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BSc (Maths), Hà Nô. i Pedagogical Uni. 2, Viê.t Nam(1992)
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Abstract

For a given magnetic potentialA one can define the Weyl-Dirac operator σ·(−i∇−A)
on R3. An L2 eigenfunction of σ · (−i∇ − A) corresponding to 0 is called a zero
mode. In this thesis we will be concerned with the zero mode problem for the Weyl-
Dirac operator and some related problems. The main results are (i) upper bounds
for the number of zero modes of the Weyl-Dirac operator in three dimensions when
scaling a given magnetic field. A similar version for the Dirac operator in two
dimensions is also obtained. There are also related results to estimate the number
of zero modes of the massless Dirac operator, and the dimension of the eigenspaces
at threshold energies for the Dirac operator with positive mass. (ii) construction
of Dirac operators on the unit ball S2 of R3 as well as the determination of their
spectrum in case of “constant” magnetic fields. We also show another proof for
the Aharonov-Casher theorem for S2 based on results about spectral properties of
Dirac operators that we have obtained. (iii) a formula giving the number of zero
modes of the Weyl-Dirac operator for a special magnetic field, which is the result
of pullbacks from the “constant” volume form of S2. We also obtain a lower bound
for the number of zero modes for the Weyl-Dirac operator corresponding to certain
scaled magnetic fields; the magnetic fields are parallel to fibres of the Hopf fibration
(pulled-back to R3 using inverse stereographic projection).
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Chapter 1

Introduction

In this chapter we will be concerned with the background of the zero mode prob-
lem. We will answer the question of when and in what circumstances this concept
appeared. We will see the concept of zero mode in fact arose for the first time from
a problem in physics. However we will also see some arguments about why this
concept is interesting from a mathematical point of view. Comparison between the
zero mode problems on R

3 and on R
2 is discussed. Apart from the first and the

final section to be concerned with operators and notations to be used throughout
the thesis this chapter briefly summaries most known results about the zero mode
problem; that is hopefully about the zero mode problem progress in the last twenty
years. It also helps us to clarify the contribution of results in the thesis, which will
be its core part afterward.

1.1 Magnetic operators

Suppose that we have a vector field A = (A1, A2, A3), where here Aj, j = 1, 2, 3 are
real-valued functions of x ∈ R

3. Here we call A the vector potential of a magnetic
field B, where B := curl A. More specifically, we have B = (B1, B2, B3), where

B1 = ∂2A3 − ∂3A2, B2 = ∂3A1 − ∂1A3, B3 = ∂1A2 − ∂2A1. (1.1)

We also sometimes call A a magnetic potential. Let ∇ = (∂1, ∂2, ∂3) be the usual
gradient operator on R3, we notice that

B = ∇×A.

Take L2(R3) and consider the the Laplace operator

∆ = ∂2
1 + ∂2

2 + ∂2
3 .

Obviously, we cannot define the operator −∆ in the whole L2(R3). However, we may
define −∆ with the domain as the usual Sobolev space H2(R3). The thus obtained
operator is called the free Schrödinger operator, denoted by H0. From the physical
point of view the Hilbert space L2(R3) corresponds to one particle in R

3, and the
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free Schrödinger operator is the corresponding non relativistic Halmiltonian when
the particle does not interact with anything.

In Physics the Hamiltonian of a quantum mechanical system is usually the sum of
the free Schrödinger operator and a “multiplication” operator V corresponding to
the potential energy. From the mathematical point of view that means in L2(R3) we
consider the operator −∆ + V or H0 + V ; this is known as the Schrödinger operator
in L2(R3).

Denote by p the operator −i∇ in L2(R3). Then, p is often called to be the momen-
tum operator. In case we have a vector potential A = (A1, A2, A3) we may consider
the operator p−A or (−i∂1 −A1,−i∂2 −A2,−i∂3 −A3) in L2(R3); this is called the
magnetic momentum operator in L2(R3). Observe that p2 = −∆. As for the case of
Schrödinger operators we may consider the operator (p−A)2 + V ; this is called the
magnetic Schrödinger operator.

We denote by σ = (σ1, σ2, σ3), where

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

are usual Pauli matrices, and i is the imaginary unit, i2 = −1. Now, for a certain
vector potential A = (A1, A2, A3) in [L2(R3)]2 we may consider the Weyl-Dirac
operator, denoted by DA, where

DA := σ · (p−A). (1.2)

(We follow Balinsky and Evans (see [12]) in using the term Weyl-Dirac operator).
In [L2(R3)]2 the Weyl-Dirac operator DA is formally self-adjoint.

Definition 1.1.1. If we have a nontrivial ψ =

(
ψ1

ψ2

)
∈ [L2(R3)]2 such that DAψ = 0,

then ψ is called the zero mode for DA.

