for excitation energies. This suggests that the functional will need

to be further optimised. The errors are comparable to those of CAM-B3LYP and

ωB97XD. However the errors are much larger than those for LC-ωPBE, which is

the functional from which CAM-ωPBE originates. This again suggests that more

optimisation of the new functional is required.

The charge transfer excitations show a slightly increased error going from CAM-

ωPBE to CAM-ωPBEa. The mean error increases from −0.11 eV to −0.26 eV and

the mean absolute error increases from 0.22 eV to 0.32 eV. However comparing

these errors to those from LC-ωPBE, they are a large improvement suggesting the

new functionals have some potential for improving the accuracy of charge transfer

excitation energies. The errors of the two new functionals are comparable to those

from CAM-B3LYP and ωB97XD.

2.2.3 Triplet Excitations using CAM-ωPBE and CAM-ωPBEa

The two new range-separated hybrids are tested on the set of triplet excitations

using both TDDFT and TDA-TDDFT and the errors are compared to each other

and to CAM-B3LYP and LC-ωPBE. The mean and mean absolute errors can be

seen in table 29.

Table 29: Errors for CAM-ωPBE and CAM-ωPBEa triplet excitations.

CAM-B3LYP LC-ωPBE CAM-ωPBE CAM-ωPBEa

TDDFT TDA TDDFT TDA TDDFT TDA TDDFT TDA

d/eV −0·39 −0·16 −0·48 −0·14 −0·74 −0·32 −0·54 −0·26

|d|/eV 0·40 0·18 0·53 0·22 0·77 0·34 0·54 0·26

As with all previous methods the application of the TDA-TDDFT method

leads to a decrease in the errors for the triplet excitations compared to the TDDFT

method. The CAM-ωPBE mean and mean absolute errors drop from −0.74 eV and

0.77 eV with TDDFT to −0.32 eV and 0.34 eV respectively. The CAM-ωPBEa
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mean and mean absolute errors drop from −0.54 eV and 0.54 eV with TDDFT to

−0.26 eV and 0.26 eV respectively.

The errors from CAM-ωPBEa are decreased to those from CAM-ωPBE for

both methods, albeit with the errors for TDA-TDDFT having a much smaller

decrease (−0.32 eV to −0.26 eV and 0.34 eV to 0.26 eV). This shows that the

optimised parameters of the CAM-ωPBE functional shows an improvement to the

accuracy of triplet excitation energies calculated.

The errors from CAM-ωPBE and CAM-ωPBEa are higher than those from

CAM-B3LYP and LC-ωPBE, especially for the TDA-TDDFT case, which is the

more accurate method. This shows that while the CAM-ωPBEa is an improvement

on the CAM-ωPBE functional, it is still not as accurate as present functionals for

triplet excitations. This again shows that CAM-ωPBE functional still requires

more optimisation.

2.3 Functional Tuning

The issues with the non-transferability of the CAM-B3LYP parameters to CAM-

ωPBE and CAM-ωPBEa may be due to some fundamental difference in the under-

lying GGA functional (PBE31 and BLYP32,33). The standard global hybrids based

on PBE and BLYP (PBE040 and B3LYP38) both use different percentages of HFx

(20% and 25% respectively). PBE0 mixes PBE exchange and HF exchange, with

25% HF exchange and PBE correlation. The form of Exc for PBE0 is

EPBE0
xc = 0.25EHF

x + 0.75EPBE
x + EPBE

c . (81)

This functional performs well over a range of properties as seen in section 2.1.

B3LYP mixes Becke 88 exchange, LDA exchange and HF exchange along with

mixing Lee Yang Parr correlation and Vosko Wilk Nusair correlation. The form

of Exc for B3LYP is

EB3LYP
xc = 0.08ELDA

x + 0.72EB88X
x + 0.2EHF

x + 0.19EVWN
c + 0.81ELYP

c (82)

As the two functionals have differing percentages of HFx, this suggests that

the percentage of HFx should be optimised for each different underlying functional

and hence the influence of HFx varies for different underlying functionals. The

influence of HFx is investigated by optimising the percentage of HFx over a range

of atomisation energies, much as several DFAs have been previously optimised38,40.

The set of molecules used are the G-1 and G-2 sets of atomisation energies92–94.

There are 148 molecules across these 2 sets. However initial optimisation was

undertaken using a reduced set with a range of different molecule types. The
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molecules in this reduced set are shown in table 30. This is an expanded set of

molecules from those that CAM-ωPBE and CAM-ωPBEa were tuned with as it

was noticed that the error of the atomisation energies of the cyclic molecules in

the complete set of atomisation energies was unusally large for both CAM-ωPBE

and CAM-ωPBEa, thus these cyclic molecules are included in this training set.

Table 30: Molecules in reduced set
C2H2, C2H4, CH3NH2, CH3OH, CH4, CO, CO2

H2O, H2O2, LiH, N2, N2O, NH3, NO2, SiF4

pyridine, pyrrole, benzene, spiropentane, bicyclobutane, furan, thiophene
methylene cyclopropane, cyclobutane, cyclobutene

2.3.1 PBE - Reduced Set

The tuning of the PBE based global hybrid has been done by changing the a0

value in

Exc = a0E
HF
x + (1− a0)EPBE

x + EPBE
c . (83)

The a0 value is varied between 0 (purely PBE exchange, 0% HFx) and 1 (purely

HF exchange, 100% HFx). The performance of these hybrids is assessed by the

mean error and mean absolute error over the atomisation energies of the reduced

set. Plots of the mean and mean absolute errors against the percentage of HFx

are shown in figures 6 and 7 respectively.

0 5 10 15 20 25 30 35 40 45 50 60 70 80 90 100

−40

−20

0

20

HFx %

E
rr

or
/k

ca
l

m
ol
−

1

PBE

Figure 6: PBE reduced set mean error
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Figure 7: PBE reduced set mean absolute error

PBE040 is the standard global hybrid based on PBE, it has 25% HFx (a0 =

0.25) and 75% PBE exchange. This is not the optimal percentage of HFx seen

over the reduced set, the optimal percentage of HFx for the atomisation energies

investigated here is 30% (a0 = 0.30) due to having the lowest mean error (0.5

kcal mol−1) and mean absolute error (7.8 kcal mol−1). This suggests that the

performance of PBE0 for atomisation energies may be improved upon including a

higher percentage of HFx.

However it was noticeable from the data on an individual molecule basis that

there were some cases where PBE required much more HFx to have optimal per-

formance (e.g. pyridine with optimal percentage between 40–45%, compared with

example CH3OH with an optimal percentage of 20%). This suggests that it may

be worth splitting the reduced set based on molecule type, i.e. cyclic molecules

(like pyridine) vs. non-cyclic molecules (like CH3OH). The split reduced set is

shown in table 31.

Table 31: Split reduced set
Non-cyclic C2H2, C2H4, CH3NH2, CH3OH, CH4, CO, CO2, H2O, H2O2, LiH, N2, N2O, NH3, NO2, SiF4

Cyclic pyridine, pyrrole, benzene, spiropentane, bicyclobutane, furan, thiophene, methylene cyclopropane,

cyclobutane, cyclobutene

Due to the differing behaviour of PBE based global hybrids for cyclic and non-

cyclic molecules, there may be a need to categorise the molecules and systems in

benchmark sets. If this is not done and we look over all the benchmark data, there

is a potential to miss important behaviour when developing new approximate

Excs. There seems to be a need to balance the categories/subsets of molecules

and systems in training sets in order to remove potential bias towards certain

behaviours. The use of molecules that combine elements of both sets may be
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a potential method to access these behaviours in a more unbiased way. When

considering small molecules however it is not possible to get both cyclic and non-

cyclic behaviour in one molecule.

Adding more systems into training sets will necessarily increase the diversity

of the training set. However, this may not be in a balanced way, leading to biases

towards certain behaviour if behaviour such as that seen for the cyclic and non-

cyclic molecules is not taken into account and properly factored into selection of

training sets.

The performance of the hybrids with varying the percentage of HFx are as-

sessed again by the mean error and mean absolute error of the split reduced set

of atomisation energies. Plots of the mean and mean absolute errors against the

percentage of HFx are shown in figures 8 and 9 respectively.
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Figure 8: PBE split reduced set mean error
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Figure 9: PBE split reduced set mean absolute error
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There is a distinct difference between the optimal percentages of HFx required

for optimal performance for the 2 parts of the split set. The non-cyclic molecules

require a much smaller percentage of HFx for optimal performance compared to

the cyclic molecules (20% HFx for non-cyclic molecules and 45% HFx for cyclic

molecules). This is suggestive of the need for tweaking a global hybrid of PBE

when calculating properties of cyclic molecules, due to the optimal percentage of

HFx for cyclic molecules being 20% higher than the percentage used in PBE0.

2.3.2 BLYP - Reduced Set

The general expression of B3LYP based global hybrids is more complicated than

that for PBE based global hybrids, due to the 3 parameter fitting of B3LYP. The

tuning of the B3LYP based global hybrids can be achieved by changing the a0

value in this general expression for Exc

Exc = 0.1(1− a0)ELDA
x + 0.9(1− a0)EB88X

x + a0E
HF
x + 0.19EVWN

c + 0.81ELYP
c .

(84)

The a0 value is varied between 0 (10% LDA exchange and 90% Becke 88 exchange,

0% HFx) and 1 (purely HF exchange, 100% HFx). The performance of these hy-

brids are assessed by the mean error and mean absolute error over the atomisation

energies of the reduced set. Plots of the mean and mean absolute errors against

the percentage of HFx are shown in figures 2.3.2 and 11 respectively.
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Figure 10: BLYP reduced set mean error
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Figure 11: BLYP reduced set mean absolute error

B3LYP38 is the standard global hybrid based on BLYP, it has 20% HFx (a0 =

0.20), 8% LDA exchange and 72% Becke 88 exchange. As with PBE, the standard

parameters are not optimal for the reduced set, the optimal percentage of HFx for

the atomisation energies investigated here is 15% (a0 = 0.15) due to having the

lowest mean error (−1.4 kcal mol−1) and mean absolute error (4.0 kcal mol−1).

This suggests that B3LYP may be improved for atomisation energies by including

a lower percentage of HFx.

The split set (cyclic and non-cyclic molecules) has been investigated again,

plots of the mean and mean absolute errors for the atomisation energies are shown

in figures 12 and 13.
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Figure 12: BLYP split reduced set mean error
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Figure 13: BLYP split reduced set mean absolute error

There is not as distinct a difference between the cyclic and non-cyclic molecules

for the optimal percentage of HFx when using BLYP compared to PBE. The

optimal HFx percentage for cyclic molecules is 10% and for non-cyclic molecules

is 15%, this is only a 5% difference compared to the 25% difference seen in PBE.

This suggests that there should not be the need for tweaking the global hybrid of

BLYP for calculating cyclic molecules. However it should be noted that there is a

larger error for cyclic molecules when using the HFx percentage of B3LYP (20%),

with a mean absolute error of 8.0 kcal mol−1 compared to 3.5 kcal mol−1 for the

optimal HFx percentage (10%).

On Perdew’s Jacob’s Ladder of density functional approximations24, PBE and

BLYP are both generalised gradient approximations (GGAs) and hence are on

the second rung of the ladder. Hybrid functionals are on the fourth rung of the

ladder24. It is possible to generate a global hybrid using functionals on the first and

third rung to compare to the global hybrids from the two GGAs. The first rung is

the local density approximations (LDA20,21,95) and the third rung are meta-GGA

functionals, such as TPSS35.
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2.3.3 LDA - reduced set

The global hybrid of LDA was generated in a similar way to the PBE global hybrid.

The global hybrids of LDA have the general form

Exc = a0E
HF
x + (1− a0)ELDA

x + EVWN5
c . (85)

The value of a0 is varied between 0 (purely LDA exchange, 0%HFx) and 1 (purely

HF exchange, 100% HFx). The performance of these hybrids are assessed by the

mean error and mean absolute error over the atomisation energies of the reduced

set. Plots of the mean and mean absolute errors against the percentage of HFx

are shown in figures 14 and 15 respectively.
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Figure 14: LDA reduced set mean error
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Figure 15: LDA reduced set mean absolute error

The optimal global hybrid of LDA contains 70% HFx. (a0 = 0.70). This is
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significantly higher than the optimal percentages for the two GGA based hybrids,

PBE (30%, a0 = 0.30) and BLYP (15%, a0 = 0.15). It is also noticable that the

error of the pure DFT exchange (a0 = 0, 0% HFx) is much higher for LDA (mean

error: 103.5 kcal mol−1 and mean absolute error: 103.5 kcal mol−1) compared to

PBE (mean error: 20.6 kcal mol−1 and mean absolute error: 21.4 kcal mol−1)

and BLYP (mean error: 8.7 kcal mol−1 and mean absolute error: 9.4 kcal mol−1).

This follows from Perdew’s Jacob’s Ladder as the GGAs are on the second rung

so should perform better than LDA.

The split set (cyclic and non-cyclic molecules) has been investigated again,

plots of the mean and mean absolute errors for the atomisation energies are shown

in figures 16 and 17.
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Figure 16: LDA split reduced set mean error
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Figure 17: LDA split reduced set mean absolute error

There is a distinct difference between the optimal percentages of HFx required
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for optimal performance for the 2 parts of the split set. The non-cyclic molecules

require a much smaller percentage of HFx for optimal performance compared to

the cyclic molecules (45% HFx for non-cyclic molecules and 70% HFx for cyclic

molecules). As with PBE, this is suggestive of the need for tweaking a global

hybrid of LDA when calculating properties of cyclic molecules, due to the optimal

percentage of HFx for cyclic molecules being 25% higher than the optimal percent-

age of HFx for non-cyclic molecules. It is also noticable that the cyclic molecule

errors dominate the mean errors of the set when the error of the LDA global hybrid

is large e.g. at 0% HFx mean error for cyclic molecules is 170.4 kcal mol−1 and for

non-cyclic molecules is 58.8 kcal mol−1.

2.3.4 TPSS - reduced set

TPSS is a meta-GGA which is on the third rung of Perdew’s Jacob’s Ladder. This

means it is expected to perform better than both LDA and GGAs. The tuning of

the TPSS based global hybrid has been done by changing the a0 value in

Exc = a0E
HF
x + (1− a0)ETPSS

x + ETPSS
c . (86)

The a0 value is varied between 0 (purely PBE exchange, 0% HFx) and 1 (purely

HF exchange, 100% HFx). The performance of these hybrids are assessed by the

mean error and mean absolute error over the atomisation energies of the reduced

set. Plots of the mean and mean absolute errors against the percentage of HFx

are shown in figures 18 and 19 respectively.
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Figure 18: TPSS reduced set mean error
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Figure 19: TPSS reduced set mean absolute error

TPSSh35,96 is the standard global hybrid based on TPSS, it has 10% HFx

(a0 = 0.10), 90% TPSS exchange. This is the optimal percentage of HFx seen

over the reduced set, having the lowest mean error (−0.7 kcal mol−1) and mean

absolute error (4.8 kcal mol−1). This suggests that TPSSh contains the optimal

percentage of HFx.

It is also noticable that the error of the pure DFT exchange case (a0 = 0, 0%

HFx) is lower for TPSS (mean error: 3.8 kcal mol−1 and mean absolute error: 6.2

kcal mol−1) compared to LDA (mean error: 103.5 kcal mol−1 and mean absolute

error: 103.5 kcal mol−1), PBE (mean error: 20.6 kcal mol−1 and mean absolute

error: 21.4 kcal mol−1) and BLYP (mean error: 8.7 kcal mol−1 and mean absolute

error: 9.4 kcal mol−1). This follows Perdew’s Jacob’s Ladder as TPSS is a meta-

GGA which is on the third rung whereas GGAs are on the second rung and LDA is

on the first rung. The errors from the pure DFT follows Perdew’s Jacob’s Ladder

as the error decreases as the rungs are ascended (LDA > GGA > meta-GGA).

The split set (cyclic and non-cyclic molecules) has been investigated again; plots

of the mean and mean absolute errors for the atomisation energies are shown in

figures 20 and 21.
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Figure 20: TPSS split reduced set mean error
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Figure 21: TPSS split reduced set mean absolute error
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There is a difference between the cyclic and non-cyclic molecules for the opti-

mal percentage of HFx when using TPSS. The optimal HFx percentage for cyclic

molecules is 15% and for non-cyclic molecules is 5%, this is only a 10% difference.

