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Abstract

Previous research has frequently estimated the directional technology distance function (DTDF)
to more flexibly model multiple-input and multiple-output production, firm inefficiency, and pro-
ductivity growth. For example, with firms such as electric utilities, one must model the production
of good and bad outputs using good and bad inputs. Typically, all inputs and outputs are poten-
tially endogenous. In previous work, we show how to identify a DTDF system using price equations
based on profit maximization and compute optimal directions for measuring productivity change.
However, this work has not imposed restrictions that limit substitution possibilities among inputs
and outputs to a feasible set that is consistent with materials-balance constraints. Such constraints
require that the weight of all inputs equals the weight of all outputs. The major innovation of this
paper is that we include two types of functional relationships that impose the parametric analog
of materials balance by modeling the generation of bad outputs and the use of bad inputs. The
first requires that bad outputs are functionally related to good inputs and bad inputs. The second
requires that bad inputs are functionally related to good inputs. We illustrate these methods using
a balanced panel of 80 U.S. coal-fired electric generating plants from 1995-2005. Substantial dif-
ferences are observed between the specification that includes the materials-balance constraints and
the conventional approach that omits them, based on Bayes factors as well as measures of produc-
tivity and inefficiency. For many plants, improved management practices can reduce substantial
inefficiencies in meeting emission constraints without reducing productivity growth.
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1 Introduction

A considerable operations research literature employs a non-stochastic, linear programming method-

ology to calculate the extent to which decision-making units (DMUs) maximize desirable production

from a set of inputs subject to resource constraints. The literature employs Data Envelopment Analysis

(DEA) (as developed by Banker, Charnes, and Cooper, 1984; Charnes, Cooper, and Rhodes, 1978;

Cooper, Seiford, and Zhu 2011; Zhu, 2014) to compute efficiency and productivity measures for evalu-

ating DMUs. This process is complicated when bad or undesirable outputs are included. Clearly, they

cannot be treated as coequal with good outputs.

The modeling of pollutants as bad outputs has been formalized in several ways. While a few

researchers (e.g., Hailu and Veeman, 2001) treat bad outputs as inputs, the majority of traditional

models incorporating environmental performance measures treat the emission of pollutants: (i) as

undesirable outputs (e.g., Färe, Grosskopf, Lovell, and Pasurka, 1989; Chung, Färe, and Grosskopf,

1997; Färe and Grosskopf, 2004; Färe, Grosskopf, and Pasurka, 2007a; Färe, Grosskopf, Pasurka, 2007b;

Wang, Wei, and Zhang, 2012; Wang, Wei, and Zhang, 2013); (ii) as multiplicative inverse outputs or as

large constant–added additive inverse outputs (e.g., Scheel, 2001; Seiford and Zhu, 2002, 2005; Sahoo,

Luptacik, and Mahlberg, 2011); (iii) using a separate technology for desirable and undesirable outputs

(e.g., Murty, Russell, and Levkoff, 2012; Sueyoshi and Goto 2012 ); and (iv) using the materials balance

principle (MBP) (e.g., Prasad and Calis, 1999; Coelli, Lauwers, and Van Huylenbroeck, 2007; Lauwers,

2009; Welch and Barnum, 2009; Hampf, 2014; Hampf and Rødseth, 2015; Rødseth, 2016; and Wang,

Wei, and Huang, 2018).1

The MBP states that the total amount of mass (i.e., material or energy) in the inputs must equal

the mass in desirable outputs plus the mass in the residuals, typically in the form of pollution (Ayres

and Kneese, 1969; Coelli et al., 2007). In other words, the mass of the material inputs equals the

mass of the desirable and undesirable outputs (Ebert and Welsch, 2007), thereby safisfying the first

law of thermodynamics, which states that matter can be transformed but not created or destroyed.

Hampf and Rødseth (2015) and Rødseth (2016) propose models that satisfy the MBP and, under

certain conditions, both the first the second laws of thermodynamics. The second law states that: a)

as energy is transformed, more and more of it is wasted; b) with a closed system, entropy (disorder or

randomness) can only increase. When estimating a directional technology distance function (DTDF),

Hampf and Rødseth (2015) generalize slightly the original concept of G-disposability and extend it

to a formulation known as weak G-disposability. Under this condition, their model satisfies the first

law of thermodynamics for given directions (typically denoted as a vector g) of movement to the

production frontier. Further, under weak G-disposability, the MB equation satisfies the second law of
1Dakpo, Jeanneaus, and Latruffe (2015) provide a useful summary of nonparametric models for works including MB

constraints.
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thermodynamics if one additionally requires that bad outputs must be strictly positive for a strictly

positive amount of a bad input.

Wang et al. (2018) propose a DEA-based approach along with the MBP that accounts for the first

law of thermodynamics to evaluate environmental and abatement efficiency simultaneously. The model

incorporates weak G-disposability and also attempts to identify all possible adjustments to the mass

of potentially polluting inputs bound up in inputs and outputs, as well as potential adjustments in the

abatement of pollutants. They calculate the impact of each on efficiency measures. To accomplish this,

they examine three different strategies to minimize pollution generation with three different degrees of

freedom to adjust the polluting and non-polluting input mix.2

Wang, Zhou, Xie, and Zhang (2019) recognize that unobserved heterogeneity may cause inaccuracies

in DEA calculations. They model the group heterogeneity of state-owned vs. locally-owned electric

utilities by estimating separate DEA models for each and comparing these with the meta-frontier

analysis which combines the two groups.

Many authors (e.g. Archibald, 1988; Hill, Vincent, and Chouinard, 1999; Rennings, 2000; Wossink,

Lansink, and Struik, 2001) argue that production, pollution, and abatement have to be treated as non-

separable. Therefore, pollution control can be achieved by changing production practices. Picazo-Tadeo

and Prior (2009) show that, under weak disposability of pollution, firms may improve efficiency, leading

to better economic performance without affecting environmental performance. De Koeijer, Wossink,

Ittersum, and Struik (1999) and De Koeijer, Wossink, Struik, and Renkema (2002) show that using

inputs more efficiently may improve both economic and environmental performance. To achieve this, it

is necessary to drop the weak disposability assumption for pollution: environmental improvement does

not always imply private costs since economic and environmental performances improve at the same

time.3

Rødseth (2016) introduced a new efficiency measure and shows that the Coelli et al. (2007) model

applied to pig farm production is likely to underestimate environmental efficiency when firms utilize

pollution control. The reason is that Coelli et al. (2007), building on Lauwers (2009), only consider input

minimization and substitution as possible compliance strategies, but ignore the potential additional

costly resources needed to clean up pollutants (see also Pethig, 2006). Rødseth (2016) points out

that one should credit the firm in a MB constraint for controlled emissions. For example, a pig farm

may spend additional resources to clean up nitrogen emissions which would be ignored if the objective

function was to minimize nitrogen inflows to the production process.4 As an alternative to the Coelli
2They rightly mention that: “the comparison of the efficiency differences between modeling with MBP and without

MBP shows that the MBP models provide a different but more accurate picture on the pattern of environmental and
abatement efficiency, because the MBP models put more emphasis on reducing emissions and increasing abatement
through both adjusting the sub-optimal polluting and non-polluting input mix and improving the quality of polluting
input so as to reduce the polluting mass bound in the input” (p. 49).

3Dakpo, Jeanneaus, and Latruffe (2015) provide a summary of nonparametric models taking a MB approach.
4As he writes: “Farms A and B receive the same efficiency score (i.e., 1), although B’s controlled emissions are lower
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et al. (2007) approach, Hampf (2014) and Hampf and Rødseth (2015) introduce MB constraints that

relate uncontrolled emissions to initially-generated pollution and controlled emissions.

In our study of coal-fired power plants, we adapt their MB constraint but modify their DEA ap-

proach to Stochastic Frontier Analysis (SFA). We assume the non-separability of production, pollution,

and abatement. In our MB constraints, we employ measures of good and bad inputs to estimate

initially-generated pollution, and measure controlled emissions with the plant’s utilization of pre- and

post-combustion control devices and plant-specific characteristics. The purpose of this approach is

to minimize aggregation bias that may affect DEA estimates which use aggregate emission factors to

relate bad inputs to initially-generated pollution. Unlike DEA studies, we stochastically impose the

MBP in our estimation of efficiency and productivity, which allows us to calculate the efficiency with

which plants achieve their MB constraints. This approach also allows us to model the observed and

unobserved heterogeneity of DMUs, so that we can treat the potential endogeneity of inputs and out-

puts. Our results focus on productivity growth (and its components) and its relationship to measures

of technical inefficiency (TI). We relate TI to technical efficiency (TE), using TI=1-TE. For a plant, TE

is the measure, in percent terms relative to the frontier plant, of the maximum output using a given set

of inputs for the production function or meet each MB constraint using a minimal set of inputs. We

focus on TI since we directly measure it for each MB equation and the production function itself.5 We

impose the behavioral assumption of profit maximization on the estimation of the production frontier,

including first-order conditions for profit maximization and the MB equations.