Suppose that B is a (smooth) magnetic field on R3; that is B is a smooth vector
field satisfying div B = 0. Then we can find a (smooth) magnetic potential A
with B = curl A (see, for instance [33], p.206). Furthermore, although A is not
uniquely determined, if A and A′ are two potentials satisfying curl A = B = curl A′,
then A′ − A = ∇ϕ for some smooth function ϕ : R3 −→ R (see, for instance
[38], p.106). Multiplication by eiϕ defines a unitary map on L2(R3,C2) called a
gauge transformation. We have

(p− A′) = eiϕ(p− A)e−iϕ. (1.3)

Therefore

DA′ = eiϕDAe
−iϕ, (1.4)
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so the Weyl-Dirac operators DA and DA′ are unitarily equivalent. Thus the spec-
trum of a Weyl-Dirac operator, and in particular the number of corresponding zero
modes, is determined entirely by the magnetic field B = curl A. For this reason we
will sometimes write, for instance, DB,R3 for DA.

The square of DA is called the Pauli operator and is denoted by PA; that is

PA :=
[
σ · (p−A)

]2
. (1.5)

Observe that if we have two vector potentials A and A′ in R3 we have

(σ ·A) · (σ ·A′) = A · A′ + iσ · (A× A′).

Then, we may see that

PA =
[
σ · (p− A)

]2
= (p−A)2 − σ · B. (1.6)

Here in (1.6) we may put I2-the 2 × 2 identity matrix wherever it is needed.

1.2 Why zero modes?

In [29] Fröhlich et al. consider the problem of the stability of the hydrogen atom
in external magnetic fields. Here the stability for a system means the finiteness
of its ground state energy or the finiteness of the bottom eigenvalue for the cor-
responding operator from a mathematical point of view. Specifically, Fröhlich et
al. were concerned with the problem of the one-electron atom in a magnetic field
B = (B1, B2, B3). The Hamiltonian in this case is

H = (p−A)2 − σ ·B − z

|x|
with p = −i∇ as usual and z is a nuclear charge number. They noted that the prob-
lem above is not very interesting if the electron spin is not included (in mathematical
point of view that means removing the σ ·B term). Truly, in that case we can apply
Kato’s inequality (see [34], Lemma A) and then obtain for any ψ ∈ [C∞

0 (R3)]2

〈ψ, (p− A)2ψ〉 ≥ 〈|ψ|, p2|ψ|〉.

We also notice that
〈ψ, |x|−1ψ〉 = 〈|ψ|, |x|−1|ψ|〉.

Then, the finiteness of the ground state energy follows from the classical results for
the similar problem in case of having no potential A, which was fully solved after
the introduction of the Schrödinger equation during the first years of the twentieth
century.

Denote by E0(B, z) the ground state energy for the system above. Fröhlich et al.
saw that the problem with the electron spin included is more interesting. In [9]
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Avron et al. showed that the ground state E0(B, z) of H is always finite, but it
depends on the electron spin interacting with the magnetic field B in such a way
that E0(B, z) −→ −∞ as B −→ ∞. For instance, with constant magnetic field B
which is big enough, Avon et al. proved that E0(B, z) is approximately −(logB)2.
Therefore, Fröhlich et al. want to prevent B from spontaneously growing large
and driving E0(B, z) towards −∞. So, they raised the question of whether the
stability of the system is independent of B when adding the magnetic field energy
(in their units) ε

∫
R3 B

2 dx, where 8πεα2 = 1 for the fine structure constant α. From
a mathematical point of view the question becomes whether

E(B, z) = E0(B, z) + ε

∫

R3

B2dx

is bounded below independent of B. To investigate that question they showed that
there is a critical nuclear charge zc > 0 such that there is stability for one electron
atoms if z < zc and instability if z > zc.

The next question for Fröhlich et al. is whether or not zc is finite. It turns out that
the finiteness of zc depends on the existence of a nontrivial two-component spinor
ψ ∈ [H1(R3)]2 (the usual Sobolev space) such that

σ · (p− A)ψ(x) = 0 (1.7)

with potential A ∈ L6(R3) satisfying divA = 0 and B = ∇× A ∈ L2(R3). Thus, it
turns out that they have to study the problem of existence of zero modes for the
Weyl-Dirac operator (1.2)

DA = σ · (p− A).

Loss (one of authours for [39]) and his collaborator Yau were the first to find ex-
amples of such spinors. They called them the zero energy bound states. They also
sketched two general methods of constructing such specific zero modes, as has be-
come the popular name nowadays. By extension we also use “zero mode” for the
squared-integrable elements in the kernel of some other operators. We will later
mention the two methods proposed by Loss and Yau and we will discuss the first
zero mode of Loss and Yau as well.