This suggests that there should not be the need for tweaking the global hybrid of

TPSS for calculating cyclic molecules as the errors over both sets of molecules is

reduced at 10% HFx, which is the optimal percentage of HFx for a TPSS global

hybrid35,96.

2.3.5 Functional Dependence on Hartree–Fock Exchange

The mean errors for all four of the functionals hybridised are shown in table 32.

This shows a differing dependence on the percentage of HFx required to perform

well/how quickly performance deteriorates away from the optimal global hybrid.
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Table 32: Mean error of all four functionals hybridised for the atomisation energies

of the reduced set, all values are in kcal mol−1.

Hartree–Fock Exchange LDA PBE BLYP TPSS

0 103·5 20·6 8·7 3·8
5 95·0 17·1 5·3 1·6
10 86·6 13·7 1·9 −0·7
15 78·3 10·3 −1·4 −2·8
20 70·0 7·0 −4·7 −5·0
25 61·7 3·7 −7·9 −7·1
30 53·4 0·5 −11·1 −9·1
35 45·2 −2·7 −14·2 −11·1
40 37·0 −5·9 −17·3 −13·1
45 28·9 −9·0 −20·3 −15·0
50 20·8 −12·1 −23·3 −16·9
60 4·6 −18·2 −29·2 20·5
70 −11·3 −24·1 −34·9 23·9
80 −27·2 −29·9 −40·4 −27·2
90 −42·9 −35·4 −45·8 −30·4
100 −58·5 −40·9 −51·0 −33·4

The functionals based on those from higher rungs of the Jacob’s Ladder perform

better away from the optimal global than those on the lower rungs. The lower

rungs have much more dependence on the percentage of HFx included. LDA has

the greatest dependence as it performs poorly away from the optimal percentage

and TPSS has the least dependence as it performs well (mean error between -7.5

and 7.5 kcal mol−1) at the greatest range away from the optimal percentage. The

range of HFx percentages that the global hybrids perform well with (mean error

between -7.5 and 7.5 kcal mol−1) are shown in table 33.

Table 33: Range of HFx percentages which the global hybrids perform well

Functional HFx range

LDA 60%

PBE 20 – 40%

BLYP 5 – 20%

TPSS 0 – 25%

The LDA based global hybrid has the smallest range, only performing well

at the optimal percentage and poorly at any other percentage investigated. The

GGA based global hybrids, PBE and BLYP, have similar ranges with 20% and 15%

respectively. The meta-GGA based global, TPSS, has the largest range (25%).

This trend follows the Jacob’s Ladder well as the dependence of the performance

on the percentage of HFx is lowered as the rungs are ascended.

The ranges of the mean errors over the range of percentages investigated is
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another trend that follows the Jacob’s Ladder, with LDA based global hybrids

having the largest range of mean errors; the two GGA based global hybrids having

similar ranges and the meta-GGA based global hybrid having the lowest range.

The range of mean errors for each functional’s global hybrids is shown in table 34.

Table 34: Range of mean errors for each functional’s global hybrids, all values are

in kcal mol−1.
Functional Range/kcal mol−1

LDA 161.9

PBE 61.5

BLYP 59.6

TPSS 37.2

2.3.6 Complete G-1 and G-2 Atomisation Energies Sets

To ensure that the optimal parameters are not biased by the choice of reduced set;

the accuracy of the PBE and BLYP based global hybrids are tested over atomi-

sation energies of the full set of molecules in the G-1 and G-2 sets of atomisation

energies92–94. The performance of the hybrids over the complete G-1 and G-2 sets

of atomisation energies are again assessed by the mean errors and mean absolute

errors. Plots of the mean and mean absolute errors against the percentage of HFx

are shown in figures 22 and 23 respectively.
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Figure 22: Mean error of the complete G-1 and G-2 sets of atomisation energies

using PBE and BLYP
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Figure 23: Mean absolute error of the complete G-1 and G-2 sets of atomisation

energies using PBE and BLYP

The optimal global hybrid of PBE from the reduced set had 30% of HFx and

this is still the optimal percentage of HFx for the complete set, with a mean error

of −1.0 kca mol−1 and a mean absolute error of 4.4 kcal mol−1. The optimal global

hybrid of BLYP from the reduced set had 15% of HFx and this is still the optimal

percentage of HFx for the complete set, with a mean error of −0.6 kcal mol−1

and a mean absolute error of 3.4 kcal mol−1. As the optimal percentage of HFx

remains constant for both the reduced set and the complete sets, the reduced set

seems to give a representative picture of the influence of HFx on the accuracy of

a global hybrid.

2.4 Revisiting CAM-ωPBE

The optimal global hybrids of BLYP and PBE have a 15% difference in the per-

centage of HFx included (15% for BLYP and 30% for PBE). The initial attempt

in generating a CAM type range separated PBE was based around the param-

eters that were optimised for a BLYP based function (a = 0.19, a + b = 0.65

and ω = 0.33 a−1
0 ). The performance of both CAM-ωPBE and CAM-ωPBEa is

poor over the range of properties as demonstrated in section 2.2. The issue with

the performance of these functionals is possibly due to the fundamental difference

between the influence of HFx on the performance on the underlying functional as

seen in previous section (PBE requires more HFx to reduce the errors observed in

atomisation energies), it seems that a different set of parameters should be used

for a CAM type PBE based functional to reflect this.
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2.4.1 Reoptimising CAM-ωPBE Parameters

As previously discussed, there are 3 parameters that can be optimised in a CAM

type range separated functional, a (full range HFx), a + b (long range HFx) and

ω (scaling of HFx). Initially only the a and ω parameters were optimised and it

seems that the a + b parameter may be too low due to the requirement for more

HFx in PBE based global hybrids. The parameters of a, a+ b and ω are optimised

again over the atomisation energies of the set of molecules shown in table 35.

Table 35: Reduced set of atomisation energies that were studied.

C2H2, C2H4, CH3NH2, CH3OH, CH4, CO, CO2, H2O, H2O2, LiH, N2, N2O, NH3, NO2, pyridine

The mean and mean absolute errors of the parameters tested are shown in

table 36 and are compared to the mean and mean absolute errors of CAM-ωPBE,

CAM-ωPBEa and LC-ωPBE.

Table 36: Errors of parameters tested to optimise CAM-PBE

a a+ b ω/a−1
0 d/kcal mol−1 |d|/kcal mol−1

0·19 0·65 0·33 15·3 18·0
0·08 0·65 0·40 0·1 4·7
0·00 1·00 0·40 −1·5 3·5
0·00 0·70 0·35 −1·9 7·8
0·00 0·80 0·35 −0·6 6·3
0·00 0·90 0·35 0·6 4·9
0·05 0·90 0·20 15·5 16·1
0·05 0·90 0·30 9·1 9·7
0·05 0·90 0·40 1·3 4·4
0·05 0·80 0·40 −0·2 3·9
0·05 0·80 0·50 −9·0 9·0
0·05 0·80 0·60 −17·3 17·3
0·05 0·80 0·39 0·7 4·0
0·05 0·80 0·41 −1·1 4·2
0·04 0·80 0·40 0·7 4·2
0·06 0·80 0·40 −1·1 4·3

The parameters were initially optimised at differing a + b values while using

the a value from LC-ωPBE (0.00) and an ω value between the two (0.35 a−1
0 ). The

errors from these functionals showed that having a higher a+ b parameter gave a

lower error. The changing of the a (0.05) and ω (0.20, 0.30 and 0.40) values using

a+ b = 0.90 gave the lowest error at ω = 0.40, this suggests that a higher scaling

parameter gives better performance. A set of functionals with a + b = 0.80 using

a = 0.05 and varying ω values (0.40 a−1
0 , 0.50 a−1

0 , 0.60 a−1
0 ) were then tested. The

best performance out of the parameters tested so far (a = 0.05, a + b = 0.80 and

ω = 0.40 a−1
0 ) gave a mean error of −0.2 kcal mol−1 and a mean absolute error
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of 3.9 kcal mol−1. Parameters were then tested around these values by changing

a and ω by ±0.01, however the performance of these paramters was worse than

a = 0.05, a+ b = 0.80 and ω = 0.40 a−1
0 .

This set of parameters has a similar performance to LC-ωPBE over the reduced

set of atomisations that were studied here. This set of parameters will be referred

to CAM-PBE. CAM-PBE was tested over the full set of properties investigated

in section . The mean and mean absolute errors of CAM-PBE are compared

to CAM-B3LYP, LC-ωPBE and CAM-ωPBEa. The ground state properties are

shown in table 37 and the excited state properties are shown in table 38.

Table 37: Errors for CAM-PBE ground state properties.

Ionisation Potentials CAM-B3LYP LC-ωPBE CAM-ωPBEa CAM-PBE

d/eV 0·10 0·07 −1·17 −0·62

|d|/eV 0·18 0·20 1·16 0·62

σ/eV 0·21 0·25 0·24 0·23

Atomisation Energies

d/kcal mol−1 1·5 0·4 3·0 2·7
|d|/kcal mol−1 3·2 3·2 5·4 4·9
σ/kcal mol−1 3·7 4·1 6·5 5·7
Diatomic Bond Lengths

d/Å −0·006 −0·001 0·016 0·006

|d|/Å 0·013 0·027 0·046 0·037

σ/Å 0·018 0·039 0·082 0·060

Classical Reaction Barriers

d/kcal mol−1 −2·5 0·0 −1·7 −0·9
|d|/kcal mol−1 2·8 1·2 2·1 1·5
σ/kcal mol−1 2·1 1·7 1·8 1·7
Vibrational Wavenumbers

d/cm−1 33 51 58 58

|d|/cm−1 37 56 63 60

σ/cm−1 47 61 71 68

Isotropic Polarisabilities

d/au 0·24 −0·25 0·27 −0·02

|d|/au 0·37 0·35 0·44 0·29

σ/au 0·36 0·41 0·51 0·41

Electron Affinities

d/eV 0·04 0·00 −1·22 −0·70

|d|/eV 0·10 0·13 1·22 0·74

σ/eV 0·13 0·15 0·17 0·15
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Table 38: Errors for CAM-PBE excited state properties.

Singlet–Local CAM-B3LYP LC-ωPBE CAM-ωPBEa CAM-PBE

d/eV 0·02 0·14 0·02 0·10

|d|/eV 0·21 0·23 0·20 0·21

σ/eV 0·29 0·27 0·27 0·27

Singlet–Rydberg

d/eV −0·48 −0·02 −0·73 −0·51

|d|/eV 0·48 0·14 0·81 0·57

σ/eV 0·18 0·17 0·65 0·38

Singlet–Charge Transfer

d/eV −0·18 0·11 −0·26 0·10

|d|/eV 0·27 0·68 0·32 0·28

σ/eV 0·31 0·81 0·35 0·34

Triplet–TDDFT

d/eV −0·39 −0·48 −0·54 −0·52

|d|/eV 0·40 0·53 0·54 0·53

Triplet–TDA-TDDFT

d/eV −0·16 −0·14 −0·26 −0·21

|d|/eV 0·18 0·22 0·26 0·24

CAM-PBE performs better than CAM-ωPBEa on all ground state properties

and similarly to CAM-B3LYP and LC-ωPBE in most properties. It is noticable

that there is a improved performance in isotropic polarisabilities, with the lowest

mean absolute error seen of the functionals tested. As isotropic polarisabilities

are related to changes in electron density it may follow that CAM-PBE performs

well for excited state properties. For the singlet excited states studied, CAM-

PBE performs similiary to CAM-B3LYP across the different types of excitations

(Local, Rydberg and Charge Transfer). CAM-PBE shows a better performance

than LC-ωPBE for charge transfer type singlet excitations but a worse performance

for Rydberg type singlet excitations. The performance of CAM-PBE for triplet

excitations is similar to the other functionals tested, using TDA-TDDFT has a

much larger effect on the performance of the triplet excitations than the choice

of functional. However the performance of CAM-PBE is still lacking in ionisation

potentials and electron affinities, with a much worse performance than both LC-

ωPBE and CAM-B3LYP on these two properties.
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The parameters optimised (a, a + b and ω) over atomisation energies will be

optimised over the electron affinities shown in table 39, the set used for functional

benchmarking, to check if correcting the performance of this property fixes the

issue seen with CAM-PBE without breaking the performance of the other proper-

ties.

Table 39: Set of electron affinities that were studied.
C, O, F, Si, P, S, Cl, CH, CH2, CH3, NH, NH2, OH, SiH, SiH2

SiH3, PH, PH2, SH, O2, NO, CN, PO, S2, Cl2

The mean and mean absolute errors of the parameters tested are shown in

table 40 and are compared to the mean and mean absolute errors of CAM-PBE

and LC-ωPBE.

Table 40: Errors of parameters tested to optimise CAM-PBE electron affinities

a a+ b ω d/eV |d|/eV

0·05 0·80 0·40 −0·70 0·74

0·00 1·00 0·40 0·00 0·10

0·10 0·80 0·40 −0·67 0·71

0·10 0·80 0·30 −0·48 0·55

0·10 0·80 0·20 −0·24 0·33

0·05 0·80 0·20 −0·33 0·41

0·15 0·80 0·20 −0·13 0·31

0·15 0·80 0·15 0·05 0·27

0·15 0·80 0·10 0·25 0·35

0·10 0·80 0·15 −0·08 0·26

The performance of CAM-PBE on electron affinities can be improved by in-

creasing the a parameter and decreasing the ω parameter. The optimal perfor-

mance of the parameters tested came with a = 0.10, a + b = 0.80 and ω = 0.15.

This set of parameters will be refered to as CAM-PBE-ea. The performance of this

new set of parameters was tested using the same set of properties as CAM-PBE.

The mean and mean absolute errors of CAM-PBE-ea are compared to those for

CAM-B3LYP, LC-ωPBE and CAM-PBE. The ground state properties are shown

in table 41 and the excited state properties are shown in table 42.
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Table 41: Errors for CAM-PBE ground state properties.

Ionisation Potentials CAM-B3LYP LC-ωPBE CAM-PBE CAM-PBE-ea

d/eV 0·10 0·07 −0·62 0·16

|d|/eV 0·18 0·20 0·62 0·24

σ/eV 0·21 0·25 0·23 0·30

Atomisation Energies

d/kcal mol−1 1·5 0·4 2·7 32·4
|d|/kcal mol−1 3·2 3·2 4·9 32·6
σ/kcal mol−1 3·7 4·1 5·7 22·0
Diatomic Bond Lengths

d/Å −0·006 −0·001 0·006 −0·024

|d|/Å 0·013 0·027 0·037 0·026

σ/Å 0·018 0·039 0·060 0·014

Classical Reaction Barriers

d/kcal mol−1 −2·5 0·0 −0·9 −5·2
|d|/kcal mol−1 2·8 1·2 1·5 5·2
σ/kcal mol−1 2·1 1·7 1·7 2·8
Vibrational Wavenumbers

d/cm−1 33 51 58 74

|d|/cm−1 37 56 60 74

σ/cm−1 47 61 68 66

Isotropic Polarisabilities

d/au 0·24 −0·25 −0·02 −0·60

|d|/au 0·37 0·35 0·29 0·60

σ/au 0·36 0·41 0·41 0·48

Electron Affinities

d/eV 0·04 0·00 −0·70 −0·08

|d|/eV 0·10 0·13 0·74 0·26

σ/eV 0·13 0·15 0·15 0·41
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Table 42: Errors for CAM-PBE-ea excited state properties.

Singlet–Local CAM-B3LYP LC-ωPBE CAM-PBE CAM-PBE-ea

d/eV 0·02 0·14 0·10 −0·11

|d|/eV 0·21 0·23 0·21 0·19

σ/eV 0·29 0·27 0·27 0·26

Singlet–Rydberg

d/eV −0·48 −0·02 −0·51 −0·99

|d|/eV 0·48 0·14 0·57 0·99

σ/eV 0·18 0·17 0·38 0·29

Singlet–Charge Transfer

d/eV −0·18 0·11 0·10 −1·22

|d|/eV 0·27 0·68 0·28 1·24

σ/eV 0·31 0·81 0·34 0·71

Triplet–TDDFT

d/eV −0·39 −0·48 −0·52 −0·58

|d|/eV 0·40 0·53 0·53 0·58

Triplet–TDA-TDDFT

d/eV −0·16 −0·14 −0·21 −0·36

|d|/eV 0·18 0·22 0·24 0·37

From the good performance seen with CAM-PBE, excluding the errors seen

with electron affinities and ionisation potentials, the performance of the electron

affinity optimised functional (CAM-PBE-ea) is much worse across all the prop-

erties studied here (excluding the electron affinities and closely related ionisation

potentials). There is a huge decrease in the accuracy of atomisation energies which

is expected as CAM-PBE is tuned on atomisation energies. There is also a huge

decrease in the accuracy of singlet charge transfer type excitations which is un-

expected as CAM-B3LYP and CAM-PBE show an improved performance on this

type of excitation. This suggests that it may be possible to generate a set of param-

eters for a ’CAM’ type PBE based functional but it may need to be tuned to the

particular property that is being investigated. For example CAM-PBE performs

well for polarisabilities but is poor for electron affinities and ionisation potentials

(these properties are both related to charged molecules). Therefore CAM-PBE

should be used for calculation of polarisabilities and related properties (properties

related to changes in electron density) but not for electron affinities and related

properties (properties related to charged molecules).