Since the SFA approach is stochastic, we obtain estimated standard errors and posterior densities

using a Bayesian approach. This approach also allows us to present bivariate posterior densities that

relate productivity growth (and its components) to many measures of firm behavior, including an overall

measure of TI and a measure of TI for each MB constraint.

The coal-plants in our sample satisfy the first and second laws of themodynamics. They meet the

first law of thermodynamics because we estimate our model with equations for the MB constraints. Our

plants satisfy the second law of thermodynamics, since all of them use bad inputs to produce some bad

outputs, so that MB governs the generation of the data.

than A’s controlled emissions. Farm B is thus not rewarded for its efforts to control nitrogen emissions. The reason for
this result is the Coelli et al. (2007) objective function which minimizes the nitrogen inflows to the production process.
The additional capital and labor that farm B spends on manure transport relative to farm A are, in principle, seen as
unproductive, since they do not contribute to improving the farm’s environmental efficiency score. This suggests that a
highly relevant environmental-economic trade-off (cf. Van Meensel, Lauwers, Van Huylenbroeck, and Van Passel (2010))
is neglected for the hypothetical sample, as well as for real-life samples where pollution control is a common compliance
strategy (see Rødseth, 2016, p. 343).” Rødseth (2016) argues that the Coelli et al. (2007) approach only considers input
minimization and substitution as possible compliance strategies, and ignores that additional resources may be used to
clean up pollutants and, therefore, it does not reward pollution control.

5In terms of comparison between SFA and DEA, unsurprisingly we can attribute differences between efficiency scores
principally to methodological issues. The measure of TI is higher under DEA because it is a non-stochastic approach
that attributes any deviation from the frontier to TI, while SFA nets out random (idiosyncratic) error from TI. See Van
Meensel et al. (2010), p. 1035
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To our knowledge, our study is the first that combines MB constraints with a DTDF, which is a

dual representation to (conformable with) profit maximization, with first-order conditions for profit

maximization in an SFA context. Since we have a bad input (sulfur), we use separate MB constraints

for the bad input and production of the bad outputs. The first MB constraint models the chemical bond

between sulfur and one of the good inputs, carbon. We include in this constraint other good inputs in

addition to carbon, since they allow the plant to burn coal with a higher sulfur or nitrogen content. We

also include plant and firm dummies to capture differences in locale and plant efficiency. Secondly, we

include MB constraints for uncontrolled emissions of each of three pollutants, which are sulfur dioxide

(SO2), carbon dioxide (CO2), and nitrogen dioxide (NOx). Uncontrolled emissions depend on initially-

generated emissions and controlled emissions. Initially-generated emissions are a function of the bad

input, good inputs, the pre-combustion technology, and the boiler firing type, while controlled emissions

depend on good inputs and post-combustion control technologies.6

Since our analysis is in the SFA framework, several practical challenges have to be resolved before

proceeding with formal estimation techniques. One problem is that quantities are endogenous, since

they are arguably correlated with omitted variables. A second problem is that prices for inputs and

outputs are missing at the plant level but are available at the firm level, so they are are potentially

endogenous due to measurement error. We resolve these problems using the first-order conditions from

profit maximization, firm-level prices, and instruments to adjust for measurement error and omitted

variables. This approach also accounts for measurement error in the MB equations. We specify that

the residuals of the MB equations are composed of one-sided and idiosyncratic terms, so that we can

attribute inefficiencies in meeting the MB constraints to the former. Finally, we employ a Bayesian

approach so that we can produce posterior densities for estimated coefficients and measures of efficiency

and productivity growth, which yield information on the precision of the estimated statistics. To our

knowledge, DEA has not been extended to allow for consideration of measurement error or statistical

noise, although the bootstrap machinery can be potentially used to address such concerns. We find

that including MB constraints makes a significant difference in estimated results for efficiency and

productivity growth.
6This is similar to Førsund (2018) who introduces service inputs (such as labor, capital, and external services) that

are not used up in the production process but improve the utilization of raw materials. Unlike his paper, we employ these
variables as controls in our MB equations. Thus, our approach does not literally equate the weight of inputs to the weight
of outputs.
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2 The Directional Technology Distance Function and First-Order

Conditions without Materials Balance

We assume a firm production technology in the absence of MB constraints that combines good

inputs, x = (x1, . . . , xN ) ∈ RN
+ , and bad inputs, x̃ = (x̃1, . . . , x̃J) ∈ RJ

+, to produce good outputs,

y = (y1, . . . , yM ) ∈ RM
+ , and bad outputs, ỹ = (ỹ1, . . . , ỹL) ∈ RL

+. The firm’s production technology,

T (t), at time t with vintage τ , can be written as

T (t) = {(x, x̃,y, ỹ, τ, t) : x, x̃ can producey, ỹ at time t with vintage τ}, (1)

where t = 1, . . . , T.

Let g = (gx, gx̃, gy, gỹ) be a direction vector. Some researchers assume that (gx, gx̃, gy, gỹ) =

(−1,−1, 1,−1), while other researchers do not scale inputs. Following Chambers (1998) and Chambers,

Chung, and Färe (1998), we define the DTDF as

−→
DT (x, x̃,y, ỹ; g, τ, t)

= sup{β : (x+ βgx, x̃+ βgx̃,y + βgy, ỹ + βgỹ) ∈ T }. (2)

That is, the typical assumption is that the analyst measures the distance from the frontier using equal

absolute values for directions which increase good outputs and reduce all other inputs and outputs.

We now specify the important properties of the DTDF that hold whether directions are assigned or

estimated optimally. As shown in Hudgins and Primont (2007), for any values of the elements of g, the

following hold:

D1. Translation Property:

−→
DT (x+ αgx, x̃+ αgx̃,y + αgy, ỹ + αgỹ; gx, gx̃, gy, gỹ, τ, t)

=
−→
DT (x, x̃,y, ỹ; g, τ, t)− α, (3)

D2. g-Homogeneity of Degree Minus One:

−→
DT (x, x̃,y, ỹ;λgx, λgx̃, λgy, λgỹ, τ, t) = λ−1−→DT (x, x̃,y, ỹ; g, τ, t), λ > 0, (4)

D3. Concavity:

−→
DT (x, x̃,y, ỹ; g, τ, t) is concave in (x, x̃,y, ỹ; g, τ, t), (5)
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D4. Non-negativity:

−→
DT (x, x̃,y, ỹ; g, τ, t) ≥ 0, (x, x̃,y, ỹ; g, τ, t) ∈ T . (6)

Property D1 is imposed parametrically, D2 follows directly from D1, while D4 can easily be imposed

after estimation via normalization. We must test for D3. See Atkinson, Primont, Tsionas (2018) (APT)

for details

We make the typical assumption of strong (S) disposability of good inputs and outputs:

D5–S. Good Input Monotonicity: Assuming that good inputs are strongly disposable, Appendix

A.1 of APT shows that this implies:

∂
−→
DT (x, x̃,y, ỹ; g, τ, t)/∂xn = 0, n = 1, . . . , N, (7)

D6–S. Good Output Monotonicity: If we assume that good outputs are strongly disposable, following

the proof of D5-S, in Appendix A.2 of APT, this assumption implies:

∂
−→
DT (x, x̃,y, ỹ; g, τ, t)/∂ym ≤ 0,m = 1, . . . ,M. (8)

Temporarily suppressing all the arguments of
−→
DT (x, x̃,y, ỹ), we following Chambers (1998) and

assume that a firm or plant maximizes profits, π, by choosing values of (x,y, x̃, ỹ) to solve

sup
{
py(y +

−→
DT gy)− pỹ(ỹ +

−→
DT gỹ)− px(x+

−→
DT gx)− px̃(x̃+

−→
DT gx̃)

}
, (9)

where py ≥ 0,pỹ ≥ 0,px ≥ 0, and px̃ ≤ 0 are price vectors, and the econometrician either pre-

determines or estimates g. Further, we define p = (py,pỹ,px,px̃).

