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In this paper, we propose a novel approach whereby happiness for British households is identified 

within a latent model frontier analysis using longitudinal data. By doing so we overcome issues related 

to the measurement of happiness. To estimate happiness frontier and thereby happiness efficiency, we 

employ a Bayesian inference procedure organized around Sequential Monte Carlo (SMC) particle 

filtering techniques. In addition, we propose to consider individual-specific characteristics by 

estimating happiness efficiency models with individual-specific thresholds to happiness. This is the 

first study that treats happiness as a latent variable and departs from restrictions that happiness 

efficiency would be time invariant.  Our results show that happiness efficiency is related to the welfare 

loss associated with potentially misusing the resources that British individuals have at their disposal. 

Key to happiness is to have certain personality traits, such as being agreeable and extravert as they 

assist efforts to enhance happiness efficiency. On the other hand, being neurotic impairs happiness 

efficiency. 
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1. Introduction  

To trace the origins of what constitutes happiness from its content point of view one should go back 

in time thousands of years.  Unravelling Ariadne’s thread of what constitutes happiness would lead 

to Aristotelian virtue ethics where ‘eudaimonia’ is its centre of gravity. The Aristotle’s concept of 

‘eudemonia’ provides the foundations of modern theorisations of happiness. According to Aristotle 

virtue, health, wealth, and beauty all contribute to eudemonia and thereby happiness. As often the 

case, Aristotle’s philosophy did raise criticism at the time as the Stoics philosophers draw attention 

only to virtue as the determinant of eudaimonia and thus happiness. The debate of defining happiness 

and searching for the factors that would contribute to happiness remains vivid to this date. In this 

study we follow from Aristotle’s eudemonia to derive happiness and thereby quantifying happiness 

efficiency. In line with Aristotle’s eudaimonia, an individuals’ endowment of socio-economic 

resources, but also psychological resources, would determine her/his potential to achieve an optimal, 

steady-state level of happiness.  

 

Coming to our era, happiness studies have gained considerable attention since early in 2000 by both 

academics (see Kahneman et al. 2004, Stiglitz et al. 2009; Binder and Broekel, 2012; Cordero et al. 

2017) and policy makers alike (see Debnath et al. 2017; Frey and Stutzer, 2012; Conzo et al. 2017; 

United Nations World Happiness Report while the OECD also publishes its own happiness report) as 

standard macro-economic and micro-economic measures and models have been criticised for failing 

to reveal the true individual’s well-being. Alas, defining the content of happiness is not by any means 

an easy task mainly due to the fact that is subjective and to a large extent unobservable. The precise 

definition of happiness has been widely debated since the days of Aristotle’s eudemonia. One of the 

seminal contributions in the literature Kahneman (2003) and Kahneman and Krueger (2006) highlight 

the challenges of defining happiness. Kahneman and Krueger (2006) reason that understanding 

happiness one should differentiate between experiencing happiness, which is related to how we feel 

while we live, and satisfaction with our life, which is how we feel when we think about our life. The 

authors suggest that happiness could be identified by two factors that derive from the above 

differentiation: one factor relates to the current experience of the feeling of an emotion such as pleasure 

or joy, which is not easily measurable and it might be spontaneous; and the second factor relates to the 

appraisal of life satisfaction, such as of the quality of life over a period of time. Kahneman (2003) and 

Kahneman and Krueger (2006) argue that the appraisal of life satisfaction is more important to people.  
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In this paper, we build on the content of happiness from an economic point of view as provided by 

Kahneman and Krueger (2006). To this end, we employ data from the British Household Panel Survey 

that provides information about an individual’s current experience of her life (such as emotions, 

moods, and feelings that would classify under the first factor of Kahneman and Krueger) and her 

appraisal of life satisfaction (that classifies as the second factor of Kahneman and Krueger). Modelling 

happiness does not, also, come without considerable challenges. From a content point of view Rayo 

and Becker (2007) provide the theory of an individual’s happiness function. They reason that the 

individual is mainly concerned not with her absolute level of happiness, but rather with the difference 

between her happiness and a benchmark of happiness. This reference on the existence of a benchmark 

is key as Rayo and Becker (2007) show that the happiness function provides a decision-making device 

that allows an individual to rank alternative actions, regarding, for example, what inputs and how much 

of them the individual will select in her happiness function. This process of ranking individual’s actions 

within the framework of happiness function is of importance as it is at the core of pursuing happiness 

efficiency first theorized by Rayo and Becker (2007).1 In some detail, Rayo and Becker (2007) show 

that an individual would always aim at maximizing her happiness given her characteristics and 

resource endowments, and to do so it is necessary to reach for higher values of happiness efficiency 

that are strictly preferred. The maximization of happiness underpins most of the empirical models in 

the literature (Cordero et al. 2017; Binder and Broekel, 2012; Graham and Oswald 2010). However, 

Rayo and Becker (2007) predict that not all individuals are equally efficient in utilizing their resources 

and have certain characteristics that would lead to the maximum happiness. Rayo and Becker (2007) 

suggest, therefore, that there could be a degree of happiness inefficiency which would explain not 

achieving the maximum happiness. The existing literature has paid little attention on estimating the 

extent to which happiness inefficiency is prevalent at an individual level (Cordero et al. 2017), while 

it has also been largely silent about explaining the causes of happiness inefficiency.  

 

We build on the content of happiness efficiency of Rayo and Becker (2007) and reason that it is of 

importance to provide empirical evidence and thereby reveal individual’s happiness and happiness 

efficiency.  Rayo and Becker (2007) also discuss the underlying ‘inputs’ of the happiness function, 

that is the individual’s characteristics and resource endowments. On the determinants of the happiness 

function, there are also challenges, some go back to Aristotle’s notion of ‘eudemonia’. Lucas and 

 
1 Rayo and Becker (2007) show that happiness and the happiness efficiency should be seen in the light of the principal 

agent problem whereby the principal designs the happiness function so as the agent, which is the individual, maximises 

her happiness. Rayo and Becker (2007) provide proof that maximizing the happiness efficiency would lead to the maximum 

happiness. This theory is key to our modelling as it provides its theoretical content whereby higher values of happiness 

efficiency are strictly preferred by the principal and the agent.  
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Diener (2015) provides a comprehensive review of the complexities involved regarding the plethora 

of potential determinants of happiness. In previous studies happiness is a function of social-economic 

variables such as: education, income, employment, health, marital status traits (Clark et al., 2008; 

Diener 2009; Diener, et al. 2018; Lucas and Diener 2015; Graham and Oswald 2010; Binder and 

Broekel, 2012);  but also variables such as geographic location and personality (Anand, et al. 2011; 

Cordero et al. 2017).  

 

In this study, we consider these challenges and opt to employ both time invariant and time variant 

determinants of happiness. To this end, happiness would be a function of time invariant characteristics 

of individuals such as gender (Dolan and Kahnemann, 2008; Kahneman, 2003), but also on time 

variant characteristics such as income (Clark et al., 2008), health (Dolan and Kahnemann, 2008), 

employment (Winkelmann, 1998). We shall also consider important life events such as the marital 

status in line with the adaptation doctrine (Lucas, 2007), but also personality traits given their 

importance (Lucas and Diener 2015; Gosling, et al. 2003; Diener, et al. 1999). Lucas and Diener (2015) 

argue that, typically, the correlation between happiness and, for example, income is in most empirical 

research half of the one between happiness and personality traits like extraversion and neuroticism.  

 

When it comes to the estimation of the happiness function there are also challenges: some studies 

employ parametric methods (Diener 2009; Diener, et al. 2018; Rayo and Becker 2007; Graham and 

Oswald 2010; and Binder and Broekel, 2012; Anand, et al. 2011), while other studies opt for non-

parametric methods (see Despotis, 2005; Cordero et al. 2017; Barberio et al. 2015; Mizobuchi 2017; 

Debnath and Shankar 2014; Tsurumi and Manage 2017).2 In addition, there is another thread in the 

literature that predicts persistence in the happiness function. Di Tella et al., (2010) and Bottan and 

Perez-Truglia, (2010) argue that happiness is subject to such persistence and it should be modelled 

taking into account underlying dynamics. Di Tella et al., (2010) show that persistence in happiness 

could be explained but what they called ‘reference dependent preferences’ impended in the serial 

correlation of the idiosyncratic error term.3 In this paper, we propose a novel Bayesian stochastic 

 
2 It is worth noting that studies of Despotis (2005) and Barberio-Mariano (2015) focus on the concept of quality of life 

which does not involve subjective aspects. 
3 Extending on Rayo and Becker’s model, Di Tella et al., (2010) provide a theory of the importance of reference-dependent 

preferences. Their theory helps to resolve the Easterlin paradox. Easterlin was the first researcher to study happiness data 

and observed that happiness is positively correlated with income across individuals and across countries at a given period 

of time, but this is not true over time. The reference-dependent preference theory reasons that the current happiness may 

depend directly on past happiness (see also Bottan and Perez-Truglia, 2010). In this paper, we consider the reference 

dependent preference. 

file:///G:/happiness/o%23_ENREF_35
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frontier happiness function that addresses concerns regarding the estimation of happiness function in 

previous literature.  