2.5 Conclusions

The extensive assessment of the 3 global and 3 range separated hybrids (B3LYP,

PBE0, B97-2, CAM-B3LYP, LC-ωPBE and ωB97-XD) over a range of ground

state and excited state properties has shown some interesting results. It high-

lights that each functional tested has properties where it performs accurately and
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those with less accurate performance. B3LYP performs well for ionisation ener-

gies, vibrational wavenumbers, electron affinities and local excitations but less well

for isotropic polarisabilities, Rydberg excitations and charge transfer excitations.

PBE0 performs well for isotropic polarisabilities and local excitations but less well

for electron affinities and atomisation energies. B97-2 performs well for ionisation

energies, atomisation energies, vibrational wavenumbers, isotropic polarisabilites

and local excitations but less well for diatomic bond lengths, Rydberg excitations

and charge transfer excitations. CAM-B3LYP performs well for diatomic bond

lengths and all excitations but less well for isotropic polarisabilities. LC-ωPBE

performs well for reaction barriers, local excitations and Rydberg excitations but

less well for ionisation potentials, electron affinities, diatomic bond lengths, vibra-

tional wavenumbers. ωB97-XD performs welll for most properties but less well

ionisation potentials and vibrational wavenumbers.

The increased computational cost and complexity associated with using a range

separated hybrid is important for some properties but less so for others. It is im-

portant to use range separated hybrids for the accurate calculation of excitations

(other than local excitations, where all functionals tested performed well), atom-

isation energies and reaction barriers. The performance of LC-ωPBE is poorer

than the other range separated hybrids in most excitations excluding Rydberg

excitations.

However, the performance of LC-ωPBE may be improved by tuning the pa-

rameters of the range separation. Initially the parameters used where the same

as those of CAM-B3LYP (a = 0.19,a + b = 0.65 and ω = 0.33 a−1
0 ), generating

CAM-ωPBE. This new functional has poor performance across most properties

with exception of classical reaction barriers which are calculated with comparative

accuracy to LC-ωPBE. The parameters where optimised using a set of atomisation

energies whilst applying the constraint a + b = 0.65 (keeping the a + b value the

same as CAM-B3LYP). This lead to an optimised version of CAM-ωPBE (CAM-

ωPBEa). The performance of this optimised functional was improved over CAM-

ωPBE. However, the performance was still poor when compared to CAM-B3LYP

and LC-ωPBE.

In order to understand the underlying cause of the poor performance of CAM-

ωPBE and CAM-ωPBEa. A study of the quantity of HFx required for optimally

performing global hybrid of a series of underlying functionals (LDA, PBE, BLYP

and TPSS) by assessing the performance of a global hybrid with increasing quan-

tities of HFx over a set of atomisation energies. This lead to some interesting

results, each underlying functional had a differing quantity of HFx in its optimal

global, with LDA requiring the highest quantity and TPSS requiring the least.

It was also seen that the optimal quantity of HFx differed for some global
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hybrids (especially for PBE and LDA) when considering different molecule types

(cyclic and non cyclic). This shows that some molecule types have differing be-

haviour when considering the quantity of HFx required (cyclic requires more HFx

for PBE based). This shows that what is meant by a diverse set may require

redefinition as it could be possible to lose details when considering too large a set

or under or over representing certain categories of molecules (such as cyclic and

non cyclic molecules). This observation could lead to utilising more of the data

that is present in current benchmark sets to enable more accurate calculation of

properties with functionals tuned to the categories of molecules. Current bench-

mark data could be split into different subsets and this could provide information

that is currently being missed due to the drive to tuning for average performance.

In order to properly assess the optimal global hybrid based on PBE and BLYP,

a similar assessment was performed over the full G-1 and G-2 sets of atomisation

energies. The optimal global hybrid for each underlying functional had a differing

quantity of HFx (values of HFx in each optimal). This difference sheds some light

on the issues seen with the initial CAM-ωPBE and CAM-ωPBEa functionals, due

to insufficient HFx included when a+ b = 0.65 was enforced.

With the observation about the differing quantity of HFx required for an op-

timally performing global hybrid of PBE and BLYP, another optimisation of the

range separation parameters for CAM-ωPBE with the condition a + b < 1 was

undertaken. The optimisation used a series of atomisation energies, including

pyridine due to the differing behaviour of cyclic systems observed when consider-

ing global hybrids of PBE. The optimised parameters were a = 0.05, a+ b = 0.80

and ω = 0.40a−1
0 , referred to as CAM-PBE. The performance of CAM-PBE was

much improved over CAM-ωPBEa; especially for excited state properties where

CAM-PBE has a comparable performance to CAM-B3LYP, which suggests that

an attenuated range separated hybrid of PBE may have merits for the calculation

of excited state properties. However, there is poor performance when calculating

ionisation energies and electron affinities.

Thus a set of parameters were optimised on electron affinities (a = 0.10,

a + b = 0.80 and ω = 0.15 a−1
0 ), referred to as CAM-PBEea. However, whilst

these parameters improved the performance of electron affinities and ionisation

potentials, they had a detrimental effect on the performance of other properties

where CAM-PBE had good performance. Therefore whilst CAM-PBE has good

performance generally it should be noted about the poor performance of electron

affinities and ionisation potentials.
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3 Excited State Geometries and Emission Ener-

gies

The excitations considered previously are all absorption energies—corresponding

to the process whereby a photon is absorbed by a molecule in its ground state,

causing in this case 1 electron to be excited. This is modelled as the energy

difference between the minimum of the ground state potential energy surface to

the corresponding point on the excited state surface. There is a second excitation

process that can be studied: emission. Emission involves a molecule in an excited

state losing energy via the emission of a photon, and is modelled as the energy

difference between the minimum of the excited state potential surface and the

corresponding point of the ground state surface. A schematic of these two types

of excitations is shown in figure 24.

Figure 24: Schematic of absorption and emission excitations.

Although the same machinery (i.e., TDDFT) can be employed to describe both

situations involving the interaction of light with a molecule, the subtle difference

in the nature of the geometries involved between the absorption and emission

processes results in additional complexity and consequently a significant hurdle

when attempting to undertake accurate quantum chemical calculations.

The additional complexity that is implicit in the calculation of emission energies

with quantum chemical methods comes from the increase in the steps required for

the calculation. A schematic for the calculation of absorption and emission energies

is shown in figure 25.
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The additional complexity is obvious when looking at this schematic, there

are a few causes for this that will be highlighted. The calculation of absorption

energies required 2 steps, obtaining a ground state geometry (either from DFT or

from a literature structure using a higher level method) and then an excited state

calculation at this structure to obtain the absorption energies. These steps are

also included in the calculation of emission energies along with several others. The

calculation of emission energies requires an excited state geometry optimisation

for each state of interest along with an excited state calculation at this geometry.

These steps add considerable computational cost to the calculation of emission

energies. Along with a compounding effect when there are multiple states of

interest for a single molecule, as a set of absorption energies requires 2 steps and

a set of emission energies requires 2 + 2n steps (where n is the number of states of

interest). Further discussion on the calculation of excited state properties can be

seen in references 97,98

This increased complexity leads to the significant hurdle mentioned above, the

origin of which is two-fold. Firstly, the accuracy of quantum chemical methods

may be diminished away from the ground state geometry. Secondly, we need to

obtain an accurate excited state geometry to begin with. Currently, there is no

notable benchmark set of excited state geometries, or emission energies, to quantify

the accuracy of our results. However, there is experimental data describing both

the geometry and emission energy of a multitude of excited states in diatomic

molecules, but there is some data beyond diatomics but not the the same quantity

of those present for ground state properties.

There is a lack of an extensive benchmark of excited state structures and emis-

sion energies in literature of a similar manner to those that are available for ground

state properties and absorption energies which have been discussed in detail in the

previous chapter. There are several reasons for this lack of an extensive benchmark,

amongst which is an inability to experimentally access the results which would be

required for the formation of a benchmark. However, there is an exception con-

cerning diatomic molecules where extensive experimental data exists. Despite the

existence of this experimental data, diatomic molecules are a poor choice to de-

velop a benchmark set from due to the limited chemical interest of these molecules

and the ability to brute force the correct structure due to these molecules having

only a single coordinate (bond length) which can be altered. Another reason for

the lack of an extensive benchmark of excited state structures and emission energy

is due to the complexity and cost of obtaining high level theory results for these

properties due to the nature of how the properties are modelled. When emission

energies and excited state structures have been calculated/reported in previous

literature using high level theory it is limited to a few specific states of interest
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for a few specific molecules rather than an extensive set of states and molecules

as is the case for absorptions, benchmark sets of which were used in the previous

chapter.

The lack of an extensive benchmark set for these properties leads to questions

about the accuracy of calculating the properties using various approximate Excs,

as the assessment of approximate Excs is used to suggest which functionals should

be used for the accurate calculation/the expected error in the results when using

approximate Excs, thus the lack of a benchmark set for these properties is an

important gap when considering using approximate Excs for the calculation of

these properties. There is no way of telling how accurate approximate Excs are for

these properties.

This chapter will initially discuss 2 diatomic molecules as a preliminary in-

vestigation using DFT to suggest where issues may exist when applying DFT to

these properties. This is followed by the choice of molecules and states included

and method that will be used in the development of a benchmark set of excited

state properties and emission energies. Finally, there will be an assessment of

several approximate Excs using the benchmark set, with suggestions of the type

of functional/properties of approximations that should be used for the accurate

calculation of emission energies/excited state structures.

3.1 CO Emissions and Excited State Geometries

The emission energies and excited state geometries of CO can be compared to

extensive experimental data about the excited states from NIST webbook99. The

energies of the CO states were followed using CAM-B3LYP and three basis sets

(cc-pVDZ, aug-cc-pVDZ and daug-cc-pVDZ). The energy surfaces of the states (3

Σ, 3 Π and ∆ states for cc-pVDZ and aug-cc-pVDZ and 4 Σ, 2 Π and ∆ states

for daug-cc-pVDZ) are modelled by incrementing the bond length of CO between

0.8Å and 1.9Å and calculating the energies of the states. The plots of the lowest

three energy states (Σ−, Π and ∆) are plotted with the ground state and compared

to the plots seen in reference 100. The plots of these for the three basis sets can

be seen in figures 26, 27 and 28.
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Figure 26: Plot of lowest three energy states for cc-pVDZ.
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Figure 27: Plot of lowest three energy states for aug-cc-pVDZ.
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Figure 28: Plot of lowest three energy states for daug-cc-pVDZ.

The minima of the three states in all of these plots are close to the experimental

bond lengths for the states (1.2353Å for Π, 1.3911Å for Σ− and 1.399Å for ∆).

With the energy surfaces plotted here, it can clearly be seen that the states cross

over and may cause the incorrect state to be optimised during calculations. This

means that great care will need to be taken to ensure the correct state is being

followed during the excited state geometry optimisations.

3.2 Selection of Benchmark Set

There exists no benchmark set of excited state geometries and thus emission ener-

gies in the same way there is for ground state geometries and absorption sets (e.g.

Thiel set of triplet absorptions86–88). The selection of molecules and states in a

benchmark set needs to be carefully considered as if there is a lack of variety the

set will not be useful for investigating several types of excitation/molecules, and

include molecules which are of chemical interest. Having a variety of molecules

and excitations in the set will enable the assessment of functionals over a wider

series of excited state geometries and thus emission energies.

The diatomics investigated above are not of special chemical interest, have

experimental data and can be solved using brute force (due to the single degree

of freedom, bond length). Diatomic molecules are not a good type of molecule to
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base a benchmark set on, they could be included but are of limited interest.

The benchmark set will be built from existing benchmark sets of molecules for

absorptions, these sets will be the lambda set of singlet absorptions47 and the Thiel

set of triplet absorptions86–88 (both used previously to assess density functionals).

The lambda set has a variety of types of singlet excitations (local, charge-transfer

and Rydberg) along with a selection of organic molecules. The Thiel set has a

series of triplet excitations of a variety of organic molecules. The molecules chosen

along from these two absorption sets with the states for each molecule are shown

in figures 29 and 30. The set will be expanded by including the triplet equivalents

of the lambda set and the singlet equivalents of the Thiel set.
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Furan: B2, A1 Imidazole: 1A′,

2A′, A′′, 3A′
Pyrrole: B2, A1 Pyridine: 1A1, B1,

1B2, 2A1, A2, 2B2

Tetrazine: B3u, 1Au, B1g,

1B1u, B2u, B2g, 2Au, 2B1u

Formaldehyde:

A2, A1

Acetone: A2, A1 Formamide: A′′, A′

Propanamide: A′′, A′

1

Figure 30: Molecules and states from the Thiel set of absorptions that will form

part of the excited state geometry and emission energy benchmark set

The molecules chosen have an obvious chemical diversity and also contain series

of closely related molecules (such as the polyacetylenes and acenes).
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3.3 Validation of Method Selected for Calculation of Bench-

mark Set

Certain molecules and states are excluded due to issues with calculating them when

using the method used for the benchmark set. The method selected for use in the

calculation of the benchmark set is approximate second order coupled cluster, CC2.

It has been previously used to benchmark DFT results for certain molecules, such

as DMABN101, and with the diversity and size of the set of molecules, it is a feasible

way to obtain a full set of excited state structures and emission energies. In order

to assess the suitablity of CC2 to calculate other molecules in the benchmark set,

any existing values for emissions of the states in the set with higher level theory

should be sought out. Literature values with higher levels of theory have been

found for a few of the states in the benchmark set. The states found were all

singlet states and are shown in table 43 along with the CC2 calculated values.

The cc-pVDZ basis set was used to calculate these emission values. The method

used for each literature emission is also shown in table 43.

Table 43: Literature emission energies found for the states in the benchmark set

compared to the CC2 calculated values, all values in eV.

Molecule State CC2 emission /eV Literature emission /eV

Phenylpyrrole 1B2 4·75 4·45a

2B2 4·95 4·71

Butadiene Bu 5·87 5·73b

a CASPT2 reference 102
b Expt. reference 103

The emission values for the states found in literature calculated with CC2 show

good agreement with the literature values. There is some discrepancy between the

results. This seems dependent on the method used in the previous literature; the

phenylpyrrole and butadiene states are overestimated with CC2 compared to the

CASPT2 and experimentally derived values in literature respectively. It is noted

that CC2 has at worst a 0.3 eV error from the literature value obtained. This

is a little high but this is only a single case, the errors in other cases is smaller.

It shows that care may need to be used for some states but generally CC2 is a

good enough method to use for the generation of the benchmark set of excited

state geometries and emission energies, due to the fairly good agreement with

literature values and the use of the method for previous studies into molecules in

the benchmark set, along with the feasability of using the method to generate to

volume of excited state structures and emission energies in the benchmark set at

a reasonable computational cost.
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As mentioned previously with the diatomics there may a benefit to using an

augmented basis set for the calculation of higher energy singlet emissions. This

is tested to check if the additional computation cost associated with undertaking

this is necessary for the calculation of the full benchmark set of singlets. Table 44

shows the results for the CC2 emissions using cc-pVDZ and aug-cc-pVDZ.

Table 44: CC2 emission energies using cc-pVDZ and aug-cc-pVDZ basis sets for

the states with literature values, all values in eV.

Molecule State cc-pVDZ/eV aug-cc-pVDZ/eV Literature/eV

Phenylpyrrole 1B2 4·75 4·37 4·45

2B2 4·95 4·74 4·71

Butadiene Bu 5·87 5·42 5·73

The augmented basis set gives much closer to literature values for the phenylpyr-

role states, however it overcorrects the overestimation seen in the butadiene state.

The augmented basis set gives a smaller mean absolute error for the states (0.23

eV for cc-pVDZ and 0.14 eV for aug-cc-pVDZ). This shows that aug-cc-pVDZ is

the basis set that should be used for the calculation of the benchmark set.