Typically, the analyst estimates the DTDF without behavioral assumptions such as PM, subject to

a set of a priori fixed directions. However, in this paper we assume that the firm chooses (x, x̃,y, ỹ) to

maximize profits. This requires that we estimate the DTDF jointly with the first-order conditions for

PM. Calculated directions, consistent with these conditions, are termed optimal-PM directions.7 The

first-order conditions (assuming positive values for all inputs and outputs) are:

pn/ϱ(p, g) = ∂
−→
DT (x, x̃,y, ỹ; g, τ, t)/∂xn, n = 1, . . . , N, (10)

pm/ϱ(p, g) = −∂
−→
DT (x, x̃,y, ỹ; g, τ, t)/∂ym,m = 1, . . . ,M, (11)

pj/ϱ(p, g) = ∂
−→
DT (x, x̃,y, ỹ; g, τ, t)/∂x̃j , j = 1, . . . , J, (12)

pl/ϱ(p, g) = ∂
−→
DT (x, x̃,y, ỹ; g, τ, t)/∂ỹl, l = 1, . . . , L, (13)

7The CM model and optimal-CM directions are obtained by using only the first-order conditions for input prices and
assuming that outputs are given.
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where

ϱ(p, g) =
[∑

m

pmgm −
∑
n

pngn −
∑
j

pjgj −
∑
l

plgl
]
. (14)

We assume that ϱ(p, g) > 0, where ϱ(p, g) is the optimal value of the Lagrangian multiplier, which is

the change in profits due to a small improvement in the production technology.

We also require assumptions about the prices of inputs and outputs. All prices are assumed to be

non-negative except for the prices of bad inputs, which are non-positive. Bad inputs have non-positive

prices since the firm will not pay to use such inputs, which are organically bound to good inputs. The

prices of bad outputs are non-negative, since the firm must pay a fine or buy emission permits for their

additional production. The prices of good outputs and the prices of good inputs are non-negative by

definition.

The standard assumption of papers that attempt to estimate a DTDF without MB constraints is

weak (W) disposability of bad inputs relative to good inputs and that px̃ ≤ 0 in (12) obtains locally:

D7–W. Bad Input Monotonicity:

∂
−→
DT (x, x̃,y, ỹ; g, τ, t)/∂x̃j ≤ 0, j = 1, . . . , J. (15)

The standard assumption in papers that attempt to estimate a DTDF without MB constraints is

weak disposability of bad outputs relative to good outputs which is sufficient for pỹ ≥ 0 in (13) to

obtain locally:

D8–W. Bad Output Monotonicity:

∂
−→
DT (x, x̃,y, ỹ; g, τ, t)/∂ỹl ≥ 0, l = 1, . . . , L. (16)

Following this approach we would maintain PM and use assumptions about the prices of bad inputs

and bad outputs to locally restrict the range of the partial derivatives in D7–W and D8–W. The CM

model utilizes only the monotonicity conditions for good and bad inputs, equations (12) and (13), which

are the same as with the PM model.

However, Pethig (2006) and Murty, Russell, and Levkoff (2012) show that estimating the DTDF

without the MB conditions and assuming weak disposability of good and bad outputs will fail to model

abatement activity explicitly and will violate the MB principle.8 They show that one can overcome this

by using MB constraints to model gross residuals and abatement activities which control pollutants while

modeling the intended production technology. Since we incorporate MB constraints in the remainder of

this paper, we drop the assumption of the weak disposability of good and bad outputs given in D8-W.9

8Førsund (2018) makes a similar argument.
9Murty, Russell, and Levkoff (2012) specify a production technology mapping inputs into outputs that satisfies strong
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We now turn to our parametric specification of the production technology, the restrictions that

impose the translation property, and the parametric derivation of the first-order conditions for PM and

CM. It is preferable at this point to assume that directions have unit length, viz., ||g||2 = 1.

The DTDF is specified as a quadratic function for plant i in time period t:

0 =

W∑
w=1

γwzw,it +

W∑
w=1

W∑
w′=1

γww′zw,itzw′,it +

W∑
w=1

γwtzw,it t+

W∑
w=1

γwτzw,itτit

+

T∑
t=1

γtdt +

N∑
i=1

γidi + γττit + ϵit, (17)

where

ϵit = εit − uit, (18)

so that ϵit is an additive error with a one-sided component, uit ≥ 0, and a standard noise component,

εit, with zero mean, reflecting errors in optimization due to random events beyond the control of the

firm. We specify that dt is a year dummy, di is a plant-level dummy, and τit is vintage. The vector

z = (x, x̃,y, ỹ) and W = N +J +M +L for N good inputs, J bad inputs, M good outputs, and L bad

outputs. Using a likelihood ratio test, we accept the null hypothesis that all coefficients for interaction

terms of zw,it with t and τit are zero at the .05 level using a two-tailed test and impose this restriction

henceforth.

Following APT, to guarantee that the translation property in (3) holds for the DTDF, we impose

the following restrictions on the γ and g parameters of the DTDF and the associated share equations:

W∑
w=1

γwgw = −1,

W∑
w=1

γwn′gw = 0, ∀ n′,

W∑
w=1

γwm′gw = 0, ∀ m′, (19)

W∑
w=1

γwj′gw = 0, ∀ j′,

W∑
w=1

γwl′gw = 0, ∀ l′.

We can rewrite the first-order PM conditions from (10)-(13) in terms of the parameters of the

quadratic DTDF in (17) for each good input price equation as:

pn,it/ϱ = γn +

W∑
w=1

γnw(zw,it) + vn,it, (20)

disposability properties, and by assumption is independent of the level of pollution. In particular, they reject the weak
disposability of good and bad outputs due to the use of abatement activities. Importantly, in our paper, we do not assume
the independence of the good and bad outputs.
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for each good output price equation as:

pm,it/ϱ = −

[
γm +

W∑
w=1

γmw(zw,it)

]
+ vm,it, (21)

for each bad input price equation as:

pj,it/ϱ = γj +

W∑
w=1

γjw(zw,it) + vj,it, (22)

and for each bad output price equation as:

pl,it/ϱ = γl +
W∑
w=1

γlw(zw,it) + vl,it, (23)

where we impose symmetry on the parameters and where the vw,it, w = n,m, j, l have zero mean. The

DTDF system is comprised of the DTDF function in (17) and the price equations in (20)-(23), where

we have imposed the parametric restrictions guaranteeing the translation property. This system was

developed and estimated in APT.

3 Alternative Optimization Models

3.1 The New Model: Materials-Balance Constraints Plus Latent Prices

According to the technology set in (2), coal-fired power plants generate good and bad outputs

using good and bad inputs. Their good output is electricity, their bad outputs are three pollutants

(SO2, NOx, and CO2), their good inputs are capital, labor, and heat input from coal, and their bad

input is sulfur. The plants residual generation mechanism restricts the standard technology set in (2),

since plants employ pre- and post-combustion pollution control devices, x̃a, to reduce the generation of

pollutants or their release into the environment. To translate the DEA model of Murty et al. (2012) to

a stochastic framework we begin by formulating a scalar version of their residual-generation mechanism,

by incorporating x̃a:

F (x, x̃, y, ỹ, x̃a) = 0, (24)

where we temporarily collapse our three good inputs into one generic good input, x, all pollution control

devices into a single generic pollution control variable, x̃a, and all pollutants into a single pollutant, ỹ.

From this we derive our two MB constraints which model the residual-generation mechanisms of the

plant and limit the substitution possibilities implied by the transformation function in (2). Assuming

that ∂F
∂ỹ ≥ 0, since increasing the bad output will increase the distance to the frontier, following

9



Murty et al. (2012) we apply the implicit function theorem to (24) in a local neighborhood around

< x, x̃, y, ỹ, x̃a > to obtain the first MB production function:

ỹ = g(x̃, x, y, x̃a). (25)

The second MB production function says that the good output is a function of only the good input

(but not the bad output):

y = h(x). (26)

Combining (25) and (26) yields our first MB constraint, where the bad output is a function of the bad

input, the good input, and the pollution control device:

ỹ = g1MB(x̃, x, x̃a). (27)

We assume that

∂ỹ

∂x̃
≥ 0, (28)

since the change in the bad output should be non-negative as the bad input increases.10

∂ỹ

∂x
≥ 0, (29)

since the change in bad output should be non-negative as the good input increases, and

∂ỹ

∂x̃a
≤ 0, (30)

since the change in the bad output should be non-positive as pollution control increases.

The constraint in (27) models, for example, a plant that burns a higher sulfur coal but employs flue

gas desulfurization (FGD) devices, also called scrubbers, to reduce SO2 emissions. Before estimation,

we add plant/firm dummies to this MB equation to account for differences among plant and firm

characteristics which themselves are time-invariant.

The second MB constraint relates the consumption of the bad input to the consumption of the good

input because they are chemically bonded for all varieties of coal:

x̃ = g2MB(x). (31)

Before estimation, we add plant/firm dummies to incorporate differences among firms in terms of plant
10This occurs primarily for SO2 and to a lesser degree for CO2 and NOx. The emission factors of all pollutants (the

average emissions per million British Thermal Unit (Btu)) increase with the sulfur content of the coal burned.
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management and location.

