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Abstract

In recent years, there has been a growing interest in identifying anomalous struc-
ture within multivariate data sequences. We consider the problem of detecting collec-
tive anomalies, corresponding to intervals where one, or more, of the data sequences
behaves anomalously. We first develop a test for a single collective anomaly that has
power to simultaneously detect anomalies that are either rare, that is affecting few
data sequences, or common. We then show how to detect multiple anomalies in a
way that is computationally efficient but avoids the approximations inherent in bi-
nary segmentation-like approaches. This approach is shown to consistently estimate
the number and location of the collective anomalies – a property that has not previ-
ously been shown for competing methods. Our approach can be made robust to point
anomalies and can allow for the anomalies to be imperfectly aligned. We show the
practical usefulness of allowing for imperfect alignments through a resulting increase
in power to detect regions of copy number variation.
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1 Introduction

The field of anomaly detection has attracted considerable attention in recent years, in part

due to an increasing need to automatically process large volumes of data gathered without

human intervention. Interest is either in removing anomalies, so that robust inferences

can be made by analysing non-anomalous data (Rousseeuw & Bossche 2018), or detecting

anomalies because they are indicative of features of interest. Examples of the latter include

anomalous sensor measurements indicating failure of equipment (Cui et al. 2018), or unusual

patterns in computer network data indicating a cyber attack (Metelli & Heard 2019).

Comprehensive reviews of the area can be found in Chandola et al. (2009) and Pimentel

et al. (2014). One of the main challenges in anomaly detection is that anomalies can come

in different guises. Chandola et al. (2009) categorises anomalies into one of three categories:

global, contextual, or collective. The first two of these categories are point anomalies, i.e.

single observations which are anomalous with respect to the global, or local, data context

respectively. Conversely, a collective anomaly is defined as a sequence of observations which

together form an anomalous pattern.

In this article, we focus on the following setting: we observe a multivariate time series

x1, ...,xn ∈ Rp corresponding to observations at n discrete time-points, each across p dif-

ferent components. Each component of the series has a typical behaviour, interspersed by

windows of time where it behaves anomalously. In line with the definition in Chandola et al.

(2009), we call the behaviour within such a time window a collective anomaly. Often the

underlying cause of such a collective anomaly will affect more than one, but not necessarily

all, of the components. Our aim is to accurately estimate the location of these collective

anomalies within the multivariate series, potentially in the presence of point anomalies.

Whilst it may be mathematically convenient to assume that anomalous structure occurs
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Figure 1: An example of time series with K = 2 collective anomalies, highlighted in blue,

where they are perfectly aligned (left) and are mis-aligned (right). Using notation from

Section 2 these collective anomalies occur from times s1 = 150 to e1 = 200 and s2 = 350 to

e2 = 400; the affected components are J1 = {1, 2, 3} and J2 = {3, 4}. For the mis-aligned

anomalies, the time series have anomalous behaviour in dark-blue regions, and behave

normally in light-blue regions.

contemporaneously across all affected sequences, in practice one might expect some time

delays as illustrated by Figure 1. We will consider two different scenarios for the alignment

of related collective anomalies across different components. First, that concurrent collective

anomalies perfectly align. That is, we can segment our time series into windows of typical

and anomalous behaviour, with the latter affecting a subset of components. The second, and

for many applications more realistic, setting assumes that concurrent collective anomalies

start and end at similar but not necessarily identical time points.

There has been much less work on detecting collective anomalies than point anomalies.

It is possible to use point anomaly methods to detect a collective anomaly, by applying

them to data from suitably chosen periods of time. For example, Talagala et al. (2021)

use this approach to detect anomalous daily behaviour of pedestrians in Melbourne, while

the online method of Talagala et al. (2020) produces a bivariate summary of data within
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a moving window and detects a collective anomaly based on a measure of how unusual

this summary is. One problem with these approaches is the need to specify an appropriate

period of time or window length.

Other approaches aimed at detecting collective anomalies include state space models

and (epidemic) changepoint methods. State space models assume that a hidden state,

which evolves following a Markov chain, determines whether the time series’ behaviour is

typical or anomalous. Examples of state space models for anomaly detection can be found

in Smyth (1994) and Bardwell & Fearnhead (2017). These models have the advantage

of providing interpretable output in the form of probabilities of certain segments being

anomalous. However, they are often slow to fit and are sensitive to the choice of prior

distributions, which can be difficult to specify.

The epidemic changepoint model (Levin & Kline 1985) provides an alternative detection

framework, built on an assumption that there is a normal, non-anomalous, behaviour from

which the model deviates during certain windows. Each epidemic changepoint consists

of two classical changepoints, one away from and one returning back to distribution that

describes the non-anomalous behaviour. Epidemic changepoints can be inferred by using

classical changepoint methods (Killick et al. 2012, Fryzlewicz 2014, Wang & Samworth

2018), but this leads to sub-optimal power, as it does not exploit the fact that the parameter

associated with each non-anomalous segment is the same.

Instead, many epidemic changepoint methods are fit using the circular binary segmen-

tation algorithm (Olshen et al. 2004), an epidemic changepoint version of binary segmen-

tation. For multivariate data, the key challenge for these methods is that theoretically de-

tectable anomalies can either be sparse, with a few components exhibiting strongly anoma-

lous behaviour, or dense, with a large proportion of components exhibiting potentially very
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weak anomalous behaviour (Jeng et al. 2012). A range of different epidemic changepoint

methods have been proposed that use circular binary segmentation: the methods of Zhang

et al. (2010) for dense changes, LRS (Jeng et al. 2010) for sparse changes, and higher

criticism based methods like PASS (Jeng et al. 2012) for both types of changes.

The approach in this paper is fundamentally different from this earlier work. It builds

on a penalised cost based test statistic to detecting collective anomalies, which we introduce

in Section 2. Whilst penalised cost methods have proved popular for changepoint detection

(e.g. Davis et al. 2006, Killick et al. 2012, amongst many others), they have been less used

for detecting collective anomalies or epidemic changepoints. Such an approach is general,

as we can choose different costs to detect different type of anomalies. It can also be model-

based, as the cost is most naturally defined in terms of the negative log-likelihood of the

data under an appropriate model for data in normal and anomalous segments. Whilst this

paper focuses mainly on detecting changes in mean in Gaussian-like data, as is common

for penalised cost based methods, the framework can easily extend to detecting changes in

count or categorical data (Hocking et al. 2015), or to detecting changes in other features

such as variance or correlation (Davis et al. 2006) or distribution (Haynes, Fearnhead &

Eckley 2017).

An advantage of this penalised cost approach is that we can extend the method from de-

tecting a single anomaly to detecting multiple anomalies without having to resort to binary

segmentation algorithms – instead we can exactly and efficiently optimise the penalised cost

criteria over the unknown number and position of the anomalies. We show how to extend

this approach so as to allow for both point anomalies, and for the estimated anomalous

segments to be misaligned across series. The resulting algorithm is called Multi-Variate

Collective And Point Anomalies (MVCAPA). MVCAPA has been implemented in the R

5



package anomaly for detecting collective anomalies which correspond to changes in mean,

or changes in mean and variance.

As well as demonstrating the performance of MVCAPA empirically on simulated and

real data, we also present a number of theoretical results that both guide the implementa-

tion of the method and show its strong statistical properties. One of the challenges with

implementing a penalised cost approach for multivariate data is how to choose the penalty,

and in particular how the penalty varies as the number of anomalous series varies. By

focusing on the case of at most one anomalous region we are able to propose appropriate

penalties, and show that this choice both controls the false positive rate and has optimal

power to detect both sparse and dense anomalies in the case of i.i.d. Gaussian data where

anomalies correspond to changes in the mean of the data.

We give finite sample consistency results for MVCAPA for the problem of detecting

anomalies that change the mean in Gaussian data in Section 5. Our main result shows

the consistency of estimates of the number and location of the anomalous segments, albeit

for the special case where we ignore point anomalies or any mis-alignment of the collective

anomalies. We are unaware of similar consistency results for detecting collective anomalies

in multivariate data. Whilst there are similar consistency results for the related problem of

detecting changes in multivariate data (Wang & Samworth 2018, Cho & Fryzlewicz 2015),

these are for methods that assume a minimum segment length, and under the condition

that this increases with the amount of data. We do not assume MVCAPA imposes a

minimum segment length in our proof, and this greatly increases the technical challenge

– as one of the main issues is showing that a single true collective anomaly is not fit

using multiple collective anomalies, something that can be easily excluded if our inference

procedure assumes a diverging minimum segment length.
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2 Model and Inference for a Single Collective Anomaly

2.1 Penalised Cost Approach

We begin with the case where collective anomalies are perfectly aligned. We consider a

p-dimensional data source for which n time-indexed observations are available. A general

model for this situation is to assume that the observation x
(i)
t ∈ R, where 1 ≤ t ≤ n

and 1 ≤ i ≤ p index time and components respectively, comes from a parametric family

of distributions, which may depend on earlier observations of component i, and whose

parameter, θ(i)(t) ∈ R, depends on whether the observation is associated with a period of

typical behaviour or an anomalous window. Conditional on θ(i)(t), the series are assumed

to be independent. We let θ
(i)
0 denote the parameter associated with component i during

its typical behaviour. Let K be the number of anomalous windows, with the k-th window

starting at sk+1 and ending at ek and affecting the subset of components denoted by the set

Jk. We assume that anomalous windows do not overlap, so ek ≤ sk+1 for k = 1, . . . , K − 1.

We let l denote the minimum length of a collective anomaly, and impose ek−sk ≥ l for each

k; setting l = 1 imposes no minimum length. Our model then assumes that the parameter

associated with observation x
(i)
t is

θ(i)(t) = θ
(i)
k if sk < t ≤ ek and i ∈ Jk (1)

and θ
(i)
0 otherwise.

We start by considering the case where there is at most one collective anomaly, i.e. where

K ≤ 1, and introduce a test statistic to determine whether a collective anomaly is present

and, if so, when it occurred and which components were affected. The methodology will be

generalised to multiple collective anomalies in Section 3. Throughout we assume that the
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parameter, θ0, representing the sequence’s baseline structure, is known. In practice we can

estimate θ0 robustly over the whole data using robust statistical methods, see for example

Fisch et al. (2018), or our approach in Section 7.

Given the start and end of a window, (s, e), and the set of components involved, J,

we can calculate the log-likelihood ratio statistic for the collective anomaly. To do so, we

introduce a cost, which in the case of i.i.d. observations from a density f(x,θ) is

Ci
(
x
(i)
s+1:e,θ

)
= −2

e∑
t=s+1

log f(x
(i)
t ,θ),

obtained as minus twice the log-likelihood of data x
(i)
s+1:e for parameter θ. For dependent

data we can replace f(x
(i)
t ,θ) by the conditional density of x

(i)
t given x

(i)
1:(t−1). We can then

quantify the saving obtained by fitting component i as anomalous for the window starting

at s+ 1 and ending at e as

Si (s, e) = Ci
(
x
(i)
(s+1):e,θ

(i)
0

)
−min

θ

(
Ci
(
x
(i)
(s+1):e,θ

))
.

For example, to detect anomalies that correspond to changes in the mean of the data we

can use a cost based on a Gaussian model for the data, Ci
(
x
(i)
s+1:e,θ

)
=
∑e

i=s+1((x
(i)
t −

µ)/σ
(i)
0 )2, where µ is the segment mean, and σ

(i)
0 is the common standard deviation of the

ith component. This leads to a saving

Si (s, e) =
(e− s)(
σ

(i)
0

)2
(

1

e− s

e∑
t=s+1

x
(i)
t − µ

(i)
0

)2

.

If anomalies could correspond to changes in either or both of the mean and variance, we

can again base the cost on a Gaussian model but allow both mean and variance to be
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estimated for an anomalous region. This leads to savings

Si (s, e) =
e∑

t=s+1

(
x
(i)
t − µ

(i)
0

σ
(i)
0

)2

−(e−s−1)

log


∑e

t=s+1

(
x
(i)
t − 1

e−s
∑e

t′=s+1 x
(i)
t′

)2
(e− s)

(
σ

(i)
0

)2
+ 1

 .

Similarly, for count data, we could base our cost on a Poisson or negative-binomial

model for the data.

Given a suitable cost function, the log-likelihood ratio statistic is
∑

i∈J Si (s, e). As

the start or the end of the window, or the set of components affected, are unknown, we

maximise the log-likelihood ratio statistic over the range of possible values for these quan-

tities. However, in doing so, we need to take account of the fact that different J will allow

different numbers of components to be anomalous, and hence will allow maximising the

log-likelihood, or equivalently minimising the cost, over differing numbers of parameters.

This suggests penalising the log-likelihood ratio statistic differently, depending on the size

of J. That is we test the null hypothesis of there being no anomaly by calculating

max
J,s≤e−l

[∑
i∈J

Si (s, e)− P (|J|)

]
, (2)

where P (·) is a suitable positive penalty function of the number of components that change,

and l is the minimum segment length. We will detect an anomaly if (2) is positive, and

estimate its location and the set of components that are anomalous based on the values of

s, e, and J that give the maximum of (2).

To efficiently maximise (2), define positive constants α, β1:p with P (1) = α+β1, and, for

i = 2, . . . , p, βi = P (i)−P (i−1). So the βis are the first differences of our penalty function

P (·). Let the order statistics of S1 (s, e) , . . . ,Sp (s, e) be S(1) (s, e) ≥ ... ≥ S(p) (s, e), and
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define the penalised saving statistic of the segment x(s+1):e,

S (s, e) = max
k

(
k∑
i=1

{
S(i) (s, e)− βi

})
− α.

Then (2) is obtained by maximising S (s, e) over s and e, subject to e− s ≥ l.

Clearly, α and β1 are only well specified up to their sum and α can be absorbed into β1

without altering the properties of our statistic. However, not doing so can have computa-

tional advantages: it removes the need of sorting if all the βis are identical and equal to β,

say, when

S (s, e) =

p∑
i=1

(Si (s, e)− β)+ − α.

2.2 Choosing Appropriate Penalties

The choice of penalties will impact both the false error rate, the probability of detecting

an anomaly if there are none, and how the power to detect an anomaly varies with the

number of components that are affected. In particular, we want a penalty function, P (·),

that allows us to match optimal power results for both sparse and dense anomalies, whilst

having a false error rate that asymptotically tends to 0. In practice, we suggest fixing the

shape of the penalty function and to use simulation from an appropriate model with no

anomalies, to scale the penalty function to achieve a desired false error rate. Such a tuning

of the penalty function is straightforward, as it involves tuning a single scaling factor, whilst

making the choice of penalty robust to both deviations from assumptions and looseness in

the bounds on the false error-rate.

The optimal power results correspond to models with a change in mean in Gaussian

data – for which the savings using the square error loss, or equivalently the Gaussian log-

likelihood, have a χ2
1 distribution under the null. We thus derive penalty regimes under an
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assumption that the savings can be stochastically bounded by aχ2
v under the null hypothesis

that no anomalies are present for some positive integer v and some positive real number a.

This bound also holds for a wide variety of other cost functions under a range of different

assumptions. If the cost is based on twice the negative log-likelihood, the savings are equal

to the deviance and, if standard regularity conditions hold, converge to a χ2
v distribution

as e − s → ∞. Also, when the Gaussian log-likelihood is used to detect changes in mean

the bound holds under a range of model mis-specifications, such as when the time series

are i.i.d. sub-Gaussian; or when data from each component follow an independent AR(1)-

models with bounded positive auto-correlation parameter (Lavielle & Moulines 2000).

Let K̂ be the estimated number of collective anomalies. Our bounds on the false positive

rate will be based on showing

P
(
K̂ = 0

)
≥ 1− Ae−ψ(p,n), (3)

where A is a constant and ψ := ψ(p, n) increases with n and/or p. The appropriate choice

of ψ will depend on the setting. In panel data the number of time points n may be small

but we may have data from a large number of components, p. Setting ψ(p, n) ∝ log(p) is

therefore a natural choice so that the false positive probability tends to 0 as p increases.

In a streaming data context, the number of sampled components p is typically fixed, while

the number of observations n increases, so setting ψ(p, n) ∝ log(n) is then natural.

We present three different penalty regimes (see Figure 2), each with power to detect

anomalies with different proportions of anomalous segments. The regimes will be indexed

by a parameter ψ which corresponds to the exponent of the probability bound, as defined in

(3). We denote the penalty functions for each of these regimes by P1, P2 and P3 respectively.

The first penalty regime consists of just a single global penalty:

Penalty Regime 1: P1(j) = a
(
pv + 2

√
pvψ + 2ψ

)
, corresponding to setting βj = 0 for
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Figure 2: A comparison of the 3 penalty regimes for a χ2
1-distributed saving when p = 500

and ψ = 2 log(10000). Regime 1 is in green, regime 2 in red and regime 3 in blue.

1 ≤ j ≤ p and α = a
(
pv + 2

√
pvψ + 2ψ

)
.

Under this penalty, we would infer that any detected anomaly region affects all compo-

nents. This is likely to lead to a lack of power, if we have anomalous regions that only affect

a small number of components. For such anomalies, the following is a good alternative as

it has a smaller penalty for fitting collective anomalies with few components:

Penalty Regime 2: P2(j) = 2(1 + ε)aψ + 2(1 + ε)aj log(p) which corresponds to setting

α = 2(1 + ε)aψ and βj = 2(1 + ε)a log(p), for 1 ≤ j ≤ p and ε > 0.

Comparing penalty regime 2 with penalty regime 1, we see that it has a lower penalty for

small j, but a much higher penalty for j >>
√
p/ log p. As such it has higher power against

collective anomalies affecting few components, but low power if the collective anomalies

affect most components.

If v ≤ 2, a third penalty regime can be derived:

Penalty Regime 3: P3(j) = a
(

2(ψ + log(p)) + jv + 2pcjf(cj) + 2
√

(jv + 2pcjf(cj))(ψ + log(p))
)

,

where f is the PDF of the χ2
v-distribution and cj is defined via the implicit equation
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P (χ2
v > cj) = j/p.

As can be seen from Figure 2 for the special case of χ2
1-distributed savings, this penalty

regime provides a good alternative to the other penalty regimes, with lower penalties for

intermediate values of |J |.

All these regimes control the false positive rate, as shown in the following proposition.

Proposition 1 Assume that there are no collective anomalies. Assume also that the sav-

ings Si(s, e) are independent across components and each stochastically bounded by aχ2
v for

1 ≤ i ≤ p and let K̂ denote the number of inferred collective anomalies. If we use penalty

regime 1 or 2, or if v ≤ 2 and we use penalty regime 3, then, there exists a global constant

A such that P{K̂ = 0} ≥ 1− An2e−ψ.

Rather than choosing one penalty regime, we can maximise power against both sparse,

intermediate and dense anomalies, by choosing α, β1, ..., βp so that the resulting penalty

function P (j), is the point-wise minimum of the penalty functions P1(j), P2(j), and, if

available, P3(j). We call this the composite regime. It is a corollary from Proposition 1,

that this composite penalty regime achieves P{K̂ = 0} ≥ 1− 3An2e−ψ for the same global

constant A as in Proposition 1, when Si(s, e) is stochastically bounded by aχ2
v.

2.3 Results on Power

For the case of a collective anomaly characterised by changes in the mean in a subset of

the data’s components, we can compare the power of our penalised saving statistic with

established results regarding the optimal power of tests. Specifically, we examine behaviour

under a large p regime. We follow the asymptotic parameterisation of Jeng et al. (2012)
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and therefore assume that the collective anomaly is of the form

x
(i)
t = v(i)µ+η

(i)
t , v(i) ∼

0 with prob. 1− p−ξ,

1 with prob. p−ξ,

and η
(i)
t

i.i.d.∼ N(0, 1), for s < t ≤ e,

(4)

the noise η
(1)
t , ...,η

(p)
t of the different series being independent.

Typically (Jeng et al. 2012), changes are characterised as either sparse or dense. In a

sparse change, only a few components are affected. Such changes can be detected based

on the saving of those few components being larger than expected after accounting for

multiple testing. The affected components therefore have to experience strong changes to

be reliably detectable. On the other hand, a dense change is a change in which a large

proportion of components exhibits anomalous behaviour. A well defined boundary between

the two cases exists with ξ ≤ 1
2

corresponding to dense and ξ > 1
2

corresponding to sparse

changes (Jeng et al. 2012, Enikeeva & Harchaoui 2019). Depending on the setting, the

change in mean is parameterised by rp ∈ R in the following manner:

(e− s)µ2 =

2rp log(p) 1
2
< ξ < 1,

p−2rp 0 ≤ ξ ≤ 1
2
.

Both Jeng et al. (2012) and Cai et al. (2011) derive detection boundaries for rp, sep-

arating changes that are too weak to be detected from those changes strong enough to

be detected. For the case in which the standard deviation in the anomalous segment is

the same as the typical standard deviation, the detectability boundaries correspond to

ρ− = (1−
√

1− ξ)2 if 3/4 < ξ < 1, ρ− = ξ − 1/2 if 1/2 < ξ ≤ 3/4 for the sparse case; and

ρ+ = (1/2 − ξ)/2 for the dense case (0 ≤ ξ ≤ 1
2
). The following proposition establishes

that the penalised saving statistic has power against all sparse changes within the detection
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boundary, as well as against dense changes within the detection boundary

Proposition 2 Let the typical mean be known and the series x1, ...,xn contain an anoma-

lous segment xs+1, ...,xe, which follows the model specified in (4). Let rp > ρ− if 1
2
< ξ < 1

or rp < ρ+ if 0 ≤ ξ ≤ 1
2
. Then the number of collective anomalies, K̂, estimated by MV-

CAPA using the composite penalty with a = 1, v = 1 and ψ(p, n) = 2 log(n) + 2 log(log(p))

on the data x1, ...,xn, satisfies

P
(
K̂ 6= 0

)
→ 1 as p→∞

provided that log(n) = o(log(p)).

Rather than requiring µi to be 0, or a common value µ, it is trivial to extend the result

to the case where µ1, ..., µp are i.i.d. random variables whose magnitude exceeds µ with

probability p−ξ. It is worth noticing that the third penalty regime is required to obtain

optimal power against the intermediate sparse setting 1
2
< ξ ≤ 3

4
.

3 Inference for Multiple Anomalies

A natural way of extending the methodology introduced in Section 2 to infer multiple collec-

tive anomalies, is to maximise the penalised saving jointly over the number and location of

potentially multiple anomalous windows. That is we infer K̂,
(
ŝ1, ê1, Ĵ1

)
,...,

(
ŝK̂ , êK̂ , ĴK̂

)
by directly maximising

K̂∑
k=1

S (ŝk, êk) , (5)

subject to êk − ŝk ≥ l and êk ≤ ŝk+1.

15



Such an approach may not be robust to point outliers, which could either be incorrectly

inferred as anomalous segments or cause anomalous segments to be broken up, thus limiting

interpretability. The occurrence of both these problems can be prevented by using bounded

cost functions (Fearnhead & Rigaill 2019). For example, when looking for changes in mean

using a square error loss function, we truncate the loss at a value β′ to obtain the cost

C(x, µ) = min(β′, (x− µ)2/σ2), which is equivalent to using Tukey’s biweight loss.