 

White et al. (2016), White (2018) and White (2016) argue in favor of the significance of social 

operational research modelling.  In line with White et al. (2016) and White (2016) and given the 

content of Rayo and Becker (2007) happiness efficiency theory, we propose that a way to advance 

social operational research modeling is to view the measurement of happiness as one that is related to 

a latent variable modelling. To this end, we propose that accurately measuring happiness should be in 

the first instance about modeling it as an unobserved variable. By treating happiness as unobservable 

we tackle the challenges that relate to the definition of happiness. This is a novel contribution to the 

existed literature. Our modelling provides a Bayesian generalized linear latent model while considering 

unobserved heterogeneity across individuals through introducing latent individual effects (see Anand, 

et al. 2011 for linear latent and mixed models).4  We show that our latent modelling nests both 

parametric or non-parametric estimation methods and thereby addresses criticism raised about the 

estimation method.  This modelling is also addressing endogeneity and multicollinearity concerns. We 

proceed by taking the latent modelling some steps further by incorporating a stochastic happiness 

efficiency frontier so as to provide evidence of Rayo and Becker (2007) prediction about happiness 

efficiency. The concept of happiness efficiency frontier is key as any deviations from the frontier 

would imply that individuals deviate from their maximum happiness that could achieve should they 

optimally use their available resources. In addition, and following Di Tella et al., (2010) we model 

both persistence and threshold effects in happiness and happiness efficiency. Furthermore, as 

heterogeneity across individuals is key our model provides happiness efficiency across individuals and 

over time.  

 

In terms of the estimation of happiness function and happiness efficiency, we employ Bayesian 

inference procedures organized around Sequential Monte Carlo (SMC) particle-filtering techniques so 

as to explore the posterior distribution of happiness efficiency, whilst we also allow for key 

individual’s specific characteristics, whether time varying like income, or time invariant like gender, 

to impact upon happiness efficiency. Our modeling permits to do so in a single stage that enhances 

statistical significance and statistical efficiency. Compared to previous methods of estimation in the 

 
4 This analysis follows earlier research by Krishnakumar, (2007), Anand et al., (2009), Durante, et al. (2017) and Sewell 

and Chen (2015). 
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literature the Bayes approach developed here is better suited for finite survey samples and data which 

embodies substantial individual heterogeneity. In our empirical application, we use all available data 

from the British Household Panel Survey. The survey is a longitudinal one of British households and 

since the survey commenced there have been 18 waves concerning 5050 British households. We test 

various models, including static and dynamic ones. We also propose a model that captures 

heterogeneity across individuals, that departs from standard random effects models, given the cross-

sectional heterogeneity of our sample. Results show that the typical British individual could further 

improve her happiness efficiency. An interesting finding of our new results is that a large part of the 

observed happiness inefficiency can be explained by personality traits. Individuals with certain 

personality traits might be more efficient than others in employing their resources so as to move 

towards their happiness frontier. Personality traits could also impact upon the resilience of individuals 

when they face an adversity while these traits could also impact upon reaching their happiness frontier. 

 

The remainder of the paper proceeds as follows. The next section presents our methodology, the latent 

variable modeling. Section 3 presents the data set and the results. Section 4 provides some 

conclusions. 

 

2. Methodology  

2.1 The latent happiness model 

We build on the content of Rayo and Becker (2007) who theorize that the individual’s objective is to 

maximize her happiness. Suppose ity  denotes the ordinal response of individual i  at time t  (

i =1, ,n; t =1, ,T), where specifically ity c=  for c=1, ,C. Moreover, in terms of our sample, ity

comes from the individuals’ responses to the question of ‘How dissatisfied or satisfied are you with 

your life overall?’ in the British Household Panel Survey data. 5  If ity
 
takes the value of 1 then it 

means that the underlying individual is completely unsatisfied, where 7 would indicate the maximum 

level of life satisfaction. Given the challenges of defining happiness (Dolan and Kahnemann, 2008; 

Kahneman, 2003), we employ ity c=
 
to model happiness, itH , as a latent variable for the first time, 

which is unobservable though it exists:  

 
3Most papers in the literature (see Binder and Broekel, 2012) opt for the same question to define happiness. This is a direct 

way of measuring happiness as it comes from the responses in the BHPS data survey. Similar survey questions are also 

used for other countries, such as in Marcenaro-Gutierrez et al. (2010) that study the level of satisfaction of workers in 

Spain. 
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where c  denotes a cutoff point. We have: -¥ =g
0
<g

1
= 0 <g

2
< <g

C
= ¥,  where the condition 

1 0 =  is needed for identification (Albert and Chib, 1993, p. 673) and Johnson and Albert (1999, 

p.131).  

It is worth noting that since our data is ordinal, we need to have an appropriate statistical model to take 

account of this fact. So, we assume that when, for example, 1ity =  then the latent happiness indicator 

is in the interval 0 1( , 0) = − = , when 2ity =  then the latent happiness indicator is in the interval 

1 2( 0, ) = , etc., where 2 3,   are parameters to be estimated. Therefore, the “cutoff points” determine 

sub-intervals of  latent happiness which correspond one-to-one to observed values of the response. 

 

We treat happiness as a latent variable that follows the process:  
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=
0i¢b x
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+ 0i¢d w
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+u

i 0
,"i =1, ,n,                 (3) 

where itx  is a 1k  vector of covariates, iw  is an 1m  vector of time-invariant characteristics and 

i   are conformable parameter vectors. Happiness efficiency is derived from equation (3) 

decomposition of uit to random error and efficiency term following Cornwell, et al. (1990) estimator.  

Note that ρ is the coefficient of the lagged happiness, capturing possibly persistence of happiness over 

time thus taking on board Di Tella et al., (2010) reference-dependent preferences. Note that testing for 

persistence is key in our modelling and has been rather overlooked in the literature. However, if 

persistence is ignored this would lead to incorrect estimates and inferences of happiness.  

 

Moreover, itx  is a 1k  vector of primary inputs (Rayo and Becker 2007 refer to these as resource 

endowments) into the happiness function in line with Binder and Broekel (2012) and Clark et al. (2008) 

while iw  is a 1m vector of an individual’s specific characteristics (see also Cheng et al. 2015; Oswald 

and Powdthavee, 2008; Tiefenbach and Kohlbacher, 2015). For example,  itx  includes variables such 

as the annual household income, health and education (see Clark et al. 2008; Cheng et al. 2015), 

whereas iw  include variables such as gender, age (see Oswald and Powdthavee, 2008; Tiefenbach and 

Kohlbacher, 2015). Given that we would focus on British households and individuals we consider 
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where the geographic location of a household would impact upon happiness by including regional 

dummy variables.6   

 

Conditionally on the regressors, itx
 
and iw , parameters, we assume:  

 (4) 

Relative to previous work, we allow, in the first instance, for random coefficients to capture 

heterogeneity:  

       (5) 

    (6) 

Markov Chain Monte Carlo (MCMC thereafter) techniques for simulating the posterior distribution 

have been proposed by Albert and Chib (1993, 2001), and Chen and Dey (2000), see also Jeliazkov et 

al. (2009). The main problem is to draw the parameters g = [g
2
, ,g

C-1
¢] . Albert and Chib (2001) 

propose a reparameterization of the form z
c
= log(g

c
-g

c-1
),"c= 2, ,C-1  so the vector 

z = [z
2
, ,z

C-1
¢]  is unrestricted (see also Hasegawa, 2009). 

 

2.2 Individual-specific characteristics  

The assumption that the underlying individual’s characteristics are the same across all is not realistic 

as there is heterogeneity. We treat for this heterogeneity across individuals and complement (2) with 

the following specification:  

 y
it

= cÛ H
it
Û (g

c-1,it
,g

c,it
),"t =1, ,T,"i = 0,1, ,n,   (7) 

where g
it

= [g
2,it

, ,g
C-1,it

¢]  are individual- and time-varying parameters.  

We use the Albert and Chib (2001) parametrization,  

 z
c,it

= log(g
c,it

-g
c-1,it

),"c= 2, ,C-1      (8) 

along with the following assumptions:  

     (9) 

where  

                     (10) 

 
6 Geographic location in previous studies appear to affect happiness; for example, Cordero, et al. (2017) using 

nonparametric frontier analysis show that happiness varies from region to region. 
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In this specification, the transformed cutoff points follow an AR(1) process with individual-specific 

coefficients in i . The variance parameters, w
ci

2 , are individual-specific. This modeling perspective 

allows for considerable flexibility and provides the means of estimating happiness efficiency at the 

individual level without assuming that the transformation of resources (explanatory variables) to 

happiness is exactly the same for all individuals. 

2.3 Monte Carlo methods 

Conditionally on  , Markov Chain Monte Carlo (MCMC thereafter) for this class of models is quite 

standard. In our model, however, the cutoff points are both category-, individual- and time-specific. 

This extension creates problems with standard application of MCMC methods like the Gibbs sampler.  

We can write (2), the latent happiness equation, in the form:  

 H
it

= it¢x l
i
+u

it
= it¢x l +U

it
,         (11) 

where 
itx := [H

i ,t-1
, it¢x ,w

i
¢] , and . Therefore,  
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ü
ý
þ
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In this conditional distribution, the parameters are   and the different elements of  . Moreover, 

K   denotes the entire vector of parameters in the model. If itH  was observed, the product of 

the above would provide directly the likelihood function along with the different distributional 

assumptions about H
i0

,"i =1, ,n. Therefore, for individual i , we would have:  
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i
|{ itx },q )µ

t=1

T
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H
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û
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where H
i
= [H

it
,t =1, ,T ¢] .  

