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Abstract— Condition Monitoring of photovoltaic systems 

plays an important role in maintenance interventions due to its 

ability to solve problems of loss of energy production revenue. 

Nowadays, machine learning-based failure diagnosis is 

becoming increasingly growing as an alternative to various 

difficult physical-based interpretations and the main pile 

foundation for condition monitoring. As a result, several 

methods with different learning paradigms (e.g. deep learning, 

transfer learning, reinforcement learning, ensemble learning, 

etc.) have been used to address different condition monitoring 

issues. Therefore, the aim of this paper is at least, to shed light 

on the most relevant work that has been done so far in the field 

of photovoltaic systems machine learning-based condition 

monitoring. 
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machine learning. 

I. INTRODUCTION 

Renewable energies have important results for energy 
consumption in many sectors, including public and industry. 
Their climate-friendly energy transformation translates into 
the attraction of power generation companies from around the 
world [1]. Statistics from "World Energy Data" [2] explain 
that energy consumption with renewable energy resources 
reaches 23.6% of world energy consumption. Among the 
many renewable energy resources, solar energy consumption 
occupies 11.44% of the total amount of renewable energy 
expenditure with future potential increase. However, 
satisfying energy consumption needs and ensuring high 
quality distribution totally depends on a reliable condition 
monitoring system capable of real-time assessment of health 
status while providing necessary information on maintenance 
planning [3]. Accuracy of a condition monitoring system is 
itself based on a well-constructed virtual model capable of 
simulating the behavior of the actual studied system [4]. Most 
of the literature works indicate that a set of rational physical 
interpretations (thermal modeling, electrical modeling, etc.) 
will certainly lead to a very powerful model in case of a lower 
depth level of the treated problem [5]. The depth of the 
problem lies in the complexity of the system that may include 
multiple parameters such as number of components, nature of 
interactions, and external effects [5]. As the complexity 
reasonably increased, data-driven solution will be the only 
available modeling paradigm. Among data-driven methods, 
while taking into account new varieties of advanced sensor 
technologies, especially in the Industry 4.0 era, machine 
learning (ML) theories have become one of the main way of 

large problems treatment [1]. As a result, in the field of health 
condition monitoring of photovoltaic (PV) systems, several 
ML approaches have been studied in-depth. Several training 
paradigms ranging from hybrid to deep learning has been 
discussed. 

Some recent reviews provide very insightful information 
on the use of ML in assessing the health of PV systems. 
Indeed, work was carried out by K. M. Sundaram et al. [6] 
provides a lot of important information on the application of 
deep learning tools for several industrial systems, including 
PV panels. It deals with deep architectures such as 
autoencoders, convolutional neural networks (CNN), long 
short-term memory (LSTM), deep stacking network (DSN), 
deep belief networks, and the extension to generative 
adversarial networks (GANs). The work of S. Zhao et al. [3] 
analyze ML methods depending on the type of application, 
including remaining useful life (RUL) prediction, anomaly 
detection, and degradation analysis. G. Spagnuolo et al. [4] 
provide an overview of a set of condition monitoring tools 
used for accurate monitoring, diagnosis, and prognosis of PV 
systems. 

The above-mentioned works focus on the use of machine 
learning tools for PV condition monitoring and provides a 
general interpretation of their application nature. However 
they mostly did not move towards the study of feature 
collection (e.g. ordinary sensors, wireless, and unmanned 
aerial vehicles (UAV)) and extraction techniques (e.g. 
thermal image processing, signal processing, and data 
exploration with ML). In addition, many details about number 
of failures and operating conditions are missing. Architectures 
and extensions to real operating conditions different from 
maximum power point tracking (MPPT) are not fully 
covered. To the best of the authors knowledge, these woks 
represents some scarcity in presenting works that have been 
done in the presence of very massive imbalanced dynamic 
data, which can be found in real application. In this context, 
this focused paper is proposed to review PV systems machine 
leaning-based condition monitoring works covering the 
aforementioned missing details, while suggesting ways of 
likely futures opportunities on PV systems health monitoring. 

This paper is organized as follow: Section II presents 
used ML models with respect to their feature extraction and 
collection techniques, as well as problems of failures modes 
types and numbers and data dimensionality. Section III 
provides important conclusions and suggests ways forward. 



 

Fig. 1. Common failure types of PV systems. 

II. MACHINE LEARNING FOR PV SYSTEMS CONDITION 

MONITORING 

Health prediction consisted of evaluating the operating 
state of the system to detect common failures of photovoltaic 
systems. Common types of faults in PV systems can be 
classified into 6 different groups. Fig.1 elucidates the main 
possible causes of their dysfunction. 