The two MB constraints in (27) and (31) generalize those previously employed in the literature. For

Coelli et al. (2007) the MB constraint is

b =
∑
n

unxn −
∑
m

vmym, (32)

where b is uncontrolled emissions, un translates input xn into generation of the pollutant and vm

translates ym into the amount of b bound up in ym. Their application is to pig farms, where pigs

contain a substantial portion of the bad nitrogen output.

Rødseth (2016), who also examines pig farms, recognizes that Coelli et al. (2007) do not reward

pollution control. His revised MB constraint does so by requiring that the sum of uncontrolled and

controlled emissions equals the generated pollution minus the amount of the pollutant bound up in the

output:

b =
∑
n

unxn −
∑
m

vmym − a, (33)

where a is the controlled emissions, i.e., emissions reduced by abatement devices.

Hampf (2014) and Hampf and Rødseth (2015) employ this MB constraint for the release of SO2

and carbon dioxide CO2, respectively, by coal-fired power plants. Both papers recognize that since no

pollutants are bound up with electricity,
∑

m vmym = 0. To estimate
∑

n unxn, both papers utilize

emissions factors which give the initial generation of SO2 per unit of sulfur or the initial generation of

CO2 per unit of coal consumed, as reported in the 2009 DOE Electric Power Annual Appendix A1.

This Appendix provides these emission factors by fuel and boiler firing type. Multiplying these emission

factors by the amount of sulfur or coal consumed, respectively, for each plant yields estimates of total

initial generation of each pollutant. Finally, by subtracting b from this estimate, they obtain a.

As Hampf (2014) recognizes, these aggregate emission factors are valid only if plants do not use

different pre-combustion controls. However, many of our coal-fired plants make use of pre-combustion

controls for SO2, such as various types of sorbent injection. In addition, for these factors to be valid

across plants, they must employ uniform management skills and operate a given boiler-firing technology

with equal efficiency. Therefore, the use of aggregate SO2 emission factors may create substantial

aggregation bias. We believe that this potential bias is even greater for the nitrogen dioxide NOx MB

equation. Over time, an increasing number of our plants adopt different sets of pre-combustion and

post-combustion NOx controls in different years. Hence, we avoid using DOE Appendix A1 aggregate

emission factors to estimate initially-generated pollution.

Instead, we take a stochastic approach that should substantially reduce any aggregation bias in the

MB constraints for SO2 and NOx. Utilizing (33) for SO2, we measure initially-generated pollution for

SO2 by including all plant-level good inputs, the bad input sulfur, plus plant and firm dummies. These
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dummies capture a variety of different boiler-firing configurations and different sorbent injection pre-

combustion control methods that do not change over time for any plant and hence are time-invariant.

We also include measures of controlled emissions, a. Since plants use scrubbers for additional SO2

control, we include a variable measuring the magnitude and date of their installation. In our NOx MB

constraint, we include pre-combustion controls along with good inputs and the bad input to model

initially-generated NOx. We include the major post-combustion control technology to model controlled

emissions. Finally, we obtain estimates of uncontrolled emissions, b, from EPA as explained in the Data

section.

First, in greater detail with regard to the right-hand-side of our NOx MB constraint, we include

good inputs (the Btu content of coal, labor, and capital) to control for the amount of good output

generated and hence initially-generated NOx.11 We do not include the nitrogen content of coal, since it

is not reported to the DOE or EPA. However, the amount of NOx produced from a pound of nitrogen

depends almost totally on the pre-combustion technology of the plant. Hence, we include measures of

pre-combustion control methods. Nearly all of our plants ultimately adopt either or both of two pre-

combustion methods to reduce NOx emissions: a low-NOx boiler (LNOX) (which reduces the combustion

temperature and hence the emissions of NOx) or Overfire Air (OA) (which utilizes a special port

designed to ensure advantageous air and fuel mixing, again to reduce NOx). We include the annual

MW capacity associated with each plant’s boilers that utilize LNOX or OA. Many of our plants also

employed post-combustion control devices termed Selective Catalytic Reduction (SCR) to remove NOx

from the exhaust gas. We also include the annual MW capacity for generators where SCRs reduce

emissions from associated boilers. All of these variables are time-varying. In fact plants rarely used any

of these technologies at the beginning of our sample, but by the end of our sample, nearly all plants

had adopted at least one pre-combustion technology and the SCR technology. Finally, by including

plant and firm dummies, we control for time-invariant differences in individual plant technologies and

plant/firm management skills for NOx abatement.

Next, with regard to the SO2 MB constraint, we assume that the amount of SO2 initially generated

from the burning of coal depends on the good inputs (the Btu content of coal, labor, and capital which

produce the good output required), the total sulfur content of coal, the pre-combustion use of sorbents,

the firing type of the boiler burning the coal, and post-combustion controls. The most common types

are cyclone, front, opposed, and tangential. The non-uniform use of sorbents, the exact sorbent used,

and the boiler firing types remain constant over time for each plant, so that time-invariant differences

among plants can be captured by plant dummies, which we include. The amount of SO2 abated also

depends of the use of FGD devices to treat post-combustion SO2 emissions. Only 18 of our plants
11We note that output of electricity is a function of these same inputs, so that output does not appear in the MB

constraint. Also, we include the sulfur content although its impact on NOx production should be less important than
nitrogen content of coal.
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employ FGD devices throughout the entire sample period. We include in the MB equation the MW

capacity of generators whose associated emissions are scrubbed using FGD devices for each plant in each

year.12 To control for any time-invariant differences in plant technologies and plant/firm management

abilities for SO2 removal, we include plant and firm dummies.13

Considering the CO2 MB constraint, the amount of this pollutant released when coal is burned is

fundamentally a function of the carbon content of the fuel. Unfortunately, the carbon content of coal

is not reported at the plant level in DOE data files. However, Btu content is reported (which is our

measure of coal consumed) and this is the best direct measure of the carbon content of coal.14 During

our sample period, no plants controlled CO2 emissions. Thus, our MB equation for CO2 depends

on good inputs (the Btu content of coal, labor, and capital) plus plant and firm dummies. These

dummies capture any time-invariant differences in individual plant boiler technologies and plant/firm

management skills.

Implicit in the specification of the directional distance function in (9) and (10)–(13) is the differen-

tiability of the directional distance function with respect to its arguments. In particular, this applies

to the good inputs, x, and the bad inputs, x̃. While each mine typically sells one type of coal of a

given approximate Btu and sulfur content (measured as a percent of coal), each plant purchases coal

from a portfolio of many mines, each with a different combination of Btu and sulfur content. This is

confirmed by examining the shipment-specific Energy Information Agency (EIA) Form 423 files for all

plants and is illustrated in Figure 1 where we plot the Btu content per ton of coal against sulfur content

for all shipments of coal from mines to power plants in our sample, obtained from this form. We find

the greatest diversity in the combination of Btu per ton and sulfur content for the FGD plants, which

comprise approximately 34% of total megawatt hour (MWh) generation.
12We do not include sorbent consumption or the hours that a scrubber is operated, since coal-fired power plants are

base-load and for efficiency reasons plants and scrubbers are always operated at a near-constant rate. Thus, these variable
inputs are treated as constant over time for a given plant and are swept up in plant dummies.

13Other characteristics such as moisture and ash content affect heat output but have little effect on the conversion of
sulfur to SO2, which occurs when sulfur and oxygen molecules are bonded in the combustion process.

14The discrepancy between the carbon content of coal and its Btu content during coal combustion is minor and would
be due to the hydrogen content of the coal and, to a lesser extent, its sulfur content, which we also include. Hydrogen is
not reported as a characteristic of delivered coal to plants in DOE data files. However, it is 5% or less of coal and little of
this will be converted to heat since hydrogen combines with oxygen to produce water vapor. Sulfur generates little heat
since it is a small component of coal by percent and has a very low heating value (about 3,000 Btu/ton).
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Figure 1: Sulfur and Btu Content

Given a continuum of combinations of Btu and sulfur content, we have differentiability and we

are able to estimate stochastically our model, where the DTDF includes a measure of overall firm-

specific TI and an idiosyncratic error term. We also directly control for endogeneity, interpret the

partial effects of our MB constraints, compute firm-specific TI for each MB constraint, and calculate

posterior densities for technical inefficiencies, productivity growth, and optimal directions. The DEA

approach is non-stochastic and would not allow estimation of standard errors (unless bootstrapping is

employed), overall TI as a stochastic residual jointly with idiosyncratic noise, estimation of TI for each

MB equation, or the calculation of posterior densities. Further, we would not be able to deal with the

endogeneity of inputs since DEA methods are non-stochastic.