For (8) and (9) we can make a similar reduction to get:  

2

11 2
(0 )c it c i t c it c it ci itit

N         −  
= + +   +  qq  (14) 

where 1[1 ]it c i t   −
= q , for all c= 2, ,C-1. Collecting for all classes, we have:  

 z
it

=
1m 1

C-2
+z

i ,t-1 2m +j
it
,"i =1, ,n,t =1, ,T,     (15) 

where j
it

= [j
c,it

,c= 2, ,C-1 ¢]  and 1
C-2

 denotes a vector of ones. If 

2diag 2 1it ci itit
c C    =  =   − +   qq , we have: 

                                               (16) 



10 
 

As there are only three different elements in   and two different elements in  , marginalizing with 

respect to the random coefficients results in a vast reduction to the number of parameters. Finally, we 

can write (15) for all individuals as:  

 z
t
=

1m 1
n C-2( )

+z
t-1 2m +j

t
,"t =1, ,T                (17) 

where z
t
= [z

it
,i =1, ,n ¢] . As individuals are independent, it follows that 

cov(j
t
) := W

t
= diag[W

it
,i =1, ,n]. Although (17) is high-dimensional, it is very tightly parametrized.  

Our Markov Chain Monte Carlo (MCMC) procedure can be described as follows (for further 

details see Appendix A.1):  

(i)  Drawing itH  from (13)  

(ii) Drawing t  from (17) and (13) and transforming to c it   via (7).  

(iii)Drawing the ‘deep’ parameters in  , viz. 2[ ] ci{ }        =       .  

The bulk of computation lies in steps (i) and (ii). Regarding (i), we draw H
i
= {H

it
,t =1, ,T}  as a 

block to avoid introducing heavy autocorrelation in MCMC. We do the same in step (ii) where we 

draw t  block wise for all individuals and time periods at once. For itH  we have the observation 

restrictions in (1). A draw for iH  can be obtained using a Langevin Metropolis algorithm due to 

Girolami and Calderhead (2011) as described in the technical Appendix A.2. This is repeated for each 

i =1, ,n. Even when the number of individuals is large the procedure is efficient as it uses gradient 

and Hessian information from (13).  

For step (ii) to draw t  as a block for all individuals and time periods we have to combine (16) and 

(12) -to form the posterior conditional kernel density. This is facilitated by a vector Particle Filtering 

(PF) approach, which evaluates the posterior for each  . The version of PF we adopt is described in 

the technical Appendix A.3 and is based on Nemeth, Sherlock and Fearnhead (2014). We use 

162 65 536=   particles per component and iteration. In total, we use 250,000 MCMC iterations the first 

50,000 of which are discarded to mitigate the impact of start-up effects. Convergence is assessed using 

Geweke’s diagnostic, whilst effective sample size along with numerical standard errors and relative 

numerical efficiency have been monitored (Geweke, 1992). Our final results were robust to 
82  and 

142  particles per component.  

Part (iii), drawing the deep parameters  , we follow Liu and West (2001) as explained in the technical 

Appendix A.3. Of course, covariance matrices like   and   are parametrized in terms of the 
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elements of their Cholesky factorizations. For 
2

ci  we parametrize in terms of cip , where 

w
ci

= exp(p
ci
),"i =1, ,n,c= 2, ,C-1.  

2.4 Priors 

Regarding priors, they are informative. Starting from the happiness equation in (2) and (4) we adopt:  

           (18) 

        (19) 

         (20) 

For (8) and (9) in the Albert-Chib parametrization (7) we have:  

   (21) 

For   and   denoted generically by   we assume a Wishart prior:  

 p(S)µ| S |-(d+a+1)/2 exp(-trAS-1) ,   (22) 

where d  is the dimensionality, 0 1a =   and 0 1A =  I . Since the covariance matrices are parametrized 

in terms of the elements of their Cholesky factorizations the priors are not conditionally conjugate, so 

they are not particularly easy to work with in terms of MCMC computation. Fortunately, our Langevin 

MCMC approach does not rely on conditional conjugate priors. Finally, for elements 
2

ci  we assume:  

 ,  (23) 

where 0 01b =   and 1 =  .  

 

3. The data set and empirical results 

3.1 The British Household Panel Survey (BHPS)  

We employ the dataset of British Household Panel Survey (BHPS) available from the UK Data 

Archive. We include in our empirical analysis all available data since 1994. This survey is a 

longitudinal one that includes information regarding individuals of interviewed British households.7 

Since the survey commenced there have been 18 waves concerning 5050 British households. The 

British Household Panel Survey interviews every adult member of sample household and thereby it 

 
7 In the event that individuals change address or new individuals are added in the same household, the survey continues to 

include them and thereby interview them. The survey is asking the life satisfaction question over time. So, the sample of 

the present paper includes variability over time that enhances the information content. Individuals over time might change 

their views about how perceive their underlying life satisfaction. This information is present in our sample 
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follows the same representative sample of individuals over a period of years.  

The survey is quite comprehensive and refers to marital status, age, household composition, housing 

conditions, residential mobility, education and training, health and the usage of health services, labour 

market, socio-economic values, and income from employment, benefits and pensions.8  In our study, 

there are 166,381 observations made up of 26,027 individuals. The main variable of interest is overall 

life satisfaction, which ranges from a scale of 1 to 7, with 1 indicating not satisfaction at all and 7 

completely satisfaction. The question for respondents is ‘How dissatisfied or satisfied are you with 

your life overall?’. In line with Binder and Broekel (2012), we consider individual’s resources such as 

annual income, health, and education as variables that would affect life satisfaction and thus 

happiness. 9  We also account for a number of individual-specific characteristics (Oswald and 

Powdthavee, 2008; Tiefenbach and Kohlbacher, 2015). They are age, age squared, number of child, 

dummies for marital status (such as divorced, married, never married, separated, widowed), 

employment status (self-employed, in paid employment, unemployed, retired from paid work 

altogether, on maternity leave, looking after family or home, full time student/at school, long term sick 

or disabled, on a government training scheme, and something else), gender (male/female), and region 

(19 areas across Great Britain). 

3.2. Estimation of Happiness Efficiency 

We opt for Markov Chain Monte Carlo (MCMC) procedure to estimate the happiness efficiency. 

Moreover, we employ a vector Particle Filtering (PF) approach which evaluates the posterior as 

discussed in the methodological section. This is rather cumbersome as we use 
162 65 536=   particles 

per component and iteration. Overall, we use 250,000 MCMC iterations, the first 50,000 of which are 

discarded to mitigate the impact of start-up effects. Convergence is assessed using Geweke’s 

diagnostic, whilst effective sample size along with numerical standard errors and relative numerical 

efficiency have been monitored (Geweke, 1992). Our final results were robust to 
82  and 

142  particles 

per component.  

 

Table 1 reports the Bayesian estimation of happiness function for three models: Model A is a simple 

static model that does not include lagged happiness, Model B includes dynamics, namely lagged 

 
8 Liberini et al. (2017) in a recent paper explore yet another dimension of this sample, that is the significance of being 

happy for the outcomes of retrospective voting.  

 
9 Note in equation (3) we include is a vector of covariates that includes time-invariant characteristics. To this end,  

includes variables such as the annual household income, health and education (see Clark et al. 2008; Cheng et al. 2015), 

whereas  include variables such as gender, age (see Oswald and Powdthavee, 2008; Tiefenbach and Kohlbacher, 2015). 
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happiness. We estimate this model because we expect (see Rayo and Becker 2007; Di Tella et al., 

2010) that happiness is persistent although this is clearly a testable statistical hypothesis. Most 

empirical studies have ignored this possibility which, to anticipate some of our empirical results, could 

be present. At the very least, this suggests that ignoring persistence leads to incorrect estimates and 

inferences for all parameters in the model. Last, Model C is a dynamic model with random coefficients 

in all parameters so as to capture, also, heterogeneity across individuals. Intuitively, given the cross-

sectional heterogeneity of our sample, Model C could better fit our data set. The rationale is that a 

model of the type “one size fits all” in terms of assuming common coefficients across individuals is 

hard to defend. More specifically, happiness levels and happiness efficiency are sensitive on 

assumptions made about the nature of parameters. If they are fixed and common for all individuals it 

means that explanatory variables affect happiness in the same way no matter what the individual’s 

characteristics are. Again, on prior grounds, this assumption is highly questionable and, at the very 

least we would like to: i) test it empirically, and ii) examine whether it makes any difference in terms 

of estimated happiness efficiency. In what follows, we would test for whether Model C is a better fit 

rather than imposing it.   

 

Also, note that post z is the posterior mean divided by the posterior standard deviation. We employ 

post z to evaluate the statistical significance of our estimation. We have statistical significance in the 

frequentist or sampling-theory context when post z exceeds 1.96 in absolute value (at the 5% level of 

statistical significance). 