3.4 CC2 Values for the Benchmark Set of Emission Ener-

gies

As the selection of states and molecules in the benchmark set has been completed

and the method selected for the calculation of the benchmark excited state geome-

tries and emission energies has been validated, it follows that the calculation of

the full set of states needs to be undertaken. This will be split into four sections,

the Lambda set singlet and triplet emissions and the Thiel set triplet and singlet

emissions. The method used in each case will be discussed in the section. There

will be an assessment of the influence of the basis set on some of the states in the

benchmark set, especially including diffuse functions (cc-pVDZ vs aug-cc-pVDZ).

3.4.1 Lambda Singlet Emission Energies

The lambda singlet emission energies were calculated using CC2 and the aug-cc-

pVDZ basis set for all states except the H2CO states which used the daug-cc-pVTZ

basis set. The much larger daug-cc-pVTZ basis set was used for the calculation of

the H2CO states due to the high energy of these states, some of the states have a

similar energy to those which had issues when investigating the diatomics. Thus,

the larger basis set was deemed necessary for the calculation of the H2CO states.
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The emission energies for the singlet states from the lambda set of states are

shown in table 45.
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Table 45: Lambda CC2 singlet emission energies, all values are in eV.

Molecule State Emission Energy/eV

Dipeptide π1 → π∗2 6·25

n1 → π∗1 3·24

n2 → π∗2 5·07

β-dipeptide π1 → π∗2 5·87

n1 → π∗1 3·10

n2 → π∗2 5·35

Acene 1 B2u 4·07

B3u 4·19

Acene 2 B2u 3·15

B3u 3·59

Acene 3 B2u 2·47

B3u 3·27

Acene 4 B2u 2·12a

B3u 3·12a

Acene 5 B2u 1·78a

B3u 2·97a

PP 1 B2 4·37

1 A1 4·43

2 B2 4·74

2 A1 5·24

DMABN B 4·07a

A 2·43a

PA2 Bu 5·42

PA3 Bu 4·57

PA4 Bu 3·97

PA5 Bu 3·53

H2CO 3 A2 8·59

2 A2 7·54

1 B1 8·45

2 B2 7·28

1 A1 7·23

1 B2 6·31

1 A2 3·10

a cc-pVDZ values due to issues isolating the excited

state geometries with aug-cc-pVDZ

The emission values for the singlet states of DMABN and acene 4 and 5 have
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calculated using cc-pVDZ (a smaller basis set) due to issues with isolating the

excited states with aug-cc-pVDZ (similar to the diatomics). The excited state

structure using cc-pVDZ was then used as an initial geometry in an attempt to

start closer to the geometry for aug-cc-pVDZ and this did not enable isolation of

the states.

3.4.2 Lambda Triplet Emission Energies

The lambda triplet emission energies were calculated using CC2 and the aug-

cc-pVDZ basis set for all states except the H2CO states which use the daug-cc-

pVTZ basis set. Again the daug-cc-pVTZ basis set was deemed necessary for the

calculation of the H2CO states.

The emission energies for the singlet states from the lambda set of states are

shown in table 46.
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Table 46: Lambda CC2 triplet emission energies, all values are in eV.

Molecule State Emission Energy/eV

Dipeptide π1 → π∗2 4·30

n1 → π∗1 3·32

n2 → π∗2 4·69

β-dipeptide π1 → π∗2 5·04

n1 → π∗1 3·17

n2 → π∗2 4·52

Acene 1 B2u 2·51

B3u 4·03

Acene 2 B2u 1·69

B3u 3·60

Acene 3 B2u 1·15

B3u 3·32

Acene 4 B2u 0·75a

B3u 3·21a

Acene 5 B2u 0·47a

B3u 3·08a

PP 1 B2 3·13

1 A1 3·26

2 B2 4·08

2 A1 4·31

DMABN A 2·80

PA2 Bu 2·08

PA3 Bu 1·59

PA4 Bu 1·26

PA5 Bu 1·02

H2CO 3 A2 8·58

2 A2 7·55

1 B1 5·84

2 B2 7·20

1 A1 3·52

1 A2 2·73

a cc-pVDZ values due to issues isolating the excited

state geometries with aug-cc-pVDZ

The emission values for the triplet states of acene 4 and 5 have calculated

using cc-pVDZ (a smaller basis set) due to issues with isolating the excited states

with aug-cc-pVDZ (similar to the diatomics). The excited state structure using
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cc-pVDZ was then used as an initial geometry in an attempt to start closer to the

geometry for aug-cc-pVDZ and this still did not enable isolation of the states. It

is also noted that there are a few triplet states that are absent from the calculated

CC2 emission values that were present in the singlet states. These are the B

state of DMABN and the 1B2 state of H2CO. Both of these states had issues with

optimising the excited state geometry, all avenues were exhausted in attempts to

obtain structures for these two missing states and they remained absent.

3.4.3 Thiel Triplet Emission Energies

The Thiel triplet emission energies were calculated using CC2 and the aug-cc-

pVDZ basis set for all states. The emission energies for the singlet states from the

lambda set of states are shown in table 47.
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Table 47: Thiel CC2 triplet emission energies, all values in eV.
Molecule State Emission Energy/eV

Ethene B1u 2·87

Butadiene Bu 2·08

Ag 4·41

Hexatriene Bu 1·59

Ag 3·70

Octatetraene Bu 1·26

Ag 3·15

Cyclopropene B2 2·60

B1 6·11

Cyclopentadiene B2 2·05

A1 4·40

Norbornadiene B2 3·37

A1 5·27

Benzene B1u 3·95

E1u 4·74

B2u 5·62

E2g 6·97

Naphthalene 1 B2u 2·51

1 B3u 4·03

1 B1g 3·97

2 B2u 4·22

2 B3u 4·71

1 Ag 5·35

2 Ag 6·28

2 B1g 5·60

3 B1g 6·74

3 Ag 6·47

Furan B2 3·15

A1 4·90

Pyrrole B2 3·60

A1 5·05

Imidazole 1 A’ 3·60

2 A’ 4·84

1 A” 4·85

3 A’ 5·55

Pyridine 1 A1 3·58

B1 3·54

1 B2 4·49

2 A1 4·86

A2 3·63

2 B2 5·92

Tetrazine B3u 1·60

1 Au 1·48

B1g 4·26

1 B1u 3·18

B2u 4·21

B2g 3·31

2 Au 4·33

2 B1u 5·09

Formaldehyde A2 2·61

A1 3·42

Acetone A2 2·63

A1 3·51

Formamide A” 3·21

A’ 3·87

Acetamide A” 3·20

A’ 4·31

Propanamide A” 3·21

A’ 4·34
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3.4.4 Thiel Singlet Emission Energies

The Thiel triplet emission energies were calculated using CC2 and the aug-cc-

pVDZ basis set for all states. The emission energies for the singlet states from the

lambda set of states are shown in table 48.

105



Table 48: Thiel CC2 singlet emission energies, all values in eV.
Molecule State Emission Energy/eV

Ethene B1u 6·89

Butadiene Bu 5·42

Ag 5·99

Hexatriene Bu 4·57

Ag 5·10

Octatetraene Bu 3·97

Ag 4·31

Cyclopropene B2 5·21

B1 6·23

Cyclopentadiene B2 4·48

A1 5·56

Norbornadiene B2 3·37

A1 5·32

Benzene B1u 4·83

E1u 6·81

B2u 6·21

E2g 7·62

Naphthalene 1 B2u 4·07

1 B3u 4·19

1 B1g 5·29

2 B2u 5·82

2 B3u 5·75

1 Ag 5·77

2 Ag 6·48

2 B1g 6·04

3 B1g 6·98

3 Ag 7·14

Furan B2 5·64

A1 5·80

Pyrrole B2 5·78

A1 5·77

Imidazole 1 A’ 5·24

2 A’ 6·00

1 A” 4·87

3 A’ 6·21

Pyridine 1 A1 5·14

B1 4·04

1 B2 4·78

2 A1 6·12

A2 3·66

2 B2 5·63

Tetrazine B3u 2·18

1 Au 1·64

B1g 5·03

1 B1u 6·36

B2u 4·53

B2g 3·63

2 Au 4·65

2 B1u 6·27

Formaldehyde A2 3·00

A1 7·04

Acetone A2 2·69

A1 6·25

Formamide A” 3·15

A’ 4·63

Acetamide A” 3·12

A’ 4·30

Propanamide A” 3·12

A’ 4·33
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3.4.5 Internal Consistency

There are some molecules and states which repeat in the two sets, these can be

used to check the internal consistency of the method (the emission for each state

should be equivalent). These molecules, and states in brackets, are: butadiene,

hexatriene and octatetraene (Bu) and naphthalene (1B2u and 1B3u). This will

check that the method is getting to the same excited state structure and thus

emission energy regardless of the initial geometry. Table 49 shows the results for

each of these states for each set.

Table 49: Emission energies for the common states across the two sets with each

basis set used, all values in eV.

Molecule State Lambda Thiel Lambda Thiel

Singlet/eV Singlet/eV Triplet/eV Triplet/eV

Butadiene Bu 5·42 5·42 2·08 2·08

Hexatriene Bu 4·57 4·57 1·59 1·59

Octatetraene Bu 3·97 3·97 1·26 1·26

Naphthalene B2u 4·07 4·07 2·51 2·51

B3u 4·19 4·19 4·03 4·03

The results for each of these states is identical between the two sets, which is

expected. This means that only one copy of each state is required to be used in

the benchmark set.

3.5 Complete CC2 Emission Energy Benchmark

The two sets will be combined to generate a complete benchmark of emission

energies. The emission energies calculated with CC2 are shown in table 50.
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Table 50: Complete CC2 emission energy benchmark, all values in eV.

Molecule State Singlet Emission/eV Triplet Emission/eV

Dipeptide π1 → π∗2 6·25 4·30

n1 → π∗1 3·24 3·32

n2 → π∗2 5·07 4·69

β-dipeptide π1 → π∗2 5·87 5·04

n1 → π∗1 3·10 3·17

n2 → π∗2 5·35 4·52

Naphthalene/ 1 B2u 4·07 2·51

Acene 1 1 B3u 4·19 4·03

1 B1g 5·29 3·97

2 B2u 5·82 4·22

2 B3u 5·75 4·71

1 Ag 5·77 5·35

2 Ag 6·48 6·28

2 B1g 6·04 5·60

3 B1g 6·98 6·74

3 Ag 7·14 6·47

Acene 2 B2u 3·15 1·69

B3u 3·59 3·60

Acene 3 B2u 2·47 1·15

B3u 3·27 3·32

Acene 4 B2u 2·12 0·75

B3u 1·78 3·21

Acene 5 B2u 1·78 0·47

B3u 2·97 3·08

Phenylpyrrole 1B2 4·37 3·13

1A1 4·43 3·26

2B2 4·74 4·08

2A1 5·24 4·31

DMABN B 4·07

A 2·43 2·80

Butadiene/ Bu 5·42 2·08

PA 2 Ag 5·99 4·41

Hexatriene/ Bu 4·57 1·59

PA 3 Ag 5·10 3·70

Octatetraene/ Bu 3·97 1·26

PA 4 Ag 4·31 3·15

PA 5 Bu 3·53 1·02

H2CO 3 A2 8·59 8·58

2 A2 7·54 7·55

1 B1 8·45 5·84

2 B2 7·28 7·20

1 A1 7·23 3·52

1 B2 6·31

1 A2 3·10 2·73
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Molecule State Singlet Emission/eV Triplet Emission/eV

Ethene B1u 6·89 2·87

Cyclopropene B2 5·21 2·60

B1 6·23 6·11

Cyclopentadiene B2 4·48 2·05

A1 5·56 4·40

Norbornadiene B2 3·37 3·37

A1 5·32 5·27

Benzene B1u 4·83 3·95

E1u 6·81 4·74

B2u 6·21 5·62

E2g 7·62 6·97

Furan B2 5·64 3·15

A1 5·80 4·90

Pyrrole B2 5·78 3·60

A1 5·77 5·05

Imidazole 1 A’ 5·24 3·60

2 A’ 6·00 4·84

1 A” 4·87 4·85

3 A’ 6·21 5·55

Pyridine 1 A1 5·14 3·58

B1 4·04 3·54

1 B2 4·78 4·49

2 A1 6·12 4·86

A2 3·66 3·63

2 B2 5·63 5·92

Tetrazine B3u 2·18 1·60

1 Au 1·64 1·48

B1g 5·03 4·26

1 B1u 6·36 3·18

B2u 4·53 4·21

B2g 3·63 3·31

2 Au 4·65 4·33

2 B1u 6·27 5·09

Formaldehyde A2 3·00 2·61

A1 7·04 3·42

Acetone A2 2·69 2·63

A1 6·25 3·42

Formamide A” 3·15 3·21

A’ 4·63 3·87

Acetamide A” 3·12 3·20

A’ 4·30 4·31

Propanamide A” 3·12 3·21

A’ 4·33 4·34

This complete set of emission energies and their related excited state structures

will enable us to perform an assessment of the accuracy of DFT functionals for

calculating these properties.
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3.6 Application of Benchmark Set to DFT

In the previous section, a benchmark set of singlet and triplet excited state geome-

tries were obtained using the RI-CC2 method. This benchmark set is now used

to assess the performance of several DFT approximations, similar to those used in

section 2.1.

The assessment of the DFT approximations will be in two parts. The first

part will be in a similar way to the use of the ground state/absorption benchmark,

using a fixed set of structures (those from the benchmark set, RI-CC2 structures),

calculating the excitation energy at each of these structures and comparison of

these values to those obtained for the emission energies in the benchmark set. The

second part will be an assessment of the DFT approximations ability to predict

emission energies, namely an excited state geometry will be calculated for each

state using each DFT approximation. The emission energies at each of these

structures will be compared to RI-CC2 emission energies.

3.6.1 Influence of TDA-TDDFT on Triplet Instabilities

It has been shown that stability issues can lead to issues in the accurate calculation

of absorption energies for triplet states especially when using TDDFT. This issue

in the absorptions can be corrected with the use of TDA-TDDFT. Therefore an

initial investigation of the influence of the use of TDA-TDDFT on the calculation

of a selection of triplet emission energies was undertaken. This will allow us to see

if TDA-TDDFT should be used over TDDFT for the calculation of the rest of the

assessment of the functionals.

Using the triplet states of a selection of molecules in the benchmark set will

allow us to investigate the influence of TDA-TDDFT on the calculation of the

triplet emission energies of the full set. The molecules and states chosen for this

investigation are shown in table 51 along with whether they are low or high stability

states; the low stability states have a Hartree—Fock stability <2 eV and the high

stability states have a Hartree—Fock stability >2 eV following references 85, 89

and 90. Hartree–Fock instabilities are seen when the energy of the Hartree–Fock

wavefunction is not the absolute minimum. Further information on stability can

be seen in reference 104.
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Table 51: Molecules and states included in the investigation of the influence of

TDA-TDDFT along with their stability as defined above.
Molecule State Stability

Ethene B1u Low

Butadiene Bu Low

Ag Low

Hexatriene Bu Low

Ag Low

Octatetraene Bu Low

Ag Low

Cyclopropene B2 Low

B1 High

Cyclopentadiene B2 Low

A1 Low

Benzene B1u Low

E1u High

B2u High

E2g High

Napthalene 1 B2u Low

1 B3u High

1 B1g Low

2 B2u High

2 B3u High

1 Ag High

2 Ag High

2 B1g High

3 B1g High

3 Ag High

Furan B2 Low

A1 High

Pyrrole B2 Low

A1 High

Imidazole 1A’ Low

2 A’ High

A” High

3 A’ High

Pyridine 1 A1 Low

B1 High

1 B2 High

2 A1 High

A2 High

2 B2 High

Tetrazine B3u Low

1 Au High

B1g High

1 B1u Low

B2u Low

B2g High

2 Au High

2 B1u High

Formaldehyde A2 High

A1 Low

Acetone A2 High

A1 Low

Formamide A” High

A’ Low

Acetamide A” High

A’ High

Propanamide A” High

A’ High

The preliminary investigation was undertaken using PBE0, B3LYP, LC-ωPBE

and CAM-B3LYP. The results of the DFT emissions at the RI-CC2 structures

was compared to the CC2 emission energies when using both TDDFT and TDA-

TDDFT. The results for these are visualised in figures 31 and 32 respectively.
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Figure 31: Plot of RI-CC2 emission energy against DFT emission energy for the

preliminary investigation using TDDFT.
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Figure 32: Plot of RI-CC2 emission energy against DFT emission energy for the

preliminary investigation using TDA-TDDFT.