To conclude this section we would like to discuss more details about one of estimates
in [39] which was again mentioned in [30]. In general for a given vector potential
A we do not know exactly whether we obtain any zero modes. However we may
show a upper bound for the number of zero modes for an arbitrary potential A. The
concern here is the details of the proof about the upper bound for the number of
zero modes we would expect for magnetic potentials A. In our view we can argue as
follows: first, it follows from (1.6) that

(p−A)2 − σ · B = [σ · (p− A)]2.

The operator on right-hand side is the Pauli operator PA. Now if ψ is a zero mode,
then we also have [σ ·(p−A)]2ψ(x) = 0. So, ψ is the ground bound state for the Pauli
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operator PA (since the Pauli operator is positive). Then, we get [(p−A)2−σ·B]ψ = 0.
We notice that σ · B ≤ |B|, and it implies that

(p− A)2 − |B| ≤ (p−A)2 − σ ·B

as an operator inequality. It follows from the min-max principle (or the result of
Problem 1 in Reed & Simon, IV) that the number of non-positive bound states for
the operator (p − A)2 − |B| is greater than or equal to the number of non-positive
bound states for the Pauli operator (in this case that is the number of zero modes
we are interested in). Now, we can apply the theorem of CLR (CLR inequality)
for the magnetic Schrödinger operators (p−A)2 + V (see [8], Theorem 2.15), where
V is a real-valued function for x ∈ R3. Finally, we obtain an upper bound for the
number of zero modes for the magnetic potential A as C

∫
R3 |B| 32 dx, where C is a

constant, independent of A.

Here, CLR stands for Cwikel, Lieb and Rosenbljum, who initiated the Cwikel-Lieb-
Rosenbljum theorem for Schrödinger operators −∆+V (see [45], Theorem XIII.12).
We recall here that p2 is exactly the usual Laplacian −∆. The best constant C
known up to now is 0.116, which was obtained by Lieb for CLR inequality in case of
Schrödinger operators. It is not clear whether or not this C is also the best constant
for the CLR theorem for the magnetic Schrödinger operator (see [37]), and then for
our upper bound here. In section 4.4 of [30] there is another justification for the
upper bound we are discussing, which is based on the variational principle and is
suggested by Loss and Yau in [29].

1.3 Some mathematical problems related to zero

modes

As discussed in the previous section, the zero mode problem first arose from a
problem in physics. Now we will see why we need to consider the existence of
zero modes from a purely mathematical point of view. Let us consider the Pauli
operator as the square of the Weyl-Dirac operator above. This operator looks like
the Laplacian −∆ at least in the way that it is the square of the another (−∆ = p2).
So, a natural question is whether we have a similar version of CLR inequality for
the Pauli operator. That means whether the inequality

#{eigenvalues λ of PA + V such that λ < 0} ≤ C‖V ‖α
p (1.8)

holds for some p with 1 ≤ p ≤ ∞ and some positive α, where the constant C is
independent of V. Similar questions are also raised as to whether we can obtain
inequalities of the Sobolev and Hardy type for the Pauli operator (see [11]).

The existence of the zero modes obviously shows the negative answers for the latter
questions. For the former or the question about the inequality of CLR type it needs
some arguments as we will see below; the result is that we have a clear answer for
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this question that we cannot get such an estimate. Truly, we assume conversely that
(1.8) held. Then, we choose a real-valued V < 0 such that ‖V ‖p is small enough
that can make the right-hand side of (1.8) less than 1. So, for such V, the inequality
(1.8) would tell us that there are no negative eigenvalues for PA +V or this operator
would be positive. However, we remark that if there is a zero mode ψ we also have
PAψ = 0. It would follow that

〈(PA + V )ψ, ψ〉 =

∫
V |ψ|2 dx < 0

or the operator PA + V is not positive. This would be a contradiction. Thus the
existence of at least one zero mode shows that the answers for the similar versions
of the CLR, Sobolev or Hardy inequality in case of the Pauli operator are negative!

In [58] T. Weidl obtained a formula for the number of negative eigenvalues of the
operator PA−λV in two dimensions if V 6= 0 is non-negative and sufficiently regular
for sufficiently small λ > 0. It is related to the total flux of the magnetic field
which we will be concerned with in the next section. Recently, Frank et al. in [28]
have obtained similar results for a class of magnetic fields and another class of V ′s.
They showed the asymptotic behaviour for the j-‘additional’ negative eigenvalue as
λ → 0 as well. As far as we know there is no similar result in three dimensions.
Although in three dimensions we can estimate the number of zero modes, there are
no general results about the exact number of zero modes for such a magnetic field
like the Aharonov-Casher theorem in two dimensions (see Theorem 1.4.1 in the next
section).