 

The results, presented in Table 1, indicate that most right-hand side variables assert the expected 

impact on happiness. Household income has a positive impact on happiness, albeit its magnitude is 

small. Blanchflower and Oswald (2004) also show that income positively affect happiness that has 

been also verified by Binder and Coad (2011) and Clark et al., (2008). However, Easterlin et al. (2010) 

argue that happiness would increase as income increases, but there is a threshold of a satiation point 

beyond which any further increase in income might not impact on life satisfaction. Conventional 

wisdom might dictate that money does not always buy happiness. Compared to women, men are 

generally less happy. There is a U-shape relationship between age and happiness, with happiness 

declining until middle age and improving thereafter. Marital status also affects happiness. Single, 

separated, divorced, and widowed individuals are all less happy with their lives than married 

individuals. Fernández-Ballesteros et al., (2001) show that married people are happier than those who 

are separated, divorced, widowed, or were never married. Married people could profit from physical 

and emotional provisions (Stack and Eshleman, 1998). In addition, Blanchflower and Oswald (2004) 
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reasons that the frequency of sexual activity is positively related to happiness while the former is 

significantly higher for married people compared to single, divorced, widowed, or separated.  

 

The number of children in the household has a negative impact on happiness. Having and raising 

children necessitates substantial resources that could come at the cost of happiness, see Binder and 

Coad (2011). Indeed, most studies show that having children does not make people happier (Clark et 

al. 2008). However, Mastekaasa, (1994) argues that growing up children could increase happiness as 

they enlarge their parents’ social network and engaging in social activities improve happiness.   

 

The retired, students and those in family care also enjoy a positive boost in their happiness. Consistent 

with existing evidence (Clark et al. 2008; Cheng et al. 2015) and a widely held belief, employees are 

less satisfied with their lives than the self-employed (reference category).  

 

As expected, unemployment has one of the strongest negative effects on happiness which is in line 

with previous studies (Lucas et al., 2008; Stutzer, 2004; Di Tella et al., 2010). It is worth noting that 

Lucas et al. (2008) shows that unemployment could persistently negatively affect happiness as it acts 

as a shock that is difficult to recover from.  Interestingly, self-employed seem to be happier than 

employees as in Binder and Coad (2013).  

 

Equally unsurprisingly, there is a positive correlation between health and happiness. As health 

deteriorates from excellent (reference category) to good, to fairly or very poor, happiness decreases. 

This positive effect of health is in line with the literature (Diener and Seligman, 2002; Sabatini, 2014). 

Higher educational attainment impacts negatively on happiness. While this result appears to be 

puzzling, it is not out of line with previous research, which has produced mixed results about the link 

between education and happiness (Powdthavee et al. 2015). In a recent paper, Brennan et al. (2014) 

show that the significance of education varies as they demonstrate that the productivity in education is 

affected by non-discretionary inputs such as socio-economic variables like income and parental 

education.  However there is some variability in reported results as Binder and Coad (2011) report no 

significant impact of education on life satisfaction for UK, whereas in another Binder and Coad (2013) 

they show a significant and negative relationship between education and life satisfaction. 

 

Moreover, in line with US study of Blanchflower and Oswald (2004) gender and age are negatively 

related to happiness while there is an underlying U-shape type of age-happiness relationship (see also 
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Frijters and Beatton, 2012). Happiness increases in older age could be connected to old-age social 

activities.  

 

In model C   the coefficient on lagged happiness is positive and statistically significant and implies a 

slow adaptation to changed circumstances. This slow adaptation contrasts with other reported estimates 

of adaptation (see e.g., Botan and Truglia 2011; Chrostek 2013; Botan and Truglia 2011; Botan and 

Truglia 2011).  

Table 1: Bayesian parameter estimates of the happiness function.  

 

Model A  

Static model 

Model B Dynamic model -no 

random coefficients 

Model C Dynamic model -

with random coefficients 

 post. mean post. z post. mean post. z post. mean post. z 

const 5.92** 115.72 4.92** 115.72 1.69** 115.72 

Lag happiness   0.72** 50.41 0.85** 34.79 

age -0.02** -10.76 -0.01** -10.76 -0.01** -10.76 

age2 0.002** 17.87 0.001** 17.87 0.001** 17.87 

hhldinc 0.001** 5.51 0.002** 5.51 0.001** 5.51 

nchild -0.03** -7.10 -0.03** -7.10 -0.02** -7.10 

Marst1 -0.26** -14.23 -0.29** -14.23 -0.17** -14.23 

Marst2 -0.14** -9.59 -0.16** -9.59 -0.11** -9.59 

Marst3 -0.23** -13.47 -0.18** -13.47 -0.14** -13.47 

Marst4 -0.12** -9.58 -0.10** -9.58 -0.06** -9.58 

Empstat1 0.01 0.58 0.01** -2.35 0.02** 3.23 

Empstat2 -0.29** -17.78 -0.31** -17.78 -0.23** -17.78 

Empstat3 0.02 1.52 0.01 1.52 0.01 1.52 

Empstat4 0.27** 7.95 0.25** 7.95 0.09** 7.95 

Empstat5 -0.07** -3.78 -0.06** -3.78 -0.02** -3.78 

Empstat6 0.04* 2.71 0.03* 2.71 0.01* 2.71 

Empstat7 -0.48** -22.55 -0.49** -22.55 -0.24** -22.55 

Empstat8 0.00 -0.02 0.00 -0.02 0.00 -0.02 

Empstat9 -0.07* -2.20 -0.04* -2.20 -0.03* -2.20 

sex1 -0.06** -6.10 -0.06** -6.10 -0.03** -6.10 

Hlth1 0.19** 30.52 0.13** 30.52 0.07** 30.52 

Hlth2 -0.51** -68.28 -0.35** -68.28 -0.35** -68.28 

Educ1 0.11** 11.13 0.12** 11.13 0.08** 11.13 

Educ2 -0.09** -6.94 -0.10** -6.94 -0.03** -6.94 

Region yes  yes  yes  

Years  yes  yes  yes  

Bayes factors 1.000   4.717  12.282  

R2 0.744   0.797  0.935  

Note: ** notes significance at 1%, * at 5%. age captures the age of the individual, age2 is the squared term, hhdinc is 

the household income /1000, nchild number of children, marst captures marital status (marst1 separated, marst2 

divorced, marst3 widowed, marst4 never married, empstat the employment status (empstat1 in paid employment, 

empstat2 unemployed, empstat3 retired, empstat4 family care, empstat5 family care, empstat6 full time student, 

empstat7 long term sick, empstat8 maternity leave, empstat9 government training, sex counts for male (sex1)/female, 

hlth health (hlth1 is good, hlth2 very poor), educ education (educ1 high, educ2 medium). Region captures dummies for 

the different regions of UK (19 areas across Great Britain). Years captures time effects from year 1 to year 12. The 

Bayesian estimations is based on a sample of 166,381 person-year observations made up of 26,027 individuals, through 

250,000 MCMC iterations (with the first 50,000 of which are discarded to mitigate the impact of start-up effects). A 

vector Particle Filtering (PF) approach evaluates the posterior with 216=65536 particles per component and iteration. 

Geweke’s diagnostic confirms convergence to 28 and 214 particles per component. 

Provided that we estimate two dynamic models (Model B which includes dynamic terms, namely 

lagged happiness and Model C which is a dynamic model with random coefficients in all parameters 
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to capture heterogeneity across individuals) we report next the frequency of the log of Bayes factor of 

model C compared to model B so as to test their performance.  

 

Results show that Model C preforms 1026 better than model B (see Bayes factors in Table 1, but also 

Figure 1). In addition, the goodness of fit as captured by R2 also shows that Model C is superior. To 

this end, we shall focus on happiness efficiency as derived from Model C. 

 

 

 

Figure 1. The density of the log Bayes factor of model C against model B. 

 
Note: Authors’ estimations. The log Bayes factor is based on a sample of 166,381 person-year observations made up of 

26,027 individuals, through 250,000 MCMC iterations (with the first 50,000 of which are discarded to mitigate the impact 

of start-up effects). A vector Particle Filtering (PF) approach evaluates the posterior with 216=65536 particles per component 

and iteration. Geweke’s diagnostic confirms convergence to 28 and 214 particles per component. 

 

Table 2 reports descriptive statistics of happiness efficiency scores for the three models. The happiness 

efficiency score is always positive. There is some variability in the efficiency scores across models 

that range from 0.55 in Model A to 0.79 in Model C, the preferred model. The mean efficiency score 

over the three models is around 70 per cent, which is indicative of a substantial happiness efficiency 

deficit. This implies that British individuals are not reaching their happiness frontier and that there is 
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some considerable room for improvement in happiness efficiency by around 30 per cent.10 Note that 

the reported results show that there is some happiness inefficiency present in our sample. In terms of 

intuition, our modelling reveals that British individuals face a ‘happiness loss’ in terms of happiness 

inefficiency of around 30 per cent. This ‘happiness loss’ is associated with using their resources that 

they have at their disposal at lower level of efficiency. 

 

Table 2: The Bayesian happiness efficiency.  

 

Obs Mean Std. Dev. Min Max 

Model A  166,381 0.552321 0.103045 1.43E-06 0.672202 

Model B  166,381 0.715468 0.147443 2.18E-06 0.948433 

Model C  166,381 0.795471 0.071959 1.60E-06 0.985544 

Note: Model A is the static one, Model B is the dynamic without random coefficients and Model C is the dynamic with 

random coefficients. Authors’ estimations. The happiness efficiency is based on a sample of 166,381 person-year 

observations made up of 26,027 individuals, through 250,000 MCMC iterations (with the first 50,000 of which are 

discarded to mitigate the impact of start-up effects). A vector Particle Filtering (PF) approach evaluates the posterior with 

216=65536 particles per component and iteration. Geweke’s diagnostic confirms convergence to 28 and 214 particles per 

component. 