When comparing the two plots it is plain to see that the emissions which are

lower in energy with RI-CC2 move closer to the diagonal when using TDA-TDDFT

compared to TDDFT. In order to get a clearer view of the influence of using TDA-

TDDFT on the low stability states, the set will be split following the stabilities in
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table 51. The results for the low stability states are shown in figures 33 and 34 for

TDDFT and TDA-TDDFT respectively. The results for the high stability states

are shown in figures 35 and 36 for TDDFT and TDA-TDDFT respectively.
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Figure 33: Plot of RI-CC2 emission energy against DFT emission energy for the

low stability states using TDDFT.
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Figure 34: Plot of RI-CC2 emission energy against DFT emission energy for the

low stability states using TDA-TDDFT.
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Figure 35: Plot of RI-CC2 emission energy against DFT emission energy for the

high stability states using TDDFT.
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Figure 36: Plot of RI-CC2 emission energy against DFT emission energy for the

high stability states using TDA-TDDFT.

The influence of TDA-TDDFT is clear to see on the low stability states where

there is a clear shift towards the diagonal between figures 33 and 34. There is little

to no change seen in the plots for the high stability states. This follows what has

been previously seen in literature for absorptions85,89,90. Therefore TDA-TDDFT
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will be used to calculate all DFT excitations in the subsequent assessment due

to having a large correcting influence on the low stability states whilst having no

effect on the high stability states, meaning it will not cause large errors in these

states.

3.6.2 Emission energies using DFT at RI-CC2 Structures

The excited state structures obtained for the benchmark set were used to calculate

DFT emission energies using the same basis set as those used for the benchmark

calculations. TDA-TDDFT will be employed in order to counteract any stability

issues as discussed above. The benchmark is split into two parts, singlet and triplet

excitations. The DFT approximations used were PBE, PBE0, PBE50 (a global

hybrid based on PBE with 50% Hartree–Fock exchange (HFx)), LC-ωPBE, BLYP,

B3LYP, BHHLYP and CAM-B3LYP. These DFT approximations were chosen to

investigate the influence of both the inclusion of HFx (with the change from pure

DFT to hybrids, both global and range-separated) and the influence of two different

base approximations (PBE vs BLYP).

3.6.2.1 Singlet Excitations

There are a total of 87 singlet states in the benchmark set. The RI-CC2 structures

for each state were used to calculate the DFT emission energy for each state. The

emission values for each state using each DFT approximation are then subtracted

from the RI-CC2 reference values to give errors. This enables the generation of

mean errors, mean absolute errors and standard deviations for the set of singlet

excitations when using DFT approximations at the RI-CC2 structures. The mean

error (d), mean absolute error (|d|) and standard deviations (σ) for the 8 function-

als are shown in table 52.

Table 52: The mean error, mean absolute error and standard deviations for each

DFT approximations at the RI-CC2 singlet state structures, all values in eV

PBE PBE0 PBE50 LC-ωPBE BLYP B3LYP BHHLYP CAM-B3LYP

d −0·36 0·13 0·61 0·64 −0·41 −0·01 0·50 0·31

|d| 0·48 0·28 0·62 0·65 0·52 0·28 0·58 0·35

σ 0·47 0·38 0·56 0·54 0·50 0·41 0·56 0·41

PBE Based Approximations

It can be seen that for singlet emissions using PBE based functionals at the RI-CC2

structures that the best performing functional is PBE0, with a mean absolute error

of 0.28 eV. This is different to the performance of the functionals for absorption

excitations where LC-ωPBE performs best. LC-ωPBE is the worst performing
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functional for the emission energies at the CC2 structures, with a mean absolute

error of 0.65 eV. However this may not be the case once the relevant DFT structures

are used. As the reuslts here are showing how accurate the DFT approximation is

at reproducing the RI-CC2 emission at the RI-CC2 excited state structure which

may not be close the DFT excited state structure.

PBE underestimates the singlet emissions on average and the inclusion of HFx

with the hybrid functionals leads an overestimation of the singlet emissions on

average.

BLYP Based Approximations

It can be seen that for the singlet emissions using BLYP based functionals at the

RI-CC2 structures that the best performing functional is B3LYP, with a mean

absolute error of 0.28 eV. This is again follows the trend seen with PBE based

functionals, however the range-separated functional, CAM-B3LYP, is the second

best performing functional of the BLYP based functionals, with a mean absolute

error of 0.35 eV.

BLYP underestimates the singlet emission energies on average, the inclusion

of HFx increases the calculated emission energies on average, with more positive

mean errors between BLYP and the hyrbid functionals.

Inclusion of Hartree–Fock Exchange

The inclusion of HFx leads to a increase in the singlet emissions calculated on

average, with the pure DFT functionals having an underestimation of the singlet

emissions on average (negative mean error) and the hybrids increase the predicted

values of the emission energies (with more positive mean errors).

The inclusion of a limited percentage of HFx is shown as important as PBE0

(25%), B3LYP (20%) and CAM-B3LYP (19-65% scaling) are the best performing

functionals, with mean absolute errors of 0.28 eV, 0.28 eV and 0.35 eV respectively.

However if too much HFx is included the error will increase as seen with the two

global hybrid functionals with 50% HFx (PBE50 and BHHLYP) included along

with LC-ωPBE having the largest errors, with mean absolute errors of 0.62 eV,

0.65 eV and 0.58 eV respectively.

The pure DFT functionals (PBE and BLYP) perform somewhat better than

functionals with large percentages of HFx but they are outperformed by functionals

with a lower percentage of HFx included. This highlights the importance for a

careful consideration of the percentage of HFx included when investigating singlet

emissions, as some is necessary but too much is detrimental.
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3.6.2.2 Triplet Excitations

There are a total of 85 triplet states in the benchmark set. The RI-CC2 structures

for each state were used to calculate the DFT emission energy for each state. The

emission values for each state using each DFT approximation are then subtracted

from the RI-CC2 reference values to give errors. This enables the generation of

mean errors, mean absolute errors and standard deviations for the set of triplet

excitations when using DFT approximations at the RI-CC2 structures. The mean

error (d), mean absolute error (|d|) and standard deviations (σ) for the 8 function-

als are shown in table 53.

Table 53: The mean error, mean absolute error and standard deviations for each

DFT approximations at the RI-CC2 triplet state structures, all values in eV

PBE PBE0 PBE50 LC-ωPBE BLYP B3LYP BHHLYP CAM-B3LYP

d −0·45 −0·31 −0·21 −0·21 −0·46 −0·33 −0·21 −0·23

|d| 0·47 0·36 0·43 0·38 0·48 0·35 0·43 0·32

σ 0·31 0·28 0·48 0·41 0·32 0·24 0·49 0·31

PBE Based Approximations

It can be seen that for triplet emissions using PBE based functionals at the RI-CC2

structures that the best performing functional is PBE0, with a mean absolute error

of 0.36 eV. This is closely followed by LC-ωPBE, with a mean absolute error of 0.38

eV. This is a different trend to that seen in the singlet excitations where LC-ωPBE

is the worst performing functional. All the PBE based functionals underestimate

the triplet emissions on average, with all having negative mean errors.

BLYP Based Approximations

It can be seen that for the triplet emissions using BLYP based functionals at the

RI-CC2 structures that the best performing functional is CAM-B3LYP, with a

mean error of 0.32 eV. Again B3LYP is close in accuracy to CAM-B3LYP, with a

mean absolute error of 0.35 eV, as is seen in the PBE based functionals with both

the global and range-separated hybrid functionals performing similarly for triplet

emissions at the RI-CC2 structure. All the BLYP based functionals underestimate

the triplet emissions on average, with all having negative mean errors.

Inclusion of Hartree–Fock Exchange

The inclusion of HFx is shown as important as PBE0 (25%), B3LYP (20%), LC-

ωPBE (0-100% scaling) and CAM-B3LYP (19-65% scaling) are the best performing

functionals, with mean absolute errors of 0.36 eV, 0.35 eV, 0.38 eV and 0.32 eV
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respectively. However if too much HFx is included the error will increase as seen

with the two global hybrid functionals with 50% HFx (PBE50 and BHHLYP)

having large errors, with mean absolute errors of 0.43 eV and 0.43 eV respectively.

The pure DFT functionals are the worst performing functionals for the triplet

emissions at the RI-CC2 structures, highlighting the importance for the inclusion

of HFx.

3.6.3 Emission Energies using DFT at DFT Structures

The values calculated in the previous section were all at the RI-CC2 structures,

this gives an idea of the accuracy of the DFT approximations at a fixed structure

however the RI-CC2 structures may not be the excited state structures for the

DFT approximations used. Therefore an excited state structure optimisation and

subsequent emission energy calculation gives a more realistic idea of the accuracy

of the DFT approximations for the calculation of emission energies as there may

not be a fixed/benchmark structure to start from in the calculation of emissions

for systems not present in the benchmark set.

The same 8 functionals are investigated, again along with the differences be-

tween the singlet and triplet states. The basis set used in each case is the same as

that used in the benchmark set. TDA-TDDFT will be employed in order to coun-

teract any triplet instabilities that are present in the triplet states. The emission

values calculated at the DFT structures will be compared to the emission energies

in the benchmark set using RI-CC2.

LC-ωPBE structures are unfeasable to obtain due to exceptional computational

cost. Thus a smaller investigation will be conducted using the CAM-B3LYP struc-

tures and the PBE0 structures.

3.6.3.1 Singlet Excitations

There are a total of 87 singlet states in the benchmark set. The emission values for

each state using each DFT approximation are then subtracted from the RI-CC2

reference values to give errors. This enables the generation of mean errors, mean

absolute errors and standard deviations for the set of singlet emissions when using

DFT approximations. The mean error (d), mean absolute error (|d|) and standard

deviations (σ) for the 8 functionals are shown in table 54.
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Table 54: The mean error, mean absolute error and standard deviations for each

DFT approximations at DFT singlet state structures, all values in eV

PBE PBE0 PBE50 BLYP B3LYP BHHLYP CAM-B3LYP

d −0·43 0·18 0·74 −0·47 0·07 0·57 0·40

|d| 0·69 0·51 0·81 0·67 0·48 0·78 0·54

σ 0·98 0·80 0·71 0·78 0·81 0·86 0·62

PBE Based Approximations

It can be seen that for singlet emissions using PBE based functionals at the DFT

structures that the most accurate functional is PBE0, with a mean absolute error

of 0.51 eV. This is similar to the trend shown at the RI-CC2 structures for singlet

emissions, with PBE0 performing best followed by PBE and then PBE50.

PBE underestimates the singlet emissions on average and the inclusion of HFx

with the hybrid functionals leads an overestimation of the singlet emissions on

average, following the trend observed at the RI-CC2 structures.

BLYP Based Approximations

It can be seen that for the singlet emissions using BLYP based functionals at

the DFT structures that the best performing functional is B3LYP, with a mean

absolute error of 0.48 eV. This is again follows the trend seen with PBE based

functionals, however the range-separated functional, CAM-B3LYP, is the second

best performing functional of the BLYP based functionals, with a mean absolute

error of 0.54 eV, again following the trend seen at the RI-CC2 structures. The

pure DFT functional, BLYP, underestimates the singlet emissions on average and

the hybrid functionals over estimate the singlet emissions on average. BLYP shows

underestimated singlet emission energies on average, with a negative mean error.

The hybrid functionals lead to an overestimation of the singlet emission energies

on average, with positive mean errors. This follows the trend observed at the

RI-CC2 structures.

Inclusion of Hartree–Fock Exchange

The inclusion of HFx leads to a increase in the singlet emissions calculated on

average, with the pure DFT functionals having an underestimation of the singlet

emissions on average (negative mean error) and the hybrids increase the predicted

values of the emission energies (with increasing mean errors).

The inclusion of a limited percentage of HFx is shown as important as PBE0

(25%), B3LYP (20%) and CAM-B3LYP (19-65% scaling) are the best performing

119



functionals, with mean absolute errors of 0.51 eV, 0.48 eV and 0.54 eV respectively.

However if too much HFx is included the error will increase as seen with the two

global hybrid functionals with 50% HFx (PBE50 and BHHLYP) included having

the largest errors, with mean absolute errors of 0.81 eV and 0.78 eV respectively.

The pure DFT functionals (PBE and BLYP) perform somewhat better than

functionals with large percentages of HFx but they are outperformed by functionals

with a lower percentage of HFx included. This highlights the importance for a

careful consideration of the percentage of HFx included when investigating singlet

emissions, as some is necessary but too much is detrimental. This is the same

observation seen in the singlet emissions at the RI-CC2 structures.

3.6.3.2 Triplet Excitations

There are a total of 85 triplet states in the benchmark set. The emission values for

each state using each DFT approximation are then subtracted from the RI-CC2

reference values to give errors. This enables the generation of mean errors, mean

absolute errors and standard deviations for the set of triplet emissions when using

DFT approximations. The mean error (d), mean absolute error (|d|) and standard

deviations (σ) for the 8 functionals are shown in table 55.

Table 55: The mean error, mean absolute error and standard deviations for each

DFT approximations at DFT triplet state structures, all values in eV

PBE PBE0 PBE50 BLYP B3LYP BHHLYP CAM-B3LYP

d −0·41 −0·20 −0·04 −0·53 −0·25 −0·12 −0·13

|d| 0·44 0·31 0·33 0·57 0·34 0·38 0·29

σ 0·45 0·34 0·47 0·67 0·32 0·54 0·37

PBE Based Approximations

It can be seen that for triplet emissions using PBE based functionals at the DFT

structures that the most accurate functional is PBE0, with a mean absolute error

of 0.31 eV. This is similar to the trend shown at the RI-CC2 structures for triplet

emissions, with PBE0 performing best followed by PBE50 and then PBE. All the

PBE based functionals underestimate the triplet emissions on average, with all

having negative mean errors.

BLYP Based Approximations

It can be seen that for the triplet emissions using BLYP based functionals at the

DFT structures that the best performing functional is CAM-B3LYP, with a mean
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absolute error of 0.29 eV. This again follows the trend seen at the RI-CC2 struc-

tures. The pure DFT functional, BLYP, is the worst performing functional, with

a mean absolute error of 0.57 eV. All the BLYP based functionals underestimate

the triplet emissions on average, with all having negative mean errors.

Inclusion of Hartree–Fock Exchange

The inclusion of HFx is shown as important as all the hybrid functionals having

similar mean absolute errors and lower mean absolute errors than the pure DFT

functionals. The pure DFT functionals are again the worst performing functionals

for the triplet emissions at the RI-CC2 structures, highlighting the importance for

the inclusion of HFx.

3.6.4 Overall Functional Performance

In order to get a clearer view of the overall performances of each functional tested

here over the two assessments with the benchmark set, a ranking of the perfor-

mance with a range of 0-7 for the RI-CC2 structures and a range of 0-6 for the

DFT structures due to issues with LC-ωPBE is shown in table 56. The issues with

LC-ωPBE is discussed in section 3.6.5, the computational cost of performing the

excited state geometry optimisations using LC-ωPBE was prohibitively high.

Table 56: Ranking of the performance of the functionals tested across the series

of emission energy tests.

Property PBE PBE0 PBE50 LC-ωPBE BLYP B3LYP BHHLYP CAM-B3LYP

Singlet @ CC2 3 0 6 7 4 0 5 2

Triplet @ CC2 6 2 4 3 7 1 4 0

Singlet @ DFT 4 1 6 3 0 5 2

Triplet @ DFT 5 1 2 6 3 4 0

This makes it clear that the inclusion of HFx into functionals in necessary for

accurate performance when calculating emission energies, with the best performing

3 functionals are PBE0, B3LYP and CAM-B3LYP. However it also shows that it

is important to be careful with the percentage of HFx included in the functional

as the two global hybrids with 50% HFx included (PBE50 and BHHLYP) perform

poorly generally, with ranking similar to the two pure functionals which are shown

to be poorly performing.
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3.6.5 LC-ωPBE at CAM-B3LYP and PBE0 Structures

Due to technical issues in obtaining LC-ωPBE excited state structures leading

to an exceptionally high computational cost. It was decided to use the CAM-

B3LYP and PBE0 structures of a small part of the benchmark and calculate the

LC-ωPBE emission energies at these structures. These emission energies are then

compared to the RI-CC2 emission energies along with the emission energies for

the two density functionals which the excited state structures are from.