When only spurious detection of anomalous regions due to point outliers is to be avoided,

just the cost used for the typical segments has to be truncated. To do this we define S ′ (xt)

to be the reduction in cost obtained by truncating the cost of a subset of the components

of the observation x
(i)
t . For example, if our anomalies correspond to changes in mean and

we are using square error loss, or equivalently the Gaussian log-likelihood based cost, then

S ′ (xt) =

p∑
i=1

max

(x
(i)
t − µ

(i)
0

σ
(i)
0

)2

− β′, 0

 ,

where as before µ
(i)
0 and σ

(i)
0 are the mean and standard deviation of normal data for

component i. Joint inference on collective and point anomalies is then performed by max-

imising

K̂∑
k=1

S (ŝk, êk) +
∑
t∈O

S ′ (xt) , (6)

with respect to K̂,
(
ŝ1, ê1, Ĵ1

)
,...,

(
ŝK̂ , êK̂ , ĴK̂

)
, and the set of point anomalies O, subject

to êk − ŝk ≥ l, êk < ŝk+1 (∪i[si + 1, ei]) ∩O = ∅.

Similarly, setting the cost C() of collective anomalies to the truncated loss prevents

collective anomalies from being split up by point anomalies. This has been implemented

for anomalies characterised by a change in mean, using Tukey’s bi-weight loss, in the

anomaly package.
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The threshold β′ has to be chosen depending on whether it is of interest to detect point

anomalies as such. When this is not the case, β′ tunes the robustness of the approach –

the lower it is, the more robust the approach becomes to outliers, whilst higher values of

β′ lead to more power. When point anomalies are of interest, β′ can be chosen with the

aim of controlling false positives under the null hypothesis of no point anomalies. When

Tukey’s biweight loss is used, the following proposition holds for any penalty β′:

Proposition 3 Let x
(i)
1 , ..., x

(i)
n be i.i.d. sub-Gaussian(λ) with known mean µi. Let the

series be independent for 1 ≤ i ≤ p. Let Ô denote the set of point anomalies inferred by

MVCAPA using cost C(x, µ) = min(β′, (x − µ)2). Then, there exists a global constant A′

such that

P
(
Ô = ∅

)
≥ 1− A′npe−

1
2λ
β′ .

This suggests setting β′ = 2λ log(p) + 2λψ, where ψ is as in Section 2.2.

4 Computation

The standard approach to extend a method for detecting an anomalous window to detecting

multiple anomalous windows is through circular binary segmentation (CBS; Olshen et al.

2004) – which repeatedly applies the method for detecting a single anomalous window or

point anomaly. Such an approach is equivalent to using a greedy algorithm to approximately

maximise the penalised saving and has computational cost of O(Mn), where M is the

maximal length of collective anomalies and n is the number of observations. Consequently,

the runtime of CBS is O(n2) if no restriction is placed on the length of collective anomalies.

We will show in this section that we can directly maximise the penalised saving by using a
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pruned dynamic programme. This enables us to jointly estimate the anomalous windows,

at the same or at a lower computational cost than CBS.

We will focus on the optimisation of the criteria that incorporates point anomalies (6),

though a similar approach applies to optimising (5). Writing S(m) for the largest penalised

saving of all observations up to and including time m, it is straightforward to derive the

recursion.

S(m) = max

(
S(m− 1) + S ′ (xm) , max

0≤t≤m−l

(
S(t) + S (t,m)

))
with S(0) = 0. Calculating S (t,m) is, on average, anO(p log(p)) operation, since it requires

sorting the savings made from introducing a change in each component. This sorting is not

required if the βi are identical, whence the computational cost to O(p). For a maximum

segment length M , the computational cost of the dynamic programme is O(Mn).

If no maximum segment length is specified, the computational cost scales quadratically

in n. However, the solution space of the dynamic programme can be pruned in a fashion

similar to Killick et al. (2012) and Fisch et al. (2018) to reduced this computational cost.

This is discussed in Section 1.1 of the Supplementary Material. As a result of this pruning

we found the runtime of MVCAPA to be close to linear in n, when the number of collective

anomalies increased linearly with n; see Section 7.3.

5 Accuracy of Detecting Multiple Anomalies

Whilst we have shown that MVCAPA has good properties when detecting a single anoma-

lous window for the change in mean setting, it is natural to ask whether the extension

to detecting multiple anomalous windows will be able to consistently infer the number

of anomalous windows and accurately estimate their locations. Specifically, we will be
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considering the case of joint detection of sparse and dense collective anomalies in mean.

Developing such results is notoriously challenging, as can be seen from the fact that previ-

ous work on this problem (Jeng et al. 2012) has not provided any such results. Our novel

combinatorial arguments can be applied to other settings (e.g. mean and variance) within

the penalised cost framework.

Consider a multivariate sequence x1, ...,xn ∈ Rp, which is of the form xt = µ(t) +

ηt, where the mean µ(t) follows a subset multivariate epidemic changepoint model with

K epidemic changepoints in mean. For simplicity, we assume that within an anomalous

window all affected components experience the same change in mean, and that the noise

process is i.i.d. Gaussian, i.e. that for each component i,

µ(i)(t) = µk if sk < t ≤ ek and i ∈ Jk (7)

and 0 otherwise.

Consider also the following choice of penalty.

j∑
i=1

βi =

Cψ + Cj log(p) if j ≤ k∗,

p+ Cψ + C
√
pψ if j > k∗.

(8)

Here, C is a constant, ψ := ψ(n, p) sets the rate of convergence and the threshold

k∗ = p1/2
ψ

log(p)
,

is defined as the threshold separating sparse changes from dense changes. This penalty

regime is identical, up to O(ε), to the point-wise minimum between penalty regimes 1 and

2, when C = 2 + ε.

Anomalous regions can be easier or harder to detect depending on the strength of

the change in mean characterising them and the number of components (|Jk| for the kth
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anomaly) they affect. This intuition can be quantified by

42
k =


µ2
k

log(p) + ψ|Jk|−1
if |Jk| ≤ k∗,

µ2
k√

pψ|Jk|−1 + ψ|Jk|−1
if |Jk| > k∗,

which we define to be the signal strength of the kth anomalous region. The following

consistency result then holds

Theorem 1 Let the typical means be known. There exists a global constants A and C0

such that for all C ≥ C0 the inferred partition τ = {(ŝ1, ê1, Ĵ1), ..., (ŝK̂ , êK̂ , ĴK̂)} obtained

by applying MVCAPA using the penalty regime specified in (8) and no minimum segment

length, on data x which follows the distribution specified in (7) satisfies

P
(
K̂ = K, |ŝk − sk| <

10C

42
k

, |êk − ek| <
10C

42
k

)
> 1− An3e−ψ, (9)

provided that, for k = 1, ..., K,

ek − sk ≥
40C

42
k

, sk+1 − ek ≥
40C

42
k

, sk − ek−1 ≥
40C

42
k

.

The result is proved in the Supplementary Material using combinatorial arguments.

This finite sample result holds for a fixed C, which is independent of n, p, K, and/or 4k.

Theorem 1 can be extended to allow for both a minimum and maximum segment length.

The proof of the theorem is based on partitioning all possible segmentations in to one of

two classes, corresponding to those which are consistent with the event in the probability

statement of (9) and those that are not. The proof then shows that conditional on a

different event, whose probability is greater than 1 − An3e−ψ, any segmentation in the

latter class will have a lower penalised saving than at least one segmentation in the former
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class, and thus cannot be optimal under our criteria. This argument still works providing

our choice of minimum or maximum segment lengths does not exclude any segmentations

from the first class of segmentations, i.e. if

l ≤ min
k

(
ek − sk −

20C

42
k

)
, m ≥ max

k

(
ek − sk +

20C

42
k

)
.

6 Incorporating Lags

6.1 Extending the Test Statistic

So far, we have assumed that all anomalous windows are perfectly aligned. In some ap-

plications, such as the vibrations recorded by seismographs at different locations, certain

components will start exhibiting atypical behaviour later and/or return to the typical be-

haviour earlier. The model in (1) can be extended to allow for lags in the start or end of

each anomalous window. The parameter θ(i)(t) is then assumed to be

θ(i)(t) = θ
(i)
k if sk + d

(i)
k < t ≤ ek − f

(i)
k and i ∈ Jk, (10)

and θ
(i)
0 otherwise. Here the start and end lag of the ith component during the kth anoma-

lous window are denoted, respectively, by 0 ≤ d
(i)
k ≤ w and 0 ≤ f

(i)
k ≤ w, for some maximum

lag-size, w, and satisfy sk + d
(i)
k < ek − f

(i)
k . The remaining notation is as before.

The statistic introduced in Section 2 can easily be extended to incorporate lags. The

only modification this requires is to re-define the saving Si (s, e) to be

max
0≤d(i),f(i)≤w
e−s−d(i)−f(i)≥l

[
Ci
(
x
(i)

(s+1+d(i)):(e−f(i))
,θ

(i)
0

)
−min

θ

(
Ci
(
x
(i)

(s+1+d(i)):(e−f(i))
,θ
))]

, (11)
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where w is the maximal allowed lag. We then inferO, K̂,
(
ŝ1, ê1, d̂1, f̂1, Ĵ1

)
,...,

(
ŝK̂ , êK̂ , d̂K̂ , f̂K̂ , ĴK̂

)
by directly maximising the penalised saving

K̂∑
k=1

S (ŝk, êk) +
∑
t∈O

S ′ (xt) , (12)

with respect to K̂,
(
ŝ1, ê1, d̂1, f̂1, Ĵ1

)
,...,

(
ŝK̂ , êK̂ , d̂K , f̂K , ĴK̂

)
, and the set of point anoma-

lies O, subject to 0 ≤ d̂k, f̂k ≤ w, (êk − f̂k)− (ŝk + d̂k) ≥ l and êk < ŝk+1.

Introducing lags means searching over more possible start and end points for the anoma-

lous segments in each series. Consequently, increased penalties are required to control the

false error rate. A simple general way of doing is based on a Bonferonni correction to allow

for the different start and end-points of anomalies in different series. It is shown in Section

1.2 of the Supplementary Material that if we use the penalty regimes from Section 2.2 but

inflate ψ by adding 4 log(w + 1) we obtain the same bound on false positives.

When anomalies correspond to change in mean in Gaussian data, we show in Section 2.6

of the Supplementary Material that we can improve on this and use the following weaker

penalty and still control the false positive probability.

Penalty Regime 2’: P ′2(j) = 2(1+ε)ψ+2(1+ε)j log(p)+2(1+ε)j log(w+1) corresponding

to α = 2(1 + ε)ψ and βj = 2(1 + ε) log(p) + 2(1 + ε) log(w + 1), for 1 ≤ j ≤ p.

An important question is how to choose the maximum lag length, w. In practice this

needs to be guided by the application, and any knowledge about the degree to which

common anomalies may be misaligned. In Section 2.6 in the Supplementary Material we

provide theory which shows the gain in power that can be achieved by incorporating lags

when collective anomalies are misaligned. However, too large a value of w may lead to a

loss of power due to the inflation of the penalties that are needed, or, in extreme cases,

may mean that separate anomalies are fit as a single mis-aligned anomaly. We investigate
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the choice of w empirically in Section 7.

6.2 Computational Considerations

The dynamic programming approach described in Section 4 can also be used to minimise

the penalised negative saving in Equation (12). Solving the dynamic programme requires

the computation of Si (t,m) for 1 ≤ i ≤ p for all permissible t at each step of the dynamic

programme. Computing these savings ex nihilo every time leads to the computational cost

of the dynamic programme to scale quadratically in (w + 1).

However, it is possible to reduce the computational cost of including lags by storing the

savings

Ci
(
x
(i)
(a+1):b,θ

(i)
0

)
−min

θ

[
Ci
(
x
(i)
(a+1):b,θ

)]
for t − w ≤ b ≤ t and 0 ≤ a ≤ b − l. These can then be updated in each step of the

dynamic programme at a cost of at most O(np). From these, it is possible to calculate all

Si (t,m) required for a step of the dynamic programme in just O(np(w + 1)) comparisons.

This reduces the computational cost of each step of the dynamic programme to O(pn(w+

1) + pn log(p)). Crucially, only the comparatively cheap operations of allocating memory

and finding the maximum of two numbers increase with w + 1. Furthermore, it is possible

to adapt the pruning rule for the dynamic programme to incorporate lags. The details for

this and full pseudocode can be found in the Supplementary Material.

7 Simulation Study

We now compare the performance of MVCAPA to that of other popular methods. In par-

ticular, we compare detection accuracy, precision, as well as the runtime with PASS (Jeng
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et al. 2012) and Inspect (Wang & Samworth 2018, 2016). PASS (Jeng et al. 2012) uses

higher criticism in conjunction with circular binary segmentation (Olshen et al. 2004) to

detect subset multivariate epidemic changepoints. Inspect (Wang & Samworth 2018) uses

projections to find sparse classical changepoints and therefore provides a benchmark for

the detection approach consisting of modelling epidemic changes as two classical change-

points. For the purpose of this simulation study, we used the implementation of PASS

available on the author’s website and the Inspect implementation from the R package

InspectChangepoint.

The comparison was carried out on simulated multivariate time series with n = 5000

observations for p components with i.i.d. N(0, 1) noise, AR(1) noise (ρ = 0.3), or t10-

distributed noise for a range of values of p. To these, collective anomalies affecting k

components occurring at a geometric rate of 0.001 (leading to an average of about 5 col-

lective anomalies per series) were added. The lengths of these collective anomalies are

i.i.d. Poisson-distributed with mean 20. Within a collective anomaly, the start and end

lags of each component are drawn uniformly from the set {0, ..., w}, subject to their sum

being less than the length of the collective anomaly. Note that w = 0 implies the absence

of lags. The means of the components during the collective anomaly are drawn from an

N(0, σ2)-distribution. In particular, we considered the following cases, emulating different

detectable regimes introduced in Section 2.3.

1. The most sparse regime possible: a single component affected by a strong anomaly

without lags, i.e. σ = 2 log(p), w = 0, and k = 1.

2. The most dense regime possible: all components affected by weak anomalies without

lags, i.e. σ = p−1/4, w = 0, and k = p.
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3. A regime close to the boundary between sparse and dense changes, i.e. k = 2 when

p = 10 and k = 6 when p = 100 with σ = log(p) and w = 0.

4. A regime close to the boundary between sparse and dense changes, but with lagged

collective anomalies, i.e. the same as 3 but with w = 10.

This analysis was repeated with 5 point anomalies distributed N(0, 8 log(p)). The log(p)-

scaling of the variance ensures that the point anomalies are anomalous even after correcting

for multiple testing over the p different components.

7.1 Detection Accuracy

All methods are sensitive to the choice of a threshold parameter that defines how much

evidence of an anomaly or change there needs to be before one is flagged. To make our

results robust to this choice, we investigate how each method performs as we vary its

threshold parameter, and plot the proportion of anomalies detected against the number of

false positives. The curves were obtained over 1000 simulated datasets. For MVCAPA, we

typically set w = 0, but also tried w = 10 and w = 20 for the third and fourth setting.

The median and median absolute deviation were used to robustly estimate the mean and

variance. Throughout the experiments, for MVCAPA, we used the composite penalty

regime for w = 0 and penalty regime 2’ for w > 0, and varied its threshold by re-scaling

the penalty by a constant that is varied. We also set the maximum segment lengths for

both MVCAPA and PASS to 100 and the minimum segment length of MVCAPA to 2. The

α0 parameter of PASS, which excludes the α0− 1 lowest p-values from the higher criticism

statistic to obtain a better finite sample performance (see Jeng et al. (2012)) was set to k or

5, whichever was the smallest. For MVCAPA and PASS, we considered a detected segment
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(a) p=10 (b) p=10, AR (c) p=10, PAs (d) p=100, PAs

(e) p=10 (f) p=10, AR (g) p=10, PAs (h) p=100, PAs

(i) p=10 (j) p=10, AR (k) p=10, PAs (l) p=100, PAs

Figure 3: Proportion of anomalies detected against the ratio of false positives to true

positives for setting 1, 3, and 4 (top row to bottom row). MVCAPA is in black, PASS in

green, and Inspect in red. The solid black line corresponds to w = 0, the dashed one to

w = 10 and the dotted one to w = 20. The x-axis denotes the number of false discoveries

normalised by the total number of real anomalies present in the data.
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to be a true positive if its start and end point both lie within 20 observations of that of

a true collective anomalies’ start and end point respectively. For Inspect, we considered a

detected change to be a true positive if it was within 20 observation of a true start or end

point. When point anomalies were added to the data, we considered segments of length

one returned by PASS to be point anomalies. Qualitatively similar results were obtained

as we vary the definition of a true positive: see Figure 8 in the Supplementary Material.

A subset of the results for three of the settings considered can be found in Figure 3.

The full results for the four settings can be found in Figures 2 to 5 of the Supplementary

Material. We can see that Inspect usually does worst. This is especially true when changes

become dense, which is no surprise given the method was introduced to detect sparse

changes. However it is also the case for very sparse changes – the setting for which Inspect

has been designed, highlighting the advantage of treating epidemic changes as such. We

additionally see that MVCAPA generally outperforms PASS. This advantage is particularly

pronounced in the case in which exactly one component changes. This is a setting which

PASS has difficulties dealing with due to the convergence properties of the higher criticism

statistic at the lower tail (Jeng et al. 2012). PASS outperformed MVCAPA in the second

setting for p = 10, when it was assisted by a large value of α0, which considerably reduced

the number of candidate collective anomalies it had to consider.

Figures 3e and 3i, show that MVCAPA performs best when the correct maximal lag is

specified. They also demonstrate that specifying a lag and therefore overestimating the lag

when no lag is present adversely affects performance of MVCAPA. However, when lags are

present, over-estimating the maximal lag appears preferable to underestimating it. Finally,

the comparison between Figures 3i and 3k shows that the performance of MVCAPA is

hardly affected by the presence of point anomalies.
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Setting p Lag PAs. MVCAPA MVCAPA, w=10 MVCAPA, w=20 Inspect PASS

1 10 0 - 0.09 - - 0.64 0.31

1 100 0 - 0.02 - - 0.40 0.62

1 10 0 0.09 - - 0.62 0.38

1 100 0 0.03 - - 0.40 0.67

2 10 0 - 0.09 - - 0.74 0.52

2 100 0 - 0.01 - - 0.71 0.54

2 10 0 0.05 - - 0.69 0.46

2 100 0 0.01 - - 0.67 0.51

3 10 0 - 0.11 2.31 3.30 0.72 0.27

3 100 0 - 0.01 3.43 3.83 0.53 0.29

3 10 0 0.09 2.23 3.26 0.69 0.22

3 100 0 0.01 3.35 3.82 0.53 0.23

4 10 10 - 0.63 0.46 1.09 0.80 2.53

4 100 10 - 1.27 0.18 1.57 0.61 3.64

4 10 10 0.72 0.51 1.22 0.83 2.60

4 100 10 1.23 0.21 1.58 0.59 3.77

Table 1: Precision of true positives detected by all methods measured in mean absolute

distance for MVCAPA, PASS, and Inspect.
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We have also considered the case in which collective anomalies are characterised by

joint changes in mean and variance. Detection accuracy plots for that setting can be found

in Figures 6 and 7 in the Supplementary Material.

7.2 Precision

We compared the precision of the three methods by measuring the accuracy (in mean

absolute distance) of true positives. Only true positives detected by all methods were

taken into account to avoid selection bias. We used the default parameters for MVCAPA

and PASS, whilst we set the threshold for Inspect to a value leading to comparable number

of true and false positives. To ensure a suitable number of true positives for Inspect we

doubled σ in the second scenario. The results of this analysis can be found in Table 1 and

show that MVCAPA is usually the most precise approach, exhibiting a significant gain in

accuracy against PASS. Whilst we noted that erring on specifying too large a maximal lag

was better in terms of power of the MVCAPA to detect collective anomalies, we see that

it does have an adverse impact on the accuracy of their estimated locations.

7.3 Runtime

We compared the scaling of the runtime of MVCAPA, PASS, and Inspect in both the

number of observations n, as well as the number of components p. To evaluate the scaling

in n we set p = 10 and varied n on data without any anomalies. We repeated this analysis

with collective anomalies appearing (on average) every 100 observations. The results of

these two analyses can be found in Figures 4a and 4b respectively. We note that the

slope of MVCAPA is very close to 2, in the anomaly-free setting and very close to 1

in the setting in which the number of anomalies increases linearly with the number of
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(a) No anomalies (b) Regular anomalies (c) Large p

Figure 4: A comparison of run-times for MVCAPA (red squared), PASS (green circles),

and Inspect (blue triangles). Robust lines of best fit have been added. All logarithms

are in base 2. Left-hand and middle plots are for p = 10 and varying n for data with,

respectively, no collective anomalies and a collective anomaly every 100 observations on

average. Right-hand plot is for n = 100 and varying p.
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Truth PASS MVCAPA (w = 40) MVCAPA (w = 0)

Start Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3

2619669

2638575

21422575

32165010

34328205

54351338

70644511

Table 2: A comparison between PASS, MVCAPA without lags, and MVCAPA with a lag

of up to 40 for chromosome 16. Each row represents a known copy number variation, their

starting point (as defined by the HapMap) being indicated in the first column. Successful

detections are indicated by ticks.

observations, suggesting quadratic and linear behaviour respectively, whilst the slopes of

PASS and Inspect are close to 2 and 1 respectively in both cases.

Turning to the scaling of the three methods in p, we set n = 100 and varied p. The

results of this analysis can be found in Figure 4c. We note that the slopes of all methods

are close to 1 suggesting linear behaviour. However, Inspect becomes very slow once p

exceeds a certain threshold.
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8 Detecting Copy Number Variation

We now apply MVCAPA to extract copy number variations (CNVs) from genetics data.

The data consists of a log-R ratio between observed and expected intensity (defined in Lin

et al. 2013) evaluated along the genome. The typical mean of this statistics is therefore equal

to 0, whilst deviations from 0 correspond to CNVs. A multivariate approach to detecting

CNVs is attractive because they are often shared across individuals. By borrowing signal

across individuals we should gain power for detecting CNVs which have a weak signal.

However, as we will become apparent from our results, shared variations do not always

align perfectly across individuals.

In this section we re-use the design of Bardwell & Fearnhead (2017) to compare MV-

CAPA with PASS. We investigate the performance of both methods on two chromosomes

(Chromosome 16 with n = 59, 590 measurements and Chromosome 6 with n = 126, 695

measurements) over 18 individuals, which we split into 3 folds of p = 6 individuals. We set

the maximum segment length for MVCAPA and PASS to 100. To investigate the potential

benefit of allowing for lags, we repeated the experiment for MVCAPA both with w = 0 (i.e.

not allowing for lags) and w = 40. Since n >> p in this application, we used the sparse

penalty setting (Regime 2) for MVCAPA.

Whilst the exact ground truth is unknown, we can compare methods by how accurately

they detect known CNVs for a given test size. We used known CNVs from the HapMap

project (International HapMap Consortium 2003) as true positives and tuned the penalties

and thresholds so that 4% of the genome was flagged as anomalous for all methods.

The results of this analysis on Chromosome 16 can be found in Table 2 while the results

for Chromosome 6 can be found in Table 10 in the Supplementary Material. These tables

show that MVCAPA shows much more consistency across folds than PASS. We also see
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that allowing for lags generally led to a better performance, thus suggesting non-perfect

alignment of CNVs across individuals. Moreover, MVCAPA was very fast taking 5 seconds

to analyse the longer genome on a standard laptop when we did not allow lags, and 10

seconds when we allowed for lags. The R implementation of PASS took 17 minutes.