 

The advantage of our modelling is that estimates the entire distribution of the happiness efficiency 

scores over the three models, see Figure 2. Model C corrects for the leptokurtic characteristic of Model 

B and Model A, though it reports higher average happiness efficiency. The results show that British 

households have, on average, achieved 70 percent of their happiness efficiency. This figure of 

happiness efficiency is not small, though it shows that British households could further increase their 

happiness efficiency by 30% by using more efficiently existing resources. This result implies that the 

typical British household could improve its happiness efficiency without relying on increasing its 

resources, for example its income.  

 

 

 

 

 

 

Figure 2. The sample distributions of happiness efficiency. 

 
10 This result complements Marcenaro-Gutierrez et al. (2010) that were able to identify the level of satisfaction of Spanish 

workers. However, the present approach has the advantage of modelling based on latent variables that allows revealing the 

whole distribution of happiness efficiency across all individuals that take part in the sample. In a sense, this approach is 

permitting a ranking of individuals based on the happiness efficiency.  
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Note: Model A is the static one, Model B is the dynamic without random coefficients and Model C is the dynamic with 

random coefficients. Authors’ estimations. The happiness efficiency is based on a sample of 166,381 person-year 

observations made up of 26,027 individuals, through 250,000 MCMC iterations (with the first 50,000 of which are 

discarded to mitigate the impact of start-up effects). A vector Particle Filtering (PF) approach evaluates the posterior with 

216=65536 particles per component and iteration. Geweke’s diagnostic confirms convergence to 28 and 214 particles per 

component. 

 

Overall, by treating happiness as a latent variable we reveal that, on average, the British happiness 

efficiency has significant room to further improvement given the existed individuals’ characteristics 

and resources.  The results show that given a higher happiness efficiency is strictly preferred as the 

individual seek to maximize her happiness in line with Rayo and Becker (2007) theory, a typical British 

individual could improve her happiness efficiency by a further 30% so as to reach the maximum 

feasible happiness. This result is of interest as we confirm Rayo and Becker (2007) prediction that 

there is happiness efficiency.   

 

Fleurbaey and Schwandt (2015) conduct an on-line survey of a plethora of previous empirical studies 

on happiness to show that 90% of the respondents report that they seek to maximize their happiness. 

What the online survey did not show is whether respondents reach their maximum happiness. In this 

paper, we provide evidence that British household could seek to maximize their happiness, though 

there is considerable ground to be gained in terms of higher values of happiness efficiency.  

 

Operational research modelling has been providing valuable information in various subject areas.  

Following from White (2018) who argue of the importance of providing also social operational 

research modeling and given the content of Rayo and Becker (2007) theory, the results above on British 

individual’s happiness efficiency advances our knowledge and thereby information on a subject, that 
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of measuring happiness, that has attracted much attention in recent years by academics and policy 

makers alike. 

 

3.3 Testing for the fitness of happiness efficiency: autocorrelation function (acf) and 

relative numerical efficiency (RNE). 

 

In this section we provide evidence of the statistical validity of our happiness and happiness efficiency 

estimations. In some detail, we use a Girolami and Calderhead (2012) algorithm (GC thereafter) as the 

first stage GMM estimator and then we employ MCMC until convergence. Depending on the model 

and the subsample this takes 1,000 to 3,000 iterations. For safety we run 10,000 iterations. Then we 

run another 50,000 MCMC iterations to obtain final results for posterior moments and densities of 

parameters of happiness function. Figure 3 reports the autocorrelation function that shows that the GC 

algorithm for Model C performs better than Model A or Model B. 

 

Figure 3. Autocorrelation function (acf) of model A, B and C. 

 
Note: Authors’ estimations. 250,000 MCMC iterations (with the first 50,000 of which are discarded to mitigate the impact 

of start-up effects). A vector Particle Filtering (PF) approach evaluates the posterior with 216=65536 particles per 

component and iteration. Geweke’s diagnostic confirms convergence to 28 and 214 particles per component. 

 

This statistical evidence is of some importance as we prove that a dynamic model with random 

coefficients in all parameters would capture the heterogeneity across individuals. A common 

assumption in the literature is that happiness function parameters are fixed and common for all 

individuals which would imply that explanatory variables would affect their happiness in the same 

manner (Fleurbaey and Schwandt 2015; Cheng et al. 2015; Clark et al. 2008;). That is individuals are 
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treated as highly homogenous. This is certainly not a plausible assumption. Here we provide evidence 

that underlying heterogeneity is of importance.  

 

To assess convergence of our Bayesian MCMC we employ, in addition, Geweke’s diagnostic that 

allows monitoring relative numerical efficiency. We confirm that our estimations were robust to 
82  

and 
142  particles per component. Figure 4, in addition, reports the relative numerical efficiency (RNE) 

of Model A, B and C. The frequency of RNEs shows the superiority of Model C over Model A and 

Model B. 

Figure 4. Relative numerical efficiency (RNE) of Model A, B and C. 

 

 

 
Note: Authors’ estimations. 250,000 MCMC iterations (with the first 50,000 of which are discarded to mitigate the impact 

of start-up effects). A vector Particle Filtering (PF) approach evaluates the posterior with 216=65536 particles per 

component and iteration. Relative numerical efficiency had been monitored by Geweke’s diagnostic that converges to 28 

and 214 particles per component. 
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3.4 The Role of Personality Traits on Happiness Efficiency  

Previous research highlights that the big five personality traits would affect happiness (see Lucas and 

Diener 2015; Gosling, et al. 2003). Following from this literature whether personality traits would also 

impact on happiness efficiency. Table 3 reports results for the importance of personality traits for a 

variety of models for consistency and robustness. The main variables of interest are: openness to 

experience (OE), agreeableness (AG), consciousness (CON), extraversion (EX), neuroticism (NR). 

Various models are estimated, including lagged values of happiness, differences in household income 

and different configurations of the explanatory variables.   

 

In addition, we propose to consider individual-specific thresholds to happiness efficiency. Relative to 

standard random effects (see Model C of the previous section) by incorporating individual-specific 

thresholds to happiness we consider heterogeneity due to unobserved time-invariant characteristics 

across individuals. It is worth noting that it is not customary in similar studies (see Binder and Broekel, 

2012) to consider heterogeneity across individuals. This has been a serious limitation in previous 

studies. To treat happiness efficiency as time-invariant is not plausible given that any random or fixed 

effects across individuals in the sample might not be part of inefficiency. This study departs from 

similar strong assumption that happiness efficiency, and thereby inefficiency, would be time invariant.  

 

Table 3 presents considers individual’s characteristics, including personality traits, and also persistence 

in happiness. It is evident from these estimates that individuals who score high, in particular, in 

agreeableness and extraversion have also high happiness efficiency, i.e., they are closer to their 

happiness frontier (see Model E, where we also include interaction terms between lagged happiness 

and personality traits). In contrast, those who score highly in neuroticism would face lower levels of 

happiness efficiency and thus would move further away from the happiness frontier. These results are 

broadly in line with the theoretical hypotheses of Gosling and Rentfrow (2003). The same is true for 

individuals who score highly in openness to experience and consciousness, when the latter interact 

with lagged happiness.  

 

There is plethora of studies that show that greater extraversion, lower neuroticism, more agreeableness 

and conscientiousness are positively associated with higher happiness (McCrae and Costa, 1991; 

Brebner et al., 1995; Diener and Seligman, 2002; Steel and Ones, 2002; Cheng and Furnham, 2003; 

Hayes and Joseph, 2003). Individuals who are open to experience are more efficient at achieving their 

potential happiness in line with  Furnham and Cheng (1997) and  Steel et al. (2008).  However, Diener 
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and Seligman (2002) report that openness is not a personality trait that would define what they call 

‘very happy’ individuals while Chamorro-Premuzic et al. (2007) show no statistically significant 

relationship between openness and happiness.  

 

Table 3. The role of personality traits.  
 Model A Model B Model C                          Model D                         Model E 

   Differences Lagged variables Differences   

Ht-1 0.225 

(0.012) 

0.277 

(0.011) 

0.231 

(0.010) 

0.282 

(0.010) 

0.240 

(0.013) 

age -0.012 

(0.005) 

-0.013 

(0.008) 

-0.021 

(0.004) 

0.0012 

(0.0041) 

-0.017 

(0.003) 

-0.015 

(0.004) 

age2 -0.001 

(0.001) 

-0.002 

(0.002) 

-0.003 

(0.001) 

-0.003 

(0.005) 
-0.003 

(0.001) 

-0.002 

(0.0003) 

hhldinc 0.0022 

(0.0012) 

 0.005 

(0.002) 

-0.002 

(0.005) 

0.0032 

(0.0002) 

0.001 

(0.0002) 

Δhhldinc 0.013 

(0.007) 

0.0092 

(0.003) 

    

|Δhhldinc| 0.0025 

(0.0011) 

0.0027 

(0.001) 

0.0012 

(0.0004) 

 0.0027 

(0.0012) 

 

Hhldinct-1  0.0032 

(0.044) 

    

nchild -0.0022 

(0.0011) 

-0.0012 

(0.0013) 

-0.011 

(0.003) 

0.011 

(0.035) 

-0.012 

(0.002) 

-0.012 

(0.002) 