The states that are used in this smaller investigation are show in table 57.

They will have both the singlet and triplet states investigated.

Table 57: The states that will be included in the smaller investigation of LC-ωPBE

at CAM-B3LYP and PBE0 structures
Molecule State

Napthalene 1B2u, 1B3u

Acene 2 B2u, B3u

Butadiene Bu, Ag

Hexatriene Bu, Ag

Pyrrole B2, A1

Acetone A2, A1

Formaldehyde A2, A1

The mean error (d), mean absolute error (|d|) and standard deviations (σ) for

the smaller set of states are shown in table 58 for the LC-ωPBE emissions at the

PBE0 and CAM-B3LYP structures along with the error values for the PBE0 and

CAM-B3LYP emissions at their respective structures.

Table 58: The mean error, mean absolute error and standard deviations for the

investigation of LC-ωPBE emission energies at DFT structures, all values in eV

LC-ωPBE LC-ωPBE at PBE0 CAM-B3LYP

at PBE0 CAM-B3LYP

Singlet d 0·75 0·72 0·29 0·44

Singlet |d| 0·75 0·72 0·30 0·44

Singlet σ 0·45 0·45 0·29 0·33

Triplet d −0·19 −0·20 −0·17 −0·14

Triplet |d| 0·28 0·30 0·24 0·24

Triplet σ 0·29 0·30 0·24 0·27
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Singlet Emissions

The singlet emissions with LC-ωPBE are overstimated as is seen at the RI-CC2

structures. The overestimation is slightly larger at the PBE0 structures but is sim-

ilar across both the sets of structures from the DFT functionals. The performance

of PBE0 and CAM-B3LYP is much better than that for LC-ωPBE, which again

follows the trend seen at the RI-CC2 structures. This again highlights the impor-

tance for the careful selection on the percentage of HFx included in a functional

when calculating accurate singlet emission energies.

Triplet Emissions

The triplet emissions with LC-ωPBE are underestimated as is seen at the RI-CC2

structures. The performance of PBE0 and CAM-B3LYP is again better than that

for LC-ωPBE, however the performance of LC-ωPBE for triplet emission energies

is much closer to that of PBE0 and CAM-B3LYP. This again follows the trend

seen at the RI-CC2 structures.

3.7 Further Work with and beyond the Benchmark Set

The benchmark set obtained here can be taken further. The further use/development

of the benchmark set can be split into two obvious areas, namely using the set and

going beyond the set.

In the use of the benchmark set it would be possible to use higher methods, for

example CCSD(T), at the RI-CC2 structures obtained here. This would enable

another verification of the quality of the structure obtained here. It would also

be possible to investigate the energetics of the excited states under the lens of the

dependence of structures. This could be done via calculated relative energies of

the states (emission energy + energy of excited state structure compared to the

ground state energy). Another method of doing this would be investigating each

state of the molecule in the benchmark set at each structure to investigate how the

structural changes seen between the excited state structures of each state affects

the other states in the molecules. Other excited state properties can be investigated

other than the energies and structures which have been the focus here such as the

dipoles. In order to go beyond the set, the set currently is limited to lighter atoms

so an obvious avenue would be the inclusion of some heavier atoms such as sulphur

or phosphorous, in order to investigate the influence of these heavier atoms on

excited state structures and energies. Also it is a possible avenue to go beyond the

structures/molecules currently present in the set to structures/molecules that are

more chemically useful/relevant such as various common ligands/building blocks

for ligands.
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3.8 Conclusions

The benchmark set of excited state structures and emission energies developed here

is attempting to fill noticeable gap in literature. As nothing similar to benchmark

sets seen in literature for ground state properties (those included in the GMTNK55

database) exists for these properties. The need for this benchmark set is due to it

being difficult to experimentally obtain data (short lived etc), with the exception

of diatomics.

Diatomics are used as a preliminary study to highlight issues that may be faced

when looking at more complicated systems. However, they are of limited use as

diatomics can be brute forced (due to one possible coordinate) to get the correct

behaviour of each state. The diatomics studied showed that it is important to

use basis sets with diffuse functions when considering higher energy excitations

(>9 eV). Another issue it highlighted was that there can be a potential issue

when states cross during optimisation which will require careful monitoring to

ensure the correct state is followed during the excited state geometry optimisation

when developing the benchmark set and when using the benchmark set to assess

approximate Excs.

Selection of molecules based on existing benchmark sets for absorption, this

includes a variety of small organic molecules, including 2 groups of closely related

molecules (polyacetylene and acene groups).

The method used (RI-CC2) has been validated against higher level theory

or experimentally derived results for some molecules and states from literature.

RICC2 shows good performance for these states along with existing use of RI-CC2

as reference results for a molecule in the set101. Once the method was validated,

excited state geometries and emission values were calculated for each state in the

benchmark set, combined to produce the benchmark set. The benchmark set

developed here can and should be expanded upon. This could happen via higher

level theory being used to calculate the emission energies at the structures obtained

here or by expanding the set to include a greater diversity of molecules (include

molecules which contain heavier atoms such as sulphur or phosphorous).

An assessment of the performance of a series of approximate Excs for emission

energies/excited state geometries was undertaken. Singlet emissions are much

more dependent of the quantity of HFx included in the functional that the triplet

emissions. The trends observed are preserved between at the benchmark structures

and at the structures obtained via excited state geometry optimisations using

the related approximate Exc. However there seems to be no approximate Exc of

those tested which has a great performance for the emission energies from the

benchmark set either at the structures from the benchmark set or from structures
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optimised using the approximate Exc. One suggestion to take from this is that

when approximate Excs are developed using ground state properties they are not

accurate for excited state properties. This idea extends further as range separated

hybrids perform better for absorptions than global hybrids. However, this is not

the case for emission energies and thus excited state geometries. This means that

the methods of improving the accuracy of excited state energies in the ground state

do not necessarily improve the accuracy of excited state properties away from the

ground state structure. Therefore a fresh view of developing approximate Excs for

the calculation of excited state properties is needed. This could potentially come

in different ways, one obvious suggestion is to use the newly generated benchmark

set of excited state geomteries and emission energies when developing approximate

Exc as an additional exact data for approximate Exc to reproduce.
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4 Porous Materials

Porous materials are a growing field in material science. They are noted for their

large surface areas. They have several applications such as gas storage, catalysis

and separation105. However these materials are amorphous leading to issues in-

vestigating the properties of them theoretically with DFT, due to a lack of crystal

structures to use as a starting point. This issue need to be bypassed via the use

of model systems which need to include as much information as possible with-

out becoming so computationally expensive as to be unfeasible to use. Two such

materials will be discussed and will have model systems generated for use in theo-

retical investigations of their excited state properties. Further information about

the challenges in investigating porous materials can be found in reference 105.

4.1 PAF-1

Porous aromatic frameworks (PAF) are a series of frameworks that are noted

for their high surface areas along with good physicochemical stability106. PAFs

are characterised by a rigid aromatic structure constructed via covalent bonds106.

The pores contained in the structure are wormlike with a uniform pore size106.

The physicochemical stability is due to the covalent bonds which make up the

framework106.

PAF-1 is the first PAF that was synthesised in 2009107. PAF-1 shows long

range order along with, to a certain extent, amorphous nature and a high surface

area (SBET = 5640 m2g−1). A schematic of the building block for PAF-1 is shown

in figure 37.

Figure 37: Building Block of PAF-1
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The addition of high concentrations of H2SO4 to a suspension of PAF-1 and sub-

sequent drying led to a colour change from white (PAF-1) to blue violet (H2SO4@PAF-

1), corresponding to a UV-Vis peak appearing at 608 nm. The colour change

remains consistent with the addition of H3PO4 and HCl. The underlying cause

of this colour change must be due to protonation as it is consistent between the

different acids.

The investigation that has been undertaken using DFT was to explain the

underlying cause of this colour change. DFT was used to identify the protonation

of the PAF-1 system and subsequently TDDFT was used to investigate and explain

the colour change that is caused by the protonation.

4.1.1 Model Choice

The PAF-1 framework is amorphous thus there is not a way to obtain an experi-

mental structure thus a model molecule must be used to represent the framework.

This model must be chosen to explore the particular property that is being inves-

tigated, in this case the colour change on protonation.

From the structure of the repeat unit of PAF-1, there are two obvious model

molecules. These are shown in figure 38, one is a tetraphenyl based model and the

other is biphenyl based.

TetraphenylBiphenyl

Figure 38: Proposed models of PAF-1

The property being looked at is likely due to a conjugated π system. The

π system in the tetraphenyl model stops at the central carbon so is therefore

isolated on each individual benzene ring (which is actually a biphenyl in the PAF

framework), whereas for the biphenyl model it continues over both benzene rings.

Thus the natural choice is the biphenyl model. This is the model molecule that

will be used for further investigation.
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4.1.2 Protonation of model system

There are two obvious methods of protonation for the biphenyl model system.

They are a π bonded system and a σ bonded system. These two methods are

illustrated in figure 39.

π-bonded σ-bonded

Figure 39: Protonation models of biphenyl model

These two structures were optimized using B3LYP and 6-31G(d) basis set. The

result of this optimisation was initially unexpected. The π system was not stable

and optimized to the σ system. Literature shows that the protonation of benzene

follows a similar pattern with the σ bonded system being more stable than the π

bonded system108. Therefore the σ bonded systems will be investigated further.

4.1.3 Energetics of Protonation of model system

A systematic study of the protonation of PAF-1 via a model system based on

a biphenyl molecule has been undertaken. This was undertaken to investigate

whether it is possible to protonate PAF-1, whether it is possible to protonate

multiple times and where in the molecule it is preferential to protonate. The

description of the carbons with protons added will follow the naming convention

shown in figure 40.

Figure 40: Schematic of proton position naming

The influence of the solvent present in the experimental data was considered

using the polarizable continuum model. This solvent model creates a solvent cavity

via a set of overlapping spheres. More detail can be found in reference 109
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4.1.3.1 One Proton

The addition of a single proton onto the model system is possible and it is stabilised

compared to the non-protonated system. For one proton there are three distinct

positions where protonation can occur. However there seems to be little preference

for which position it will bind to, the largest difference between the positions is

∼0.3 eV. A plot of the normalised energy differences between these 3 positions is

shown in figure 41.

Figure 41: Plot of normalised energy differences for 1 proton

4.1.3.2 Two Protons

There are two possible mechanisms for protonating the model system with two

protons; adding both protons to the same ring (2 on 1 ring) and adding the protons

to different rings (2 on 2 rings).

Two on One Ring

The addition of two protons remains feasible. There is a much more pronounced

preference for the positions (of which there are 6 distinct positions) on which the

protons can be added. The difference between the most and least stable positions

is greater than 2 eV and the differences in energy are generally larger than for

one proton – this is easily accounted for by the charges on the protons being in
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proximity. A plot of the normalised energy differences between these 6 positions

is shown in figure 42.

Figure 42: Plot of normalised energy differences for 2 protons on 1 ring

Two on Two Rings

The differences between the possible positions (of which there are 9 distinct posi-

tions) are much smaller for two protons on two rings compared to two protons on

one ring. This demonstrates that there is a high energetic cost to concentrating

the charge added compared to separating the charge that is added. This is as ex-

pected as separating the charge should be more favourable. The largest difference

between the structures for two on two rings is 0.8 eV. A plot of the normalised

energy differences between these 9 positions is shown in figure 43.
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Figure 43: Plot of normalised energy differences for 2 protons on 2 rings

Of the possible positions it seems there is a slight preference for maximising

the number of carbons between the protons. The two structures with 5 carbons

between the protons are the most stable, then the two with 4 carbons between

the protons and then the two structures with 3 carbons between the protons.

There are other cases of these which have the proton attached to the carbon which

is methylated in the model (to represent the tetrahedral carbon in the PAF-1

framework), these type of structures are generally higher in energy than the ones

without when there are the same number of carbons between the protons (4-7/2-7

vs 3-6).

4.1.3.3 Three Protons

The three proton positions are made from two protons on one ring and one proton

on the other. There are a much larger number of possible positions with three

protons compared to two protons on 2 rings (26 versus 9 respectively). There are

large observable differences between the different possible positions. The largest

difference is 3.5 eV, this is the largest difference observed between the proton

positions. A plot of the normalised energy differences between these 26 positions

is shown in figure 44.
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Figure 44: Plot of normalised energy differences for 3 protons

Again there can be seen several different related ‘mini-groups’ of structures in

the full set of structures. These structures have similar energetics when they are

related. For example, 4-5-7 and 4-5-9 have almost identical energetics and are

obviously related, as there are 4 carbons between the protons closest to each other

on the different rings.

4.1.3.4 Four Protons

The model was tested with four protons (two protons on each ring), however

there were problems with performing a similar type of systematic study as for the
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other number of protons. The model began to fall apart due to there being too

much charge for the model to sustain. Therefore the four proton structures were

not investigated in more detail and the structures obtained gave a much smaller

energy decrease compared to the addition of the one, two and three protons.

4.1.3.5 Baseline Stability of Proton Addition

The most stable positions of those tested for each subsequent proton addition

were compared to the neutral biphenyl model molecule to give a stability baseline

(figure 45). This baseline shows that the energy decrease for each subsequent

proton addition remains similar (∼ 0.35 Ha) from 1 to 3 protons (with a slight

tailing off with the addition of the first proton having an energy decrease of ∼0.4

Ha and the third an energy decrease of ∼ 0.32 Ha), however the addition of a

fourth proton leads to a significant drop in the energy decrease to ∼0.25 Ha.
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Figure 45: Plot of normalised energy of proton addition

The energetics of the systematic protonation show that it is possible to proto-

nate the framework and it is possible in several positions in each number of protons

added to the biphenyl model. The study also shows that there is a limit to the

number of protons it is possible to add to the model system.

4.1.4 Excitations of Protonated model system

Continuing on from the systematic investigation of the energetics of the protona-

tion of the model system, an investigation of the electronic excitations of the model

system has been undertaken. The motivation for this study was to investigate and

explain the colour change seen with the protonation of the PAF-1 system, with

a change from white to blue violet and a corresponding UV-Vis peak at 608nm.
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The proton positions shown for the energetics are used and calculated the lowest

singlet for each position. This has only been done using the solvent structures for

each method, as this is closer to the conditions of experiment. Attempting to cor-

relate to the experimental spectra means that excitations of around 1.90 to 2.25

eV (550-650nm) are required to correspond to the experimental spectra. How-

ever, the method used (CAM-B3LYP) to calculate the excitations overestimates

the excitations of benzene by ∼0.4 eV47, therefore a corrected target range must

be used. Therefore the range of excitations that correspond to the experimental

values are 2.30 to 2.65 eV.

4.1.4.1 Neutral System

Initially the excitations of the unprotonated model system so a starting point

to investigate the influence the protonation of this system has on the electronic

excitations can be obtained. The lowest singlet of the model system for B3LYP and

MP2 solvated structures were in good agreement with excitations of 5.24 and 5.29

eV respectively. This value would mean that the PAF-1 polymer doesn’t absorb in

the visible spectrum even including the CAM-B3LYP correction to the excitation

energy of benzene. Thus the unprotonated polymer should have no colour/white

and this is observed experimentally.

4.1.4.2 One Proton

The addition of the single proton as described above in section 4.1.3.1, showed a

drop in the excitation energy as shown in table 59.

Table 59: Excitation of 1 proton structures

Position B3LYP/eV MP2/eV

6 3·12 3·23

7 3·12 3·14

8 3·63 3·59

As with the unprotonated structures there is good agreement between the

excitations of the structures from the different methods. The addition of protons

to the model system has led to a significant drop in the excitation energy of around

2 eV. This suggests that the addition of protons to the model system leads to a

drop in the excitation energies. However the addition of a singlet proton does not

lead to a large enough decrease to bring the excitation into the target range, it

follows that the addition of an increasing number of protons should lead to further

drops in the excitation energy.
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4.1.4.3 Two Protons

Again as with the energetics there are two ways to protonate the model system

with 2 protons; 2 on 1 ring and 2 on 2 rings.

2 on 1 Ring

The addition of a second proton leads to a further decrease in the excitation

energies as show in table 60.

Table 60: Excitation of 2 protons on 1 ring structures

Position B3LYP/eV MP2/eV

6–7 2·74 2·70

6–8 3·16 2·94

6–9 1·43 1·63

6–10 3·49 3·51

7–8 2·04 2·03

7–9 2·06 2·02

Once again there is good agreement between the excitations of the structures

from the different methods. The addition of another proton lowers the excitation

energy further. However there are still no excitations in the target region (2.30 –

2.65 eV). The excitations are either too high or too low, the excitations also seem

to follow on the energies of the structures, with the lowest excitation energies

coming from the least stable structures (6-9 is the least stable structure and it has

the lowest excitation energies).