Condition monitoring of PV systems with ML tools 
generally involves two main steps: i) selection of important 
features and extraction of parameters and ii) training process 
for failures classification. Features extraction and selection 
techniques depend on the amount of training data (e.g. Big-
data) and the nature of the collected samples (e.g. time series, 
thermographic images, etc.). In this context, Fig. 2 highlights 
these steps in a single flowchart. 

In learning process, the prediction algorithm choice 
depends on the complexity of the solution model 
reconstruction (see J. Schmidhuber [5], §3). Therefore, this 
section will list different ML approaches according to three 
main classes: i) conventional ML tools including hybrid and 
ensemble learning paradigms; ii) advanced deep learning 
models; iii) recent knowledge-driven methods such as GANs 
and TL. A focus will also be made on on the number of 
treated failures and their detection nature. Fig.3 is an 
illustration of the proposed classification studied in this 
paper. 

A. Conventional Machine Learning Models 

Unlike deep learning algorithms, conventional ML 
paradigm does not focus much more on learning from 
representations than on universal approximation [7]. Their 
main objective is to achieve greater accuracy by producing 
the best loss error. In this context, E. Garoudja et al. [4] 

trained a probabilistic neural network (PNN) using current-
voltage (I-V) analysis on the DC converter side to distinguish 
faulty and normal operating conditions. The processed data 
were retrieved from a simulation model after identification of 
the parameters of the grid-connected PV module. Four 
failure modes, around short circuits, with different number of 
strings and disconnection of strings from PV array were 
considered. H. Momeni et al. [8] proposed an ML approach 
for PV systems failure diagnosis. 

 

Fig. 2. Model reconstruction steps. 

 

Fig. 3. ML tools classification. 

Diagnosis algorithms were essentially built in a semi-
supervised learning process. A graph-based learning 
approach (GBSSL) was used to generate labels for new 



unseen samples based on some analysis of a set of labeled 
samples. Two types of failures linked to different short-
circuit cases were studied using the same information 
methodology (I-V). L. Maaløe et al. [9] generate a dataset 
with several types of failures modes (10 modes) from a real 
life-based simulation model. Then, Bayes theorem (BT) was 
used as a clustering model to distinguish between different 
operating behaviors depending on the I-V characteristic 
monitoring. Clustering results were fed into a classifier based 
on stochastic gradient ascent methods to achieve the 
approximation process. A. E. Lazzaretti et al. [10] used a 
dynamic adaptive recursive (DARL) linear model to detect 
failure modes (normal, short circuit, degradation, shading) in 
PV systems under various operating conditions. A 
photovoltaic power plant simulator was developed and was 
able of generating the required training and test data. The 
simulation model was carried out on the basis of a real 
existing PV system to latter facilitate validation. Failures 
were intentionally injected into the model to produce enough 
samples under various operating conditions. K. Dhibi et al. 
[11] employed a reduced-kernel random forest (RKRF) 
algorithm for failure detection and classification in a grid-
connected PV system. They used principal component 
analysis (PCA) to reduce the dimensionality of the training 
samples as well as they involved K-nearest neighbors (KNN) 
clustering to reduce the number of observations. A PV 
simulation model was involved to evaluate the classification 
process of the RF algorithm. A set of 9 I-V sensors was 
placed in different positions to be able to collect the needed 
healthy patterns to detect 5 different faulty modes of 
different components (sensor, inverter, grid-connection, PV 
panels, etc.). J. M. Huang et al. [12] optimized the extreme 
learning machine (ELM) algorithm using bee colony (BC) 
algorithm to perform  accurate PV systems failure diagnosis 
by studying  dust as the main environmental variable. A. 
Eskandari et al. [13] also follows the same above-mentioned 
path for PV systems failure detection but an overall learning 
architecture was used. It was a bit more complex than the 
previously mentioned work. Indeed, different algorithms 
were involved, including KNN, support vector machine 
(SVM), and naive Bayes (NB) in a unique training process. 
A voting process will then lead to a decision. Two cases of 
healthy and faulty states were treated as a classification 
problem. In [14], the same path condition monitoring path 
has been followed but, unlike ensemble learning, a technique 
was adopted to choose the best classifier from three selected 
ones, namely SVM, NB, and logistic regression (LR). 

Contrary to the above-mentioned works, entirely 
depending on the analysis of I-V/P-V characteristic, M. U. 
Ali [15] provides a different technique based on infrared 
thermographic images to determine hotspots in PV modules. 
Many feature extraction techniques such as RGB, texture, 
oriented gradient histogram (HOG), and local bit pattern 
(LBP) based on image processing were involved in the first 
step. After several tests with different datasets, SVM was 
proven to be able to accurately solve classification problems. 
Similar experiments have been reproduced by M. Dhimish 
[16] and show that discriminant classifiers (DC) leads to 
better accuracy than SVM and other conventional machine 
learning methods. 

All in one, the aforementioned condition monitoring 
techniques mainly use the I-V/P-V characteristic analysis 
where data in the training process have been driven by 
simulation models inspired from real PV installations. 