9 Discussion

Although we have focused on anomalies that relate to changes in mean, by choosing a cost

based on an appropriate model the framework can be applied to detecting a variety of types

of change. Moreover one can use different likelihood-based costs for different components

and thus detect collective anomalies for data with a mix of data types. It is also possible to

use a similar penalised cost to detect changepoints in multivariate data, and this extension

has been considered in Tickle et al. (2020).

We have presented theory that indicates how to choose appropriate penalties for the

method. However this theory relies on various assumptions, for example that the data

is independent across series and across time. Results for other penalised cost procedures

(Lavielle & Moulines 2000) suggest that one way of accounting for these assumptions not

holding is to increase the penalties. We suggest doing this by taking the penalties suggested

by theory and scaling them all by a constant. The choice of constant can be made in a

data-driven way through analysis of performance on test data (Hocking et al. 2013), or by

comparing changes the fit as we vary the constant (Haynes, Eckley & Fearnhead 2017).

Alternatively we can model the dependencies, see Tveten et al. (2020) for an extension of

MVCAPA to allow for correlation in the data across components.

MVCAPA does not quantify uncertainty about estimates of individual collective anoma-
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lies. This is similar to other epidemic changepoint and changepoint methods that output

a single estimate of their locations. Recent work (Hyun et al. 2021, Jewell et al. 2019)

has shown how to obtain valid p-values that quantify the uncertainty that each estimated

change is close to an actual change; the output of these methods can then be used to give,

e.g., control of the false discovery rate for the estimated changes. These ideas should be able

to be extended to cover the collective anomaly problem, and hence quantify uncertainty of

each collective anomaly detected by MVCAPA.
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1 Additional Theoretical Results

1.1 Pruning Without Lags

The following proposition holds:

Proposition 4 Let the costs Ci(, ) be such that

min
θ

(
c∑

t=a+1

Ci (xt,θ)

)
≥ min

θ

(
b∑

t=a+1

Ci (xt,θ)

)
+ min

θ

(
c∑

t=b+1

Ci (xt,θ)

)
holds for all x and a, b, c such that b− a ≥ l and c− b ≥ l. Then, if for some t there exists

an m ≥ t− l such that

S(m)− α−
p∑
1

βi > S(t) + S (t,m) ,

then, for all m′ ≥ m+ l,

S(m′) > S(t) + S (t,m′) .

A wide range of cost functions (see Killick et al. 2012) satisfy the condition required by

the above proposition. The proposition implies that if for some t there exists an m ≥ t− l

such that

S(m)− α−
p∑
1

βi > S(t) + S (t,m)

1



holds, t can be dropped as an option from the dynamic programme for all steps after step

m+ l, thus reducing the cost of the algorithm.

1.2 Bounds on Lagged Savings

The following result provides a general way to extend the stochastic bound (and thus the

penalties) from the lagged free to the lagged setting:

Proposition 5 Let the cost function Ci()be such that the un-lagged saving

Ci
(
x
(i)
(s+1):e,θ

(i)
0

)
−min

θ

(
Ci
(
x
(i)
(s+1):e,θ

))
be stochastically bounded by aχ2

v, then the saving Si (s, e) as defined in (11) satisfies

P (Si (s, e) > x) ≤ (w + 1)2P
(
aχ2

v > x
)
.

consequently; replacing ψ by ψ + 2 log(w + 1) when going from the perfectly aligned

case to the lagged case achieves at least the same error control.

1.3 Pruning the Dynamic Programme in the Presence of Lags

Even when lags are included in the model, the solution space of the dynamic programme

can still be pruned in a fashion similar to Killick et al. (2012) and Fisch et al. (2018).

Indeed, the following generalisation of Proposition 4 holds:

Proposition 6 Let the costs Ci(, ) be such that

min
θ

(
c∑

t=a+1

Ci (xt,θ)

)
≥ min

θ

(
b∑

t=a+1

Ci (xt,θ)

)
+ min

θ

(
c∑

t=b+1

Ci (xt,θ)

)

2



holds for all x and a, b, c such that b− a ≥ l and c− b ≥ l. Then, if for some t there exists

an m ≥ t− l − w such that

S(m)− α−
p∑
1

βi > S(t) + S (t,m)

holds,

S(m′) > S(t) + S (t,m′)

must also holds for all m′ ≥ m+ l + w.

It implies that if for some t there exists an m ≥ t− l − w such that

C(m)− α−
p∑
1

βi > C(t) + S (t,m)

holds, t can be dropped as an option from the dynamic programme for all steps after step

m+ l+w, thus reducing the cost of the algorithm. Moreover, we only need to maintain the

savings S(a, b) for all a exceeding the smallest option not yet dropped from the dynamic

programme, which further reduces the computational cost. As a result of this pruning we

found the runtime of MVCAPA to be close to linear in n, when the number of anomalies

increased linearly with n.

2 Proofs for Theorems and Propositions

2.1 Proof of Proposition 1

We will prove the existence of such a constant for each the three penalty regimes. The

result follows from this.

3



2.1.1 Regime 1

Let 0 ≤ s < e ≤ n. The probability that the segment (s + 1, e) is not flagged up as

anomalous is given by

P

(∑
c∈Jm

Sc (s, e) < a
(
pv + 2

√
pvψ + 2ψ

)
, ∀Sm ⊂ {1, ..., p} : |Jm| = m, 1 ≤ m ≤ p

)

= P

(
p∑
c=1

Sc (s, e) < a
(
pv + 2

√
pvψ + 2ψ

))
≥ P

(
χ2
pv < pv + 2ψ + 2

√
pvψ

)
≥ 1− e−ψ,

where the first inequality follows from the stochastic bound on Sc (s, e) and the second

inequality follows from the bounds on the chi-squared distribution in Laurent & Massart

(2000). A Bonferroni correction over all possible pairs s, e then finishes the proof.

2.1.2 Regime 2

Let 1 ≤ s ≤ e ≤ n. For this pair (s, e) define Yc = Sc(s + 1, e), noting that they are

all independent and stochastically bounded by aZc where Z1, ..., Zp are i.i.d. χ2
v random

variables. The probability that the segment s, e will not be considered anomalous is

P

(∑
c∈Sm

Yc < 2(1 + ε)aψ + 2ma(1 + ε) log(p), ∀Sm ⊂ {1, ..., p} : |Sm| = m, 1 ≤ m ≤ p

)

≥ P

(
p∑
i=1

(
Yi − 2(1 + ε)a log(p)

a

)+

< 2(1 + ε)ψ

)

≥ P

(
p∑
i=1

(Zi − 2(1 + ε) log(p))+ < 2(1 + ε)ψ

)
≥ 1− E

(
eλ(Z1−2(1+ε) log(p))+

)p
e−2λ(1+ε)ψ,

4



for all λ > 0, where the final inequality corresponds to a Chernoff bound. Next set λ = 1
2

1
1+ε

and note that the following Lemma holds:

Lemma 1 Let X ∼ χ2
v. Then the MGF of (X − c)+ is given by:

P
(
χ2
v < c

)
+

e−λc

(1− 2λ)
v
2

P
(
χ2
v > c(1− 2λ)

)
.

Consequently,

E
(
eλ(Z1−2(1+ε) log(p))+

)p
e−ψ

=

[
P
(
χ2
v < 2(1 + ε) log(p)

)
+
e−2(1+ε)λ log(p)

(1− 2λ)
v
2

P
(
χ2
v > 2(1 + ε)(1− 2λ) log(p)

)]p
e−ψ

≤

[
1 +

e−2(1+ε)λ log(p)

(1− 2λ)
v
2

]p
e−ψ =

[
1 +

1

p

(
1 + ε

ε

) v
2

]p
e−ψ ≤ exp

((
1 + ε

ε

) v
2

)
e−ψ.

A Bonferroni correction over all possible pairs s, e then finishes the proof.

2.1.3 Regime 3

Let 1 ≤ s ≤ e ≤ n. For this pair (s, e) define Yi = Sc(s + 1, e), noting that they are

all independent and stochastically bounded by aZi where Z1, ..., Zp are i.i.d. χ2
v random

variables. Next, define their order statistic Z(1) ≥ ... ≥ Z(p) The probability that the

segment (s, e) is not flagged up as anomalous is given by

P

(
m∑
i=1

Y(i) < a
(

2(ψ + log(p)) +mv + 2pcmf(cm) + 2
√

(mv + 2pcmf(cm))(ψ + log(p))
)
, 1 ≤ m ≤ p

)

≥ 1−
p∑

m=1

P

(
m∑
i=1

(
Y(i) − acm

a

)
> 2(ψ + log(p)) +m(v − cm) + 2pcmf(cm) + 2

√
(mv + 2pcmf(cm))(ψ + log(p))

)

≥ 1−
p∑

m=1

P

(
m∑
i=1

(
Y(i) − acm

a

)+

> 2(ψ + log(p)) +m(v − cm) + 2pcmf(cm) + 2
√

(vm+ 2pcmf(cm))(ψ + log(p))

)

≥ 1−
p∑

m=1

P

(
p∑
i=1

(
Yi − acm

a

)+

< 2(ψ + log(p)) +m(v − cm) + 2pcmf(cm) + 2
√

(vm+ 2pcmf(cm))(ψ + log(p))

)
.

≥ 1−
p∑

m=1

P

(
p∑
i=1

(Zi − cm)
+
< 2(ψ + log(p)) +m(v − cm) + 2pcmf(cm) + 2

√
(mv + 2pcmf(cm))(ψ + log(p))

)
.

5



We will now use the following lemma, which shows that (Zc − cm)+ is sub-gamma.

Lemma 2 Let Z ∼ χ2
v for v ≤ 2. Then (Z − c)+ − [2cf(c) + (v − c)P (χ2

v > c)] is sub-

gamma with scale parameter 2 and variance V = 4cf(c) + 2vP (χ2
v > c).

Using Lemma 2 and the bounds on sub-gamma random-variables in Boucheron & Thomas
(2012), we have that

p∑
m=1

P

(
p∑
i=1

(Zi − cm)+ < 2(ψ + log(p)) +m(v − cm) + 2pcmf(cm) + 2
√

(mv + 2pcmf(cm))(ψ + log(p))

)

=

p∑
m=1

P

(
p∑
i=1

(
(Zi − cm)+ − (v − cm)P

(
χ2
v > cm

)
+ 2cmf(cm)

)
< 2(ψ + log(p)) + 2

√
pv (P (χ2

v > cm) + 2cmf(cm)) (ψ + log(p))

)

≤
p∑

m=1

p−1e−ψ = e−ψ .

A Bonferroni correction over all possible pairs s, e then finishes the proof.

2.2 Proof of Proposition 2

Proof of Proposition 2: We will show that the penalised saving for the true anomalous

segment is positive with probability converging to 1 as p increases. By the definition of

signal strength, the distribution of the true anomalous segment’s penalised saving does not

depend on the length, s− e, of the segment. Thus, we assume, without loss of generality,

that e = s + 1 and treat the cases 0 < ξ ≤ 1
2
, 1

2
< ξ < 3

4
, and 3

4
< ξ < 1, separately. We

write Xi := x
(i)
e , for 1 ≤ i ≤ p.

Case 1: 0 < ξ ≤ 1
2
. Remember that the composite penalty used is the minimum

between regimes 1, 2, and 3. It is therefore sufficient to show that the saving will exceed

the penalty specified by one of these three regimes (regime 1 in this case) at some point. By

definition, Xi = (εi+viµ)2, where ε1, ..., εp are i.i.d. N(0, 1) and v1, ..., vp are i.i.d. Ber(p−ξ).

6



Therefore

P

(
∃m :

m∑
i=1

X(i) ≥ α+

m∑
i=1

βi

)
≥ P

(
p∑
i=1

Xi > p+ 2
√
pψ + 2ψ

)
= P

(
p∑
i=1

ε2i +

p∑
i=1

vi
(
2µεi + µ2

)
> p+ 2

√
pψ + 2ψ

)

≥ 1− P

(
p∑
i=1

ε2i < p− 2
√
pψ

)
− P

(
p∑
i=1

vi
(
2µεi + µ2

)
< 4
√
pψ + 2ψ

)

≥ 1− e−ψ − P

(
N

(
µ2

(
p∑
i=1

vi

)
, 4µ2

(
p∑
i=1

vi

))
< 4
√
pψ + 2ψ

)
Furthermore,

P

(
N

(
µ2

(
p∑
i=1

vi

)
, 4µ2

(
p∑
i=1

vi

))
> 4
√
pψ + 2ψ

)
> P

(
N
(
kµ2, 4kµ2

)
> 4
√
pψ + 2ψ

)
P

(
p∑
i=1

vi > k

)
,

for all k such that 1 ≤ k ≤ p. We therefore only have to show that there exists some

sequence of integers kp such that the right hand side converges to 1 as p→∞. Note that

Hoeffding’s inequality implies that

P

(
p∑
i=1

vi > p1−ξ − p
1
2
− 1

2
ξ
√

log(p)

)
→ 1 as p → ∞

and therefore

P

(
p∑
i=1

vi >
1

2
p1−ξ

)
→ 1 as p → ∞.

Setting kp = d1
2
p1−ξe, it is therefore sufficient to show that

P

(
N (0, 1) >

4
√
pψ + 2ψ − 1

2
µ2p1−ξ√

2µ2p1−ξ

)
= P

(
N (0, 1) >

4
√
pψ + 2ψ − 1

2
p1−ξ−2rp√

2µ2p1−ξ−2rp

)
converges to 1 as p tends to infinity. This is the case if rp <

1
2
(1
2
−ξ), which finishes the proof.

Case 2: 3
4
< ξ < 1. By an argument similar to that made for case 1, it is sufficient to

show that the saving will exceed the penalty specified by regime 2. We have that:

P

(
∃m :

m∑
i=1

X(i) ≥ α +
m∑
i=1

βi

)
≥ P

(
X(1) > 2ψ + 2 log(p)

)
= 1− (1− P (X1 > 2ψ + 2 log(p)))p

7



By definition, X1 = (µv1 + ε1)
2, where ε1 ∼ N(0, 1) and v1 ∼ Ber(p−ξ). We can therefore

bound the above by

1− (1− P (X1 > 2ψ + 2 log(p), v1 = 1))p = 1−

(
1− p−ξP

((
ε1 +

√
2rp log(p)

)2

> 2ψ + 2 log(p)

))p

> 1−
(

1− p−ξP
(
N(0, 1) >

√
2ψ + 2 log(p)−

√
2rp log(p)

))p
≥ 1− exp

(
−p1−ξP

(
N(0, 1) >

√
2ψ + 2 log(p)−

√
2rp log(p)

))
,

where the second inequality follows from the fact that 1−x ≤ e−x. We consider separately

the cases
√

2ψ + 2 log(p)−
√

2rp log(p) > 1 and
√

2ψ + 2 log(p)−
√

2rp log(p) ≤ 1. In the

latter case the above clearly converges to 1 as p goes to infinity. In the former case we

can use the lower tail bound P (N(0, 1) > x) > 1√
2π

x
x2+1

exp
(
−x2

2

)
, for x > 0 to bound the

above by

1− exp

− 1√
2π
p1−ξ

p

(√
1+ 2ψ

2 log(p)
−√rp

)2
1 +

(√
2ψ + 2 log(p)−

√
2rp log(p)

)2
 .

Thus, for a fixed rp >
(
1−
√

1− ξ
)2

this converges to 1, as ψ/ log(p) converges to 0.

Case 3: 1
2
< ξ < 3

4
. By an argument similar to that made for case 1, it is sufficient to

show that the saving will exceed the penalty specified by regime 3. We assume, without

loss of generality, that µ > 0. If rp ≥ 1
4
. Our approach is to define a threshold, b, and a

number of excesses, k̃, such that the number of savings in cost that exceed b will be great

than k̃ with probability going to 1 as p increases. We then show that the overall sum of the

k̃ largest savings will be greater than the penalty for fitting k̃ components as anomalous.

8



We introduce the following new random variable:

Yi =

[(µ+ εi)
+]

2
if vi = 1

ε2i if vi = 0,

where (x)+ denotes the positive part of x. Note that Yi ≤ Xi. We also introduce the

following four technical lemmata

Lemma 3 Let a > 0 and let Z ∼ χ2
1. Then, for all positive x ∈ R

P (Yi ≥ a+ x|Yi ≥ a) ≥ P (Z > a+ x|Z ≥ a) .

Lemma 4 Let Zi
i.i.d.∼ χ2

1 for 1 ≤ i ≤ k and a > 0. Then for all t ∈ R

P

(
k∑
i=1

(Zi − a)|(Zi > a) < kP
(
χ2
1 > a

)−1 E ((Z − a)+
)
− 2

√
kP
(
χ2
1 > a

)−1
(P
(
χ2
1 > a

)
+ 2af(a))t

)
< e−t

Lemma 5 Let ak be defined implicitly as P (χ2
1 > ak) = k

p
and let f(·) denote the probability

density function of the χ2
1 distribution. Then

pE
(
(χ2

1 − ak)+
)

+ kak = k + 2pakf(ak) ≤ 2k + 2k log(p/k)

Lemma 6 For all b > 0:

E
(
(χ2

1 − b)+|χ2
1 > b

)
> 1.

Next write b = 8rp log(p) and let k̃ be an integer such that both pP (χ2
1 > b) ≤ k̃ ≤ p

and ak̃ < b. Note that since rp <
1
4
, we have b ≤ 2 log(p) and such a k̃ is guaranteed to exist

for sufficiently large values of p. For convenience, write µ̃ = E ((χ2
1 − ak̃)+). The following

holds:

P

(
∃m :

m∑
i=1

X(i) ≥ α+

m∑
i=1

βi

)
≥ P

 k̃∑
i=1

Y(i) ≥ 2ψ + 2 log(p) + k̃ak̃ + pµ̃+ 2

√
(k̃ak̃ + pµ̃)(ψ + 2 log(p))


≥ P

 k̃∑
i=1

Y(i) ≥ 2ψ + 2 log(p) + k̃ak̃ + pµ̃+ 2

√
(k̃ak̃ + pµ̃)(ψ + 2 log(p))

∣∣∣∣∣
p∑
i=1

I (Yi > b) ≥ k̃

P

(
p∑
i=1

I (Yi > b) ≥ k̃

)
,

9



where the first inequality follows from substituting the third penalty regime (using the

equality from Lemma 5) and the second inequality follows from conditioning on the number

of Yi exceeding b. Next note that

P

 k̃∑
i=1

Y(i) ≥ 2ψ + 2 log(p) + k̃ak̃ + pµ̃+ 2

√
(k̃ak̃ + pµ̃)(ψ + log(p))

∣∣∣∣∣
p∑
i=1

I (Yi > b) ≥ k̃


≥ P

 k̃∑
i=1

Y(i) ≥ 2ψ + 2 log(p) + k̃ak̃ + pµ̃+ 2

√
(k̃ak̃ + pµ̃)(ψ + log(p))

∣∣∣∣∣
p∑
i=1

I (Yi > b) = k̃


= P

 k̃∑
i=1

(Yi − b)+ ≥ 2ψ + 2 log(p)− k̃ (b− ak̃) + pµ̃+ 2

√
(k̃ak̃ + pµ̃)(ψ + log(p))

∣∣∣∣∣Y1, ..., Yk̃ > b


Let Z1, ..., Zk̃ be i.i.d. χ2

1 distributed. Lemma 3 then implies that the above exceeds

P

 k̃∑
i=1

(Zi − b)+ ≥ 2ψ + 2 log(p)− k̃ (b− ak̃) + pµ̃+ 2

√
(k̃ak̃ + pµ̃)(ψ + log(p))

∣∣∣∣∣Z1, ..., Zk̃ > b

 .

Using the inequality in Lemma 5 and the fact that ψ < log(p) for sufficiently large values

of p we can further bound the above by

P

 k̃∑
i=1

(Zi − b)+ ≥ 4 log(p) + pµ̃− k̃ (b− ak̃) + 2

√
4(k̃ + k̃ log(p/k̃)) log(p)

∣∣∣∣∣Z1, ..., Zk̃ > b

 .

Defining Wi = (Zi − b) |(Zi > b), we can further bound the above by

P

 k̃∑
i=1

Wi ≥ pµ̃− k̃ (b− ak̃) + 8

√
k̃ log(p)2

 , (13)

provided p is large enough. Next, note that since b ≥ ak̃

µ̃ = E
[(
χ2
1 − ak̃

)+] ≤ E
[(
χ2
1 − b

)+]
+ P

(
χ2
1 > ak̃

)
(b− ak̃) .

10



Consequently, we can bound (13) by

P

 k̃∑
i=1

Wi ≥ pE
[(
χ2
1 − b

)+]
+ 8

√
k̃ log(p)2


= P

 k̃∑
i=1

[
Wi − E

(
χ2
1 − b|χ2

1 > b
)]
≥
(
pP
(
χ2
1 > b

)
− k̃
)
E
(
χ2
1 − b|χ2

1 > b
)

+ 8

√
k̃ log(p)2



≥ 1− exp

−
[(

(k̃ − pP (χ2
1 > b))E ((χ2

1 − b)+|χ2
1 > b)− 8

√
k̃ log(p)2

)+
]2

4k̃P (χ2
1 > b)

−1
(P (χ2

1 > b) + 2bf(b))

 ,

where the inequality follows from Lemma 4. Given Lemma 6 and the fact that Lemma 5

implies that P (χ2
1 > b) + 2bf(b) < 2P (χ2

1 > b) (1 + log(p)), we can further bound the above

by

1− exp

−
[(

(k̃ − pP (χ2
1 > b))− 8

√
k̃ log(p)

)+]2
8(k̃(1 + log(p)))

 .

The arithmetic-mean-geometric-mean-inequality can be used to show that ((a − b)+)2 >

((a)+)
2

2
− 4b2. The above quantity is therefore bounded by

1− exp

− 1

16(1 + log(p))

([
k̃ − pP (χ2

1 > b)√
k̃

]+)2

+ 72 log(p)

 .

Note that if k̃ ≥ pP (χ2
1 > b) + p

1
2
−2rp+δ for some δ > 0, then

k̃ − pP (χ2
1 > b)√
k̃

≥ p
1
2
−2rp+δ√

pP (χ2
1 > b) + p

1
2
−2rp+δ

≥ p
1
2
−2rp+δ√

p1−4rp + p
1
2
−2rp+δ

≥ 1

2
p
δ
2 ,

11



with the first inequality following from the fact that the left-hand side is increasing in k̃,

the second one following from the fact that P (χ2
1 > b) < P (χ2

2 > b) = p−4rp and the last

one following from the fact that rp <
1
4
.

Consequently, it is sufficient to show that there exists a δ > 0 such that

P

(
p∑
i=1

I (Yi ≥ b) > pP
(
χ2
1 > b

)
+ p

1
2
−2rp+δ

)
→ 1 as p→∞

This can be seen from the fact that
∑p

i=1 I (Yi > b) is Bin(p, q)-distributed with

q = P (Yi > 8rp log(p)) = (1− p−ξ)P
(
χ2
1 > b

)
+ p−ξP

(
N(0, 1) >

√
2rp log(p)

)
.