To satisfy the MB constraints in (27) and (31), we incorporate two sets of equations into our DTDF

system. We satisfy (27) by requiring that bad outputs are a linear function of good inputs, where for

simplicity we temporarily include all pre-and post-combustion control devices in a (1 × D) vector x̃a

which we include along with x in a vector called xc. We also include bad inputs plus firm dummies

(df ) and plant dummies (dp). Defining R = N +D we write:

ỹ1 =
∑R

r=1 ar1xr +
∑J

j=1 aR+j,1x̃j + df + dp + ε1 + u1 = a′1[xc
′, x̃′]′ + df + dp + ε1 + u1,

...

ỹL =
∑R

r=1 arLxr +
∑J

j=1 aR+j,Lx̃j + df + dp + εL + uL = a′L[xc
′, x̃′]′ + df + dp + εL + uL.

(34)

We allow for one-sided error terms u1, ..., uL ≥ 0. Idiosyncratic error terms ε1, ..., εL are included to

capture measurement errors in the data. We interpret the ul as the inefficiency with which each plant

achieves allowable emissions given their set of inputs for emission control. Since ul is defined as positive

for the three pollutants in (46), for purposes of interpretation, a higher estimated ul implies a higher

level of uncontrolled emissions for the emissions MB constraints, using a given level of inputs. However,

since a plant cannot overproduce bad outputs without having to pay huge fines, we assume that plants

do not overproduce emissions. Thus, a larger ul implies a larger TI for equation l , l = 1 , . . . ,L and
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means that additional good inputs must be expended to reduce emissions to the allowed levels.15

As elements of xa in the NOx MB equation, we include separate variables for the MW capacity

associated with boilers that utilize the LNOX and OA pre-combustion technologies as well as a separate

variable measuring the MW capacity whose post-combustion emissions are reduced using the SCR

technology. For the SO2 MB equation we replace the NOx control-technology variables with ones

measuring the SO2 control technology: plant/firm dummies and a variable measuring the MW capacity

associated with boilers whose emissions are scrubbed.

The first MB system in (34) can be written compactly as:

ỹ = A[xc
′, x̃′]′ + df + dp + ε∗ + u∗. (35)

The second MB constraint in (31) can be compactly written as a system, given more that one bad

input, as:

x̃ = Ãx+ df + dp + ε∗∗ + u∗∗, (36)

where df and dp are vectors created by multiplying a (L × 1) unit column vector times dt and dt for

(35) and a (J × 1) unit column vector times dt and dt for (36). Both equations are subject to the same

type of two-component error. To interpret the one-sided component, consider (36) where a higher u∗∗

for the sulfur MB equation implies that for a given level of good inputs, the plant must consume coal

with a higher sulfur content. This translates into greater TI for this MB equation.

For all inputs and outputs we are either missing actual prices at the plant level (and use firm-level

data instead) or we have at least some degree of measurement error with our plant level data. We have

the prices of capital and labor at the firm rather than the plant level, so some measurement error may

exist when we apply these prices to the plant. We have data on the price of energy (Btu from coal)

at the plant level. However, these are prices for deliveries not consumption, which may cause slight

discrepancies between reported and actual prices for consumption of coal within a calendar year. In rare

cases good input and good output prices are missing and we generate them by interpolation. We have

no data on prices of bad inputs and bad outputs. Thus, the entire vector of prices at a given time is

P∗
t = [P∗

t1,P
∗
t2]

′, where P∗
t1 is the vector of latent prices for labor, capital, energy, and the good output,

while P∗
t2 is a vector of latent prices for bad inputs and bad outputs. For the former we have noisy data,

while for the latter we have no data. Given the observed prices Pt1 we assume a measurement-error

model:

P∗
t1 = Pt1 + ξt1, (37)

where ξt1 is a vector error term. For bad inputs and outputs, we assume that missing prices are related
15Hampf (2019) takes a different approach by assuming that abatement is unknown and is a econd component of the

error term along with an idiosyncratic component.
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to the observed prices and a set of exogenous variables:

P∗
t2 = ΓoP

∗
t1 + Λort + ξt2, (38)

where Γo and Λo are matrices of unknown coefficients (including a constant term that we omit for

conciseness), while rt includes regional and firm dummies, time dummies, and a restructuring dummy.16

We specify the error vector as

ξt = [ξ′t1, ξ
′
t2]

′ ∼ N(0,Ψ). (39)

We can now combine equations (37) and (38) as[
I 0

−Γo I

]
P∗

t =

[
Pt1

Λort

]
+

[
ξt1

ξt2

]
. (40)

Defining

[
I 0

−Γo I

]
= Θ we have

P∗
t = Θ−1

[
Pt1

Λort

]
+Θ−1

[
ξt1

ξt2

]
. (41)

Further, letting Θ−1

[
ξt1

ξt2

]
= vt this is a multivariate regression, so a Gibbs sampling step can be

used to draw the non-zero elements of Γo and Λo, if we further assume that

[ϵt,v
′
t]
′ ∼ N(0,Φ). (42)

For Φ and Ψ we assume standard “non-informative” Wishart priors.

Given parameters Θ,Γo,Λo, drawing P∗
t is performed using a Gibbs step when we combine (41) and

(20)-(23). Once this step is performed the other parameters are drawn using a Hamiltonian Markov

Chair Monte Carlo (MCMC) step by Girolami and Calderhead (2011) (GC). We provide additional

details on this in on-line Appendix A-O.

3.2 The New MB Model

The New MB model consists of the DTDF in (17), the price equations in (20)–(23) (for z = {x,

y, x̃, ỹ}), and two MB conditions in (35) and (36) for ỹ and x̃, subject to the translation property

restrictions. Using P∗
t , we then jointly estimate all of the equations of this model. One advantage of

16All variables are defined in the data section.
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this is that we can obtain the coefficients in A and Ã plus the various “environmental” inefficiencies

measured by u = (u,u∗,u∗∗). To control for the potential endogeneity of z, we employ as instruments

the prices of good inputs, a restructuring dummy, a dummy for public/private ownership, and firm-

and time-specific dummy variables.

3.3 Conventional Models

We estimate two forms of the Conventional model. Both eliminate the MB constraints and price

equations (20)–(23) employed by the New MB model. The first Conventional model includes a stan-

dard DTDF, subject to the translation property restrictions, and reduced-form equations to model

endogeneity:

z(−1) = Πf + εo, (43)

where z(−1) denotes a (W − 1) vector comprised of z excluding one element, say the first one (since

this element is the dependent variable in (24)) and f is a (d × 1) vector of predetermined variables

comprised of the same instruments as used by the New MB model. Further, Π is a (W − 1)×d matrix.

The second Conventional model is the same as the first Conventional model, except that it additionally

excludes (43), which controls for endogeneity. This model is termed the Conventional model without

Endogeneity.

3.4 New MB Models with Reduced Forms

We also estimate two versions of the New MB model with reduced forms. Both eliminate the price

equations (20)–(23) employed by the New MB model. Instead, both versions include a standard DTDF,

the MB constraints, and reduced-form equations to model endogeneity, subject to the translation prop-

erty restrictions. Further, both allow for joint modeling of technical and environmental inefficiencies.

The first version, termed the New MB model with Reduced Form, includes the following reduced-form

equations:

z(−1) = Πf + εo, (44)

where the predetermined variables are the same as in (43). This is like a standard Limited Information

Maximum Likelihood (LIML) formulation a la Pagan (1979). For the idiosyncratic error terms we

assume:

ε = (ε, εo, ε∗, ε∗∗) ∼ NN+2J+M+2L (0,Σ) . (45)

The second version of this model, termed the New MB model with Lagged Values in the Reduced Form,

adds lagged values of the explanatory variables in the reduced form.

17



Technical and environmental inefficiencies are modeled jointly as follows:

u = (u,u∗,u∗∗) ∼ N+
L+J (0,Ω) , (46)

where N+
m denotes the m−variate half-normal distribution.