Marst1 0.025 

(0.003) 

0.017 

(0.002) 

0.012 

(0.001) 

0.020 

(0.011) 

0.013 

(0.004) 

0.012 

(0.003) 

Marst2 0.019 

(0.002) 

0.013 

(0.003) 

0.014 

(0.005) 

0.0052 

(0.018) 

0.021 

(0.002) 

0.019 

(0.003) 

Marst3 0.027 

(0.004) 

0.015 

(0.003) 

0.007 

(0.001) 

-0.005 

(0.013) 

0.012 

(0.001) 

0.018 

(0.002) 

Marst4 0.013 

(0.004) 

0.007 

(0.002) 

0.0011 

(0.002) 

0.013 

(0.012) 

0.017 

(0.003) 

0.012 

(0.002) 

Empstat1 -0.121 

(0.003) 

-0.015 

(0.004) 

-0.112 

(0.005) 

-0.033 

(0.044) 

-0.044 

(0.002) 

-0.033 

(0.002) 

Empstat2 0.007 

(0.002) 

0.005 

(0.001) 

0.013 

(0.002) 

0.021 

(0.012) 

0.012 

(0.004) 

0.013 

(0.002) 

Empstat3 0.001 

(0.001) 

0.003 

(0.002) 

0.001 

(0.001) 

0.002 

(0.014) 

0.0027 

(0.001) 

0.0015 

(0.0003) 

Empstat4 0.0025 

(0.002) 

0.0041 

(0.001) 

0.001 

(0.0002) 

0.002 

(0.007) 

0.001 

(0.0004) 

0.001 

(0.002) 

Empstat5 0.005 

(0.002) 

0.004 

(0.001) 

0.0044 

(0.001) 

0.008 

(0.007) 

0.0014 

(0.001) 

0.0025 

(0.001) 

Empstat6 -0.004 

(0.001) 

-0.002 

(0.001) 

-0.0032 

(0.0001) 

-0.002 

(0.003) 

-0.002 

(0.0002) 

-0.006 

(0.002) 

Empstat7 0.008 

(0.003) 

0.009 

(0.002) 

0.0024 

(0.002) 

0.013 

(0.012) 

0.0162 

(0.002) 

0.012 

(0.002) 

Empstat8 -0.015 

(0.022) 

-0.009 

(0.008) 

-0.0015 

(0.0002) 

0.003 

(0.004) 

-0.012 

(0.003) 

-0.013 

(0.008) 

Empstat9 -0.044 

(0.003) 

-0.021 

(0.002) 

-0.0011 

(0.0002) 

0.005 

(0.004) 

-0.007 

(0.0014) 

-0.022 

(0.003) 

Sex1 -0.021 

(0.007) 

-0.051 

(0.009) 

-0.012* 

(0.002) 

-0.013 

(0.014) 

-0.024 

(0.003) 

-0.020 

(0.002) 

Hlth1 -0.111 

(0.005) 

 -0.032 

(0.002) 

0.0021 

(0.013) 

-0.030 

(0.003) 

-0.113 

(0.002) 

Hlth2 -0.102 

(0.002) 

 0.044 

(0.001) 

0.015 

(0.014) 

0.021 

(0.002) 

0.018 

(0.003) 

Educ1 0.005 

(0.002) 

 0.014 

(0.012) 

0.014 

(0.077) 

0.011 

(0.003) 

0.012 

(0.003) 

Educ2 0.009 

(0.001) 

 0.002 

(0.001) 

0.015 

(0.012) 

0.012 

(0.003) 

0.013 

(0.001) 

TRAITS       

OE  0.015 

(0.003) 

 0.014 

(0.001) 

0.017 

(0.001) 

AG  0.122  0.012 0.144 
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(0.004) (0.004) (0.012) 

CON  0.015 

(0.022) 

 0.015 

(0.004) 

0.015 

(0.002) 

EX  0.135 

(0.013) 

 0.026 

(0.011) 

0.041 

(0.0042) 

NR  -0.172 

(0.011) 

 -0.044 

(0.005) 

-0.074 

(0.003) 

Ht-1 *OE      -0.011 

(0.001) 

Ht-1 *AG      0.012 

(0.001) 

Ht-1 *CON      -0.013 

(0.002) 

Ht-1 *EX      0.014 

(0.002) 

Ht-1 *NR      -0.132 

(0.004) 

region yes yes yes yes yes yes 

years yes yes yes yes yes yes 

BAYES 

FACTOR 

6.267 7.335 13.544  14.351                          16.233 15.217 

Notes: Coefficients are posterior means and posterior standard deviations are in parentheses. Age captures the 

age of the individual, age2 is the squared term, hhdinc is the household income /1000, nchild number of 

children, marst captures marital status (marst1 separated, marst2 divorced, marst3 widowed, marst4 never 

married, empstat the employment status (empstat1 in paid employment, empstat2 unemployed, empstat3 

retired, empstat4 family care, empstat5 family care, empstat6 full time student, empstat7 long term sick, 

empstat8 maternity leave, empstat9 government training, sex counts for male (sex1)/female, hlth health (hlth1 

is good, hlth2 very poor), educ education (educ1 high, educ2 medium). Region captures dummies for the 

different regions of UK (19 areas across Great Britain). Years captures time effects from year 1 to year 12. 

Bayesian inference is based on a sample of 166,381 person-year observations made up of 26,027 individuals, 

through 250,000 MCMC iterations (with the first 50,000 of which are discarded to mitigate the impact of start-

up effects). A vector Particle Filtering (PF) approach evaluates the posterior with 216=65536 particles per 

component and iteration. Geweke’s diagnostic confirms convergence to 28 and 214 particles per component. 

TRAITS are OE=openness to experience, AG=agreeableness, CON=consciousness, EX=extraversion, 

NR=neuroticism. Age and age2 are included in levels and never differenced. Model VI includes both lagged 

values and differences. For sex, it includes only the dummy variable. Regional and time dummy variables are 

included in all models. Bayes factors are ratios of marginal (or integrated) likelihoods of any model relative to 

model I. Ht-1 denotes lagged happiness. post z reported in parenthesis, the posterior mean divided by the posterior 

standard deviation. 
  

In addition, we report in Figure 5 the marginal posteriors of persistence in happiness efficiency from 

Table 3. The Figure 5 reports the persistence parameter ρ (note that this parameter comes from equation 

2 of happiness function) which indicates the persistence of happiness efficiency due to intrinsic 

individual heterogeneity as captured by the models in Table 3. The results show that the persistence 

parameter ρ shows some variability from model to model, but yet it is quite of substance in terms of 

magnitude from 0.22 to 0.28 on average.  As persistence in happiness efficiency should be viewed in 

the context of outside the control of the specific individual, any improvement in happiness efficiency 

should also warrant action to those factors outside the control of the individual.  

 

 

Figure 5. Marginal Posteriors of Persistence from Table 3. 
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Note: Authors’ estimations. Relative numerical efficiency had been monitored by Geweke’s diagnostic that converges to 

28 and 214 particles per component. 

 

To advance our understanding of how personality traits affect happiness efficiency, we also estimate 

models treating personality traits as latent variables (see Table 4). By doing so, we are embedding in 

the models a latent trait indicator which is stochastic, dynamic and depends on the five standard 

personality traits. Compared again with other models whose properties are known only asymptotically 

and are known to perform erratically in finite samples, the Bayes approach developed here is better 

suited for finite samples and data with a lot of individual heterogeneity. Unlike standard regression 

that focuses on the mean of happiness efficiency distribution, treating personality traits in the context 

of latent variables allows us to explore further its impact in happiness. In this instance, we model as 

latent variable the personality trait of being agreeable. It appears that certain personality traits such as 

being agreeable improves efficiency, suggesting that it would be worth in terms of happiness to raise 

agreeableness. Conscientiousness is also consistently and significantly positive while neuroticism is 

consistently and significantly negative (results are available upon request).  

 

Table 4. Modeling personality traits as latent variables. 
 Model Α Model Β Model C Model D          Model E Model F 
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  Lagged  

Happiness 

Differences  Differences Lagged 

Happiness 

Differences   

Ht-1 0.224 

(0.023) 

0.189 

(0.014) 

0.232 

(0.009) 

0.244 

(0.011) 

0.213 

(0.032) 

0.289 

(0.014) 

age -0.004 

(0.001) 

-0.013 

(0.012) 

-0.012 

(0.011) 

-0.014 

(0.002) 

0.0012 

(0.023) 

-0.015 

(0.013) 

-0.019 

(0.014) 

age2 -0.001 

(0.0002) 

0.004 

(0.003) 

0.002 

(0.011) 

0.002 

(0.012) 

0.007 

(0.044) 

0.011 

(0.012) 

0.003 

(0.012) 

hhldinc  0.0032 

(0.002) 

0.0012 

(0.0001) 

0.005 

(0.0002) 

-0.0021 

(0.001) 

0.0023 

(0.002) 

0.002 

(0.0001) 

Δhhldinc 0.0312 

(0.0012) 

     0.0171 

(0.0032) 

|Δhhldinc| 0.0122 

(0.0017) 

0.0117 

(0.0021) 

0.0013 

(0.0005) 

0.0022 

(0.00043)  

 0.0011 

(0.0002) 

0.0087 

(0.0022) 

nchild -0.013 

(0.009) 

-0.013 

(0.012) 