Note that

q > P
(
χ2
1 > b

)
− p−ξ−4rp + p−ξP

(
N(0, 1) >

√
2rp log(p)

)
,

since P (χ2
1 > b) < p−4rp . Moreover,

q < P
(
χ2
1 > b

)
+ p−ξP

(
N(0, 1) >

√
2rp log(p)

)
≤ p−4rp + p−ξ−rp ,

by standard tail bounds of the normal distribution and the definition of b. Standard

Hoeffding bounds show that

P

(
p∑
i=1

I (Yi > b) > pq −
√
pq log(p)

)
→ 1 as p→∞

Hence,

P

(
p∑
i=1

I (Yi > b) > pP
(
χ2
1 > b

)
+ p1−ξP

(
N(0, 1) >

√
2rp log(p)

)
− p1−ξ−4rp −

√
p(p−4rp + p−ξ−rp) log(p)

)

converges to 1 as p→∞. Note that

p1−ξP
(
N(0, 1) >

√
2rp log(p)

)
− p1−ξ−4rp −

√
p(p−4rp + p−ξ−rp) log(p) > p

1
2
−2rp+δ

12



for all δ such that rp − ξ + 1
2
> δ, provided p is large enough. This follows from the fact

that

p1−ξP
(
N(0, 1) >

√
2rp log(p)

)
>

1√
2π
p1−ξ−rp

√
2rp log(p)

1 + 2rp log(p)
,

by standard tail bounds on the normal distribution. Since 0 < rp, the the above dominates

p1−ξ−4rp as p increases. Similarly, because rp − ξ + 1
2
> 0, it dominates

√
p1−4rp , since,

rp <
1
4

and ξ < 3
4
, 1− rp− ξ > 0 and the above therefore also dominates

√
p1−rp−ξ. Finally,

if δ is such that rp − ξ + 1
2
> δ it must also dominate p

1
2
−2rp+δ. This finishes the proof.

2.3 Proof of Proposition 3

Standard tail bounds on the subgaussian distribution give that for all ℵ > 0

P
((

x
(i)−µi
t

)2
< 2ℵ

)
≥ 1− Ae−ℵ/λ

holds for a constant A under the null hypothesis. A Bonferroni correction therefore gives

P
(
Ô = ∅

)
≥ 1− Anp exp(− 1

2λ
β′).

2.4 Proof of Propositions 4 and 6

We give the proof of Proposition 6, as Proposition 4 corresponds to as special case. We

write

S (s, e,d, f,J) =
∑
i∈J

(
Ci
(
x
(i)

(s+1+d(i)):(e−f(i)),θ
(i)
0

)
−min

θ

[
Ci
(
x
(i)

(s+1+d(i)):(e−f(i)),θ
)])
−α−

|J|∑
i=1

βi

and note that

S (t,m) = max
d,f,J: m−t−d−f≥l

[S (t,m,d, f,J)]

13



The proof of Proposition 6 is then a corollary of the observation that for all d, f < w

S (t,m′,d, f,J) =
∑
i∈J

(
Ci
(
x
(i)

(t+1+d(i)):(m′−f(i)),θ
(i)
0

)
−min

θ

[
Ci
(
x
(i)

(t+1+d(i)):(m′−f(i)),θ
)])

− α−
|J|∑
i=1

βi

≤
∑
i∈J

(
Ci
(
x
(i)

(t+1+d(i)):(m′−f(i)),θ
(i)
0

)
−min

θ

[
Ci
(
x
(i)

(t+1+d(i)):m
,θ
)]
−min

θ

[
Ci
(
x
(i)

(m+1):(m′−f(i)),θ
)])

− α− 2

|J|∑
i=1

βi +

p∑
i=1

βi

= S (t,m,d, 0,J) + S (m,m′, 0, f,J) +

p∑
i=1

βi + α,

since m− t− w ≥ l and m′ −m− w ≥ l. Indeed, the above inequality shows that

S(t) + max
d≤w,f≤w,J: m−t−d−f≥l

[S (t,m′,d, f,J)]

≤ S(t) + max
d≤w,f≤w,J: m−t−d−f≥l

[S (t,m,d,0,J) + S (m,m′,0, f,J)] + α +

p∑
i=1

βi

≤ S(t) + max
d≤w,J: m−t−d≥l

[S (t,m,d,0,J)] + max
f≤w,J: m−t−f≥l

[S (m,m′,0, f,J)] + α +

p∑
i=1

βi

≤ S(t) + max
d≤w,f≤w,J: m−t−d−f≥l

[S (t,m,d, f,J)] + max
d≤w,f≤w,J: m−t−d−f≥l

[S (m,m′,d, f,J)] + α +

p∑
i=1

βi

< S(m) + max
d,f,J: m−t−d−f≥l

[S (m,m′,d, f,J)] ≤ S(m′).

This finishes the proof.

2.5 Proof of Proposition 5

We prove the more general case of the savings being stochastically bounded by aχ2
v + b.

The result follows from a Bonferroni correction:

14



P (Si (s, e) > y) ≤
w∑
d=0

w∑
f=0

P
(
Ci
(
x
(i)
(s+1+d):(e−f ,θ

(i)
0

)
−min

θ

(
Ci
(
x
(i)
(s+1+d):(e−f),θ

))
> y
)

≤
w∑
d=0

w∑
f=0

P
(
aχ2

v + b > y
)

= (w + 1)2P
(
aχ2

v + b > y
)

2.6 Results when using Lags: Penalty Regime and Power

For anomalies which correspond to changes in mean, the following result shows that Penalty

Regime 2’ will control the false positive rate.

Proposition 7 Let x
(i)
1 , ...,x

(i)
n be i.i.d. N(0, 1) and independent for 1 ≤ i ≤ p. Then, for

all ε > 0, Si (s, e), as defined in (11) is stochastically bounded by

(1 + ε)χ2
1 + 2(1 + ε) (log (w + 1) + log(6)− log(log(1 + ε)) + log(1 + log(w + 1))) , (14)

when the cost function is C(x, µ) = (x− µ)2 and the typical mean known.

Proof: The proof follows almost directly from the following Lemma:

Lemma 7 Let ηt
i.i.d.∼ N(0, 1) for i ≤ t ≤ j. Then

P
(

max
0≤j,d≤w:j−f−d−i≥0

(
(j − f − d− i+ 1)

(
η̄
(c)
(i+d):(j−f)

)2)
> u

)
≤ 6(w+1)

1 + log(w + 1)

log(b)
e−

u
2b .

for all b ∈ R such that 1 < b ≤ 2.

Setting b = 1 + ε, we can therefore see that

max
0≤j,d≤w:j−f−d−i≥0

(
(j − f − d− i+ 1)

(
η̄
(c)
(i+d):(j−f)

)2)
(15)

15



is stochastically bounded by

(1 + ε)χ2
2 + 2(1 + ε) (log (w + 1) + log(6)− log(log(1 + ε)) + log(1 + log(w + 1)))

�

It should be noted that it is not possible to improve on the above result as the search

space can contain w + 1 independent savings when e− s = w.

Incorporating lags can improve power, especially when considering sparse collective

anomalies. This becomes apparent when considering the following modification of the

setting considered in Section 2.3. Let

x
(i)
t = v(i)I (s+ di < t ≤ e− fi)µ+ η

(i)
t , v(i) ∼

0 with prob. 1− p−ξ,

1 with prob. p−ξ,

(16)

for s < t ≤ e, where the noise η
(1)
t , ...,η

(p)
t of the different series is independent and satisfies

η
(i)
t

i.i.d∼ N(0, 1) for s < t ≤ e. Assume also that the start and end lags add up to w, i.e.

that di + fi = w for 1 ≤ i ≤ p. The following result holds:

Proposition 8 Let 3
4
< ξ < 1 and (e − s − w)µ2 = 2rp log(p(w + 1)). MVCAPA with

a maximum lag of w using penalty regime 2’ is able to detect the segment x(s+1):e defined

in (16) as being anomalous with probability going to 1, whilst controlling false positives as

p→∞ if rp >
(
1−
√

1− ξ
)2

and log(n) = o(log(p)).

Proof: Let δ = rp−(1−
√

1− ξ)2 > 0. Then Penalty regime 2’ with ε = δ
2

and ψ = 3 log(n)

controls false positives. Given MVCAPA examines all possible lags up to w, we can bound

the power by the probability that the test statistic for the true collective anomaly with

true lags for each anomalous series is greater than the threshold for the test. Thus it is

16



sufficient to show that

P
(

max
i

((√
e− s− wx̄(i)

(s+1+di):(e−fi)

)2)
> 2(1 + ε)ψ + 2(1 + ε) log(p) + 2(1 + ε) log(w + 1)

)
goes to 1 as p → ∞. This holds by a very similar argument as case 2 in the proof of

Proposition 2 since

√
e− s− wx̄(i)

(s+1+di):(e−fi)
i.i.d.∼ N(

√
2rp log(p(w + 1)), 1).

�

Conversely, it is possible to bound the power of any approach not considering lags using

the following corollary of Theorem 1 in Cai et al. (2011).

Proposition 9 Let 3
4
< ξ < 1 and e−s−w

e−s (e − s − w)µ2 = 2rp log(p). The sum of type I

and type II error of any test of the alternative hypothesis

H1 :
√
e− sx̄(i)(s+1):e

i.i.d∼

N(0, 1) with prob. 1− p−ξ,

N( e−s−w
e−s µ, 1) with prob. p−ξ,

against the null hypothesis

H0 :
√
e− sx̄(i)(s+1):e

i.i.d∼ N(0, 1)

converges to 1 as p→∞ if rp <
(
1−
√

1− ξ
)2

.

Thus for this setting, including lags, modifies the detectability boundary for µ2 by a factor

of
e− s− w
e− s

log((w + 1)p)

log(p)
.

This shows that the gain from including lags is especially significant when the lags and seg-

ment lengths are on a similar scale. Furthermore, at constant lag and anomaly length, the

17



improvement becomes more significant with increasing dimension p. Another corollary of

this result is that specifying a lag w′ which is too large (i.e. greater than w) is advantageous

provided that
e− s− w
e− s

log((w′ + 1)p)

log(p)
< 1,

which, ceteris paribus, is bound to hold as p→∞.

2.7 Proof of Theorem 1

We define the penalised cost of a segment xi:j under a partition τ = {τ̂1, ..., τ̂K̂}, where

τ̂k = (ŝk, êk, Ĵk) to be

C (xi:j, τ̂) =
K̂∑
k=1

[
C(x(ŝk+1):êk , Ĵk)

]
.

Here the penalised cost of introducing the kth anomalous window is

C
(
x(s+1):e, {(s, e,J)}

)
= C(x(s+1):e,J) := −S(x(s+1):e,J)+

|J|∑
i=1

βi. := −(e−s)
∑
i∈J

C
(
x̄
(i)
(s+1):e

)2
+

|J|∑
i=1

βi,

where S(x(s+1):e,J), is defined as the saving made by fitting the segment x(s+1):e with J

and x̄
(i)
(s+1):e := (e− s)−1

∑e
t=s+1 x

i
t is defined as the arithmetic mean of the ith component

from time t = s + 1 to t = e. It should be noted that minimising the penalised cost, is

equivalent to maximising the penalised saving. We call the partition which minimises the

penalised cost, C (x1:n, τ̂), over all feasible partitions, τ̂ , the optimal partition.
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(a) Multiple true anomalies merged. (b) False positives and negatives.

(c) Anomaly fitted using multiple segments (d) Bad fit to true anomalies

Figure 1: Examples of the four ways a fitted partition (in red) can be outside the set of

good partitions, BC , defined in Equation (17). True anomalies are indicated in blue.19



We also define the following event sets over all pairs i, j such that 1 ≤ i ≤ j ≤ n

E1 :=

{∑
c∈S

(j − i+ 1)
(
η̄
(c)
i:j

)2
< 2ψ + 2|S| log(p) ∀S ⊂ {1, ..., p}

}

E2 :=

{∑
c∈S

(j − i+ 1)
(
η̄
(c)
i:j

)2
< p+ 2ψ + 2

√
pψ ∀S ⊂ {1, ..., p}

}

E3 :=

{
p∑
c=1

(j − i+ 1)
(
η̄
(c)
i:j + µ̄

(c)
i:j

)2
> p− 2

√
pψ

}

E4 :=

{∣∣∣∣∣∑
c∈S

√
j − i+ 1η̄

(c)
i:j

∣∣∣∣∣ <√2|S|ψ + 2|S|2 log(p) ∀S ⊂ {1, ..., p}

}

E5 :=

{∑
c/∈S

(j − i+ 1)
(
η̄
(c)
i:j + µ̄

(c)
i:j

)2
> p− 2

√
pψ − 2ψ − 2|S| log(p) ∀S ⊂ {1, ..., p}

}

E6 :=


∣∣∣∣∣∑
c∈S

(
j∑
t=i

(
µ

(c)
t − µ̄

(c)
i:j

)
η
(c)
t

)∣∣∣∣∣ ≤
√√√√∑

c∈S

j∑
t=i

(
µ

(c)
t − µ̄

(c)
i:j

)2√
2ψ + 2 |S ∩Wi,j | log(p) ∀S ⊂ {1, ..., p}


E7 :=

{∑
c∈S

(j − j′)(j′ − i+ 1)

j − i+ 1

(
η̄
(c)
i:j′ − η̄

(c)
(j′+1):j

)2
< 2ψ + 2|S| log(p) ∀S ⊂ {1, ..., p}

}

E8 :=

{∑
c∈S

(j − j′)(j′ − i+ 1)

j − i+ 1

(
η̄
(c)
i:j′ − η̄

(c)
(j′+1):j

)2
< p+ 2ψ + 2

√
pψ ∀S ⊂ {1, ..., p}

}

E9 :=

{
p∑
c=1

(j − j′)(j′ − i+ 1)

j − i+ 1

(
x̄
(c)
i:j′ − x̄

(c)
(j′+1):j

)2
> p− 2

√
pψ

}

E10 :=

{∣∣∣∣∣∑
c∈Jk

√
j − i+ 1η̄

(c)
i:j

∣∣∣∣∣ <√2|Jk|ψ ∀i, j : ∃k ∈ {1, ...,K} : ek−1 < i, j ≤ sk+1

}

E11 :=

{∣∣∣∣∣∑
c∈Jk

√
(j − ek)(ek − i+ 1)

j − i+ 1

(
η̄
(c)
i:ek
− η̄(c)

(ek+1):j

)∣∣∣∣∣ <√2|Jk|ψ ∀i, j : ∃k ∈ {1, ...,K} : ek−1 < i, j ≤ sk+1

}
,

where the set Wi,j of components with non constant mean in the interval [i, j] is defined as

Wi,j =
{
c ∈ {1, ..., p} : ∃t ∈ [i, j − 1] : µ

(c)
t 6= µ

(c)
t+1

}
.

The intuition behind these events is as follows: Events E1 and E2 bound the saving obtained

from fitting an anomalous region on data belonging to the typical distribution and so
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ensure no false positives are fitted. Events E7, E8, E9, and E11 provide bounds on the

additional un-penalised cost of splitting a fitted segment in two or merging two existing

segments, assuring that anomalous regions are fitted by one rather than multiple adjacent

segments. They are assisted by events E3 and E5 which bound the additional un-penalised

cost incurred by fitting any given segment by a dense change, extending the result to

showing the sub-optimality of a collective anomaly being fitted by multiple non-adjacent

segments. Events E4, E6, and E10 bound the interaction between the signal and the noise

thus ensuring that anomalous regions are detected. For brevity, we denote E = ∩Ei and

note that it occurs with high probability. Indeed, the following Lemma holds:

Lemma 8 There exists a constant A such that

P (E) > 1− An3e−ψ

We now define the set of good partitions BC to be

BC =

{
τ : |τ | = K, |ŝk − sk| ≤

10C

42
k

|êk − ek| ≤
10C

42
k

}
. (17)

It is sufficient to prove the following proposition in order to prove Theorem 1

Proposition 10 Let the assumptions of Theorem 1 hold. Given E holds and C exceeds a

global constant, the partition τ0 minimising the penalised cost C (x1:n, τ) satisfies τ0 ∈ BC

The main ideas of the proof of Proposition 10 are that given E:

I Each fitted anomalous segment overlaps with at most one true anomalous segment;

this excludes the situation depicted in Figure 1a.

II Each fitted anomalous segment overlaps with at least one true anomalous region; this

excludes the situation depicted in Figure 1b.
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III Each true anomalous segment overlaps with at most one fitted anomalous region, i.e.

there exists a bijection between fitted and true segments; this excludes the situation

depicted in Figure 1c.

IV Each fitted anomalous segment is close (in the sense of BC) to the true segment it fits;

this excludes the situation depicted in Figure 1d.

We will prove these properties which exclude the various types of poor partitions in

Figure 1 in the following order: First we will prove property II, then IV, then III, and then

I. We will then use these to prove Proposition 10. In the subsequent proofs we will use a

certain number of technical Lemmata, all proved in Section 3.

Throughout these proofs we will use the following two lemmata. The first one describes

the increase in un-penalised cost incurred by splitting a fitted segment into two fitted

segments and the second one bounds this increase in penalised cost for splitting fitted

dense collective anomalies.

Lemma 9 Let i ≤ j′ < j′ + 1 ≤ j. The following property is satisfied for all J

S (xi:j′ ,J) + S
(
x(j′+1):j,J

)
= S (xi:j,J) +

∑
c∈J

(
(j′ − i+ 1)(j − j′)

j − i+ 1

(
x̄
(c)
i:j′ − x̄

(c)
(j′+1):j

)2)
Lemma 10 Let i ≤ j′ < j′ + 1 ≤ j The following holds given E

C (xi:j′ ,1) + C
(
x(j′+1):j,1

)
≤ C (xi:j,1) + Cψ + C

√
pψ + 2

√
pψ,

provided C exceeds some global constant.

We will also use the following lemma which shows that merging two adjacent fitted

collective anomalies which are both contained within a true anomalous segment reduces

the penalised cost substantially.
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Lemma 11 Let i, j′, and j be such that there exists a k such that sk < i ≤ j′ < j′ + 1 ≤

j ≤ ek. Then,

C (xi:j,Jk) ≤ C (xi:j′ ,Jk) + C
(
x(j′+1):j,Jk

)
− 79

80
C (ψ + |Jk| log(p))

and

C (xi:j,1) ≤ C (xi:j′ ,1) + C
(
x(j′+1):j,1

)
− 79

80
C
(
ψ +

√
pψ
)

when |Jk| ≤ k∗ and |Jk| > k∗ respectively , provided C exceeds some global constant and

the event E holds.

The proof of part IV will mostly rely on the following three lemmata. The first one

shows that fitting a true collective anomaly as anomalous reduces the penalised cost. The

second and third one show that if a fitted sparse or dense collective anomaly contains a large

number of observations both from a true anomalous segment and from a typical segment,

then removing the typical data from the fitted anomaly reduces the penalised cost.

Lemma 12 Let i and j be such that there exists a k such that sk < i ≤ j ≤ ek. Moreover

assume that

j − i+ 1 ≥ 4C

42
k

.

Then given E

C (xi:j,Jk) < 0

holds if the kth anomalous window is sparse; i.e. if |Jk| ≤ k∗; and

C (xi:j,1) < 0

holds if the kth anomalous window is dense; i.e. if |Jk| > k∗; provided C exceeds some

global constant and the event E holds.

23



Lemma 13 Let i and j be such that there exists a k such that either of the following holds:

1. sk < i ≤ j ≤ sk+1 and

min(ek − i+ 1, j − ek) ≥
10C

42
k

.

2. ek−1 < i ≤ j ≤ ek and

min(sk − i+ 1, j − sk) ≥
10C

42
k

.

Then the corresponding holds given E

1. if the kth anomalous window is sparse; i.e. if |Jk| ≤ k∗

C (xi:j,Jk) ≥ C (xi:ek ,Jk) + 6C(ψ + log(p))

if the kth anomalous window is dense; i.e. if |Jk| > k∗

C (xi:j,1) ≥ C (xi:ek ,1) + 6C(ψ +
√
pψ)

2. if the kth anomalous window is sparse; i.e. if |Jk| ≤ k∗

C (xi:j,Jk) ≥ C
(
x(sk+1):j,Jk

)
+ 6C(ψ + log(p))

if the kth anomalous window is dense; i.e. if |Jk| > k∗

C (xi:j,1) ≥ C
(
x(sk+1):j,1

)
+ 6C(ψ +

√
pψ)

provided C exceeds some global constant and the event E holds.

Lemma 14 Let i and j be such that there exists a k such that the kth anomalous window

is dense, |Jk| > k∗, and either of the following holds:
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1. sk < i ≤ j ≤ sk+1 and

min(ek − i+ 1, j − ek) ≥
10C

42
k

.

2. ek−1 < i ≤ j ≤ ek and

min(sk − i+ 1, j − sk) ≥
10C

42
k

.

Then the corresponding holds for all J given E

1.

C (xi:j,J) ≥ C (xi:ek ,1) + 4C(ψ +
√
pψ)

2.

C (xi:j,J) ≥ C
(
x(sk+1):j,1

)
+ 4C(ψ +

√
pψ)

provided C exceeds some global constant and the event E holds.

For Part II, we will require the following six lemmata. The first one proves that merging

two fitted collective anomalies contained within a truly anomalous segment reduces the

overall penalised cost substantially, even if they are non-adjacent. The second one shows

that if a fitted collective anomaly contains both typical and atypical data, then the atypical

data can be removed from the fitted collective anomaly without increasing the penalised

cost too much. The remaining Lemmata are mostly used to show that if a true anomaly has

been fitted using the wrong set of components (i.e. fitting a sparse anomaly as a dense one,

a dense anomaly as a sparse one, or a sparse anomaly as a sparse anomaly but not with the

correct set of components), then it is possible to replace this fitted collective anomaly by

one with the right components without increasing the overall penalised cost by too much.
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Lemma 15 Let i, j′, and j be such that there exists a k such that sk < i ≤ j′ < j′′ + 1 ≤

j ≤ ek. Then,

C (xi:j,Jk) ≤ C (xi:j′ ,Jk) + C
(
x(j′′+1):j,Jk

)
− 19

20
C (ψ + |Jk| log(p))

and

C (xi:j,1) ≤ C (xi:j′ ,1) + C
(
x(j′′+1):j,1

)
− 19

20
C
(
ψ +

√
pψ
)

when |Jk| ≤ k∗ and |Jk| > k∗ respectively, provided C exceeds some global constant and the

event E holds.

Lemma 16 Let i, j be such that there exists a k such that [sk + 1, ek]∩ [i, j] 6= ∅, ek−1 < i,

and sk+1 ≥ j. Then,

C (xi′:j′ ,J)− C (xi:j,J) ≤ 8ψ + 8|J| log(p)

for |J| ≤ k∗and

C (xi′:j′ ,1)− C (xi:j,1) ≤ 8ψ + 8
√
pψ

where i′ = max(i, sk + 1) and j′ = min(j, ek) both hold given E.

Lemma 17 Let E hold and C exceed a global constant. Moreover, let i and j be such that

there exists a k such that sk < i ≤ j ≤ ek. Then

S(xi:j,J) ≥ α (Cψ + C|J| log(p))

for some α > 0 implies that√
|J|(j − i+ 1)µ2

k ≥
(√

αC −
√

2
)√

ψ + |J| log(p)

for any sparse J.
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Lemma 18 Let i and j be such that there exists a k such that sk < i ≤ j ≤ ek. If the kth

anomalous window is sparse; i.e. if |Jk| ≤ k∗; and

S (xi:j,J) ≥ 19

20
C (|J| log(p) + ψ) ,

then

C (xi:j,Jk)− C (xi:j,J) ≤ 1

10
C|Jk| log(p) + 2ψ

holds for all sparse J, i.e. J satisfying |J| ≤ k∗, if C is larger than some global constant

and the event E holds.