4 Translation Property, Bayesian Priors, and Bayesian Analysis

4.1 Translation Property

To impose the translation property restrictions in (19), we first express them in the form:

∆ (γ)g = ζ, (47)

where γ = (γw, γww′), ∆ (γ) is a matrix containing the appropriate elements in (19) and ζ ∼ N
(
m, ω2

ζI)
)
,

where m =

[
−1

...0
]

and we set ωζ to a small number. We have chosen ωζ = 10−7. As (47) can be

thought of as a semi-informative prior on γ conditional on g, the prior is completed assuming a prior

for g:

g ∼ N (0, ω2
gI). (48)

A reasonable value for ωg would be 1 subject to the restriction that g′g = 1. This imposes a normal

prior for g on the unit hyper-sphere. Now write (47) in the form

Ψ (g)γ = ζ, (49)

and the DTDF in the form:

0 = Zγ + ε. (50)

Here ζ ∼ N(0, ω2
gI) and ε ∼ N(0, σ2

oI). In turn we have the system

m = Ψγ + ζ

0 = Zγ + ε

to which we apply GLS following Theil and Goldberger (1961) to obtain

γ̂GLS =

([
Ψ(g)′ Z′] [ 1/ω2

gI

1/σ2
oI

][
Ψ(g)

Z

])−1 [
(Ψ(g)′ Z′] [ 1/ω2

gI

1/σ2
oI

][
m

0

]
.
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The GLS estimator of γ can be rewritten in the form

γ̂GLS =
[
σ2
oΨ (g)′Ψ (g) + ω2

gZ
′Z
]−1

Ψ (g)′m. (51)

4.2 Other Priors

Given our prior on γ and g, the other priors are specified as follows:

p(Σ) ∝ |Σ|−(dim(Σ)+1)/2, (52)

p(Ω) ∝ |Ω|−(dim(Ω)+1)/2, (53)

which are standard “non-informative” priors proposed by Zellner. For the coefficients of the reduced

form:

π = vec(Π) ∼ N (π,Σπ). (54)

We set π = 0 and Σπ = ω2
Σπ

I. In our baseline case we set ωΣπ = 105.

For the coefficients of the MB equations in (35) and (36) collectively denoted by a we assume:

a ∼ N+(a,Σa), (55)

where, in our baseline specification, a = 0 and Σa = ω2
Σa

I where ωΣa = 105I. Notice that we have a

multivariate half-normal, so we need to restrict these coefficients to be non-negative.

4.3 Bayesian analysis

As the model allows firm-specific directions, we have a hierarchical model whose posterior is quite

cumbersome to explore efficiently. In this work we opt for a Girolami and Calderhead (2011) Hamilto-

nian Monte Carlo approach which explores first-order and second-order derivatives of the log posterior.

Moreover, we compute the marginal likelihood of the New MB model and the Conventional model

using a Laplace approximation and the well-known candidate’s formula (DiCiccio et al., 1997 and Lewis

and Raftery, 1997). To ensure that results are robust we vary the baseline priors as follows:

i) We generate 10,000 random prior parameters.

ii) We re-estimate the models using sampling-importance-resampling.
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In stage (i) the prior parameters are varied as follows:

a ∼ N (0, 104I),

π ∼ N (0, 104I),
Q
ω2
g
∼ χ2(k), lnQ ∼ N(0, 102), k ∼ Unif

[
10−7, 30

]
,

Q
ω2
Σπ

∼ χ2(k), lnQ ∼ N(0, 102), k ∼ Unif
[
10−7, 30

]
,

Q
ω2
Σa

∼ χ2(k), lnQ ∼ N(0, 102), k ∼ Unif
[
10−7, 30

]
.

(56)

The last three priors are standard inverted gamma priors for the scale parameters involved in g,Σπ

and Σa. The scale parameters are supposed to arise from a fictitious sample of size k where Q is

the sum of squares of “residuals”. We are also interested in an overall measure of robustness for our

key functions of interest that include directions, technical inefficiency, allocative inefficiency, returns

to scale, and productivity growth. Suppose any of these five functions of interest is denoted by f
(s)
it,(p)

for observation i, t, MCMC draw s = 1, ..., S and prior specification p = 1, ..., P, where P = 10, 000.

Suppose the baseline results are denoted by f
(s)
it,(0). Our measure of robustness for the function of interest

f is:

Rf = 100 · (nTP )−1
P∑

p=1

n∑
i=1

T∑
t=1

∣∣∣∣∣f
(s)
it,(p) − f

(s)
it,(0)

f
(s)
it,(0)

∣∣∣∣∣. (57)

5 Data

Our sample consists of the 80 largest coal-fired power plants in the US from 1995-2005. As listed in

the on-line Appendix B-O, the majority of our sample plants are located in the Southern, Mid-Atlantic,

or Midwestern states, with a few in the Rocky Mountain and Far Western states.17 Ninety-one percent

of them are in jurisdictions where rates are controlled by regulatory commissions. Hence, the price of

electricity is determined by these commissions and demand is exogenously determined by consumers.

In this case, a cost-minimization model would be appropriate. Alternatively, the plants’ owners could

exercise enough influence over the commission that they help determine price, so that quantity is

endogenous. If so, a profit-maximization model might be appropriate. The other 9 percent of plants are

not degegulated but are instead part of Regional Transmission Organizations (RTOs) or Independent

Transmission Operators. These entities facilitate efficient transmission of power from producers to end

users based on bid-pricing. Each utility provides the RTO with the MW capacity for each unit at a

given bid-price per hour, which is based on operating costs.18 These MW bid-price combinations form

a supply curve for the RTO. The intersection of this curve with exogenously determined demand yields

a single price of electricity. In the absence of collusion among suppliers, plants will produce so long
17A list of these plants and parent utilities are available from the authors upon request.
18Fixed costs are recovered either through rents earned in this auction or through a capacity-market bidding mechanism.

20



as their marginal cost is less than the exogenously determined price. Failure to do so would mean

that a plant foregoes rents. Again, a cost-minimization model would be appropriate. However, some

collusion and manipulation of electricity quantities by plants is a possibility. If so, a profit-maximization

model might be more appropriate. For this paper, because of space constraints, we illustrate only the

latter model. The cost-minimization model can easily be obtained by dropping the good output price

equation.

For our DTDF, the technology modeled in this study consists of one good output, three bad outputs,

three good inputs, and one bad input. The good output is net electrical generation measured in MWh,

while the three bad outputs are the emissions in short tons of SO2, NOx, and CO2. The three good

inputs are the capital stock (measured in 1973 year dollars), the number of employees, and the heat

content in millions of Btu of coal consumed at each power plant. The single bad input is the percent

sulfur content (S) of the coal burned. While the power plants in our sample consume coal and either oil

or natural gas, on average 99 percent of the Btu generated by each plant comes from coal consumption.

We obtained our data from a number of different sources. The Federal Energy Regulatory Commission

Form 1 provides labor and capital data for private electric power plants, while the EIA-412 survey is

the source of this data for public power plants. While DOE halted the Energy Information Agency

(EIA)-412 survey after 2003, the Tennessee Valley Authority voluntarily posted 2004-06 data for its

electric power plants on-line. The U.S. Department of Energy (DOE) Form EIA-767 is the source of

information about fuel consumption and net MWh generation by plant. The SO2, NOx, and CO2

emissions data at the plant level come from the EPA as part of its Continuous Emissions Monitoring

System. We obtain the sulfur content of the coal burned by plant from EIA Form 423.19 Since an

increasing number of private utilities did not report capital and labor data after 2005, we terminate our

sample at this year.

As indicated in equation (32), we compute plant-level latent prices for capital, labor, and coal

utilized in each year using firm-level prices for capital and labor in addition to the delivered price of

coal to the plant. We compute the user cost of capital at the firm level using the corporate tax rate, the

corporate property tax rate, the depreciation rate, the firm’s yield, and the Handy-Whitman Index as in

APT. The yield on the firm’s latest issue of long-term debt comes from Moody’s Public Utility Manual

(before 2001) and from Mergent’s Public Utility Manual after that time. From Form 1 we collect the

wage paid by the firm as salaries plus wages for electric operating and maintenance workers divided

by the number of workers for the firm. From EIA Form 423 we compute the price of coal per million

Btu to the plant, using the price of the weighted-average monthly deliveries of coal. Although these

deliveries are provided at the plant level, frequently 90-day stockpiles of coal are maintained. Thus, we

do not have exact data on the price of the actual quantities of coal burned during a calendar year.
19We wish to thank Carl Pasurka for supplying us with the data on input and output quantities.
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Using EIA Form 767, we generate a variable for the MW capacity associated with boilers using each

of the two most popular pre-combustion NOx controls. For each boiler we record the first, second, and

third NOx pre-combustion emission control strategy if it is LNOX or OA, which are by far the most

widely adopted. We then map each boiler into its corresponding generator and record the amount of

MW capacity that is associated with each pre-combustion technology. Then we aggregate this MW

capacity to the plant level. We do the same for the amount of MW capacity associated with the

most widely-adopted post-combustion technology, the SCR control method.20 Finally, we record the

cumulative MW capacity whose associated emissions each plant scrubs to remove SO2. We standardize

all data except for dummy variables to eliminate units of measurement in our calculation of optimal

directions of movement to the DTDF.