2 on 2 Ring

The excitation energies from the structures with two protons on two rings are

shown in table 61.
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Table 61: Excitation of 2 protons on 2 rings structures

Position B3LYP/eV MP2/eV

5–7 3·66 3·76

4–7 3·96 3·98

3–7 4·10 4·12

2–7 3·97 3·97

1–7 3·60 3·75

5–6 3·13 3·15

3–6 3·58 3·62

1–6 3·04 3·12

3–8 3·89 4·00

Again there is good agreement between the excitations of the structures from

the different methods. The addition of the second proton to the other ring to

which the first was on, leads to a decrease compared to the unprotonated system

but not as large a decrease as placing both protons on the same. This means that

the excitations are still not in the target region.

The 2 proton positions give some hints on the way to obtain excitations that are

potentially low enough in energy to obtain the target region. It appears as though

uneven protonation lowers the excitation energy more than even protonation.

4.1.4.4 Three Protons

The excitaition energies from the structures with three protons added using the

B3LYP structures are shown in table 62. Only the B3LYP structures are used due

to the number of structures with three protons and the previous excitations show

that there is a good agreement between the excitations of the B3LYP and MP2

structures.
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Table 62: Excitation of 3 proton structures

Position B3LYP/eV

4–5–6 3·04

4–5–7 3·29

4–5–8 2·54

4–5–9 3·33

4–5–10 3·04

2–4–6 3·24

2–4–7 3·26

2–4–8 3·51

3–4–6 2·42

3–4–7 2·52

3–4–8 2·35

3–4–9 2·46

3–4–10 2·47

1–4–6 2·10

1–4–7 2·24

1–4–8 3·51

1–4–9 2·26

1–4–10 2·10

3–5–6 3·26

3–5–7 3·77

3–5–8 3·23

3–5–9 3·77

3–5–10 3·23

1–5–6 3·16

1–5–7 3·79

1–5–8 3·01

The addition of the third proton leads to a further decrease in the excitation

energies compared to the unprotonated model. With this protonation scheme

we get some excitations in the target region (∼ 2.30 to 2.65 eV), there are eight

excitations in this region. These eight excitations and their oscillator strengths, in

brackets, are shown in table 63.

137



Table 63: Excitations in target region

Position B3LYP/eV

oscillator strengths in brackets

4–5–8 2.54 (0.04)

3–4–6 2.42 (0.56)

3–4–7 2.52 (0.46)

3–4–8 2.35 (0.01)

3–4–9 2.46 (0.35)

3–4–10 2.47 (0.62)

1–4–7 2.24 (0.72)

1–4–9 2.26 (0.64)

The excitations with the low oscillator strengths (positions 4–5–8 and 3–4–8)

are probably not going to be seen due to low probability of the transition occurring.

With the excitations in the target region, we have visualized the excitation by

generating density different plots to view how the density is altered during the

excitation. The plots for the eight excitations in the target region are shown in

figure 46. The green lobes are from the ground state and the purple lobes are

from the excited state. With all the excitations in the target region the density

difference plots look clearly charge transfer (with the electron density moving from

one ring to the other), the ground state is on the ring with a single proton on and

the excited state is on the ring with two protons on. This makes sense due to

the electron density moving to the more positively charged ring. These plots

also suggest that there may be a potential for proton transfer/conductance going

in the opposite direction to the movement of the electron density. This will be

investigated by looking at a potential proton transfer pathway through the model

system.
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Figure 46: Density difference plots of excitations in target region

4.2 Pyrene-based Conjugated Microporous Polymers

Conjugated microporous polymers (CMPs) are a group of porous polymers. They

are synthesised from building blocks in a similar vein to the closely related PAF

discussed previously. Pyrene-based CMPs exhibit both microporosity and lumi-

nescent properties110. Pyrene-based CMPs are suited to applications such as pho-

139



tocatalysis, the important property for governing this use is the band-gap of the

CMP. Cooper et al.2 showed that is it possible to change the band-gap of pyrene-

based CMPs via the inclusion of linker molecules. The building blocks of CMPs

studied by Cooper2 are shown in figure 47.

YPy

YDPPy

YDBPy

Figure 47: Building blocks of the CMPs studied by Cooper et al.2

YPy has the lowest band gap of these three CMPs (1.84 eV) and YDBPY has

the largest (2.05 eV). The inclusion of these linker molecules has lead to a change

in the band gap. One possible cause of this change is band gap is the inclusion of

the linkers changing the smaller molecular structures present in the CMPs, such

as smaller molecular rings.

These molecular rings where suggested as a possible cause for the band gap
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differences2. The size and quantity of these molecular rings present in the CMP

may lead to changes in the band gap of the CMPs. An example molecular ring is

shown in figure 48.

Figure 48: A representation of molecular rings formed by 4 pyrene building blocks.

4.2.1 Invesitgation of Structural Diversity of Pyrene-based CMPs

In order to understand the influence of these molecular rings and the influence

of additional linker molecules along with their diversity/likelihood of appearance

in extended CMPs, a statistical representation of the structural diversity was ob-

tained. This was performed using AmBuild41 along with synthesis of the CMPs

studied computationally by collaborators Patrick Heasman and Abbie Trewin.

Clusters of the YPy were formed initially using an increasing number of pyrene

building blocks (3-10).These building blocks (figure 49) have 4 possible binding

sites at the bromine atoms and thus the blocks are linked at these sites. The

clusters were formed by forming bonds when the building blocks had reached a

critical angle and distance away from each other. The molecules that were at this

critical point where bonded through the bromine groups and the simulation was

continued. This simulation method was run 100 times for each number of building

blocks. Further information about the procedure to generate these clusters can be
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found in reference 111.

Figure 49: Pyrene building block for the diversity investigation

100 simulations of cluster formation were performed for each number of building

blocks and thus give a representation of the structural diversity. The results of

these simulations for YPy are shown in table 64. It is clear that the number of

molecular rings formed increases as the number of building blocks increases.

Table 64: Structural Diversity of YPy clusters

Building Blocks

Structure 3 4 5 6 7 8 9 10

Linear 100 66 34 10 5 1 0 0

Branched 0 28 49 52 39 26 12 4

Double branched 0 0 1 7 15 23 26 19

Multibranched 0 0 0 0 0 2 7 13

Pure single ring 0 6 1 0 0 0 0 0

Branched single ring 0 0 15 29 37 39 40 44

Pure double ring 0 0 0 1 0 0 0 0

Branched double ring 0 0 0 1 3 7 13 17

Branched triple ring 0 0 0 0 1 2 2 3

Straight chain 100 94 84 69 59 52 45 36

Ring structure 0 6 16 31 41 48 55 64

The influence of linker molecules was investigated, the linker molecules are

shown in figure 50 along with the names the resulting CMPs will be given. The

linker molecules are all based on the linker used for YDPPy. S0 is the same linker

molecule as the previously studied YDPPy2. The linker molecules are closely

related with the position of the bromines moved around the benzene ring. The

inclusion of these linker molecules will lead to more densely packed materials when

these are included, with S0 being the least densely packed and S2 being the most

densely packed.
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S0 S1 S2

Figure 50: Linker molecules added to the cluster formation simulations

Cluster formation simulations, with 3-10 pyrene building blocks and twice the

number of linkers were undertaken for each linker molecule, were undertaken in

a similar fashion to those for YPy discussed above. The results for each set of

simulations are shown in tables 65, 66 and 67 for S0, S1 and S2 respectively.

Table 65: Structural Diversity of S0 clusters

Building Blocks

Structure 3 4 5 6 7 8 9 10

Linear 12 0 0 0 0 0 0 0

Branched 47 32 9 3 1 0 0 0

Double branched 33 33 32 18 9 1 0 0

Multibranched 8 35 57 76 85 93 91 91

Branched single ring 0 0 2 3 5 6 9 9

Straight chain 100 100 98 97 95 94 91 91

Ring structure 0 0 2 3 5 6 9 9
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Table 66: Structural Diversity of S1 clusters

Building Blocks

Structure 3 4 5 6 7 8 9 10

Linear 12 3 2 1 0 0 0 0

Branched 42 22 12 4 1 0 0 0

Double branched 20 25 11 8 2 0 0 0

Multibranched 8 25 41 47 51 45 34 25

Branched single ring 17 23 30 29 35 36 37 32

Branched double ring 1 1 2 9 8 15 24 30

Branched triple ring 0 1 2 2 3 3 4 10

Branched quadruple ring 0 0 0 0 0 1 0 2

Branched quintuple ring 0 0 0 0 0 0 1 1

Straight chain 82 75 66 60 54 45 34 25

Ring structure 18 25 34 40 46 55 66 75

Table 67: Structural Diversity of S1 clusters

Building Blocks

Structure 3 4 5 6 7 8 9 10

Linear 6 1 0 0 0 0 0 0

Branched 29 13 7 1 0 0 0 0

Double branched 15 18 4 3 0 0 0 0

Multibranched 7 17 29 27 16 8 7 4

Branched single ring 37 38 38 37 45 38 28 20

Branched double ring 6 13 19 22 20 27 34 34

Branched triple ring 0 0 3 10 18 21 20 20

Branched quadruple ring 0 0 0 0 1 6 7 13

Branched quintuple ring 0 0 0 0 0 0 3 6

Branched sextuple ring 0 0 0 0 0 0 1 3

Straight chain 57 49 40 31 16 8 7 4

Ring structure 43 51 60 69 84 92 93 96

In order to enable a simpler comparison between the structural diversity of

these 4 structures, the straight chain and ring structure totals for each number of

pyrene building blocks are shown in table 68.
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Table 68: Structural diversity of all four structures studied via cluster formation

YPy S0 S1 S2

Building Blocks Straight Ring Straight Ring Straight Ring Straight Ring

3 100 0 100 0 82 18 57 43

4 94 6 100 0 75 25 49 51

5 84 16 98 2 66 34 40 60

6 69 31 97 3 60 40 31 69

7 59 41 95 5 54 46 16 84

8 52 48 94 6 45 55 8 92

9 45 55 91 9 34 66 7 93

10 36 64 91 9 25 75 4 96

The influence of increasing the number of pyrene building blocks is consistent,

a higher number of ring structures with a higher number of building blocks. The

influence of the linker is dependent on the orientation of the two bromines. S0 has

the least number of ring structures and it has the bromines in a para- orientation.

S2 has the highest number of ring structures and it has the bromines in an ortho-

orientation. The orientation of the bromines in the linker controls the structural

diversity of the CMPs with linkers.

4.2.2 Substitution studies of Structures

In order to investigate the excited state properties and band gaps of the struc-

tures obtained from the cluster formation, DFT calculations were undertaken. All

calculations undertaken were using CAM-B3LYP and the def2-SVP basis set, all

excited state calculations used TDA-TDDFT. Due to the size of the structures

obtained from the cluster formation, a preliminary investigation was undertaken

to evaluate if computational cost can be reduced with substitution of the bromine

atoms present in the clusters with less expensive atoms (e.g hydrogen, fluorine,

chlorine).

This initial investigation used clusters of YPy with 3 pyrene building blocks.

The bromine atoms were replaced by hydrogen, fluorine and chlorine and the first

ten singlet and triplet excitations of each of these substituted structures were

compared to those for the bromine containing YPy cluster. The singlet and triplet

excitations for these substituted structures are shown in figures 51 and 52 respec-

tively.
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Figure 51: First ten singlet excitations of substituted 3 pyrene YPy clusters
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Figure 52: First ten triplet excitations of substituted 3 pyrene YPy clusters
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It can be seen that the difference between the Br YPy excitations and the sub-

stituted YPy excitations remains fairly constant. The hydrogen substituted struc-

tures have higher excitation energies but these remain a fairly constant value above

the bromine structure excitations. The influence of the substitution of bromine

on the excitation energy across these first 10 excitations is consistent. Thus, the

substitution of the bromine atoms with hydrogen atoms is a good approximation

in order to reduce the computational cost of the calculations undertaken on the

larger clusters of CMPs studied subsequently.

4.2.3 Excited State Study – 7 Pyrene units

An investigation of the excited states of clusters with 7 pyrene units of YPy and

the three linker molecules were used to calculate the first 5 singlet and triplet states

for each cluster. There is a variety of structures seen across each of the CMPs.

The least diverse CMP is S0 and the most is S2. The structures are in two major

groups: linear/branched and branched ring. The linear/branched structures are:

linear (YPy, S0, S1, S2), branched (YPy, S2), double branched (YPy, S2) and

multibranched (YPy, S0, S1, S2). The branched ring structures are: branched

single ring (YPy, S0, S1, S2), branched double ring (YPy, S1, S2), branched triple

ring (S1, S2) and branched quadruple ring (S1, S2).

4.2.3.1 Singlet Excitations

The results for the first 5 singlet states for YPy, S0, S1 and S2 are shown in tables

69, 70, 71 and 72.

Table 69: Excitation energies of the first 5 singlet states of YPy clusters with 7

pyrene units, all values in eV.

Singlet State

Structure 1 2 3 4 5

Linear 3·64 3·79 3·82 3·83 3·83

Branched 3·50 3·64 3·68 3·70 3·77

Double branched 3·53 3·60 3·68 3·77 3·78

Branched single ring 3·29 3·43 3·63 3·67 3·69

Branched double ring 3·37 3·61 3·62 3·69 3·72
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Table 70: Excitation energies of the first 5 singlet states of S0 clusters with 7

pyrene units, all values in eV.

Singlet State

Structure 1 2 3 4 5

Linear 3·64 3·79 3·82 3·83 3·83

Multibranched 3·32 3·47 3·52 3·56 3·63

Branched single ring 3·08 3·28 3·40 3·50 3·57

Table 71: Excitation energies of the first 5 singlet states of S1 clusters with 7

pyrene units, all values in eV.

Singlet State

Structure 1 2 3 4 5

Linear 3·38 3·55 3·64 3·71 3·72

Multibranched 3·08 3·26 3·31 3·44 3·48

Branched single ring 2·91 3·07 3·18 3·24 3·33

Branched double ring 2·51 2·76 2·83 2·92 3·00

Branched triple ring 2·68 2·75 2·94 2·99 3·07

Branched quadruple ring 2·68 2·72 2·82 2·94 3·10

Table 72: Excitation energies of the first 5 singlet states of S2 clusters with 7

pyrene units, all values in eV.

Singlet State

Structure 1 2 3 4 5

Linear 3·50 3·56 3·62 3·75 3·75

Branched 3·27 3·36 3·48 3·54 3·56

Double branched 3·31 3·32 3·41 3·61 3·66

Multibranched 3·00 3·13 3·38 3·51 3·58

Branched single ring 2·97 3·11 3·19 3·30 3·35

Branched double ring 2·96 3·02 3·33 3·47 3·50

Branched triple ring 2·73 2·96 3·08 3·19 3·23

Branched quadruple ring 3·18 3·24 3·35 3·40 3·52

A clear trend can be seen in the singlet excitations between the linear/branched

structures and the ring structures. The linear/branched structures have higher

excitation energies than the ring structures (difference roughly between 0.3 eV

and 0.8 eV). This trend holds true across all CMPs studied here.
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4.2.3.2 Triplet Excitations

The results for the first 5 triplet states for YPy, S0, S1 and S2 are shown in tables

73, 74, 75 and 76.

Table 73: Excitation energies of the first 5 triplet states of YPy clusters with 7

pyrene units, all values in eV.

Triplet State

Structure 1 2 3 4 5

Linear 2·26 2·27 2·28 3·42 3·43

Branched 2·26 2·26 2·26 2·27 2·27

Double branched 2·26 2·26 2·26 2·26 2·27

Branched single ring 2·19 2·21 2·26 2·26 2·26

Branched double ring 2·23 2·24 2·24 2·26 2·26

Table 74: Excitation energies of the first 5 triplet states of S0 clusters with 7

pyrene units, all values in eV.

Singlet State

Structure 1 2 3 4 5

Linear 2·25 2·26 2·27 2·40 2·56

Multibranched 2·16 2·21 2·22 2·23 2·23

Branched single ring 2·08 2·15 2·18 2·22 2·23

Table 75: Excitation energies of the first 5 triplet states of S1 clusters with 7

pyrene units, all values in eV.