-0.012 

(0.003) 

-0.011 

(0.002) 

0.012 

(0.032) 

-0.015 

(0.002) 

-0.022 

(0.023) 

Marst1 -0.12 

(0.071) 

-0.115 

(0.055) 

0.015 

(0.003) 

0.012 

(0.001) 

0.017 

(0.012) 

0.011 

(0.003) 

0.017 

(0.004) 

Marst2 -0.13 

(0.072) 

-0.105 

(0.022) 

0.014 

(0.003) 

0.014 

(0.002) 

0.003 

(0.014) 

0.003 

(0.001) 

0.012 

(0.003) 

Marst3 -0.082 

(0.076) 

-0.115 

(0.052) 

0.013 

(0.001) 

0.017 

(0.003) 

-0.001 

(0.023) 

0.004 

(0.001) 

0.010 

(0.002) 

Marst4 -0.073 

(0.084) 

-0.133 

(0.117) 

0.031 

(0.002) 

0.022 

(0.002) 

0.013 

(0.011) 

0.013 

(0.003) 

0.014 

(0.002) 

Empstat1 0.015 

(0.012) 

0.017 

(0.012) 

-0.013 

(0.004) 

-0.044 

(0.002) 

-0.015 

(0.023) 

-0.012 

(0.003) 

-0.122 

(0.014) 

Empstat2 -0.044 

(0.071) 

-0.128 

(0.013) 

0.032 

(0.004) 

0.016 

(0.002) 

0.013 

(0.011) 

0.012 

(0.002) 

0.010 

(0.002) 

Empstat3 0.022 

(0.021) 

0.021 

(0.017) 

0.003 

(0.002) 

0.002 

(0.002) 

0.001 

(0.003) 

0.005 

(0.001) 

0.012 

(0.002) 

Empstat4 0.071 

(0.044) 

0.089 

(0.044) 

0.004 

(0.001) 

0.005 

(0.002) 

0.012 

(0.012) 

0.006 

(0.002) 

0.003 

(0.0001) 

Empstat5 0.021 

(0.015) 

0.017 

(0.011) 

0.003 

(0.002) 

0.005 

(0.001) 

0.004 

(0.005) 

0.0044 

(0.0011) 

0.003 

(0.0002) 

Empstat6 0.013 

(0.032) 

0.019 

(0.021) 

-0.002 

(0.002) 

-0.004 

(0.0002) 

-0.005 

(0.005) 

-0.007 

(0.0001) 

-0.003 

(0.001) 

Empstat7 -0.027 

(0.019) 

-0.019 

(0.015) 

0.012 

(0.004) 

0.015 

(0.0019) 

0.012 

(0.011) 

0.0071 

(0.005) 

0.0091 

(0.003) 

Empstat8 0.004 

(0.001) 

0.0017 

(0.001) 

-0.032 

(0.004) 

-0.012 

(0.002) 

0.015 

(0.013) 

-0.014 

(0.004) 

-0.0071 

(0.003) 

Empstat9 -0.023 

(0.017) 

-0.012 

(0.012) 

-0.017 

(0.002) 

-0.025 

(0.003) 

0.002 

(0.031) 

-0.016 

(0.0011) 

-0.013 

(0.002) 

Sex1 -0.022 

(0.014) 

-0.022 

(0.012) 

-0.012* 

(0.002) 

-0.014* 

(0.002) 

-0.011 

(0.012) 

-0.010 

(0.002) 

-0.017 

(0.002) 

Hlth1 -0.022 

(0.013) 

-0.011 

(0.006) 

-0.111 

(0.002) 

-0.103 

(0.001) 

0.022 

(0.011) 

-0.014 

(0.002) 

-0.013 

(0.001) 

Hlth2 -0.071 

(0.032) 

-0.065 

(0.041) 

0.055 

(0.003) 

0.112 

(0.003) 

0.077 

(0.013) 

0.063 

(0.002) 

0.102 

(0.005) 

Educ1 0.122 

(0.074) 

0.044 

(0.082) 

0.013 

(0.003) 

0.012 

(0.003) 

0.012 

(0.044) 

0.011 

(0.001) 

0.005 

(0.002) 

Educ2 -0.015 

(0.013) 

-0.022 

(0.021) 

0.143 

(0.003) 

0.103 

(0.015) 

0.025 

(0.022) 

0.021 

(0.001) 

0.0072 

(0.003) 

traits, TR* it 0.115 

(0.022) 

0.104 

(0.044) 

0.064 

(0.032) 

0.072 

(0.0014) 

0.089 

(0.061) 

0.062 

(0.052) 

0.017 

(0.002) 
Ht-1 TR* i,t-1       0.017 

(0.0013) 

region yes yes yes yes yes yes yes 

years yes yes yes yes yes yes yes 

BAYES 

FACTOR 

11.772 13.44 18.535 17.224 13.255 37.281 

Notes: Coefficients are posterior means and posterior standard deviations are in parentheses. Age 

captures the age of the individual, age2 is the squared term, hhdinc is the household income /1000, nchild 

number of children, marst captures marital status (marst1 separated, marst2 divorced, marst3 widowed, 

marst4 never married, empstat the employment status (empstat1 in paid employment, empstat2 

unemployed, empstat3 retired, empstat4 family care, empstat5 family care, empstat6 full time student, 

empstat7 long term sick, empstat8 maternity leave, empstat9 government training, sex counts for male 
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(sex1)/female, hlth health (hlth1 is good, hlth2 very poor), educ education (educ1 high, educ2 medium). 

Region captures dummies for the different regions of UK (19 areas across Great Britain). Years captures 

time effects from year 1 to year 12. Bayesian inference is based on a sample of 166,381 person-year 

observations made up of 26,027 individuals, through 250,000 MCMC iterations (with the first 50,000 

of which are discarded to mitigate the impact of start-up effects). A vector Particle Filtering (PF) 

approach evaluates the posterior with 216=65536 particles per component and iteration. Geweke’s 

diagnostic confirms convergence to 28 and 214 particles per component. TR*
it denotes latent traits, see 

Table 3. Model F includes both lagged values and differences. For sex, it includes only the dummy 

variable. Regional and time dummy variables are included in all models. Bayes factors are ratios of 

marginal (or integrated) likelihoods of any model relative to model I in Table 1. Ht-1 denotes lagged 

happiness. post z reported in parenthesis, the posterior mean divided by the posterior standard deviation.  

 

In Figure 6 we report marginal posterior densities of the persistence parameter ρ. Results of persistence 

in happiness inefficiency is in line with the one above.   Again, the persistence parameter ρ is of some 

magnitude, in particular for Model F. It is imperative, therefore, to view achieving happiness efficiency 

in light of personality traits as dynamic process that crucially depends on intrinsic individual 

characteristics.   

 

Figure 6. Marginal Posteriors of Persistence from Table 4. 

 
Note: Authors’ estimations. Relative numerical efficiency has been monitored by Geweke’s diagnostic that 

converges to 28 and 214 particles per component.  

 

 

4. Conclusion 

This paper builds on Rayo and Becker (2007) who provide a theory of happiness and happiness 

efficiency and relaxes strong assumptions about the true definition of happiness. We model happiness 

as an unobservable variable opting for a Bayesian latent stochastic frontier model that is a function of 
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a plethora of individual characteristics. Our model nests both parametric and non-parametric 

estimations and accommodates underlying heterogeneity across individuals, persistence and thresholds 

effects. Our results show that the Bayesian dynamic latent model provides good fit and report the 

whole underlying density function of happiness efficiency per individual. We confirm the doctrine of 

Rayo and Becker (2007) that happiness efficiency would vary across individuals.  We reveal that the 

average happiness efficiency is close to 70% and as such a typical British individual would need to 

cover some ground to get to the optimal happiness efficiency frontier so as to maximise her happiness. 

Results show that marital status (married vs single), employment and income would enhance 

happiness, though we demonstrate that money does not always buy happiness. Key is also to have 

certain personality traits, as being agreeable and extravert would increase happiness.  

 

This study shows that there are gains in happiness efficiency to be made. Specifically, we quantify that 

those gains could be up to 30%. Proposed measures of happiness indexes (Tsurumi and Manage 2017; 

Diener, 2000; Cordero et al., 2017, but also World Bank and OECD happiness indexes) are mainly 

focusing on the importance of availability of social and economic resources. Our study postulates a 

novel model to quantify happiness and provides evidence of happiness efficiency. The results show 

that individuals with existing resources could reach a higher frontier of happiness by improving the 

efficiency with which they use those resources.  

 

However, an interesting finding of our study refers to the persistence of happiness efficiency. Such 

persistence should be seen in light of threshold effects in happiness efficiency.  As thresholds are 

outside the control of individuals, achieving maximum happiness and driving to higher levels of 

happiness efficiency might not be feasible. Previous research (Rayo and Becker, 2007; Dolan and 

Kahneman, 2008; Kahneman and Krueger, 2006; Kahneman, 2003) argue that, when it comes to 

happiness, individual’s decision making within the framework of a happiness function could be also 

affected by factors such as luck. Such factors as unobservable are rather difficult to measure. Our 

proposed Bayesian latent modelling of happiness and happiness efficiency provides a social 

operational research framework to treat unobserved factors and provide social quantitative information 

that is useful to academics and policy makers alike.   
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APPENDIX  

A1. Markov Chain Monte Carlo 

We use a Girolami and Calderhead (2012) algorithm to update draws for  . The algorithm uses local 

information about both the gradient and the Hessian of the log-posterior conditional of   at the 

existing draw. A Metropolis test is again used for accepting the candidate, but the GC algorithm moves 

considerably faster relative to our naive scheme previously described. The GC algorithm is started at 

the first stage GMM estimator and MCMC is run until convergence. Depending on the model and the 

subsample this takes 1,000 to 3,000 iterations. For safety we run 10,000 iterations. Then we run another 

50,000 MCMC iterations to obtain final results for posterior moments and densities of parameters and 

functions of interest. It has been found that the GC algorithm performs vastly superior relative to the 

standard MH algorithm and autocorrelations are much smaller.  