However, this context is clearly less complex and far from 
real-world PV systems applications handling a huge amount 
of different data types (I, V, thermographic images from 
installed cameras, environmental variables). Treatment of 
prediction problems in a more complex way is shown in the 
work of A. Eskandari et al. [13] where ensemble learning 
was used as it will provide accurate predictions. However, 
the issue of rich dynamic data is not fully covered, which 
could limit the current contributions to some level of lower 
depth problems than real world applications. 

Table I summarizes main works considering PV systems 
condition monitoring using conventional machine learning 
paradigms. 

B. Advanced Deep Learning Techniques 

Deep learning algorithms entirely focus on feature 
representations. The more robust the representations are, the 
more accurate the learning process will be [17] . Within deep 
multiple layers of nonlinear abstractions, features space will 
be greatly improved and some important patterns will 
emerge, which will lead to a greater propagation of decision 
classes. As a result, even greater generalization will be 
gained.  Accordingly, many deep learning frameworks have 
been proposed to treat the issue of dimensionality and 
representations learning. For instance, and unlike 
conventional manual feature extraction, A. Y. Appiah et al. 
[18] proposed a fully automatic feature extraction technique 
based on LSTM, which is highly capable of sequence-to-
sequence training due to its learning ability through time. In 
this study dealing with PV systems condition monitoring 
using data-driven methods, focus was on failure analysis 
using I-V information that were injected into a simulation 
model. Unlike previously mentioned works, a large number 
of failures types were adopted and classified onto two main 
categories, namely line-line failure (LLF) and hot spot failure 
(HSF). It is worth to mention that an amount of 2240 and 
1961 different cases were simulated for both LLF and HSF, 
respectively. 

TABLE I.  CONVENTIONAL MACHINE LEARNING PARADIGMS. 

References Tools Detection  Failures 

E. Garoudja et al. [4] PNN I-V 4 

Momeni et al. [8] GBSSL I-V 2 

L. Maaløe et al. [9] BT I-V 10 

A. E. Lazzaretti et al. [10] DARL I-V 4 

Dhibi et al. [11] 

RKRF 

PCA 
KNN 

I-V 5 

J. M. Huang et al. [12] 
ELM 

BC 
I-V 5 

A. Eskandari et al. [13] 

KNN 

SVM 
NB 

I-V 2 

A. Eskandari et al [14] 

SVM, 

NB 
LR 

I-V 2 

M. U. Ali [15] SVM 
Thermographic 

images 
2 

M. Dhimish [16] DC 
Thermographic 

images 
2 

In the meantime, 1866 cases of healthy states have been 
collected. X. Li et al. [19] investigated more complex failure 
classification problems based on real data obtained from 
large-scale PV farms. Drone technology was used to collect 



different surface images, classifying various forms of 
modulus failures, including dust, shading, encapsulant 
delamination, glass breakage, gridline corrosion, snail trails, 
and yellowing. According to the depth of big-data issues, 
deep CNN learning algorithms were adopted. In another 
work [20], both drone technology and machine learning were 
adopted for PV plants failure detection. In this case, a CNN 
was adopted for extracting appropriate training features, and 
instead of fine-tuning of the CNN itself, SVM was used to 
learn from the extracted patterns and for failure 
classification. W. Gao et al. [21], based on many learning 
parameters (i.e. I-V characteristics, solar irradiance, 
temperature) a deep CNN was built and reinforced by a 
residual gated recurrent unit (Res-GRU) to be able to 
perform both dynamic and adaptive learning under a higher 
level of nonlinear feature abstractions when classifying 
multiple types of PV systems failures. The designed 
networks allow for self-automatic extraction and less 
intervention when classifying not only single failure types 
(e.g. short circuit, partial shading, abnormal aging, etc.) but 
also hybrid types. R. Pierdicca et al. [22] used thermal 
images obtained through infrared  sensor installed in a drone 
to train a mask region-based CNN algorithm for patterns 
recognition problem under PV condition monitoring criteria. 
In this context, the 3 considered failure modes were related 
to cells (one anomaly, not contiguous cells with anomalies, 
contiguous cells with anomalies). 

Table II summarizes main works considering PV systems 
condition monitoring using deep learning paradigms. 

C. Extension to Knowledge-Guided Models 

Lack of descriptive patterns in training data is due to 
many issues such as difficulty in collecting data or lack of 
real failure mode models related to less down times cases. As 
a result, many methods have been proposed to generate 
additive hypotheses to augment training data or for existing 
generalization process. In recent literature, GAN and TL 
learning paradigms have proven their unique ability to 
extend network generalization by providing new hypotheses 
on similar learning samples. 