Lemma 19 Let i and j be such that there exists a k such that sk < i ≤ j ≤ ek. If the kth

anomalous window is dense; i.e. if |Jk| > k∗; and

S (xi:j,J) ≥ 19

20
C (|J| log(p) + ψ) ,

then

C (xi:j,1)− C (xi:j,J) ≤ 1

10
C
√
pψ + 2ψ

holds for all sparse J, i.e. J satisfying |J| ≤ k∗, if C is larger than some global constant

and the event E holds.

Lemma 20 Let the event E hold. Moreover, let i and j be such that there exists a k such

that sk < i ≤ j ≤ ek. Then, if the kth anomalous window is sparse; i.e. if |Jk| ≤ k∗;

C (xi:j,Jk)−C (xi:j,1) ≤ 13

20
C|Jk| log(p)− 6

10
C
√
pψ+2ψ ≤ 1

10
C|Jk| log(p)− 1

20
C
√
pψ+2ψ

holds if C is larger than some global constant

For Part I we will then require the following lemmata, which are again concerned with

bounding the increase in penalised cost for replacing fitted segments with the wrong number

of components by fitted segments with the right number of components.
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Lemma 21 Let i and j be such that there exists a k such that sk < i ≤ j ≤ ek. If the kth

anomalous window is dense; i.e. if |Jk| > k∗; and

S (xi:j,J) ≥ 3

10
C (|J| log(p) + ψ) ,

then

C (xi:j,1)− C (xi:j,J) ≤ 8

10
C
√
pψ − 6

10
C|J| log(p) + 2ψ

holds for all sparse J, i.e. J satisfying |J| ≤ k∗, if C is larger than some global constant

and the event E holds..

Lemma 22 Let i and j be such that there exists a k such that sk < i ≤ j ≤ ek. If the kth

anomalous window is sparse; i.e. if |J| ≤ k∗; and

S (xi:j,J) ≥ 3

10
C (|J| log(p) + ψ) ,

then

C (xi:j,1)− C (xi:j,J) ≤ 8

10
C|Jk| log(p)− 6

10
C|J| log(p) + 2ψ

holds for all sparse J, i.e. J satisfying |J| ≤ k∗, if C is larger than some global constant

and the event E holds.

2.7.1 Property III

We can prove that a fitted segment must overlap with at least one true anomalous segments:

Proposition 11 Let the assumptions of Theorem 1 hold. Let τ be an optimal partition

and E hold. Then, ∀(s, e,J) ∈ τ ∃k : [s+ 1, e] ∩ [sk + 1, ek] 6= ∅, provided C > 2.

Proof of Proposition 11: By contradiction: If (s, e,J) overlaps with no true anomalous

it can be shown that the partition τ \ (s, e,J) has lower penalised cost than τ , because of

E1 if J is sparse and E4 if J is dense.
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2.7.2 Property IV

We now prove the following proposition, which shows that if each true anomalous region is

fitted by exactly one segment, then the boundaries of that segment are close to the bound-

aries of the corresponding anomalous region. To this end, we define the set of partitions T1
as the set of all partitions fitting exactly K anomalous segments in such a way that each

fitted anomalous segment overlaps with exactly one true anomalous region and each true

anomalous region overlaps with exactly one fitted anomalous segment. More formally,

T1 = {τ : |τ | = K ∧ (∀(s, e,J) ∈ τ ∃k : sk+1 ≥ e ∧ ek−1 ≤ s ∧ [s+ 1, e] ∩ [sk + 1, ek] 6= ∅)

∧ (∀k ∃(s, e,J) ∈ τ : [s+ 1, e] ∩ [sk + 1, ek] 6= ∅)}.

The following proposition then holds:

Proposition 12 Let the assumptions of Theorem 1 hold. Given E, if a partition τ ∈ T1
is optimal it must also satisfy τ ∈ BC, if C exceeds a global constant.

Proof of Proposition 12: Let τ be optimal. Consider the kth true anomalous segment

[sk + 1, ek], which τ fits with the segment (ŝk, êk, Ĵ). We begin by showing this fitted

segment needs to cover most of the true anomalous region, because otherwise adding an

additional segment to τ would reduce the penalised cost.

Indeed, ŝk ≤ sk+ 10C
42
k

, as otherwise either the partition τ ∪(sk, sk+d10C42
k
e,Jk), if the kth

anomalous segment is sparse, or the partition τ ∪ (sk, sk + d10C42
k
e,1), if the kth anomalous

segment is dense, would have a lower overall penalised cost than τ by Lemma 12, which

would contradict the optimality of τ . êk ≥ ek − 10C
42
k

holds by a similar argument.

The next step consists of showing that (ŝk, êk, Ĵ) does not extend too far beyond the

kth anomalous region. Our approach consists of using Lemmata 13 and 14 to show that
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if this were to happen we could replace (ŝk, êk, Ĵ) by a different fitted segment in a way

which reduces penalised cost. We will just show that êk ≤ ek + 10C
42
k

, as a similar argument

implies that ŝk ≥ sk − 10C
42
k

.

We already know that ŝk ≤ sk + 10C
42
k

. Thus, if êk > ek + 10C
42
k

, the segment [ŝk + 1, êk]

would contain at least d10C42
k
e observations both from the typical distribution and the kth

anomalous window. It is possible to show that this partition can be replaced by splitting

up [ŝk + 1, êk] in such a way that the penalised cost is reduced.

• If Jk is dense, we can replace (ŝk, êk, Ĵ) first with (ŝk, ek − b10C42
k
c, Ĵ) and (ek −

b10C42
k
c, êk, Ĵ), increasing the penalised cost by no more than Cψ + C|J| log(p) if Ĵ

is sparse and Cψ + (C + 2)
√
pψ if Ĵ = 1 (By event E9). Lemma 14 then shows that

replacing (ek − b10C42
k
c, êk, Ĵ) with (ek − b10C42

k
c, ek,1) reduces the penalised cost by at

least 4Cψ + 4C|Ĵ| log(p) if Ĵ is sparse and 4Cψ + 4C
√
pψ when Ĵ = 1 respectively.

Chaining these two transformations therefore leads to a reduction in penalised cost

contradicting optimality of τ .

• If Jk is sparse, the cases Ĵ = 1, and |Ĵ| ≤ k∗ have to be considered separately. If

Ĵ = 1,

C
(
x(ŝk+1):êk ,1

)
= C

(
x(ŝk+1):êk ,Jk

)
+ p+ C

√
pψ −

∑
c/∈Jk

(êk − ŝk)
(
η̄(ŝk+1):êk

)2
+ C|Jk| log(p)

≥ C

(
x
(ŝk+1):

(
ek−d 10C42

k

e
),Jk

)
+ C

(
x(

ek−b 10C42
k

c
)
:êk
,Jk

)
− 2C|Jk| log(p)− (C + 2)ψ + (C − 2)

√
pψ,

with the inequality following from E2 and the fact that splitting a segment does

not increase the un-penalised cost. Lemma 13, then shows that the above quantity
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exceeds

C

(
x
(ŝk+1):

(
ek−d 10C42

k

e
),Jk

)
+C

(
x(

ek−b 10C42
k

c
)
:ek
,Jk

)
+6Cψ+4C|Jk| log(p)−(C+2)ψ+(C−2)

√
pψ,

which exceeds

C

(
x
(ŝk+1):

(
ek−d 10C42

k

e
),Jk

)
+ C

(
x(

ek−b 10C42
k

c
)
:ek
,Jk

)
,

thus contradicting the optimality of τ . Similarly, if |Ĵ| ≤ k∗,

C
(
x(ŝk+1):êk , Ĵ

)
≥ C

(
x(ŝk+1):êk ,Jk

)
−

∑
c∈Ĵ\Jk

(êk − ŝk)
(
η̄(ŝk+1):êk

)2
+ C(|Ĵ| − |Jk|) log(p)

≥ C

(
x
(ŝk+1):

(
ek−d 10C42

k

e
),Jk

)
+ C

(
x(

ek−b 10C42
k

c
)
:êk
,Jk

)
− 2C|Jk| log(p)− Cψ − 2ψ − 2|Ĵ \ Jk| log(p) + C|Ĵ| log(p)

≥ C

(
x
(ŝk+1):

(
ek−d 10C42

k

e
),Jk

)
+ C

(
x(

ek−b 10C42
k

c
)
:ek
,Jk

)
− 2Cψ − 2C|Jk| log(p),

with the second inequality following from E1 and the fact that splitting a segment does not

increase the un-penalised cost. The third equality holds for large enough values of C. As

before, Lemma 13 shows that the above quantity exceeds

C

(
x
(ŝk+1):

(
ek−d 10C42

k

e
),Jk

)
+ C

(
x(

ek−b 10C42
k

c
)
:ek
,Jk

)
,

thus contradicting the optimality of τ .

2.7.3 Property II

We now prove that if all fitted segments of the optimal partition overlap with at most one

true anomalous segment, then each true anomalous segment must overlap with exactly one

fitted segment. To this end, we now define T2 as the set of partitions in which each fitted
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anomalous segment overlaps with exactly one truly anomalous region. More formally we

define

T2 = {τ : ∀(s, e,J) ∈ τ ∃k : sk+1 ≥ e ∧ ek−1 ≤ s ∧ [s+ 1, e] ∩ [sk + 1, ek] 6= ∅}.

and note that T1 ⊂ T2. The following proposition holds:

Proposition 13 Let the assumptions of Theorem 1 hold. Given E, if a partition τ ∈ T2
is optimal it must also satisfy τ ∈ T1 if C exceeds a global constant.

Proof of Proposition 13: The proof has two parts:

1. We need to show that the optimality of τ implies that each true anomalous segment

overlaps with at least one fitted segment in τ .

2. We need to show that the optimality of τ implies that each true anomalous segment

overlaps with at most one fitted segment in τ .

We prove both statements by contradiction: First assume that τ is optimal but that

there exists a k such that [sk + 1, ek] is not covered at all by any fitted segment in τ . Then

by Lemma 12, the partition τ ∪ (sk, ek,Jk), if the kth change is sparse, or τ ∪ (sk, ek,1), if

the kth change is dense, has a lower penalised cost than τ , so contradicting its optimality.

Now assume that there exists a k such that τ contains two or more fitted segments

overlapping with [sk + 1, ek]. We will show that it is possible to merge any two fitted

segments (called (a, b,J1), (c, d,J2), where c ≥ b without loss of generality) in a way which

reduces the total penalised cost thereby contradicting the optimality of τ . In order to do

so, we define a′ = max(sk, a) and d′ = min(ek, d). The following two cases have to be

considered separately, but share in the following idea: Merging (a, b,J1), (c, d,J2), into a
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single fitted segment increases the un-penalised cost by at most O(
√
C). At the same time

merging reduces the penalty by O(C). Hence, if C is large enough, merging reduces the

overall penalised cost.

1. Jk is dense : We will show that replacing (a, b,J1), (c, d,J2) with (a′, d′,1) reduces

the penalised cost. Lemma 15, implies that it is sufficient to show that

C(xa′:b,1)− C(xa:b,J1) ≤
5

40
C
(
ψ +

√
pψ
)

and

C(xc:d′ ,1)− C(xc:d,J2) ≤
5

40
C
(
ψ +

√
pψ
)
.

We limit ourselves to proving the first statement, as the second one can be proven via

a symmetrical argument. If J1 = 1, the statement follows directly from Lemma 16. If

|J1| ≤ k∗, we first note that Lemma 16 implies that

C(xa′:b,J1) ≤ C(xa:b,J1) + 8ψ + 8|J1| log(p) ≤ C(xa:b,J1) + 8ψ + 8
√
pψ (18)

By optimality of τ , C(xa:b,J1) < 0, must hold. This implies that

S(xa′:b,J1) ≥
19

20
C (ψ + |J| log(p)) .

Consequently, Lemma 19 shows that

C(xa′:b,1) ≤ C(xa′:b,J1) +
1

10
C
(
ψ +

√
pψ
)
. (19)

Combining (18) and (19) finishes the proof.

2. Jk is sparse : We will show that replacing (a, b,J1), (c, d,J2) with (a′, d′,Jk) reduces

the penalised cost. Lemma 15, implies that it is sufficient to show that

C(xa′:b,Jk)− C(xa:b,J1) ≤
5

40
C (ψ + |Jk| log(p))
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and

C(xc:d′ ,Jk)− C(xc:d,J2) ≤
5

40
C (ψ + |Jk| log(p)) .

These proofs for both statements are symmetrical. We therefore only prove the first one.

As before we begin by considering the case J1 = 1. We have

C(xa′:b,Jk) = C(xa:b,1) + (C(xa′:b,1)− C(xa:b,1)) + (C(xa′:b,Jk)− C(xa′:b,1))

≤ C(xa:b,1) +
(

8ψ + 8
√
pψ
)

+

(
2ψ +

1

10
C|Jk| log(p)− 1

20
C
√
pψ

)
≤ C(xa:b,1) + 10ψ +

1

10
C|Jk| log(p),

where the first inequality follows from Lemmata 16 and 20, while the second inequality

golds if C exceeds a fixed constant. Turning to the case in which |J1| ≤ k∗, we note that

the same strategy of proof used for the case in which Jk is dense can be reapplied, the only

difference being that Lemma 18 has to be used instead of Lemma 19.

2.7.4 Property I

We will now prove that an optimal partition can not contain a fitted segment overlapping

with more than one true anomalous segment. We formalise this in the following Proposition:

Proposition 14 Let the assumptions of Theorem 1 hold. Let τ be an optimal partition.

Then, τ ∈ T2, given that the event E holds and that the constant C exceeds a global constant.

Note that this result trivially holds when K = 1. In order to prove this proposition, we will

use a variation of Proposition 13. For this we introduce the set of fitted sparse segments,

which either begin or end at the start of a true anomalous segment and only contain a

small fraction of the true anomalous segment

A1 =

{
(s, e,J) : |J| < k∗ ∧ ∃k :

(
s = sk ∧ e ≤ sk +

10C

42
k

)
∨
(
e = ek ∧ s ≥ ek −

10C

42
k

)}
,
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as well as its analogue for dense changes

A2 =

{
(s, e,1) : ∃k :

(
s = sk ∧ e ≤ sk +

10C

42
k

)
∨
(
e = ek ∧ s ≥ ek −

10C

42
k

)}
.

The following two propositions can then be proven

Proposition 15 Let the assumptions of Theorem 1 hold. Let τ ′ ∈ T2 and E hold true.

Then there exists another partition τ ′′ ∈ T2 such that

C (x1:n, τ
′′) ≤ C (x1:n, τ

′)− 6

10

 ∑
(s,e,J)∈τ ′∩A1

(Cψ + C|J| log(p)) +
∑

(s,e,1)∈τ ′∩A2

(
Cψ + C

√
pψ
) ,

if C exceeds a global constant.

Proposition 16 Let the assumptions of Theorem 1 hold. Let τ be an optimal partition

and E hold true. Then, there exists a partition τ ′ ∈ T2 such that

C (x1:n, τ
′) ≤ C (x1:n, τ)+

11

20

 ∑
(s,e,J)∈τ∩A1

(Cψ + C|J| log(p)) +
∑

(s,e,1)∈τ∩A2

(
Cψ + C

√
pψ
) ,

with equality if and only if τ ∈ T2, if C exceeds a global constant.

Note that Proposition 15 does not assume that τ ′ is optimal. Using these two proposi-

tions it is easy to derive the following:

Proof of Proposition 14: Assume that the optimal partition τ is such that τ /∈ T2.

Then, by Proposition 16 there exists a partition τ ′ ∈ T2 such that

C (x1:n, τ) > C (x1:n, τ
′)−11

20

 ∑
(s,e,J)∈τ∩A1

(Cψ + C|J| log(p)) +
∑

(s,e,1)∈τ∩A2

(
Cψ + C

√
pψ
) ,
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Moreover, Proposition 15 implies that there exists another partition τ ′′ ∈ T2 such that

C (x1:n, τ
′) ≥ C (x1:n, τ

′′)+
6

10

 ∑
(s,e,J)∈τ ′∩A1

(Cψ + C|J| log(p)) +
∑

(s,e,1)∈τ ′∩A2

(
Cψ + C

√
pψ
) ,

Consequently,

C (x1:n, τ) > C (x1:n, τ
′′) ,

which contradicts the optimality of τ .

Proof of Proposition 15: Proposition 13 shows that fitting an anomalous region

with two segments, or with one very short segment leaving most of the anomalous region

uncovered is sub-optimal. This proposition goes further by showing it is suboptimal by

at least O( 6
10
C). Crucially, this is larger than O(1

2
C) and will help us break up fitted

segments spanning multiple anomalous regions. The proof of this Proposition is similar in

flavour to the proof of the second part of Proposition 13. The main idea is that there are

at most two fitted partitions ∈ τ ′ ∩ (A1 ∪ A2) overlapping with the kth true anomalous

region. These partitions therefore leave at least 20C
42
k

of the kth anomalous region uncovered.

Therefore, if no other segment in τ ′ overlaps with the kth anomalous region, one can

be added without increasing the penalised cost. It can then be merged with the fitted

partitions in ∈ τ ′ ∩ (A1 ∪ A2) and overlap with the kth true anomalous region. This yields

a new partition still in T2 with the claimed reduction in penalised cost.

Since τ ′ ∈ T2, we can consider each of the K true anomalous regions separately. We

define the set of fitted segments in τ ′ which overlap with the kth anomalous region to be

τ ′k = {(s, e,J) ∈ τ ′ : [s+ 1, e] ∩ [sk + 1, ek] 6= ∅} .

Proving the full result is therefore equivalent to proving the existence of a τ ′′k which yields

the required reduction in penalised cost. The following 3 cases are possible:
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1. |τ ′k ∩ (A1 ∪ A2) | = 0, which happens when τ ′ does not contain a short fitted seg-

ment at either the beginning or the end of the kth anomalous region. No further

transformation is required in this case, i.e. τ ′′k = τ ′k

2. |τ ′k ∩ (A1 ∪ A2) | = 1.

3. |τ ′k ∩ (A1 ∪ A2) | = 2.

We will only explicitly describe the transformation for the second case, as applying

it twice yields a transformation for the third case. Without loss of generality we further

assume that τ ′k ∩ (A1 ∪ A2) = (s, ek,J), i.e. that the short fitted segment lies at the end of

the kth anomalous window. A first special case can be treated very quickly. If |J| ≤ k∗ and

C
(
x(s+1):ek ,J

)
≥ 6

10
C(ψ + |J| log(p)), removing (s, ek,J) from τ ′k is sufficient. If |J| ≤ k∗

and C
(
x(s+1):ek ,J

)
< 6

10
C(ψ + |J| log(p)), we nevertheless have

C
(
x(s+1):ek ,Jk

)
≤ C

(
x(s+1):ek ,J

)
+

8

10
C|Jk| log(p)− 6

10
C|J| log(p) + 2ψ

if Jk is sparse and

C
(
x(s+1):ek ,1

)
≤ C

(
x(s+1):ek ,J

)
+

8

10
C
√
pψ − 6

10
C|J| log(p) + 2ψ

if Jk is dense, by Lemmata 22 and 21 respectively. Similarly, if J = 1 we have that

C
(
x(s+1):ek ,Jk

)
≤ C

(
x(s+1):ek ,J

)
+

8

10
C|Jk| log(p)− 6

10
C
√
pψ + 2ψ

if Jk is sparse as a direct consequence of Lemma 20 and, trivially,

C
(
x(s+1):ek ,1

)
≤ C

(
x(s+1):ek ,J

)
+

8

10
C
√
pψ − 6

10
C
√
pψ + 2ψ

if Jk is dense.
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Consequently, if the next fitted change in τ ′k to the left of (s, e,J) is of the form (s̃, ẽ,Jk),

if Jk is sparse or (s̃, ẽ,1) if Jk is dense, for some s̃ ≥ sk, Lemma 15 shows that the required

reduction in penalised cost can be obtained by merging these two fitted segments. If there

is no other fitted change in τ ′k, or if the next fitted segment in τ ′k to the left of (s, e,J) is

(s̃, ẽ,J), where ẽ satisfies s− ẽ ≥ 10C
42
k

, Lemma 12 implies that adding (s−d10C42
k
e, s,Jk), if Jk

is sparse or (s− d10C42
k
e, s,1) if Jk is dense, does not increase the penalised cost. Lemma 15

can then be applied as before to show that merging this new fitted segment with (s, e,J)

yields a new partition exhibiting the required reduction in penalised cost.

Hence, in order to finish proving the result we only need to show that any (s̃, ẽ,J) ∈ τ ′k
can either be removed without increasing the penalised cost or replaced by (max(s̃, sk), ẽ,Jk)

in a way which increases the penalised cost by at most 5
40
C(|Jk| log(p)+ψ) if Jk is sparse or

(max(s̃, sk), ẽ,1) in a way which increases the penalised cost by at most 5
40
C
(√

pψ + ψ
)

if

Jk is dense. This however, was already shown in the proof of Proposition 13. This finishes

the proof.

Proof of Proposition 16: If τ ∈ T2, the result trivially holds. In order to prove the

result when τ ′ /∈ T2, we consider all possible fitted segments (s, e,J) ∈ τ \ T2 which overlap

with at least two anomalous regions and show that

1. No such segment can overlap a true fitted dense change, the k′th say, by more than

10C
4′2k

as this would contradict the optimality of τ .

2. All other fitted segments, overlapping with at least two anomalous regions, including,

potentially, a certain number of sparse changes by more that 10C
4 can be replaced by

fitted segments each overlapping with exactly one true anomalous segment in a way

which strictly bounds the increase in penalised cost as stipulated by the proposition.
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1) First of all we can show that the optimality of τ implies that no partition (s, e,J) ∈

τ \ T2 can overlap a dense change (the k′th change say) by more than 10C
4′2k

. Otherwise,

the interval [s+ 1, e] would also contain at least 10C
4′2k

observations belonging to the typical

distribution. We could therefore split it up into three segments (increasing the penalised

cost by at most 2Cψ + 2C|J| log(p) or 2Cψ + 2(C + 2)
√
pψ), one of which containing

exactly d10C4′2k e of observations belonging to the typical distribution and d10C4′2k e of observations

belonging to the k′th anomalous window. Lemma 14 shows that such a segment can be

replaced in a way which reduces the penalised cost by at least 4Cψ + 4C
√
pψ. Overall,

we would thus obtain a new partition with a lower penalised cost than τ contradicting the

optimality of τ .

2) Consider now, a segment (s, e,J) ∈ τ \ T2 not overlapping with any dense changes

by more than 10C
42
k

. For this segment define the set of true anomalous segments it overlaps

by more than 10C
42
k

to be

De,s :=

{
k : |[s+ 1, e] ∩ [sk + 1, ek + 1]| ≥ 10C

42
k

}
.

and note that |Jk| is sparse if k ∈ Ds,e for some (s, e,J) ∈ τ \ T2. We have to consider the

following 4 scenarios

1. The beginning of the fitted segment (s, e,J) ∈ τ \ T2 overlaps with a true anomalous

region [sk′ + 1, ek′ ], but does so by less than 10C
42
k′

. i.e. ∃k′ : ek′ − 10C
42
k′
≤ s+ 1 ≤ ek′ .

2. The end of the fitted segment (s, e,J) ∈ τ \ T2 overlaps with a true anomalous region

[sk′′ + 1, ek′′ ], but does so by less than 10C
42
k′′

. i.e. ∃k′′ : sk′′ + 1 + 10C
42
k′′
≥ e ≥ sk′′ + 1.