Singlet State

Structure 1 2 3 4 5

Linear 2·18 2·19 2·21 3·29 3·35

Multibranched 2·07 2·12 2·14 2·17 2·18

Branched single ring 1·97 2·02 2·07 2·13 2·17

Branched double ring 1·39 1·56 1·79 2·01 2·08

Branched triple ring 1·54 1·55 1·89 1·91 1·96

Branched quadruple ring 1·58 1·62 2·06 2·11 2·19
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Table 76: Excitation energies of the first 5 triplet states of S2 clusters with 7

pyrene units, all values in eV.

Singlet State

Structure 1 2 3 4 5

Linear 2·18 2·19 2·19 3·27 3·30

Branched 2·12 2·12 2·17 2·18 2·19

Double branched 2·12 2·15 2·17 2·22 2·25

Multibranched 2·00 2·04 2·15 2·19 2·20

Branched single ring 1·83 2·05 2·07 2·08 2·13

Branched double ring 1·80 1·97 2·1 2·17 2·19

Branched triple ring 1·63 1·94 2·00 2·08 2·15

Branched quadruple ring 2·02 2·11 2·15 2·16 2·20

The trend observed in the singlet excitations is still present in the triplet exci-

tations for S0, S1 and S2 clusters but is not obvious in the YPy clusters with all

the triplet excitations being similar across all the structures, with a small decrease

for the ring structures (< 0.1 eV).

Density difference (DD) plots can again be used to enable a visualisation of

the excitation processes in the CMP clusters, which enables clearer view of the

excitation process. DD plots were generated for clusters of YPy and S2 can be

seen in figure 53.

1

Figure 53: Density difference plots of YPy and S2 clusters

It can clearly be seen from these DD plots that the excitations are localised onto

the pyrene units of the CMP clusters. It follows that the local environment of these

pyrene units is important when attempting to control or change the excitations.
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Therefore, functionalising the linkers included in these CMPs may enable a method

to alter the excitations and band gaps of the CMP polymers which is important

for photocatalysis.

4.2.4 Statistically Representative Set of Clusters

In order to enable a more realistic comparison to experiment, namely to UV-Vis

spectra produced in experiment, a more representative set of clusters should be

used. As the set used in the previous excited state study were not representa-

tive of the structural diversity of the present in the full set of clusters formed in

the structural diversity study. Thus a set of clusters using 10 pyrene units was

selected for the 4 CMPs, a total of 11 structures were included in each of these

representative sets. Table 77 shows the number of each structure present in the

representative set for each CMP.

Table 77: Statistically representative set of clusters for each CMP from the struc-

tural diversity study, 11 total for each CMP

Structure YPy S0 S1 S2

Branched 1 0 0 0

Double branched 1 0 0 0

Multibranched 2 9 2 1

Branched single ring 4 2 3 2

Branched double ring 3 0 3 3

Branched triple ring 0 0 1 2

Branched quadruple ring 0 0 1 1

Branched quintuple ring 0 0 1 1

Branched sextuple ring 0 0 0 1

Each of the clusters in the representative set had the first ten singlet states

calculated, this is plotted against the oscillator strength of each excitation (gives

a comparison to the intensity of the excitation). These are plotted against each

other and thus generates a representative plot of these which is comparable to the

experimental UV-Vis spectra for each CMP. Plots of exication energies against

oscillator strengths for YPy, S0, S1 and S2 are shown in figures 54, 55, 56 and 57

respectively.
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Figure 54: Plot of excitation energy against oscillator strength for the YPy repre-

sentative set
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Figure 55: Plot of excitation energy against oscillator strength for the S0 repre-

sentative set
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Figure 56: Plot of excitation energy against oscillator strength for the S1 repre-

sentative set
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Figure 57: Plot of excitation energy against oscillator strength for the S2 repre-

sentative set

These plots show that the more structurally diverse CMPs have the largest
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spread of excitation energies and the least structurally diverse CMP (S0) has the

lowest spread. This trend should be observed in the experimental spectra provided

the model of the CMP is suitable. The experimental spectra all show peaks centred

at 466nm with a small difference in the spread seen, S0 has the narrowest peak

which is as expected from the lower structural diversity seen, and the other 3

systems (YPy, S1 and S2) show similar spreads due to their structural diversity.

4.3 Conclusions

The use of TDDFT methods enables an enhanced understanding of experimentally

observed results when considering porous polymers. The two groups of polymers

studied here are both amorphous thus require the use of model systems to represent

their structures when performing TDDFT calculations. These model systems are

carefully selected for the experimental result that is of interest.

The experimental result that required enhanced understanding with PAF-1 was

a change in the UV-Vis spectra when placing the polymer in concentrated acid,

a biphenyl model system was used to represent the polymer. The protonation of

this model system was shown to be stable, with similar energy drops when adding

up to 3 protons per model system and a reduced drop when adding a fourth.

Therefore, there is a limit to the maximum protonation of the model system and

thus polymer.

The protonation of the model system leads to a decrease in the absorption

energies calculated when compared to the neutral model system. This decrease

did not change the absorption to the degree seen in experiment until 3 protons

were added to the model system. In order to get a clearer view of these excitations,

density difference plots were generated and they showed a clear charge separation

during the excitation with the orbital the excitation was from being on the ring

with 2 protons attached and the orbital the excitation was to being on the ring with

1 proton attached. This charge separation and plots suggests that there is potential

proton conduction/movement opposite to the movement of electron density in the

excitation, more experimental and theoretical work is required understand this but

the observation would not have been made without the enhanced understanding

of the experimental result using TDDFT.

When considering the CMPs, the model systems were generated via clus-

ter formation simulations performed by theoretical collaborators. The property

of these polymers that required enhanced understanding was about the band

gaps/excitations of these polymers. The structure types seen during cluster for-

mation simulations had 2 major categories (branched and ring structures), each of

these broad categories had differing excitation behaviours. The ring structures had
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lower excitation energies than the branched structures across the 4 CMPs studied.

DD plots were again used to provide a clearer picture of the excitation pro-

cess in these systems. These plots show that the excitations are localised on the

pyrene rings of these model systems, thus the local environment of these rings

is important for controlling these excitations. It may be possible to tailor the

band gap/excitations by functionalising the linkers included in these CMPs, again

further experimental/theoretical work is required to confirm this suggestion.

When considering a representative set of the diversity of structures generated

by the cluster formation, an UV-Vis spectra can be generated, these show that

the position of the peak changes very little between the 4 CMPs but the broad-

ness of the peak increases with higher structural diversity and this is seen in the

experimental spectra of the frameworks.
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5 Conclusions

The extensive assessment of the 3 global and 3 range separated hybrids (B3LYP,

PBE0, B97-2, CAM-B3LYP, LC-ωPBE and ωB97-XD) over a range of ground

state and excited state properties has shown some interesting results. It high-

lights that each functional tested has properties where it performs accurately and

those with less accurate performance. B3LYP performs well for ionisation ener-

gies, vibrational wavenumbers, electron affinities and local excitations but less well

for isotropic polarisabilities, Rydberg excitations and charge transfer excitations.

PBE0 performs well for isotropic polarisabilities and local excitations but less well

for electron affinities and atomisation energies. B97-2 performs well for ionisation

energies, atomisation energies, vibrational wavenumbers, isotropic polarisabilites

and local excitations but less well for diatomic bond lengths, Rydberg excitations

and charge transfer excitations. CAM-B3LYP performs well for diatomic bond

lengths and all excitations but less well for isotropic polarisabilities. LC-ωPBE

performs well for reaction barriers, local excitations and Rydberg excitations but

less well for ionisation potentials, electron affinities, diatomic bond lengths, vibra-

tional wavenumbers. ωB97-XD performs welll for most properties but less well

ionisation potentials and vibrational wavenumbers.

The increased computational cost and complexity associated with using a range

separated hybrid is important for some properties but less so for others. It is im-

portant to use range separated hybrids for the accurate calculation of excitations

(other than local excitations, where all functionals tested performed well), atom-

isation energies and reaction barriers. The performance of LC-ωPBE is poorer

than the other range separated hybrids in most excitations excluding Rydberg

excitations.

However, the performance of LC-ωPBE may be improved by tuning the param-

eters of the range separation. Initially the parameters used where the same as those

of CAM-B3LYP (a = 0.19,a+b = 0.65 and ω = 0.33 a−1
0 ), generating CAM-ωPBE.

This new functional has poor performance across most properties with exceptions

of (list properties with good performance). The parameters where optimised using

a set of atomisation energies whilst applying the constraint a+ b = 0.65 (keeping

the a + b value the same as CAM-B3LYP). This lead to an optimised verison of

CAM-ωPBE (CAM-ωPBEa). The performance of this optimised functional was

improved over CAM-ωPBE. However, the performance was still poor when com-

pated to CAM-B3LYP and LC-ωPBE.

In order to understand the underlying cause of the poor performance of CAM-

ωPBE and CAM-ωPBEa. A study of the quantity of HFx required for optimally

performing global hybrid of a series of underlying functionals (LDA, PBE, BLYP
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and TPSS) by assessing the performance of a global hybrid with increasing quan-

tities of HFx over a set of atomisation energies. This lead to some interesting

results, each underlying functional had a differing quantity of HFx in its optimal

global, with LDA requiring the highest quantity and TPSS requiring the least.

It was also seen that the optimal quantity of HFx differed for some global

hybrids (especially for PBE and LDA) when considering different molecule types

(cyclic and non cyclic). This shows that some molecule types have differing be-

haviour when considering the quantity of HFx required (cyclic requires more HFx

for PBE based). This shows that what is meant by a diverse set may require

redefinition as it could be possible to lose details when considering too large a set

or under or over representing certain categories of molecules (such as cyclic and

non cyclic molecules). This observation could lead to utilising more of the data

that is present in current benchmark sets to enable more accurate calculation of

properties with functionals tuned to the categories of molecules. Current bench-

mark data could be split into different subsets and this could provide information

that is currently being missed due to the drive to tuning for average performance.

In order to properly assess the optimal global hybrid based on PBE and BLYP,

a similar assessment was performed over the full G-1 and G-2 sets of atomisation

energies. The optimal global hybrid for each underlying functional had a differing

quantity of HFx (values of HFx in each optimal). This difference sheds some light

on the issues seen with the initial CAM-ωPBE and CAM-ωPBEa functionals, due

to insufficient HFx included when a+ b = 0.65 was enforced.‘

With the observation about the differing quantity of HFx required for an op-

timally performing global hybrid of PBE and BLYP, another optimisation of the

range separation parameters for CAM-ωPBE with the condition a + b < 1 was

undertaken. The optimisation used a series of atomisation energies, including

pyridine due to the differing behaviour of cyclic systems observed when consider-

ing global hybrids of PBE. The optimised parameters were a = 0.05, a+ b = 0.80

and ω = 0.40a−1
0 , referred to as CAM-PBE. The performance of CAM-PBE was

much improved over CAM-ωPBEa; especially for excited state properties where

CAM-PBE has a comparable performance to CAM-B3LYP, which suggests that

an attenuated range separated hybrid of PBE may have merits for the calculation

of excited state properties. However, there is poor performance when calculating

ionisation energies and electron affinities.

Thus a set of parameters were optimised on electron affinities (a = 0.10,

a + b = 0.80 and ω = 0.15 a−1
0 ), referred to as CAM-PBEea. However, whilst

these parameters improved the performance ofelectron affinities and ionisation

potentials, they had a detrimental effect on the performance of other properties

where CAM-PBE had good performance. Therefore whilst CAM-PBE has good

157



performance generally it should be noted aboutthe poor performance of electron

affinities and ionisation potentials.

The benchmark set of excited state structures and emission energies devel-

oped here is attempting to fill noticeable gap in literature. As nothing similar to

benchmark sets seen in literature for ground state properties (those included in

the GMTNK55 database) exists for these properties. The need for this benchmark

set is due to it being difficult to experimentally obtain data (short lived etc), with

the exception of diatomics.

Diatomics are used as a preliminary study to highlight issues that may be faced

when looking at more complicated systems. However, they are of limited use as

diatomics can be brute forced (due to one possible coordinate) to get the correct

behaviour of each state. The diatomics studied showed that it is important to

use basis sets with diffuse functions when considering higher energy excitations

(>9 eV). Another issue it highlighted was that there can be a potential issue

when states cross during optimisation which will require careful monitoring to

ensure the correct state is followed during the excited state geometry optimisation

when developing the benchmark set and when using the benchmark set to assess

approximate Excs.

Selection of molecules based on existing benchmark sets for absorptions, this

includes a variety of small organic molecules, including 2 groups of closely related

molecules (polyacetylene and acene groups).

The method used (RI-CC2) has been validated against higher level theory

or experimentally derived results for some molecules and states from literature.

RICC2 shows good performance for these states along with existing use of RI-CC2

as reference results for a molecule in the set. Once the method was validated,

excited state geometries and emission values were calculated for each state in the

benchmark set, combined to produce the benchmark set. The benchmark set

developed here can and should be expanded upon. This could happen via higher

level theory being used to calculate the emission energies at the structures obtained

here or by expanding the set to include a greater diversity of molecules (include

molecules which contain heavier atoms such as sulphur or phosphorous).

An assessment of the performance of a series of approximate Excs for emission

energies/excited state geometries was undertaken. Singlet emissions are much

more dependent of the quantity of HFx included in the functional that the triplet

emissions. The trends observed are preserved between at the benchmark structures

and at the structures obtained via excited state geometry optimisations using

the related approximate Exc. However there seems to be no approximate Exc of

those tested which has a great performance for the emission energies from the

benchmark set either at the structures from the benchmark set or from structures
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optimised using the approximate Exc. One suggestion to take from this is that

when approximate Excs are developed using ground state properties they are not

accurate for excited state properties. This idea extends further as range separated

hybrids perform better for absorptions than global hybrids. However, this is not

the case for emission energies and thus excited state geometries. This means that

the methods of improving the accuracy of excited state energies in the ground state

do not necessarily improve the accuracy of excited state properties away from the

ground state structure. Therefore a fresh view of developing approximate Excs for

the calculation of excited state properties is needed. This could potentially come

in different ways, one obvious suggestion is to use the newly generated benchmark

set of excited state geomteries and emission energies when developing approximate

Exc as an additional exact data for approximate Exc to reproduce.

The use of TDDFT methods enables an enhanced understanding of experi-

mentally observed results when considering porous polymers. The two groups of

polymers studied here are both amorphous thus require the use of model systems

to represent their structures when performing TDDFT calculations. These model

systems are carefully selected for the experimental result that is of interest.

The experimental result that required enhanced understanding with PAF-1 was

a change in the UV-Vis spectra when placing the polymer in concentrated acid,

a biphenyl model system was used to represent the polymer. The protonation of

this model system was shown to be stable, with similar energy drops when adding

up to 3 protons per model system and a reduced drop when adding a fourth.

Therefore, there is a limit to the maximum protonation of the model system and

thus polymer.

The protonation of the model system leads to a decrease in the absorption

energies calculated when compared to the neutral model system. This decrease

did not change the absorption to the degree seen in experiment until 3 protons

were added to the model system. In order to get a clearer view of these excitations,

density difference plots were generated and they showed a clear charge separation

during the excitation with the orbital the excitation was from being on the ring

with 2 protons attached and the orbital the excitation was to being on the ring with

1 proton attached. This charge separation and plots suggests that there is potential

proton conduction/movement opposite to the movement of electron density in the

excitation, more experimental and theoretical work is required understand this but

the observation would not have been made without the enhanced understanding

of the experimental result using TDDFT.

When considering the CMPs, the model systems were generated via clus-

ter formation simulations performed by theoretical collaborators. The property

of these polymers that required enhanced understanding was about the band

159



gaps/excitations of these polymers. The structure types seen during cluster for-

mation simulations had 2 major categories (branched and ring structures), each of

these broad categories had differing excitation behaviours. The ring structures had

lower excitation energies than the branched structures across the 4 CMPs studied.

DD plots were again used to provide a clearer picture of the excitation pro-

cess in these systems. These plots show that the excitations are localised on the

pyrene rings of these model systems, thus the local environment of these rings

is important for controlling these excitations. It may be possible to tailor the

band gap/excitations by functionalising the linkers included in these CMPs, again

further experimental/theoretical work is required to confirm this suggestion.

When considering a representative set of the diversity of structures generated

by the cluster formation, an UV-Vis spectra can be generated, these show that

the position of the peak changes very little between the 4 CMPs but the broad-

ness of the peak increases with higher structural diversity and this is seen in the

experimental spectra of the frameworks.
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