Suppose L q( ) = log p q | X( )  is used to denote for simplicity the log posterior of  . Moreover, define  

 G q( ) = est.cov ¶

¶q
log p X |q( )    (B.1) 

the empirical counterpart of  

 G
o

q( ) = -E
Y|q

¶2

¶q¶ ¢q
log p X |q( )   (B.2) 

The Langevin diffusion is given by the following stochastic differential equation:  

 dq t( ) = 1
2 qÛ L q t( ){ }dt + dB t( ) ,   (B.3) 

where  

  
qÛ L q t( ){ } = -G-1 q t( ){ } × qÛ L oldsymbolq t( ){ }   (B.4) 

is the so called ‘natural gradient’ of the Riemann manifold generated by the log posterior. The 

elements of the Brownian motion are  
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The discrete form of the stochastic differential equation provides a proposal as follows:  
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where 
o  is the current draw.  

The proposal density is  
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and convergence to the invariant distribution is ensured by using the standard form Metropolis-

Hastings probability  

 min 1,
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A2. Particle Filtering 

The particle filter methodology can be applied to state space models of the general form  

 ,    (B.8) 

where ts  is a state variable.  

For general introductions see Gordon et al. (1993), Doucet et al. (2000, 2001), Pitt and Shephard (1999) 

and Ristic et al. (2001).  

Given the data tY  the posterior distribution ( )t tp s Y  can be approximated by a set of (auxiliary) 

particles  ( ) 1i

ts i N =   with probability weights  ( ) 1i

tw i N =   where 
( )

1
1

N i

ti
w

=
= . The 

predictive density can be approximated by  
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1 1 1
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( ) ( ) ( ) ( )
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i i

t t t t t t t t t t

i

p s Y p s s p s Y ds p s s w+ + +

=

 =        (B.9) 

 

and the final approximation for the filtering density is  

 p(s
t+1

|Y
t
)µ p(y

t+1
| s
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t+1
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t
) p(y

t+1
| s
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)
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N

å p(s
t+1

| s
t

(i ) )w
t

(i )   (B.10) 

The basic mechanism of particle filtering rests on propagating  ( ) ( ) 1i i

t ts w i … N  =    to the next step, 

viz.  ( ) ( )

1 1 1i i

t ts w i … N+ +  =    but this often suffers from the weight degeneracy problem. If parameters 

k   are available, as is often the case, we follow Liu and West (2001) parameter learning takes 

place via a mixture of multivariate normals:  



33 
 

 p(q |Y
t
)

i=1

N

åw
t

(i )N(q | aq
t

(i ) + (1- a) tq ,b2V
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where 
( ) ( )

1

N i i

t t ti
w  =

= , and 
( ) ( ) ( )

1
( )( )

N i i i

t tt t t ti
V w   =

= − − . The constants a  and b are related to 

shrinkage and are determined via a discount factor (0 1)    as 
2 1 2(1 )a b = −  and 

2 21 [(3 1) 2 ]b  = − −    See also Casarin and Martin (2007).  

Andrieu and Roberts (2009), and Pitt et al. (2012) provide the Particle Metropolis-Hastimgs (PMCMC) 

technique which uses an unbiased estimator of the likelihood function ˆ ( )
N

Yp   as ( )p Y   is often 

not available in closed form.  

Given the current state of the parameter 
( )j  and the current estimate of the likelihood, say 

( )ˆ ( )j j

N
L Yp =  , a candidate 

c  is drawn from 
( )( )c jq    yielding ˆ ( )c c

N
L Yp =  . Then, we set 

( 1)j c + =  with the Metropolis - Hastings probability:  
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otherwise, we repeat the current draws: ( 1) 1 ( )j j j jL L + +   
   
   

 =  .  

A3. Particle Metropolis adjusted Langevin filters 

Nemeth, Sherlock and Fearnhead (2014) provide a particle version of a Metropolis adjusted Langevin 

algorithm (MALA). See also Poyiadjis et al. (2011). In Sequential Monte Carlo we are interested in 

approximating 1( )t tp s Y   . Given that  

 
1 1 1 1 1 1( ) ( ) ( ) ( )t t t t t t t t tp s Y g y x f s s p s y ds    − −  − −         , (B.13) 

where 1 1 1( )t tp s y −  −   is the posterior as of time 1t − . If at time 1t −  we have a set of particles 

 1 1i

ts i … N−  =    and weights  1 1i

tw i …N−  =   , which form a discrete approximation for 

1 1 1( )t tp s y −  −   then we have the approximation:  

 1 1 1 1 1
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p s y w f s s −  − − −
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            (B.14) 

See Doucet et al. (2000) and Cappe at al. (2007) for reviews. From (A.14) Fernhead et al. (2008) make 

the important observation that the joint probability of sampling particle 
1

i

ts −
 and state ts  is:  

 1 1

1

( ) ( )
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i i
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where 
1( )i

t t tq s s y −    is a density function amenable to simulation and  

 x
t

iq(s
t
| s

t-1

i , y
t
,q) cg(y

t
| s

t
,q) f (s

t
| s

t-1

i ,q) ,  (B.16) 

and c  is the normalizing constant in (B.13).  

In the MALA algorithm of Roberts and Rosenthal (1998)11 we form a proposal:  

 
2( ) ( )

12
log ( )c s s

Tz p Y    = + +        (B.17) 

where  which should result in larger jumps and better mixing properties, plus lower 

autocorrelations for a certain scale parameter  . Acceptance probabilities are:  

 
( )

( ) 1

( ) ( )

1

( ) ( )
( ) min 1

( ) ( )

c s c
c s T

s c s

T

p Y q
a

p Y q

  
 

  




  
 =  

  
,  (B.18) 

Using particle filtering it is possible to create an approximation of the score vector using 

Fisher’s identity:  

  1 1 1 1log ( ) log ( )T T T Tp Y E p s Y Y       =      ,  (B.19) 

which corresponds to the expectation of  

 1 1 1 1 1 1 1log ( ) log ( ) log ( ) log ( )T T T T T T T Tp s Y p s Y g y s f s s      −  − −   =     +   +      

over the path 1Ts  .  

The particle approximation to the score vector results from replacing 1 1( )T Tp s Y     with a particle 

approximation 1 1
ˆ ( )T Tp s Y    . With particle i at time t-1 we can associate a value 

1 1 1 1 1log ( )i i

t t tp s Y −  −  −=   , which can be updated recursively. As we sample i  in the APF (the index 

of particle at time 1t −  that is propagated to produce the i th particle at time t) we have the update:  

 
1 1log ( ) log ( )ii i i i

t t t t t ta g y s f s s
  − −= +   +         (B.20) 

To avoid problems with increasing variance of the score estimate 1log ( )tp Y    we can use the 

approximation:  

   (B.21) 

 

The mean is obtained by shrinking 
1

i

t −
 towards the mean of 1t −  as follows:  

 1 1 1 1

1

(1 )
N

i i i i

t t t t

i

m w  − − − −

=

= + −    (B.22) 

 
11The benefit of MALA over Random-Walk-Metropolis arises when the number of parameters n  is large. This happens 

because the scaling parameter   is 
1 2( )O n− 

 for Random-Walk-Metropolis but it is 
1 6( )O n− 

  for MALA, see Roberts 

et al. (1997) and Roberts and Rosenthal (1998)  
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where (0 1)    is a shrinkage parameter.  

Using Rao-Blackwellization one can avoid sampling i

t  and instead use the following recursion for 

the means:  

 1 1 1 1

1

(1 ) log ( ) log ( )i i

N
i i i i i

t t t t t t t t

i

m m w m g y s f s s
    − − − −

=

= + − +   +   ,  (B.23) 

which yields the final score estimate:  

 1

1

ˆlog ( )
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i i

t t t

i

p Y w m

=

  = ,   (A.24) 

As a rule of thumb Nemeth, Sherlock and Fearnhead (2014) suggest taking 0 95 =  . Furthermore, 

they show the important result that the algorithm should be tuned to the asymptotically optimal 

acceptance rate of 15.47% and the number of particles must be selected so that the variance of the 

estimated log-posterior is about 3. Additionally, if measures are not taken to control the error in the 

variance of the score vector there is no gain over a simple random walk proposal.  

Of course, the marginal likelihood is  

 1 1 1 1

2

( ) ( ) ( )
T

T t t

t

p Y p y p y Y    −

=

 =    ,   (B.25) 

where  

 
1 1 1 1 1 1 1( ) ( ) ( ) ( )t t t t t t t T t tp y Y g y s f s s p s Y ds ds   − − −  − −  =       , (B.26) 

provides, in explicit form, the predictive likelihood.  

 

 