3. Both apply
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4. None of 1 and 2 apply. Note that this allows for the beginning and or the end of

(s, e,J) ∈ τ \ T2 to lie in a truly anomalous region provided the overlap with that

region exceeds the critical threshold of 10C
42 .

We then replace (s, e,J) in τ to obtain a new partition τ̃ . depending on the cases above

we define τ̃ to be

1.

(τ \ {(s, e,J)}) ∪ {(s, ek′ ,J)} ∪

 ⋃
k∈De,s

{(sk, ek,Jk)}


2.

(τ \ {(s, e,J)}) ∪

 ⋃
k∈De,s

{(sk, ek,Jk)}

 ∪ {(sk′′ , e,J)}

3.

(τ \ {(s, e,J)}) ∪ {(s, ek′ ,J)} ∪

 ⋃
k∈De,s

{(sk, ek,Jk)}

 ∪ {(sk′′ , e,J)}

4.

(τ \ {(s, e,J)}) ∪
⋃

k∈De,s

{(sk, ek,Jk)}

depending on which case applies. The main effect of this transformation is the same across

all cases: It results in all true anomalous regions contained in (s, e,J) to be fitted separately

and according to the ground truth. Only the number of fitted segments belonging to A1

and/or A2 depends on the case. Since applying this transformation for all (s, e,J) ∈ τ \ T2
leads to a new partition τ ′ which is contained in T2, it is sufficient to prove that each

transformation individually increases the penalised cost by strictly less than

1. 11
20
C (ψ + |J| log(p)) if J is sparse or 11

20
C
(
ψ +
√
pψ
)

if J is dense.
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2. 11
20
C (ψ + |J| log(p)) if J is sparse or 11

20
C
(
ψ +
√
pψ
)

if J is dense.

3. 22
20
C (ψ + |J| log(p)) if J is sparse or 22

20
C
(
ψ +
√
pψ
)

if J is dense.

4. 0

depending on the case in order to prove the proposition. The fourth case follows directly

from the following Lemma:

Lemma 23 Let the event E hold and C exceed some global constant. Let s and e be such

the fourth scenario applies, i.e.

1. @k′ : ek′ − 10C
42
k′
≤ s+ 1 ≤ ek′.

2. @k′′ : sk′′ + 1 + 10C
42
k′′
≥ e ≥ sk′′ + 1

Then, the following holds true for all sparse J

C (xs,e,J) ≥ 19

20
C (ψ + |J| log(p)) +

∑
k∈Ds,e

(
C
(
x(sk+1):ek ,Jk

))
Moreover, the following statement is also true:

C (xs,e,1) ≥ 19

20
C
(
ψ +

√
pψ
)

+
∑
k∈Ds,e

(
C
(
x(sk+1):ek ,Jk

))
.

This Lemma can also be used to bound the increase in penalised cost obtained for the

other three cases. The only difference is that (s, e,J) is first split up to twice in order to

remove the short overlap with the true anomalous region at the beginning and/or the end.

For the sake of brevity, we limit ourselves to write out the proof for the third case, for
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which the result is tightest. If, J is sparse, we have that

C
(
x(s+1):e,J

)
≥ C

(
x(s+1):ek′

,J
)

+ C
(
x(ek′+1):sk′′

,J
)

+ C
(
x(sk′′+1):e,J

)
− 2C (ψ + |J| log(p))

> C
(
x(s+1):ek′

,J
)

+
∑
k∈Ds,e

(
C
(
x(sk+1):ek ,Jk

))
+ C

(
x(sk′′+1):e,J

)
− 22

20
C (ψ + |J| log(p)) ,

where the inequality follows from Lemma 23. Similarly, if, J = 1 is dense, we have that

C
(
x(s+1):e,1

)
≥ C

(
x(s+1):ek′

,1
)

+ C
(
x(ek′+1):sk′′

,1
)

+ C
(
x(sk′′+1):e,1

)
− 2(C + 1)

(
ψ +

√
pψ
)

> C
(
x(s+1):ek′

,1
)

+
∑
k∈Ds,e

(
C
(
x(sk+1):ek ,Jk

))
+ C

(
x(sk′′+1):e,1

)
− 22

20
C
(
ψ +

√
pψ
)
,

where the inequalities follow from Lemma 23, E9, and C exceeding a global constant. This

finishes the proof.

2.7.5 Proof of Proposition 10

Proof of Proposition 10: Propositions 13, 11, 14, and 14 give the result.

3 Proofs for Lemmata

3.1 Proof of Lemma 1

The MGF of Z = (X − c)+ is given by

E
(
eλZ
)

= P
(
χ2
v < c

)
+

∫ ∞
c

eλ(x−c)
1

Γ
(
v
2

)
2
v
2

x
v
2
−1e−

1
2
xdx = P

(
χ2
v < c

)
+

e−λc

Γ
(
v
2

)
2
v
2

∫ ∞
c

x
v
2
−1e−(1−2λ)xdx

using the substitution y = (1− 2λ)x the above can be shown to be equal to

P
(
χ2
v < c

)
+

e−λa

Γ
(
v
2

)
2
v
2 (1− 2λ)

v
2

∫ ∞
c

y
v
2
−1e−ydy = P

(
χ2
v < c

)
+

e−λc

(1− 2λ)
v
2

P
(
χ2
v > c(1− 2λ)

)
.
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3.2 Proof of Lemma 2

As shown by Lemma 1, the MGF of Z = (x− c)+ is given by

P
(
χ2
v < c

)
+

e−λc

(1− 2λ)v/2
P
(
χ2
v > c(1− 2λ)

)
,

for 0 ≤ λ ≤ 1/2. Consequently,

d

dλ

(
E
(
eλZ
))

=
2cf(c)

1− 2λ
+

(
v

1− 2λ
− c
)

e−λc

(1− 2λ)v/2
P
(
χ2
v > c(1− 2λ)

)
.

Evaluating the above at λ = 0 shows that the mean of Z is indeed µ = 2cf(c) + (v −

c)P (χ2
v > c). We therefore have

d

dλ

(
log
(
E
(
eλZ
)))
− µ =

d
dλ

(
E
(
eλZ
))

E (eλZ)
− µ =

2cf(c)
1−2λ +

(
v

1−2λ − c
)

e−λc

(1−2λ)v/2P (χ2
v > c(1− 2λ))

P (χ2
v < c) + e−λc

(1−2λ)v/2P (χ2
v > c(1− 2λ))

− µ

=
1

1− 2λ

[
2cf(c) + (v − (1− 2λ) c) e−λc

(1−2λ)v/2P (χ2
v > c(1− 2λ))

P (χ2
v < c) + e−λc

(1−2λ)v/2P (χ2
v > c(1− 2λ))

− (1− 2λ)µ

]

=
1

1− 2λ

[
2cf(c)− (v − c)P (χ2

v < c)− 2λcP (χ2
v < c)

P (χ2
v < c) + e−λc

(1−2λ)v/2P (χ2
v > c(1− 2λ))

+ (v − (1− 2λ) c)− (1− 2λ)µ

]

=
1

1− 2λ

[
µ− (v − c)− 2λcP (χ2

v < c)

P (χ2
v < c) + e−λc

(1−2λ)v/2P (χ2
v > c(1− 2λ))

+ (v − c− µ) + 2(µ+ c)λ

]
.

Next note that

P
(
χ2
v > c(1− 2λ)

)
=

∫ ∞
c(1−2λ)

1

2
v
2 Γ
(
v
2

)x v2−1e−x/2dx =
1

2
v
2 Γ
(
v
2

)eλc ∫ ∞
c

(
y

y − 2λc

)1− v
2

y
v
2
−1e−y/2dx.

When v ≤ 2, this shows that:

P
(
χ2
v > c

)
< e−λcP

(
χ2
v > c(1− 2λ)

)
<

P (χ2
v > c)

(1− 2λ)1−
v
2

. (20)

We can now use this result to further bound the MGF of the truncated χ2
1. We consider

two cases separately:
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Case 1: µ−(v − c)−2λcP (χ2
v < c) ≥ 0. The lower bound in 20 shows that d

dλ

(
log
(
E
(
eλZ
)))
−

µ is bounded by

1

1− 2λ

[
µ− (v − c)− 2λcP (χ2

v < c)

P (χ2
v < c) + 1

(1−2λ)
v
2
P (χ2

v > c)
+ (v − c− µ) + 2(µ+ c)λ

]

≤ 1

1− 2λ

[
µ− (v − c)− 2λcP

(
χ2
v < c

)
+ (v − c− µ) + 2(µ+ c)λ

]
=

1

1− 2λ

[
2(µ+ cP

(
χ2
v > c

)
)λ
]

≤ 2λ(1− λ)

(1− 2λ)2
(µ+ cP

(
χ2
v > c

)
) =

2λ(1− λ)

(1− 2λ)2
(2cf(c) + vP

(
χ2
v > c

)
)

Case 2: µ−(v − c)−2λcP (χ2
v < c) < 0. The upper bound in 20 shows that d

dλ

(
log
(
E
(
eλZ
)))
−

µ is bounded by

1

1− 2λ

[
µ+ (v − c)− 2λcP

(
χ2
v < c

)
P (χ2

v < c) + 1
1−2λP (χ2

v > c)
+ (v − c− µ) + 2(µ+ c)λ

]

=
1

1− 2λ

[
(v − c− µ)

(
1− 1

P (χ2
v < c) + 1

1−2λP (χ2
v > c)

)
+ 2λc

(
1−

P
(
χ2
v < c

)
P (χ2

v < c) + 1
1−2λP (χ2

v > c)

)
+ 2λµ

]

=
1

1− 2λ

[
(v − c− µ)

1
1−2λP

(
χ2
v > c

)
− P

(
χ2
v > c

)
P (χ2

v < c) + 1
1−2λP (χ2

v > c)
+ 2λc

(
1

1−2λP
(
χ2
v > v

)
P (χ2

v < c) + 1
1−2λP (χ2

v > c)

)
+ 2λµ

]

=
1

1− 2λ

[
(v − c− µ)

2λP
(
χ2
v > c

)
1− 2λP (χ2

v < c)
+ 2λc

P
(
χ2
v > c

)
1− 2λP (χ2

v < c)
+ 2λµ

]

=
2λ

1− 2λ

[
µ+ (v − µ)

P
(
χ2
v > c

)
1− 2λP (χ2

v < c)

]

=
2λ

(1− 2λ)2

[
µ (1− 2λ) + (v − µ)P

(
χ2
v > c

) 1− 2λ

1− 2λP (χ2
v < c)

]
=

2λ

(1− 2λ)2

[
µ (1− 2λ) + (v − µ)P

(
χ2
v > c

)
− (v − µ)P

(
χ2
v > c

) 2λP
(
χ2
v > c

)
1− 2λP (χ2

v < c)

]

Using the fact that µ+ (v − c)− 2λcP (χ2
v < c) < 0 and that v− µ ≥ 0, we can bound this

by

=
2λ

(1− 2λ)2

[
µ (1− λ) + (v − µ)P

(
χ2
v > c

)
− 2λcP

(
χ2
v > c

)2]
=

2λ

(1− 2λ)2

[(
µ+ cP

(
χ2
v > c

))
(1− λ) + (v − µ− c)P

(
χ2
v > c

)
− 2λcP

(
χ2
v > c

)2
+ cλP

(
χ2
v > c

)]
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Since λ < 1
2

and v − c− µ ≤ 0, we have that

(v − µ− c)P
(
χ2
v > c

)
− 2λcP

(
χ2
v > c

)2
+ cλP

(
χ2
v > c

)
≤ λP

(
χ2
v > c

) (
2 (v − c− µ) + c− 2cP

(
χ2
v > c

))
= λP

(
χ2
v > c

) (
2
(
E
(
χ2
v|χ2

v < c
)
P
(
χ2
v < c

)
− cP

(
χ2
v < c

))
+ c− 2cP

(
χ2
v > c

))
= λP

(
χ2
v > c

) (
2E
(
χ2
v|χ2

v < c
)
P
(
χ2
v < c

)
− c
)
≤ 0

where the last inequality follows from the fact that E (χ2
v|χ2

v < c) ≤ c/2, which is due to

the fact that the pdf of the χ2
v-distribution is decreasing.

Consequently,

d

dλ

(
log
(
E
(
eλZ
))
− λµ

)
≤ 2λ(1− λ)

(1− 2λ)2
(2cf(c)+vP

(
χ2
v > c

)
) =

d

dλ

(
2(2cf(c) + vP (χ2

v > c))λ2

2(1− 2λ)

)
.

This shows that

log
(
E
(
eλ(Z−µ)

))
≤ 2(2cf(c) + vP (χ2

v > c))λ2

2(1− 2λ)
,

which finishes the proof.

3.3 Proof of Lemma 3

It is sufficient to show that

P (Yi ≥ a+ x|Yi ≥ a, vi = 1) ≥ P (Z > a+ x|Z ≥ a) .

We have that

P (Yi ≥ a+ x|Yi ≥ a, vi = 1) =
P
(
εi >
√
a+ x− µ

)
P (εi >

√
a− µ)

The derivative of left hand side with respect to µ is

P
(
εi >
√
a+ x− µ

)
P (εi >

√
a− µ)

(
φ(
√
a+ x− µ)

P
(
εi >
√
a+ x− µ

) − φ(
√
a− µ)

P (εi >
√
a− µ)

)
This is greater than 0, since the hazard rate of the Gaussian is increasing. Hence,

P (Yi ≥ a+ x|Yi ≥ a, vi = 1) =
P
(
εi >
√
a+ x− µ

)
P (εi >

√
a− µ)

≥
P
(
εi >
√
a+ x

)
P (εi >

√
a)

= P (Z > a+ x|Z ≥ a) .
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3.4 Proof of Lemma 4

Let Z ∼ χ2
1 and write µ = E

(
(Z − a)+

)
. The MGF G(λ) of the random variable

W = (a− Z)|(Z > a) +
µ

P (χ2
1 > a)

is then

G(λ) = exp

(
λµ

P (χ2
1 > a)

)
1

P (χ2
1 > a)

∫ ∞
0

1√
2πx

eλa−λzx−
1
2xdx = exp

(
λµ

P (χ2
1 > a)

+ λa

)
P
(
χ2
1 > a(1 + 2λ)

)
P (χ2

1 > a)
√

1 + 2λ
.

Consequently,

dG(λ)

dλ
=

1

P (χ2
1 > a)

[
−2af(a)

1 + 2λ
e−λa +

(
µ

P (χ2
1 > a)

+ a− 1

1 + 2λ

)
P
(
χ2
1 > a(1 + 2λ)

)
√

1 + 2λ

]
exp

(
λµ

P (χ2
1 > a)

+ λa

)
and therefore,

d log (G(λ))

dλ
=

µ

P (χ2
1 > a)

+ a− 1

1 + 2λ
− 2af(a)√

1 + 2λ

e−λa

P (χ2
1 > a(1 + 2λ))

Since,

P
(
χ2
1 > a(1 + 2λ)

)
=

∫ ∞
a(1+2λ)

1√
2πx

e−
x
2 dx = e−λa

∫ ∞
a

1√
2πy

√
1

1 + 2λa
y

e−
y
2 dy ≤ e−λaP

(
χ2
1 > a

)
,

we must also have

d log (G(λ))

dλ
<

2λ

1 + 2λ

(
1 +

2af(a)

P (χ2
1 > a)

)
≤ 2λ

(
1 +

2af(a)

P (χ2
1 > a)

)
and therefore

G(λ) ≤
λ22

(
1 + 2af(a)

P(χ2
1>a)

)
2

.

This proves that W is sub-Gaussian. Standard tail bounds for sub-Gaussian random vari-

ables then imply that independent random variables W1, ...,Wk obeying the same law as

W satisfy

P

(
k∑
i=1

> 2

√(
1 +

2af(a)

P (χ2
1 > a)

)
kt

)
< e−t,

for positive integers k and all t ∈ R. This finishes the proof.
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3.5 Proof of Lemma 5

The equality follows from Lemma 2. To prove the inequality, write G(τ) = τ + 2af(a),

where 0 ≤ τ ≤ 1 and a is defined by the equation P (χ2
1 > a) = τ . Note that G(0) = 0 and

dG

dτ
= 1 +

da

dτ
(f(a)− af(a)) = 1− 1

f(a)
(f(a)− af(a)) = a > 0

Hence, m + 2paf(a) = pG(m
p

) is increasing in m. Moreover the following bounds hold

on a:

2τ = 2P
(
χ2
1 > a

)
< P

(
χ2
2 > 2a

)
= exp(−a).

Therefore, we have that

G(τ) ≤
∫ τ

0

−2 log(x)dx = −2τ log(τ) + 2τ = 2τ log

(
1

τ

)
+ 2τ.

Noting that m+ 2paf(a) = pG(m
p

), finishes the proof.

3.6 Proof of Lemma 6

We know from Lemma 2, that

E
(
(χ2

1 − b)+|χ2
1 > b

)
= 1− b+ 2bf(b)P

(
χ2
1 > b

)−1
.

Next note that

P
(
χ2
1 > b

)
=

∫ ∞
b

√
2

πx
e−x/2dx ≤

∫ ∞
b

√
2

πb
e−x/2dx = 2f(b)

Hence,

E
(
(χ2

1 − b)+|χ2
1 > b

)
= 1− b+ 2bf(b)P

(
χ2
1 > b

)−1 ≥ 1− b+ b = 1.

This finishes the proof.
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3.7 Proof of Lemma 7

Let η1, ..., ηs+w
i.i.d.∼ N(0, 1) for some positive integer s. Define

Zs := max
0≤a≤w

(s+ a)
(
η̄1:(s+a)

)2
.

Write Ta =
∑a

t=1 ηt and note that eλTa is a super-martingale for all λ > 0. The following

holds:

P (Zs > u) ≤
dlogb(s+w)e∑
i=blogb(s)c

P
(

max
bi≤s+a≤bi+1

(s+ a)
(
η̄1:(s+a)

)2
> u

)
≤
dlogb(s+w)e∑
i=blogb(s)c

P
(

max
bi≤a′≤bi+1

(Ta′)
2 > biu

)

≤ 2

dlogb(s+w)e∑
i=blogb(s)c

P
(

max
bi≤a′≤bi+1

Ta′ >
√
biu

)
= 2

dlogb(s+w)e∑
i=blogb(s)c

min
λ

[
P
(

max
bi≤a′≤bi+1

eλTa′ > e
√
biuλ

)]

≤ 2

dlogb(s+w)e∑
i=blogb(s)c

min
λ

[
E
(
eλTbbi+1c

)
e−
√
biuλ
]

= 2

dlogb(s+w)e∑
i=blogb(s)c

min
λ

[
e
bbi+1c

2
λ2−
√
biuλ

]

≤ 2

dlogb(s+w)e∑
i=blogb(s)c

min
λ

[
e
bi+1

2
λ2−
√
biuλ
]

= 2

dlogb(s+w)e∑
i=blogb(s)c

e−
u
2b = 2(1 + dlogb(s+ w)e − blogb(s)c)e−

u
2b

≤ 2(3 + logb(s+ w)− logb(s))e
− u

2b = 2(3 + logb(1 + w/s))e−
u
2b ≤ 2(3 + logb(w + 1))e−

u
2b

≤ 6
1 + log(w + 1)

log(b)
e−

u
2b .

Here the fifth inequality follows from Doob’s martingale inequality.

Next note that

P
(

max
0≤f,d≤w:j−f−d−i≥0

(
(j − f − d− i+ 1)

(
η̄
(c)
(i+d):(j−f)

)2)
> u

)
≤

w∑
d=0

P
(

max
0≤f≤min(w,j−i−d)

(
(j − f − d− i+ 1)

(
η̄
(c)
(i+d):(j−f)

)2)
> u

)
≤

w∑
d=0

P
(
Zmax(1,j−i−2w) > u

)
≤ 6(w + 1)

1 + log(w + 1)

log(b)
e−

u
2b

48



3.8 Proof of Lemma 8

In this section, we define the event that Ea holds for a given set tuple (i, j) to be E
(i,j)
a , for

a = 1, ..., 11. We know from the proof of Propositions 1 that

P
(
E

(i,j)
1

)
> 1− A1e

−ψ

holds. A Bonferroni correction over all possible tuples (i, j) then gives P (E1) > 1−A1n
2e−ψ.

Furthermore, we have that

P
(
E

(i,j)
2

)
= P

(
p∑
c=1

(j − i+ 1)
(
η̄
(c)
i:j

)2
< p+ 2ψ + 2

√
pψ

)
= P

(
χ2
p < p+ 2ψ + 2

√
pψ
)
≥ 1−e−ψ,

with the inequality following from the tail bounds proven in Laurent & Massart (2000). A

Bonferroni correction then gives P (E2) > 1− n2e−ψ. Next note that for any fixed fixed i,

j, and c

P
(

(j − i+ 1)
(
η̄
(c)
i:j + µ̄

(c)
i:j

)2
> s

)
≥ P

(
(j − i+ 1)

(
η̄
(c)
i:j

)2
> s

)
holds for all s ≥ 0. Therefore

P

(
p∑
c=1

(j − i+ 1)
(
η̄
(c)
i:j + µ̄

(c)
i:j

)2
> p− 2

√
pψ

)
≥ P

(
p∑
c=1

(j − i+ 1)
(
η̄
(c)
i:j

)2
> p− 2

√
pψ

)
≥ 1−e−ψ,

with the last inequality again flowing from Laurent & Massart (2000). A Bonferroni cor-

rection then gives P (E3) > 1− n2e−ψ. Next note that

1√
|S|

∑
c∈S

√
j − i+ 1η̄i:j ∼ N(0, 1)

We can then use the well known tail bounds on the Normal distribution to show that

P

(∣∣∣∣∣ 1√
|S|

∑
c∈S

√
j − i+ 1η̄i:j

∣∣∣∣∣ <√2ψ + 2|S| log(p)

)
≥ 1− A4p

−|S|e−ψ,
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for a constant A4. A Bonferroni correction over all possible sets S then shows that

P

(∣∣∣∣∣ 1√
|S|

∑
c∈S

√
j − i+ 1η̄i:j

∣∣∣∣∣ <√2ψ + 2|S| log(p) ∀S ⊂ {1, ..., p}

)

≥ 1−
p∑

m=1

|{S|S ⊂ {1, ..., p}, |S| = m}|A4p
−|m|e−ψ ≥ 1−

p∑
m=1

p!

(p−m)!m!
A4p

−|m|e−ψ

≥ 1−
p∑

m=1

1

m!
pmA4p

−|m|e−ψ ≥ 1− (A4e) e
−ψ.

A Bonferroni correction over the indices i and j then proves that P (E4) > 1− (A4e)n
2e−ψ.

Next, for fixed i and j,

P

(∑
c/∈S

(j − i+ 1)
(
η̄
(c)
i:j + µ̄

(c)
i:j

)2
> p− 2

√
pψ − 2ψ − 2|S| log(p)

)

≥ P

(∑
c/∈S

(j − i+ 1)
(
η̄
(c)
i:j

)2
> p− 2

√
pψ − 2ψ − 2|S| log(p)

)

≥ 1− P

(
p∑
i=1

(j − i+ 1)
(
η̄
(c)
i:j

)2
≤ p− 2

√
pψ

)
− P

(∑
c∈S

(j − i+ 1)
(
η̄
(c)
i:j

)2
> 2ψ − 2|S| log(p)

)
≥ 1− (1 + A1)e

−ψ

A Bonferroni correction over all indices i and j then gives P (E5) > 1 − (1 + A1)n
2e−ψ.