GANs are learning networks developed by Goodfellow in 
2015 [23]. Their main way is to train a generative model 
such as an autoencoder to generate real examples from fakes 
using a minimax two-player game approach. However, this 
time the generator is trained in a supervised way by 
associating a discriminator to classify these representations 
in the two preceding categories.  

S. Lu et al. [24], [25] proposed a hybrid deep TL 
mechanism allowing domain adaptation with a CNN 
algorithm for DC arc failure diagnosis (PV system).  

TABLE II.  DEEP LEANING PARADIGMS. 

References Tools Detection  Failures 

A. Y. Appiah et al. [18] LSTM I-V 2 

X. Li et al. [19] CNN 
UAV Surface 

images 
7 

X. Li et al. [20] 
CNN 

SVM 

UAV Surface 

images 
7 

W. Gao et al. [21] 
CNN 

Res-GRU 

I-V 
Solar irradiance 

Temperature 

3 

R. Pierdicca et al. [22] CNN Thermal images 3 

First, the algorithm tries to learn representative examples 
from the learning samples on the source domain data. After 
that, a dummy generation process of new samples in the 
target domain is followed by the TL process using GANs. W. 
Tang et al. [26], under a prediction problem using limited 
number of  electroluminescence images, augmented their 
data by combining GANs and traditional image processing 
techniques. After that, generated examples are fed into a 
CNN failure detection in PV modules. M. W et al. [27] also 
proposed the use of transfer learning approach to train a 
CNN for PV failure classification on two main datasets: 
electroluminescence images dataset in the source domain and 
infrared images dataset on the target domain. 

It can be observed that knowledge-driven models by the 
use of different training paradigms such as TL and GANs are 
problems of an incomplete data learning process. Therefore, 
further knowledge must involve the extension of the 
generalization. 

Table III summarizes main works considering PV 
systems condition monitoring using knowledge-driven 
paradigms. 

III. CONCLUSIONS AND WAYS FORWARD 

One can observe from the literature state of the art review 
that traditional machine learning tools with different 
paradigms (hybrid and ensemble) are generally used to 
investigate time series analysis. Driven samples most of the 
time are depends on conventional acquisitions systems that 
involves I-V/P-V curves analysis. Therefore it is almost rare 
to find such an application of traditional machine learning in 
image processing for condition monitoring of PV systems.  

In the meantime, advanced deep learning techniques have 
been widely applied for different types of image processing 
including electroluminescent and infrared thermographic. 
Knowledge-driven models are generally used when training 
and testing data suffers from non-similarity in distributions 
besides lack of patterns and icomplete liste of labels. 

Generally speaking these algorithms are used under 
similar criteria that inclouds: i) these algorithms treated the 
same PV systems condition monitoring issues (i.e. failure 
detection and diagnosis) under the same working conditions 
which always is set to the MPPT; ii) most of them are trying 
to detect healthy patterns from data obtained from simulation 
models; iii) treatment of data classes is almost the same (i.e. 
≈ 3±2), apart from some works such as H. Momeni et al. [8] 
where 10 failure modes were considered. In addition, 
traditional machine learning models generally treats I-V 
characteristics to reach their goal of best approximation. 
Meanwhile, deep networks are generally treating deeper 
problems with higher number of features including images. 

TABLE III.  KNOWLEDGE-DRIVEN PARADIGMS. 

References Tools Detection Failures 

S. Lu et al. [24],  
CNN 
TL 

GAN 

Only current (I) 1 

S. Lu et al. [25]. 
CNN 
TL 

GAN 

Only current (I) 1 

W. Tang et al. [26] 
CNN 
GAN 

Electroluminescence 
images 

4 

M. W. Akram et al. [27] 
CNN 

TL 

Electroluminescence 

and infrared images 
3 



More complex operating conditions were considered by 
A. Bakdi et al. [28], where both MPPT and intermediate PPT 
(IPPT) were considered resulting in 16 failure modes that 
have been intentionally injected in a simulation model 
inspired. However, initial row data was recorded in real time 
and is not generated from a probability distribution. There 
were collected from two real scenarios of healthy operation 
under MPPT and IPPT.  

The recorded scenarios were extremely large dynamic 
environment that is able to produce a deep problem. Bakdi et 
al. [28] attempt to solve this problem by proposing the use a 
hybrid model that combines a set of ordinary ML tools 
namely principal component analysis (PCA) , Kullback–
Leibler divergence (KDL), recursive smooth Kernel density 
estimation (KDE). These tools were respectively applied for 
dimensionality reduction, failure features extraction, and 
approximation. Better performances were achieved but the 
problem still needs a deeper evaluation of deep learning 
tools. 

In this context, ways forward will be including deep 
learning models under similar complex criteria of higher 
dimensional data (MPPT and IPPT modes) for PV systems 
condition monitoring. Besides, one can provide more in-
depth conclusions by investigating more complex studies 
including both infrared images and sensors measurements in 
transfer learning scheme. 
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