6 Empirical Results

In Table 1 we use the baseline prior to compute the log Bayes Factors (BF) in favor of the New

MB model against the Conventional model. The BF in favor of the New MB model is 1285.44 and

the 95% BF ranges from 977.16-1588.30 across different models. Based on 10,000 alternative priors, we

also provide robustness checks in terms of percent changes for g, TI, allocative inefficiency (AI), returns

to scale (RTS), and productivity growth (PG) over these alternative priors. The table results indicate

that these measures are not sensitive to the alternative priors. We define RTS as

RTS = −∇x
−→
D(y,x∗)x

∇y
−→
D(y,x∗)y

, (58)

where RTS > 1, RTS = 1, and RTS < 1 imply increasing, constant, and decreasing returns to scale,

respectively.

We compute PG and TI as in Atkinson and Tsionas (2016). We examine two measures of TI. The

first is overall TI, which measures the extent to which a firm fails to produce the frontier output for a

given set of inputs, where TI is normalized to lie in the unit interval, so that the frontier firm has a

TI=0. The second type of TI is computed in an analogous manner for each MB constraint. For overall

TI, the change in TI over time is defined as efficiency change (EC). The shift in the production frontier

over time is defined as technical change (TC). Then PG= EC + TC.

The AI of a firm increases as it fails to equate each input price to its marginal value product. We

calculate AI for the DTDF only regarding inputs and outputs for which we have prices. Suppose these

inputs and outputs are denoted by X, their fitted values by X̂, and their prices by P∗. Our measure of
20Only one boiler utilized a selective non-catalytic reduction technology.
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AI is computed as

AIit = Dit −min
i,t

Dit, (59)

where

Dit =
P∗′

it (Xit − X̂it)

P′
itXit

. (60)

Table 1: Log Bayes factors in favor of New model, against the Conventional model, and
robustness measures

Baseline prior, BF 1285.44

95% BF Range 977.16 – 1588.3

Robustness, g, (%) 0.006

Robustness, TI (%) 0.003

Robustness, AI (%) 0.002

Robustness, RTS (%) 0.002

Robustness, PG (%) 0.002

In equations (34) we have assumed over-production of bad outputs by adding one-sided error terms

to the quantity equations for bad outputs. In Table 2 we report the Bayes factors in favor of this

version of the New MB model relative to other specifications of this model which assume various types

of under-production of bad outputs. We find that the assumption of over-production is clearly superior.

Table 2: Bayes factors in favor of present model

−w ≥ 0 in all equations 417.12

u− w, u,w ≥ 0 in all equations 282.16

−w ≥ 0 in CO2 eq. only 203.75

−w ≥ 0 in SO2 eq. only 324.50

−w ≥ 0 in NOx eq. only 355.44

u− w ≥ 0 in CO2 eq. only 437.70

u− w ≥ 0 in SO2 eq. only 613.52

u− w ≥ 0 in NOx eq. only 562.14

In Figure 2 we report BF from 10,000 alternative priors of the New MB model (with the latent

price equations and the MB constraints) against certain other models. The first is the Conventional

model (where endogeneity is modeled with a reduced form instead of the first-order conditions and MB

constraints are excluded). The second is the Conventional model without Endogeneity. The third is

the New MB model with the Reduced Form (44) instead of the first-order conditions in (20)-(23). The

last is the New MB model when lagged values of the explanatory variables are also included in the

reduced form (44). The smallest BF for any comparison of models is 20, which occurs for the New MB

model compared to the Conventional model. All other comparisons yield posterior means that are as
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much as four times larger. This occurs for the New MB model compared to the Conventional model

without Endogeneity. The results from Table 2 and Fig. 2 strongly support the New MB model to

deal with endogeneity against a variety of alternatives for the New MB and Conventional models. In

on-line Appendix C-O, we provide additional out-of-sample analysis that is consistent with the results

in Figure 2.

Figure 2: Bayes factors in favor of the New MB model against all other models
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Notes: New MB model includes first-order conditions in (20)-(23) with MB constraints. Conventional model includes the reduced
form in (44). Conventional model without endogeneity excludes the reduced form equation (44). Both eliminate MB constraints and
price equations. New MB model with reduced form uses (44) instead of the first-order conditions in (20)-(23) with MB constraints.
New MB model with lagged variables in reduced form, includes lagged values of all input and outputs in the reduced form (44) with
MB constraints.

In Table 3 we present posterior means and posterior standard deviations of the estimated MB

equations for the New MB model. Columns 2-4 relate each bad output to the good inputs, the bad input

(sulfur), the control technologies, and dummy variables. Column 5 relates sulfur to the good inputs and

dummy variables. Consistent with (??) for all equations the coefficients for pre- and post-combustion

control of SO2 and NOx are all negative with posterior means located far from zero. Consistent with

(29) the coefficients of all good explanatory variables for S are positive with posterior means located

far from zero. These coefficients provide the weights for a unit of each explanatory variable to increase

or decrease CO2, SO2, NOx, and S. Since these variables are measures of MW capacity covered by each

technology, we can compare the magnitude of estimated coefficients. The use of the low-NOx-overfire-

air technology reduces emissions about 7% more than the low-NOx-combustion technology. The use of

the post-combustion SCR technology is only slightly less efficient than this technology.21 The marginal

effects of each pre- and post-combustion control for NOx are roughly equal, indicating that the plant

has roughly equalized the productivity of each of these devices.
21Since boilers employing Low-NOx are linked to a capacity of 56,955 MW/year on average and those employing Overfire

Air are linked to capacity of 23,482 MW/year on average, the former method is far more important in controlling emissions.
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Table 3: Material Balance Equations

Explanatory Variables CO2 SO2 NOx S

Capital 0.213

(0.025)

0.094

(0.012)

0.144

(0.018)

0.181

(0.016)

Labor 0.017

(0.005)

0.044

(0.012)

0.057

(0.014)

0.062

(0.012)

Heat content (coal) 0.506

(0.012)

0.515

(0.016)

0.482

(0.017)

0.544

(0.022)

Sulfur 0.142

(0.015)

0.135

(0.016)

0.155

(0.013)

—

Low -NOx combustion boiler — — –0.188

(0.022)

—

Low-NOx Overfire Air — — –0.203

(0.014)

—

Selective Catalytic Reduction — — –0.199

(0.023)

—

Flue Gas Desulfurization — –0.184

(0.032)

— —

Firm Dummies Yes Yes Yes Yes

Plant Dummies Yes Yes Yes Yes

We estimate TI for each MB equation and present the results in Figure 3 for CO2, SO2, and NOx for

the New MB model. Although the mean posterior inefficiencies are roughly identical for all pollutants

(about .04-.05), the density for SO2 is slightly more concentrated than the densities for the other two

pollutants. However, these inefficiencies could be reduced by improving plant management.

Figure 3: Technical Inefficiency for Material Balance Equations: New MB model
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In Figure 4, we report TI and AI for the DTDF produced by the Conventional and New MB models.

With both models, TI and AI are quite small. For the Conventional model, both measures have posterior

means equal to about .03. For the New MB model, AI has roughly the same posterior mean, while that

for TI is about .1.
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Figure 4: Technical and Allocative Inefficiency:
New MB model versus Conventional model
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In Figure 5 posterior densities for RTS and PG differ substantially for the same two models. We

calculate posterior means for RTS of about .96 for the New MB model, but only approximately .88 for

the Conventional model. Thus, the New MB model indicates that the sample plants are operating closer

to the range of constant returns to scale. In terms of PG the New MB model yields a posterior density

that is much less disperse and has a higher mean, approximately equal to .015, than the Conventional

model, whose posterior mean is about .005.

Figure 5: Returns to Scale and productivity growth: New MB model versus Conventional
model
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In Figure 6 posterior densities for EC, TC, and PG for the preferred New MB model are small but

positive. The average posterior for TC is about .005, that for EC is about .01, while that for PG is

about .015. That is, the outward movement of the production frontier over time is very small, but

catching up to the frontier is about twice the outward movement, so that PG is about 1.5 %. However,

this is small for a large capital-intensive industry such as coal-fired electricity generation and is most

likely due to minor investments in more efficient generation capital over time.
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Figure 6: EC, TC, PG for New MB model
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In Figure 7 we report bivariate densities (panels (a) and (c)) and contours (panels (b) and (d)) for

EC versus TC (upper part) and PG versus TI (bottom part). Both relationships are uni-modal, but

their elongated forms suggest that many plants may be able to lessen TI and improve EC and PG, or at

least reduce TI without worsening EC or PG. This indicates the need for better management practices

to address the problem of low efficiency.