Next we note that(∑
c∈S

(
j∑
t=i

(
µ

(c)
t − µ̄

(c)
i:j

)
η
(c)
t

))
√√√√∑

c∈S

j∑
t=i

(
µ

(c)
t − µ̄

(c)
i:j

)2−1 ∼ N(0, 1).

Consequently,

P


∣∣∣∣∣∣∣
(∑
c∈S

(
j∑
t=i

(
µ

(c)
t − µ̄

(c)
i:j

)
η
(c)
t

))
√√√√∑

c∈S

j∑
t=i

(
µ

(c)
t − µ̄

(c)
i:j

)2−1
∣∣∣∣∣∣∣ >

√
2ψ + 2 |S ∩Wi,j | log(p)

 ≤ A4p
−|S∩Wi,j |e−ψ,

50



for some constant A4. A Bonferroni correction over the sets S then gives that

P

∣∣∣∣∣
(∑
c∈S

(
j∑
t=i

(
µ

(c)
t − µ̄

(c)
i:j

)
η
(c)
t

))∣∣∣∣∣ ≤
√√√√∑

c∈S

j∑
t=i

(
µ

(c)
t − µ̄

(c)
i:j

)2√
2ψ + 2 |S ∩Wi,j | log(p) ∀S ⊂ {1, ..., p}


= P

∣∣∣∣∣∣
 ∑
c∈S∩Wi,j

(
j∑
t=i

(
µ

(c)
t − µ̄

(c)
i:j

)
η
(c)
t

)∣∣∣∣∣∣ ≤
√√√√ ∑
c∈S∩Wi,j

j∑
t=i

(
µ

(c)
t − µ̄

(c)
i:j

)2√
2ψ + 2 |S ∩Wi,j | log(p) ∀S ⊂ {1, ..., p}


= P

∣∣∣∣∣
(∑
c∈W

(
j∑
t=i

(
µ

(c)
t − µ̄

(c)
i:j

)
η
(c)
t

))∣∣∣∣∣ ≤
√√√√∑
c∈W

j∑
t=i

(
µ

(c)
t − µ̄

(c)
i:j

)2√
2ψ + 2 |W | log(p) ∀W ⊂Wi,j


≤ 1−

∑
W⊂Wi,j

P

∣∣∣∣∣
(∑
c∈W

(
j∑
t=i

(
µ

(c)
t − µ̄

(c)
i:j

)
η
(c)
t

))∣∣∣∣∣ >
√√√√∑
c∈W

j∑
t=i

(
µ

(c)
t − µ̄

(c)
i:j

)2√
2ψ + 2 |W | log(p) ∀W ⊂Wi,j


≤ 1−

|Wi:j |∑
|W |=1

p!

(p− |W |)!(|W |)!
A4p

−|W |e−ψ ≤ 1− (A4e)e
−ψ

We note that
(j − j′)(j′ − i+ 1)

j − i+ 1

(
η̄
(c)
i:j′ − η̄

(c)
(j′+1):j

)2
∼ χ2

1,

and

P
(

(j − j′)(j′ − i+ 1)

j − i+ 1

(
x̄
(c)
i:j′ − x̄

(c)
(j′+1):j

)2
> t

)
≥ P

(
χ2
1 > t

)
∀t > 0.

Therefore, proving that constants A7, A8, and A9 exist such that P
(
E

(i,j′,j)
7

)
> 1−A7e

−ψ,

P
(
E

(i,j′,j)
8

)
> 1−A8e

−ψ, and P
(
E

(i,j′,j)
9

)
> 1−A9e

−ψ hold for fixed i, j′, and j is equivalent

to proving the existence of constants A1, A2, and A3 such that P
(
E

(i,j)
1

)
> 1 − A1e

−ψ,

P
(
E

(i,j)
2

)
> 1−A2e

−ψ, and P
(
E

(i,j)
3

)
> 1−A3e

−ψ hold. This was already done earlier in the

proof. A Bonferroni correction over all possible i, j′, and j then yields P (E7) > 1−A7n
3e−ψ,

P (E8) > 1− A8n
3e−ψ, and P (E9) > 1− A9n

3e−ψ.

The fact that (∑
c∈Jk

√
j − i+ 1η̄

(c)
i:j

)(√
2|Jk|ψ

)−1
∼ N(0, 1)
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shows that P
(
E

(i,j)
10

)
> 1 − A10e

−ψ for some constant A10. The cardinality of the set of

allowed tuples (i, j) is strictly less than n2. Consequently P (E10) > 1−A10n
2e−ψ. The same

argument can be used to show that P
(
E

(i,ek,j)
11

)
> 1 − A11e

−ψ. A Bonferroni correction

over all triplets (i, ek, j) then proves that P (E11) > 1− A11n
3e−ψ

3.9 Proof of Lemma 9

This Lemma can be proven using straightforward algebra.

S (xi:j,J) =
∑
c∈J

(j − i+ 1)
(
x̄
(c)
i:j

)2
=
∑
c∈J

(j − i+ 1)−1
(
x̄
(c)
i:j

)2

=
∑
c∈J


(

(j′ + 1− i)x̄(c)
i:j′ + (j − j′)x̄(c)

(j′+1):j

)2
j − i+ 1

 .
Next we note that the following holds for all a, b, y, and z:

(ay + bz)2

a+ b
=
a2y2 + 2abyz + b2z2

a+ b
= ay2 + bz2 +

−aby2 + 2abyz − baz2

a+ b
= ay2 + bz2 − ab

a+ b
(y − z)2.

Thus,

S (xi:j,J) =
∑
c∈S

(j′+1−i)
(
x̄
(c)
i:j′

)2
+
∑
c∈S

(j−j′)
(
x̄
(c)
(j′+1):j

)2
−
∑
c∈S

(j − j′)(j′ − i+ 1)

j − i+ 1

(
x̄
(c)
i:j′ − x̄

(c)
(j′+1):j

)2
,

which finishes the proof.

3.10 Proof of Lemma 10

This result deals with the p term of the penalty incurred for splitting a sparse fitted segment

into two and follows directly from E9 and Lemma 9. Indeed, by Lemma 9 implies that

C (xi:j′ ,1)+C
(
x(j′+1):j,1

)
−C (xi:j,1) = p+Cψ+C

√
pψ−

p∑
c=1

(j − j′)(j′ − i+ 1)

j − i+ 1

(
x̄
(c)
i:j′ − x̄

(c)
(j′+1):j

)2
.
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Given E9, the above is bounded by

p+ Cψ + C
√
pψ − p+ 2

√
pψ = Cψ + C

√
pψ + 2

√
pψ.

This finishes the proof.

3.11 Proof of Lemma 11

This lemma shows that merging two neighbouring fitted segments reduces the penalised cost

by O(C) and follows almost immediately from Lemma 9. We consider the cases |Jk| ≤ k∗

and |Jk| > k∗ separately. Let |Jk| ≤ k∗. Then

C (xi:j′ ,Jk) + C
(
x(j′+1):j,Jk

)
− C (xi:j,Jk)

= Cψ + C|Jk| log(p)−
∑
c∈Jk

(j − j′)(j′ − i+ 1)

j − i+ 1

(
η̄
(c)
i:j′ − η̄

(c)
(j′+1):j

)2
≥ Cψ + C|Jk| log(p)− 2ψ − 2|Jk| log(p) ≥ 79

80
C (ψ + |Jk| log(p)) ,

where the first inequality follows from E7 and the second one holds if C exceeds some global

constant. Now let |Jk| ≥ k∗

C (xi:j′ ,1) + C
(
x(j′+1):j,1

)
− C (xi:j,1) = p+ Cψ + C

√
pψ −

p∑
c=1

(j − j′)(j′ − i+ 1)

j − i+ 1

(
η̄
(c)
i:j′ − η̄

(c)
(j′+1):j

)2
≥ p+ Cψ + C

√
pψ − 2ψ − 2

√
pψ − p ≥ 79

80
C
(
ψ +

√
pψ
)
,

where the first inequality follows from E8 and the second one holds if C exceeds some global

constant.
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3.12 Proof of Lemma 12

This Lemma proves MVCAPA has power at detecting anomalous regions. We begin by

considering the case in which Jk is dense. We have:

C (xi:j ,1) = p+ Cψ + C
√
pψ −

p∑
c=1

(j − i+ 1)
(
x
(c)
i:j

)2
= p+ Cψ + C

√
pψ −

p∑
c=1

(j − i+ 1)
(
η̄
(c)
i:j

)2
− |Jk|µ2

k(j − i+ 1)− 2µk
√
j − i+ 1

∑
c∈Jk

(√
j − i+ 1η̄i:j

)
≤ Cψ + (C + 2)

√
pψ − |Jk|µ2

k(j − i+ 1) + 2
√

(j − i+ 1)µ2
k

√
2|Jk|ψ

≤ Cψ + (C + 2)
√
pψ − 1

2
|Jk|µ2

k(j − i+ 1) + 4ψ ≤ Cψ + (C + 2)
√
pψ − 1

2
|Jk|µ2

k

4C

42
k

+ 4ψ

= (C + 4)ψ + (C + 2)
√
pψ − 2C(ψ +

√
pψ) ≤ 0

with the first inequality following form E10 and E3, the second from the AM-GM inequality,

the third from the condition on j−i+1, and the last one holds if C exceeds a global constant.

The proof for when Jk is sparse is almost identical. We have that:

C (xi:j ,Jk) = Cψ + C|Jk| log(p)−
∑
c∈Jk

(j − i+ 1)
(
µk + η̄

(c)
i:j

)2
= Cψ + C|Jk| log(p)−

∑
c∈Jk

(j − i+ 1)
(
η̄
(c)
i:j

)2
− |Jk|µ2

k(j − i+ 1)− 2µk
√
j − i+ 1

∑
c∈Jk

(√
j − i+ 1η̄i:j

)
≤ Cψ + C|Jk| log(p)− |Jk|µ2

k(j − i+ 1) + 2
√

(j − i+ 1)µ2
k

√
2|Jk|ψ + 2|Jk|2 log(p)

≤ Cψ + C|Jk| log(p)− 1

2
|Jk|µ2

k(j − i+ 1) + 4ψ + 4|Jk| log(p) ≤ (C + 4)ψ + (C + 4)|Jk| log(p)− 1

2
|Jk|µ2

k

4C

42
k

= (C + 4)ψ + (C + 4)|Jk| log(p)− 2C(ψ + |Jk| log(p)) ≤ 0,

where the first inequality follows from E4, the second from the AM-GM inequality, the

third from the condition on j− i+ 1, and the last one holds if C exceeds a global constant.
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3.13 Proof of Lemma 13

This Lemma prevents fitted changes from containing too many observations belonging to

the typical distribution. We limit ourselves to proving the result for the first case, since

the proof of the second case is symmetrical. We begin by proving the result for the case in

which |Jk| ≤ k∗. Writing, e′ = ek + d10 C
42
k
e and s′ = ek − d10 C

42
k
e

C (xi:j,Jk) ≥ C (xi:s′ ,Jk) + C
(
x(s′+1):e′ ,Jk

)
+ C

(
x(e′+1):j,Jk

)
− 2Cψ − 2C|Jk| log(p)

≥ C (xi:s′ ,Jk) + C
(
x(s′+1):e′ ,Jk

)
− (C + 2) (ψ + |Jk| log(p))

Next, note that Lemma 9 implies that

C
(
x(s′+1):e′ ,Jk

)
= C

(
x(s′+1):ek ,Jk

)
+C
(
x(ek+1):e′ ,Jk

)
−C (ψ + |Jk| log(p))+

∑
c∈Jk

e′ − s′

2

(
µk + η̄(s′+1):ek − η̄(ek+1):e′

)2
Moreover, we have that∑
c∈Jk

e′ − s′

2

(
µk + η̄(s′+1):ek − η̄(ek+1):e′

)2
=
e′ − s′

2
|Jk|µ2

k − µk(e′ − s′)
∑
c∈Jk

(
η̄(s′+1):ek − η̄(ek+1):e′

)
+
e′ − s′

2

∑
c∈Jk

(
η̄(s′+1):ek − η̄(ek+1):e′

)2
≥ e′ − s′

2
|Jk|µ2

k − 2
√

(e′ − s′)µ2
k

√
2|Jk|ψ ≥

e′ − s′

3
|Jk|µ2

k − 12ψ =
20

3
C (ψ + |Jk| log(p))− 12ψ,

where the first inequality follows from E11 and the second inequality from the AM-GM

inequality. Combining all the above, we obtain that

C (xi:j ,Jk)

≥ C (xi:s′ ,Jk) + C
(
x(s′+1):ek ,Jk

)
+ C

(
x(ek+1):e′ ,Jk

)
+

(
14

3
C − 14

)
ψ +

(
14

3
C − 2

)
|Jk| log(p)

≥ C (xi:ek ,Jk) +
19

20
C (ψ + |Jk| log(p)) + (C − 2) (ψ + |Jk| log(p)) +

(
14

3
C − 14

)
ψ +

(
14

3
C − 2

)
|Jk| log(p)

≥ 6C (ψ + |Jk| log(p)) ,
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where the second inequality follows from Lemma 11 and E2. The proof for the case in

which |Jk| > k∗ is very similar. We the have that

C (xi:j,1) ≥ C (xi:s′ ,1) + C
(
x(s′+1):e′ ,1

)
+ C

(
x(e′+1):j,1

)
− 2Cψ − 2(C + 2)

√
pψ

≥ C (xi:s′ ,1) + C
(
x(s′+1):e′ ,1

)
− (C + 6)

(
ψ +

√
pψ
)
,

with the first inequality following from Lemma 9 and the event E3 the second being due

to E2. The remainder of the proof of the Lemma is very similar to the sparse case and has

therefore been omitted.

3.14 Proof of Lemma 14

This Lemma shows that the optimal partition can not contain fitted segments containing

more than 10 C
42
k

observations from both the typical distribution and a dense anomalous

region. If J = 1 the result follows a fortiori from Lemma 13. Assume now that |J| ≤ k∗.

As in the proof of Lemma 13, we limit ourselves to proving the first case, the proof of the

other one being symmetrical. The following holds:

C (xi:j ,J) = C (xi:j ,1)− (p+ Cψ + C
√
pψ) +

∑
c/∈J

(j − i+ 1) (x̄i:j)
2 + Cψ + C|J| log(p)

≥ C (xi:j ,1)− C(ψ +
√
pψ)− 2

√
pψ − 2ψ − 2|J| log(p) + Cψ + C|J| log(p) ≥ C (xi:ek ,1) + 4C(ψ +

√
pψ),

where the first inequality follows from the event E5 and the second one from Lemma 13

and a choice of C exceeding some global constant.

3.15 Proof of Lemma 15

This lemma shows that merging two neighbouring fitted segments reduces penalised cost

by O(C) – even when they are separated by a gap. The proof is very similar to that of
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Lemma 11. In fact, Lemma 15 follows a fortiori from Lemma 11 when j′ = j′′. When

j′ 6= j′′ we consider the |Jk| ≤ k∗ and |Jk| > k∗ separately. Let |Jk| ≤ k∗. Then,

C (xi:j′ ,Jk) + C
(
x(j′′+1):j,Jk

)
− C (xi:j,Jk)

≥ C (xi:j′ ,Jk) +
[
C
(
x(j′+1):j′′ ,Jk

)
− Cψ − C|Jk| log(p)

]
+ C

(
x(j′′+1):j,Jk

)
− C (xi:j,Jk)

≥ −Cψ − C|Jk| log(p) +
79

80
C (ψ + |Jk| log(p)) +

79

80
C (ψ + |Jk| log(p)) ≥ 19

20
C (ψ + |Jk| log(p)) ,

where the second inequality follows from applying Lemma 11 twice. The proof for the case

in which |Jk| > k∗ is very similar. We have that

C (xi:j′ ,1) + C
(
x(j′′+1):j,1

)
− C (xi:j,1)

≥ C (xi:j′ ,1) +
[
C
(
x(j′+1):j′′ ,1

)
− Cψ − (C + 2)

√
pψ
]

+ C
(
x(j′′+1):j,1

)
− C (xi:j,1)

≥ −Cψ − (C + 2)
√
pψ +

79

80
C
(
ψ +

√
pψ
)

+
79

80
C
(
ψ +

√
pψ
)
≥ 19

20
C
(
ψ +

√
pψ
)
,

where the first inequality follows from E3, the third inequality follows from applying Lemma

11 twice, and the third holds if C exceeds a global constant.

3.16 Proof of Lemma 16

This Lemma shows that if a fitted segment contains observations belonging to the typ-

ical distribution it can be trimmed to containing only anomalous observations without

increasing the penalised cost by more than O(1) . We begin by proving the sparse case

C (xi:j,J) ≥ C (xi:j′ ,J) +
(
C
(
x(j′+1):j,J

)
− Cψ − C|J| log(p)

)
≥ C (xi:j′ ,J)− 2ψ − 2|J| log(p)

≥ (C
(
xi:(i′−1),J

)
− Cψ − C|J| log(p)) + C (xi′:j′ ,J)− 2ψ − 2|J| log(p) ≥ C (xi′:j′ ,J)− 4ψ − 4|J| log(p),

where the first and third inequality follows from the fact that introducing free splits reduces

un-penalised cost whilst the second and third inequality follows from E1. Note that if j′ = j
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and/or i′ = i the first and second and/or the third and forth step are not necessary. The

result nevertheless holds. A similar proof can be derived for the dense case:

C (xi:j,J) ≥ C (xi:j′ ,J) +
(
C
(
x(j′+1):j,J

)
− Cψ − C

√
pψ
)
− 2
√
pψ ≥ C (xi:j′ ,J)− 2ψ − 4

√
pψ

≥ (C
(
xi:(i′−1),J

)
− Cψ − C

√
pψ) + C (xi′:j′ ,J)− 2ψ − 6

√
pψ ≥ C (xi′:j′ ,J)− 4ψ − 8

√
pψ,

with the first and third inequalities following form Lemma 10, and the second and fourth

from E2.

3.17 Proof of Lemma 17

This Lemma links the savings of a fitted segment to the signal strength of the corresponding

segment. We have that

α (Cψ + C|J| log(p)) ≤
∑
c∈J

(
µk + η̄

(c)
i:j

)2
(j − i+ 1)

= |J ∩ Jk|(j − i+ 1)µ2
k + 2

√
j − i+ 1µk

∑
c∈J∩Jk

√
j − i+ 1η̄

(c)
i:j +

∑
c∈J

(√
j − i+ 1η̄

(c)
i:j

)2
≤ |J ∩ Jk|(j − i+ 1)µ2

k + 2
√
j − i+ 1|µk|

√
2ψ|J ∩ Jk|+ 2|J ∩ Jk|2 log(p) + 2ψ + 2|J| log(p)

≤ |J|(j − i+ 1)µ2
k + 2

√
j − i+ 1|µk|

√
2ψ|J|+ 2|J|2 log(p) + 2ψ + 2|J| log(p)

=

(√
|J|(j − i+ 1)µ2

k +
√

2ψ + 2|J| log(p)

)2

,

with the first inequality following from E1 and E4 and th second from the fact that |J∩Jk| ≤

|J|.This therefore implies that√
|J|(j − i+ 1)µ2

k ≥
(√

αC −
√

2
)√

ψ + |J| log(p)

58



3.18 Proof of Lemma 18

This Lemma shows that if removing a fitted sparse segment does not result in a reduction

in penalised cost of O( 1
20
C), the increase in penalised cost incurred for replacing it with

the sparse ground truth is O( 1
20
C). We will use a very similar strategy to the one we used

to prove Lemma 19. We begin by noting that

C (xi:j ,Jk)−C (xi:j ,J) = C (|Jk| − |J|) log(p)−
∑

c∈Jk\J

(j−i+1)
(
µ+ η̄

(c)
i:j

)2
+
∑

c∈J\Jk

(j−i+1)
(
η̄
(c)
i:j

)2
(21)

If |J| > 19
20
|Jk|, E1 bounds (21) by

C (|Jk| − |J|) log(p) + 2ψ + 2|J| log(p) ≤ 1

10
C|Jk| log(p) + 2ψ +

(
2− 1

20
C

)
|J| log(p)

≤ 1

10
C|Jk| log(p) + 2ψ,

with the last inequality holding if C exceeds some global constant. If |J| ≤ 19
20
|Jk| we write

A = Jk \ J and bound (21) by

C (|Jk| − |J|) log(p)+2ψ+2|J| log(p)−|A|µ2
k(j−i+1)+2

√
µ2
k(j − i+ 1)

√
|A|ψ + |A|2 log(p)

using E1 and E4. Lemma 17 implies that√
(j − i+ 1)µ2

k ≥
1√
|J|

(√
19

20
C − 2

)√
ψ + |J| log(p).

Consequently, copying parts of the proof of Lemma 19 , we have that

|A|µ2
k(j − i+ 1)− 2

√
µ2
k(j − i+ 1)

√
|A|ψ + |A|2 log(p) >

37

40
C|A| log(p),

which shows that (21) is bounded by

C (|Jk| − |J|) log(p) + 2ψ + 2|J| log(p)− 37

40
C|A| log(p) ≤ 1

10
C|Jk| log(p) + 2ψ + (2− 1

40
C)|J| log(p)

≤ 1

10
C|Jk| log(p) + 2ψ,

where the first inequality follows from the fact that |Jk| < |J| + |A| and the second one

holds if C exceeds a global constant. This finishes the proof.
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3.19 Proof of Lemma 19

This Lemma shows that if removing a fitted sparse segment does not result in a reduction

in penalised cost of O( 1
20
C), the increase in penalised cost incurred for replacing it with

the dense ground truth is O( 1
20
C). We have that

C (xi:j,1)− C (xi:j,J) = p+ C
√
pψ − C|J| log(p)−

∑
c/∈J

(j − i+ 1)
(
x̄
(c)
i:j

)2
(22)

We consider 2 cases separately. If |J| > 19
20
k∗, the event E5 implies that the above can be

bounded by

p+C
√
pψ−C|J| log(p)−

(
p− 2

√
pψ − 2ψ − 2|J| log(p)

)
≥ 2ψ+(C+2)

√
pψ−(C−2)

19

20

√
pψ ≥ 1

10
C
√
pψ+2ψ,

provided C exceeds some global constant. If |J| ≤ 19
20k
∗, we introduce the set A = Jk \ J. The

quantity in (22) is then equal to

p+ C
√
pψ − C|J| log(p)− |A|(j − i+ 1)µ2

k + 2
√

(j − i+ 1)µk
∑
c∈A

√
(j − i+ 1)η̄

(c)
i:j −

∑
c/∈J

(j − i+ 1)
(
η̄
(c)
i:j

)2
≤ (C + 2)

√
pψ − (C − 2)|J| log(p) + 2ψ − |A|(j − i+ 1)µ2

k + 2
√

(j − i+ 1)µ2
k

√
2|A|ψ + 2|A|2 log(p),

where the inequality flows from E1, E4, and E5. If C exceeds a fixed constant, the above is less

than

41

40
C
√
pψ− 37

40
C|J| log(p)+2ψ−|A|(j− i+1)µ2

k +2
√

(j − i+ 1)µ2
k

√
2|A|ψ + 2|A|2 log(p) (23)

Lemma 17 now implies that√
(j − i+ 1)µ2

k ≥
1√
|J|

(√
19

20
C − 2

)√
ψ + |J| log(p).
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Therefore

|A|
√

(j − i+ 1)µ2
k − 2

√
2|A|ψ + 2|A|2 log(p)

≥

(√
19

20
C − 2

)√
|A|
|J|
|A|ψ + |A|2 log(p)− 2

√
2|A|ψ + 2|A|2 log(p)

≥

(√
19

20
C − 2

)√
1

20
|A|ψ + |A|2 log(p)− 2

√
2|A|ψ + 2|A|2 log(p),

which exceeds 0 if C exceeds a global constant. Therefore

|A|2(j − i+ 1)µ2
k − 2|A|

√
(j − i+ 1)µ2

k

√
2|A|ψ + 2|A|2 log(p)

≥ |A|
|J|

(√
19

20
C − 2

)2

(ψ + |J| log(p))− 2

√
19
20
C − 2

|J|
√

2|A|ψ + 2|A|2 log(p)
√
ψ + |J| log(p)

≥

(√
19

20
C − 2

)2(
|A|
|J|

ψ + |A| log(p)

)
− 2

√
19

20
C
√

2ψ + 2|A| log(p)

√
|A|
|J|

ψ + |A| log(p)

≥

(√
19

20
C − 2

)2(
|A|
|J|

ψ + |A| log(p)

)
−
√

19

20
C

((
2 +
|A|
|J|

)
ψ + 3|A| log(p)

)

=

(√19

20
C − 2

)2

− 3

√
19

20
C

 |A| log(p) +

(√19

20
C − 2

)2

−
√

19

20
C

 |A|
|J|
− 2

ψ,

where the third inequality follows from the AM-GM-inequality. If C exceeds a fixed con-

stant this will exceed
37

40
C|A| log(p),

Hence the quantity in (23) is bounded by

41

40
C
√
pψ− 37

40
C (|J|+ |A|) log(p)+2ψ ≤ 41

40
C
√
pψ− 37

40
Ck∗ log(p)+2ψ =

1

10
C
√
pψ+2ψ.

This finishes the proof.
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3.20 Proof of Lemma 20

This Lemma bounds the increase in penalised cost incurred when transitioning from a fitted

dense segment to the sparse ground truth. We have that

C (xi:j,Jk)− C (xi:j,1) = C|Jk| log(p)−
(
C
√
pψ + p

)
+
∑
c/∈Jk

(j − i+ 1)
(
η̄ci:j
)2

≤ C|Jk| log(p)−
(
C
√
pψ + p

)
+
(
p+ 2ψ + 2

√
pψ
)

= C|Jk| log(p)− C
√
pψ + 2

√
pψ + 2ψ

≤ 13

20
C|Jk| log(p)− 6

10
C
√
pψ + 2ψ ≤ 1

10
C|Jk| log(p)− 1

20
C
√
pψ + 2ψ,

for large enough C. Here the first inequality follows from E2 and the second inequality

holds because |Jk| ≤ k∗.

3.21 Proof of Lemma 21

The proof is very similar to that of Lemma 19 and has therefore been omitted.

3.22 Proof of Lemma 22

The proof is very similar to that of Lemma 18 and has therefore been omitted.

3.23 Proof of Lemma 23

This Lemma shows that splitting up long fitted changes containing multiple sparse anoma-

lous regions along the ground truth reduces the penalised cost by O(C) We begin by
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considering

C (xs,e,1)−
∑
k∈Ds,e

(
C
(
x(sk+1):ek ,Jk

))
= p+ Cψ + C

√
pψ +

p∑
c=1

(
e∑
t=s

(
x
(c)
t − x̄(c)

s:e

)2)

−
∑
k∈Ds,e

∑
c∈Jk

 ek∑
t=sk+1

(
x
(c)
t − x̄

(c)
(sk+1):ek

)2+ Cψ + C|Jk| log(p)

− p∑
c=1

∑
t:@k: c∈Jk∧t∈[sk+1,ek]

(
η
(c)
t

)2
≥ p+ Cψ + C

√
pψ +

p∑
c=1

(
e∑
t=s

(
µ
(c)
t − µ̄(c)

s:e + η
(c)
t − η̄(c)s:e

)2)

−
∑
k∈Ds,e

∑
c∈Jk

 ek∑
t=sk+1

(
η
(c)
t

)2+ Cψ + C|Jk| log(p)

− p∑
c=1

∑
t:@k: c∈Jk∧t∈[sk+1,ek]

(
η
(c)
t

)2
= p+ Cψ + C

√
pψ +

p∑
c=1

(
e∑
t=s

(
η
(c)
t − η̄(c)s:e

)2)
+

p∑
c=1

(
e∑
t=s

(
µ
(c)
t − µ̄(c)

s:e

)2)

+ 2

p∑
c=1

(
e∑
t=s

(
µ
(c)
t − µ̄(c)

s:e

)(
η
(c)
t − η̄(c)s:e

))
−

p∑
c=1

(
e∑
t=s

(
η
(c)
t

)2)
−
∑
k∈Ds,e

(Cψ + C|Jk| log(p))

= p+ Cψ + C
√
pψ −

p∑
c=1

(
(e− s+ 1)

(
η̄(c)s:e

)2)
+

p∑
c=1

(
e∑
t=s

(
µ
(c)
t − µ̄(c)

s:e

)2)
−
∑
k∈Ds,e

(Cψ + C|Jk| log(p))

+ 2

p∑
c=1

(
e∑
t=s

(
µ
(c)
t − µ̄(c)

s:e

)(
η
(c)
t

))

≥ 19

20
C
(
ψ +

√
pψ
)

+

p∑
c=1

(
e∑
t=s

(
µ
(c)
t − µ̄(c)

s:e

)2)
−
∑
k∈Ds,e

(Cψ + C|Jk| log(p))

− 2

√√√√ p∑
c=1

e∑
t=s

(
µ
(c)
t − µ̄

(c)
s:e

)2√
2ψ + 2 |Ws,e| log(p)

≥ 19

20
C
(
ψ +

√
pψ
)

+
1

2

p∑
c=1

(
e∑
t=s

(
µ
(c)
t − µ̄(c)

s:e

)2)
−
∑
k∈Ds,e

(Cψ + C|Jk| log(p))− 8ψ − 8 |Ws,e| log(p),

where the first inequality follows from the fact that the residual sum of squares is minimised

at the mean, the second inequality follows from E2 and E6, and the last inequality follows

from the AM-GM inequality.
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Next note that
e∑
t=s

(
µ

(c)
t − µ̄(c)

s:e

)2
corresponds to the residual sum of squares obtained by fitting µ

(c)
e , ...,µ

(c)
s as a single

segment. Consequently, breaking it up into smaller segments does not increase un-penalised

cost. More precisely, for any partition τs:e = {s, τ1, ..., τm, e} of the segment (s+ 1, e),

e∑
t=s+1

(
µ

(c)
t − µ̄

(c)
(s+1):e

)2
≥

m∑
k=0

(
τm+1∑

t=τm+1

(
µ

(c)
t − µ̄

(c)
(τm+1):τm+1

)2)

holds. In particular, we therefore have that

1

2

p∑
c=1

(
e∑
t=s

(
µ

(c)
t − µ̄(c)

s:e

)2)
≥

∑
k:ek∈[s,e]

1

2

∑
c∈Jk


ek+b 10C42

k

c∑
ek−d 10C42

k

e

µ(c)
t − µ̄

(c)(
ek−d 10C42

k

e
)
:

(
ek+b 10C42

k

c
)
2



+
∑

k:sk∈[s,e]

1

2

∑
c∈Jk


sk+d 10C42

k

e∑
sk−b 10C42

k

c

µ(c)
t − µ̄

(c)(
sk−b 10C42

k

c
)
:

(
sk+d 10C42

k

e
)
2



=
1

2

∑
k:ek∈[s,e]

(
|Jk|2

⌈
10C

42
k

⌉
µ2
k

4

)
+

1

2

∑
k:sk∈[s,e]

(
|Jk|

20C

42
k

µ2
k

4

)
≥ 1

2

∑
k∈Ds,e

(
|Jk|

20C

42
k

µ2
k

4

)
=
∑
k∈Ds,e

5

2
C (ψ + |Jk| log(p)) ,

where the first inequality follows from using a partition which cuts 10C
42
k

either side of the

starting points and end points of true anomalous regions contained in [s, e] and the second
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inequality follows from the definition of Ds,e. Consequently, we have that

C (xs,e,1)−
∑
k∈Ds,e

(
C
(
x(sk+1):ek ,Jk

))
≥ 19

20
C
(
ψ +

√
pψ
)

+
∑
k∈Ds,e

5

2
C (ψ + |Jk| log(p))−

∑
k∈Ds,e

(Cψ + C|Jk| log(p))− 8ψ − 8 |Ws,e| log(p)

≥ 19

20
C
(
ψ +

√
pψ
)
,

where the first inequality follows from assembling the previous two results, and the second
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one holds if C exceeds a global constant. We also have that:

C (xs,e,J)−
∑

k∈Ds,e

(
C
(
x(sk+1):ek ,Jk

))
= Cψ + C|J | log(p) +

∑
c∈J

(
e∑
t=s

(
x
(c)
t − x̄(c)

s:e

)2)

−
∑

k∈Ds,e

( ∑
c∈Jk∩J

(
ek∑

t=sk+1

(
x
(c)
t − x̄

(c)
(sk+1):ek

)2)
+ Cψ + C|Jk| log(p)

)
−
∑
c∈J

∑
t:@k: c∈Jk∧t∈[sk+1,ek]

(
η
(c)
t

)2

+
∑

k∈Ds,e

 ∑
c∈Jk\J

(
(ek − sk)

(
x̄
(c)
(sk+1):ek

)2)
≥ Cψ + C|J | log(p) +

∑
c∈J

(
e∑
t=s

(
µ

(c)
t − µ̄(c)

s:e

)2)
+
∑
c∈J

(
e∑
t=s

(
η
(c)
t − η̄(c)

s:e

)2)
+ 2

∑
c∈J

(
e∑
t=s

(
η
(c)
t − η̄(c)

s:e

)(
µ

(c)
t − µ̄(c)

s:e

))

−
∑
c∈J

(
e∑
t=s

(
η
(c)
t

)2)
−
∑

k∈Ds,e

(Cψ + C|Jk| log(p)) +
∑

k∈Ds,e

 ∑
c∈Jk\J

(ek − sk)µ2
k + 2(ek − sk)µk

∑
c∈Jk\J

(
η̄
(c)
(sk+1):ek

)
≥ (C − 2)(ψ + |J | log(p))−

∑
k∈Ds,e

(Cψ + C|Jk| log(p)) +
∑
c∈J

(
e∑
t=s

(
µ

(c)
t − µ̄(c)

s:e

)2)
+ 2

∑
c∈J

(
e∑
t=s

(
µ

(c)
t − µ̄(c)

s:e

)
η
(c)
t

)

+
∑

k∈Ds,e

(
(ek − sk)|Jk \ J|µ2

k − 2
√

(ek − sk)µ2
k|Jk \ J|(2ψ + 2|Jk \ J| log(p))

)

≥ (C − 2)(ψ + |J | log(p))−
∑

k∈Ds,e

(Cψ + C|Jk| log(p)) +
∑
c∈J

(
e∑
t=s

(
µ

(c)
t − µ̄(c)

s:e

)2)

− 2

√√√√∑
c∈J

(
e∑
t=s

(
µ

(c)
t − µ̄

(c)
s:e

)2)√
2ψ + 2|Ws:e| log(p) +

∑
k∈Ds,e

(
1

2
(ek − sk)|Jk \ J|µ2

k − 8(ψ + |Jk \ J| log(p))

)

≥ (C − 2)(ψ + |J | log(p))−
∑

k∈Ds,e

(C + 8) (ψ + |Jk| log(p)) +
∑
c∈J

(
e∑
t=s

(
µ

(c)
t − µ̄(c)

s:e

)2)
+

1

2

∑
k∈Ds,e

(
(ek − sk)|Jk \ J|µ2

k

)
− 8(ψ + |Ws:e| log(p))− 1

2

∑
c∈J

(
e∑
t=s

(
µ

(c)
t − µ̄(c)

s:e

)2)

≥ 19

20
C(ψ + |J| log(p))−

∑
k∈Ds,e

2C (ψ + |Jk| log(p)) +
1

2

∑
c∈J

(
e∑
t=s

(
µ

(c)
t − µ̄(c)

s:e

)2)
+
∑

k∈Ds,e

(
(ek − sk)|Jk \ J|µ2

k

)
A very similar argument as the one used for the dense case can be used to show that

1

2

∑
c∈J

(
e∑
t=s

(
µ

(c)
t − µ̄(c)

s:e

)2)
≥
∑
k∈Ds,e

5

2
C|Jk ∩ J|µ

2
k

42
k

.
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Consequently,

C (xs,e,J)−
∑
k∈Ds,e

(
C
(
x(sk+1):ek ,Jk

))
≥ 19

20
C(ψ + |J| log(p))−

∑
k∈Ds,e

2C (ψ + |Jk| log(p)) +
∑
k∈Ds,e

[
5

2
C|Jk ∩ J|µ

2
k

42
k

+
5Cµ2

k

242
k

|Jk \ J|
]

=
19

20
C(ψ + |J| log(p))−

∑
k∈Ds,e

2C (ψ + |Jk| log(p)) +
∑
k∈Ds,e

5

2
C (ψ + |Jk| log(p)) ≥ 19

20
C(ψ + |J| log(p)),

where the first inequality follows from the condition on the segment length ek − sk.
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4 Further Simulations And Tables

In this section, we present additional results from the simulation study and application

section. Figures 2 to 5 display the full comparison between MVCAPA, PASS, and Inspect

over the four settings and data generating processes described in Section 7. We repeated

setting 1 and 3 from the main paper with joint changes in mean and variance. The number,

location, rate of occurrence, and strength of the change in mean is as in the mean paper.

The only difference is that within each anomaly the variance changes away from the typical

variance, to a new, Γ−1(5, 5)-distributed variance. The results for settings 1 and 3 are

displayed in Figures 6 and Figures 7 respectively.

Figure 8 investigates the robustness of the ROC analysis with regards to different toler-

ance levels for true positives. Specifically it considers a setting where σ2 = 2 log(p), k = 1,

p = 10, and n = 5000 with detected anomalies being counted as true positives if within

10, 20, or 30 observations of a real anomaly. It should be noticed that the ranking remains

very similar.

Figure 9 investigates the accuracy of MVCAPA using a range of different lags. It should

be noted that this analysis is vulnerable to selection bias – as the max lag is increased weaker

anomalies become detectable which pollutes the average.

Table 10 gives the results of PASS and MVCAPA at detecting known CNVs from data

from chromosome 6.
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(a) Example (b) Example with pt. anomalies

(c) p=10 (d) p=10, AR (e) p=10, PAs (f) p=10, AR, PAs

(g) p=100 (h) p=10, T (i) p=100, PAs (j) p=10, T, PAs

Figure 2: Example series and detection accuracy plots for setting 1. MVCAPA is in black,

PASS in green, and Inspect in red. The x-axis denotes the number of false discoveries

normalised by the total number of real anomalies present in the data.
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(a) Example (b) Example with pt. anomalies

(c) p=10 (d) p=10, AR (e) p=10, PAs (f) p=10, AR, PAs

(g) p=100 (h) p=10, T (i) p=100, PAs (j) p=10, T, PAs

Figure 3: Example series and detection accuracy plots for setting 2. MVCAPA is in black,

PASS in green, and Inspect in red. The x-axis denotes the number of false discoveries

normalised by the total number of real anomalies present in the data.

70



(a) Example (b) Example with pt. anomalies

(c) p=10 (d) p=10, AR (e) p=10, PAs (f) p=10, AR, PAs

(g) p=100 (h) p=10, T (i) p=100, PAs (j) p=10, T, PAs

Figure 4: Example series and detection accuracy plots for setting 3. MVCAPA is in black,

PASS in green, and Inspect in red. The solid black line corresponds to w = 0, the dashed

one to w = 10 and the dotted one to w = 20. The x-axis denotes the number of false

discoveries normalised by the total number of real anomalies present in the data.
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(a) Example (b) Example with pt. anomalies

(c) p=10 (d) p=10, AR (e) p=10, PAs (f) p=10, AR, PAs

(g) p=100 (h) p=10, T (i) p=100, PAs (j) p=10, T, PAs

Figure 5: Example series and detection accuracy plots for setting 4. MVCAPA is in black,

PASS in green, and Inspect in red. The solid black line corresponds to w = 0, the dashed

one to w = 10 and the dotted one to w = 20. The x-axis denotes the number of false

discoveries normalised by the total number of real anomalies present in the data.
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(a) Example (b) Example, with pt. anomalies

(c) p=10 (d) p=10, with pt. anomalies

Figure 6: Example series and detection accuracy plots for setting 1 with change in both

mean and variance. MVCAPA is in black, PASS in green, and Inspect in red. The x-axis

denotes the number of false discoveries normalised by the total number of real anomalies

present in the data.
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(a) Example (b) Example, with pt. anomalies

(c) p=10 (d) p=10, with pt. anomalies

Figure 7: Example series and detection accuracy plots for setting 3 with a change in both

mean and variance. MVCAPA is in black, PASS in green, and Inspect in red. The x-axis

denotes the number of false discoveries normalised by the total number of real anomalies

present in the data.
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(a) Tolerance 10 (b) Tolerance 20 (c) Tolerance 30

Figure 8: ROC curves for MVCAPA, Pass, and Inspect under different levels of tolerance.

For these results, σ2 = 2 log(p), k = 1, p = 10, and n = 5000 with, from left to right,

detected anomalies being counted as true positives if within 10, 20, or 30 observations of a

real anomaly
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(a) Max Lag 5 (b) Max Lag 10 (c) Max Lag 15

Figure 9: Accuracy of MVCAPA for setting 2 (with varying maximum lags) under a mis-

specified lag. The vertical line represents the actual maximum lag.
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Truth PASS MVCAPA (w = 40) MVCAPA (w = 0)

Start Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3

202314

243582

29945146

30569918

31388628

31388628

32562531

32605305

32717397

74648424

77073620

77155147

77496587

78936685

103844990

126226035

139645437

165647651

Figure 10: Analysis of Chromosome 6 as detailed in the caption of Figure 2. Note that the

chromosome contains two different CNVs (of different lengths) beginning at 31388628.
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5 Pseudocode

Algorithm 1 Update

Input: A vector of past lagged savings S
(j)
T .

A new saving S.

A maximum lag w ≥ 0.

1: for k ∈ {w, ..., 1} do

2: S
(j)
T (k)← S

(j)
T (k − 1)

3: end for

4: S
(j)
T (0)← S

5: Ê
(j)

T ← arg max0≤k≤w

(
S
(j)
T

)
(k)

6: Ĉ
(j)

T ← max0≤k≤w

(
S
(j)
T

)
(k)

Output An updated by-end-lag savings vector S
(j)
T , and optimal end-lag Ê

(j)

T and the corresponding saving

Ĉ
(j)

T .

Algorithm 2 ComputeSaving

Input: A vector of savings C
(1:p)
T .

Penalty constants β1:p for the components of a collective anomalies.

1: σ1, ..., σp ← order(C
(1)
T , ...,C

(p)
T ) . In decreasing order

2: CT ← max1≤k≤p

(∑k
i=1 C

(σi)
T − βi

)
3: k̂ ← arg max1≤k≤p

(∑k
i=1 C

(σi)
T − βi

)
4: CP(T )← {σ1, ..., σk̂}

Output The optimal set of components CP(T ), as well as the corresponding penalised saving CT .
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Algorithm 3 ComputePtSaving

Input: A vector of observations x
(1:p)
t .

Penalty constants β′ for a point anomaly.

1: C′t ←
∑p
i=1

((
x
(i)
t

)2
− β′

)+

2: CP′t ←
{
i|i ∈ {1, ..., p} :

(
x
(i)
t

)2
> β′

}
Output The optimal set of components CP′t, as well as the corresponding penalised saving C′t.
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Algorithm 4 MVCAPA Algorithm (No Pruning)

Input: A set of multivariate observations of the form, (x1,x2, . . . ,xn) where xi ∈ Rp.

Penalty constants β1:p and β′ for the components of a collective anomaly and for point anomalies.

A minimum segment length l ≥ 2, a maximum segment length m ≥ l, a maximum lag w ≥ 0.

Initialise: Set C(0) = 0, Anom(0) = NULL, Comp(0) = NULL, Lags(0) = NULL

1: for j ∈ {1, ..., p} do

2: µ̂(j) ←MEDIAN(x
(j)
1 ,x

(j)
2 , . . . ,x

(j)
n ) . Obtain robust estimates of the mean and variance

3: σ̂(j) ← IQR(x
(j)
1 ,x

(j)
2 , . . . ,x

(j)
n )

4: for i ∈ {1, ..., n} do

5: x
(j)
i ←

x
(j)
i −µ̂

(j)

σ̂(j) . Centralise the data

6: for k ∈ {0, ..., w} do

7: S
(j)
i (k)← 0 . Initialise saving per end-lag

8: end for

9: end for

10: end for

11: for t ∈ {1, ..., n} do

12: for T ∈ {1, ..., t} ∩ {t−m, ..., t− l + 1} do

13: for j ∈ {1, ..., p} do

14: S ← (t+ 1− T )
(

1
t+1−T

∑t
i=T x

(j)
i

)2
. Calculate saving without any lag

15: S
(j)
T , Ẽ

(j)

T , C̃
(j)

T ← Update(S
(j)
T , S, w) . Update saving per end-lag, and associated saving

16: end for

17: end for

continues on next page
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18: for T ∈ {1, ..., t} ∩ {t−m, ..., t− l + 1} do

19: for j ∈ {1, ..., p} do

20: C
(j)
T ← max0≤t′≤w

(
C̃

(j)

T+t′

)
. Find the lowest starting cost

21: L
(j)
T ← arg max0≤t′≤w

(
C̃

(j)

T+t′

)
. Find the best start lag

22: E
(j)
T ← Ẽ

(j)

T+L
(j)
T

. And deduce the best end lag

23: end for

24: end for

25: for T ∈ {1, ..., t} ∩ {t−m, ..., t− l + 1} do

26: CT ,Cp(T )← ComputeSaving(C
(1:p)
T , β1:p)

27: end for

28: C′t,Cp′ ← ComputeP tSaving(x
(1:p)
t , β′) . Cost and components of point anomaly

29: C1(t)← maxt−m+1≤T≤t−l+1

[
C(k) + CT

]
. Collective Anom.

30: s← C(t− 1) + arg maxt−m+1≤T≤t−l+1

[
C(k) + CT

]
31: C2(t)← C(t− 1) . No Anomaly

32: C3(t)← C(t− 1) + C ′t . Point Anomaly

33: C(m)← max [C1(m), C2(m), C3(m)]

34: switch arg max [C1(m), C2(m), C3(m)] do . Select type of anomaly giving the lowest cost

35: case 1 :

36: Anom(m)← [Anom(s), (s+ 1,m)]

37: Comp(m)← [Comp(s),Cp(s)]

38: Lags(m)← [Lags(s), (L(1:p)
s ,E(1:p)

s )]

39: case 2 :

40: Anom(m)← Anom(m− 1)

41: case 3 :

42: Anom(m)← [Anom(m− 1), (m)]

43: Comp(m)← [Comp(m− 1),Cp′]

44: end for

Output The points and segments recorded in Anom(n), the sets of components in Comp(n) and the sets

of start and end lags in Lags(n).
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