Figure 7: Bivariate posteriors of efficiency change, technical inefficiency, and productivity
growth
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In Figure 8 we report posterior bivariate densities for PG and TI for each of our MB equations. In

panels (a) and (c) we see that uCO2 and uSO2 have uni-modal bi-variate distributions with respect to

PG. However, some firms can decrease uCO2 and uSO2 while maintaining or increasing PG at the same

time. In panels (e) and (g) we observe bi-modal posterior distributions for uNOx and uS, each relative

to PG. For panel (e), there is substantial room for plants to reduce TI for NOx and increase PG at the

same time. For panel (g), opportunities for improvement are even more dramatic. The two distinct

clusters indicate that plants in the upper cluster can substantially decrease uS for a given level of PG

by shifting to a lower cluster, or they can increase PG for a given level of uS within a cluster. Improved

management skills or better technologies may be required to achieve these changes.

Figure 8: Aspects of bivariate posteriors of productivity growth and one-sided error terms
in the MB equations
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In Appendix A we present a number of additional bivariate posterior densities relating TI from

individual MB equations to each other and to TI and AI. Results reinforce the previous evidence that

improvemts in efficiency can be attained by many plants without sacrifice, through improved managerial

methods.

We report posterior moments for overall TI and the u terms for each MB equation in Table 4. The

posterior mean for overall TI, uCO2 , and uNOx are roughly .07, while that for uSO2 is roughly twice this

size. The posterior mean for uS is .052. The simple pairwise correlations of uCO2 , uSO2 , uNOx , and uS

are at least .90 across all firms and time periods.

Table 4: Posterior moments for Overall TI and all MB Inefficiency Terms

post. mean post. s.d

Overall TI 0.075 0.017

uCO2 0.073 0.0074

uSO2 0.135 0.055

uNOx 0.062 0.024

uS .052 .015

In Figures 9-11 we report posterior means for optimal directions of good inputs and the good output

for the New MB model and the Conventional model. We observe considerable differences between the

two models in all figures. Since the new model is our preferred model, we only discuss these results in

detail. The typical plant, in moving from its current position to its profit-maximizing position, should

keep labor at current levels, slightly decrease capital, output, and S, more substantially reduce CO2, yet

moderately increase SO2 and NOx and more substantially increase energy. The need to substantially

decrease CO2 is due to our estimation of the plant’s profit-maximizing position subject a positive latent

price for such emissions, which did not exist during our sample period. If managers anticipate a cap-

and-trade market for CO2, they would be well-advised to make such changes. The increase in NOx

production is most likely in response to the adoption of pre-control devices that operate at fixed levels,

thereby over-controlling this pollutant. The same is true for SO2, where a myriad of state and local

regulations required that plants adopt specific boiler technologies.
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Figure 9: Optimal Directions–Good Inputs and Good Output: New MB model versus
Conventional model
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Figure 10: Optimal Directions-Bad Outputs: New MB model / versus Conventional model
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Figure 11: Optimal Directions-Bad Input: New MB model versus Conventional model
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7 Conclusion

The DTDF has been employed in an SFA context with increasing frequency to more flexibly estimate

multiple-input and multiple-output production, firm inefficiency, and productivity growth without em-

ploying MB constraints. Our paper is the first to introduce MB constraints into this estimation model,

which we term the New MB model. Subject to these constraints, we compute optimal directions assum-

ing plant profit maximization, correct for the potential endogeneity of all inputs and outputs, subject

to latent prices for regulated bad outputs and the bad input. The most important innovation of this

paper is our utilization of MB constraints when modeling the production of bad outputs and the use

of bad inputs. We show how to incorporate stochastic MB constraints in the modeling of the produc-

tion process so that tradeoffs between inputs and outputs (both good and bad) satisfy production and

abatement constraints. We incorporate pre- and post-combustion technologies for control of NOx and

SO2. In so doing, we satisfy the first and second laws of thermodynamics.

We illustrate these methods. using a balanced panel of 80 coal-fired U.S. electric utility plants from

1995-2005. Bayes factors indicate that the New MB model is clearly superior to the Conventional model

which omits MB constraints. We observe substantial differences between the specifications that include

the MB constraints and those that omit them in terms of estimated productivity growth and efficiencies.

Specifically, compared to the Conventional model, the New MB model indicates less technical and

allocative inefficiency, a greater returns to scale, higher productivity growth, and different optimal

directions. In many cases, the posteriors for these measures become more precise with the New MB

model. Analysis of bivariate posterior densities for the error terms of the MB equations indicates that

plant managers appear capable of making many improvements in pollution control efficiency without

sacrificing productivity growth or overall plant efficiency.
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8 Appendix: Additional Bivariate Posterior Densities

In Figures A1-A3, plants exhibit a strong pairwise correlation of the u for each MB equation. This

means that managers that are inefficient (efficient) in the control of one pollutant may be inefficient

(efficient) in the control of all pollutants. Reductions in TI for one pollutant will be achieved jointly

with another pollutant. The existence of a smaller second cluster indicates that some firms may be able

to make additional improvements by shifting to the lower cluster.

Figure A1: Aspects of bivariate posteriors of uSO2 and uCO2 in MB equations
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Figure A2: Aspects of bivariate posteriors of uNOx and uCO2 in MB equations
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Figure A3: Aspects of bivariate posteriors of uNOx and uSO2 in MB equations
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Figures A4-A6 present bivariate posterior densities for uS with uCO2 , uSO2 , and uNOx . Compared

to Figures A1-A3, there are many more clusters in Figures A4-A6. Usually two modes on each of two

clusters are visible in each of these figures. There is also a slightly negative relationship for each of

the pairwise comparisons, locally in the vicinity of the different modes. This suggests the existence

of a moderate tradeoff, so that reducing TI in the sulfur MB equation results in an increase in TI for

the three emission MB equations. This is consistent with a disconnect between the optimal choice of

sulfur in the production function and the TI of pollutant removal. Again, the stacked clusters indicate

substantial potential reductions in the TI for sulfur for a given level of TI for each pollutant, when

moving downward to a lower cluster in these figures. More attention needs to be paid to the interaction

of production and emission control. Managers should work to more closely integrate the two tasks so

that any negative tradeoff is eliminated.

Figure A4: Aspects of bivariate posteriors of uS and uCO2 in MB equations
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Figure A5: Aspects of bivariate posteriors of uS and uSO2 in MB equations

0
0.1

500

1000

0.1

1500

de
ns

ity
2000

0.08

(a)

u
S

0.05

2500

u
SO

2

0.06

3000

0.04
0 0.02

(b)

0.02 0.03 0.04 0.05 0.06 0.07 0.08

u
SO

2

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

u
S

Figure A6: Aspects of bivariate posteriors of uS and uNOx in MB equations
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Another interesting managerial issue concerns the bivariate posterior relationship between overall TI

and the TI terms in the MB equations, which we examine in Figure A7. All panels indicate substantial

potential to reduce both inefficiencies in each bivariate plot. Panel (g) relates uS to TI and indicates

that plants can reduce uS substantially for a given level of TI by moving to a lower cluster. Further,

considerable opportunities exist to improve overall TI for a given level of uS. Both improvements would

require adopting better management practices or technologies.
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Figure A7 Aspects of bivariate posteriors of technical inefficiency and one-sided error terms in the MB
equations
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Figure A8 provides the bivariate posterior relationship between AI and the error terms in the MB
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equations. The interpretation is higly similar to that in Figure A7.

Figure A8: Aspects of bivariate posteriors of allocative inefficiency and one-sided error terms in the MB
equations
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In Figure A9 we present the bivariate posterior for TI and AI. Although this density is uni-modal,

there is still considerable opportunity for plants to reduce both types of inefficiency by either adopting
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better management practices or better technology.

Figure A9: Bivariate posterior of technical and allocative inefficiency

0
0.15

500

1000

0.12

de
ns

ity

1500

0.110.1

(a)

technical inefficiency

2000

0.1

allocative inefficiency

2500

0.09
0.05 0.08

0.07

(b)

0.075 0.08 0.085 0.09 0.095 0.1 0.105 0.11 0.115

allocative inefficiency

0.05

0.1

0.15

te
ch

ni
ca

l i
ne

ffi
ci

en
cy

Finally, in Figure A10, we examine the bivariate posteriors for EC, TI, and AI at dates t and t-1.

Although these distributions are unimodal, for all three measures there is ample opportunity to improve

current-period measures for a given level of performance in the previous period. That is, plants are not

locked into poor performance from the previous year.

Figure A10: Bivariate posteriors of EC, TI, and AI at dates t and t− 1
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