1.4 The zero mode problem in two dimensions

Contrary to the three dimensional case, for a given magnetic field we can determine
exactly the number of zero modes for the Dirac operator

σ · (p−A) := σ1 · (p1 − A1) + σ2 · (p2 −A2) (1.9)

in two dimensions. This well-known result was initiated in [7] by Aharonov and
Casher in 1979. Now their result is widely known as the Aharonov-Casher theorem.
We will mention this result below in a simple case with a compactly-supported mag-
netic field; a wider class of magnetic fields for which a similar conclusion still holds
can be found in [40].

In two dimensions a vector potential or magnetic potential A = (A1, A2) is used, with
real-valued components A1 and A2 depending on (x1, x2) ∈ R2. The corresponding
magnetic field B is then the simple scalar function given by

B = ∂1A2 − ∂2A1. (1.10)

Then, we have the following well-known result.
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Theorem 1.4.1. (Aharonov-Casher theorem) Suppose the magnetic field B is
bounded and has compact support in two dimensions, and A is a vector potential
associated with B. Denote by F the total flux of B

F :=
1

2π

∫

R2

B(x)dx, (1.11)

and by ⌊x⌋ the biggest integer which is strictly smaller than x for x > 0 and ⌊0⌋ = 0.
Then, the number of zero modes for the Dirac operator σ · (p−A) is ⌊|F |⌋.

We can summarise the proof of that result (see [7] or [57] ) as follows; for

φ(x) =
1

2π

∫

R2

log |x− y|B(y)dy,

we notice that ∆φ(x) = B(x) since the Green’s function of the Laplacian on R2 is
1

2π
log |x− y|. Next, we see that

φ(x) − F log |x| = O(
1

|x|), as |x| → ∞.

Our Dirac operator has a gauge invariance property as well (recall (1.4) in case
of the Weyl-Dirac operator). Suppose both magnetic potentials A = (A1, A2) and
A′ = (A′

1, A
′
2) have the same magnetic field B; that is ∂1A2 − ∂2A1 = ∂1A

′
2 − ∂2A

′
1.

Then, there exits a smooth scalar valued function λ such that A′ − A = ∇λ. Now
we can check that

eiλ(p−A)e−iλ = p− A′.

It follows that

eiλ

(
σ · (p− A)

)
e−iλ = σ · (p−A′).

The map eiλ is unitary and therefore the spectrum of the Dirac operators σ · (p−A)
and σ · (p− A′) are the same. It follows that they have the same zero modes.

Therefore, we can choose the vector potential A as (−∂2φ, ∂1φ) and now we need

to find the number of independent square integrable solutions ψ =

(
ψ1

ψ2

)
for the

following equation

σ · (p− A)ψ = 0.

That equation is equivalent to

(
0 (p1 − A1) − i(p2 − A2)

(p1 −A1) + i(p2 −A2) 0

)(
ψ1

ψ2

)
= 0,

or

(∂1 − i∂2)(e
φψ2) = 0 and (∂1 + i∂2)(e

−φψ1) = 0.
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It follows from the Cauchy-Riemann equations that the function f2 = eφψ2 is entire
analytic in z̄ = x1 − ix2 and f1 = e−φψ1 is entire analytic in z = x1 + ix2. For large
|z| = |x1 + ix2| we see that

|eφψ2| ≈ |x|F |ψ2| and |e−φψ1| ≈ |x|−F |ψ1|.

Now, assume that F > 0 so the entire analytic function f1 is square integrable (recall
that ψ1 is square integrable). It follows that it must be 0, so we have ψ1 = 0. Also we
need ψ2 = f2e

−φ to be square integrable. It follows that the entire analytic function
f2 must increase no faster than a polynomial in z̄ of degree less than F − 1. Since
there are just ⌊F ⌋ linearly independent polynomials of this type (1, z̄, z̄2, . . . , z̄⌊F ⌋−1),
then we can obtain exactly ⌊F ⌋ zero modes for the Dirac operator σ · (p−A) as the
theorem claims. The case of F ≤ 0 can be treated similarly.

In [40] Miller obtained a similar result to that above with a wider class of magnetic
fields B, that is for bounded magnetic fields B such that

∫
R2 |B(x)| | log |x||dx <∞.

He also showed that if the flux F 6= 0 is an integer there will be either ⌊|F |⌋ or
⌊|F |⌋−1 zero modes (of course always ⌊|F |⌋−1 if B is compactly supported). Erdös
and Vougalter in [25] remarked that the condition of boundedness for magnetic fields
B can be replaced by the weaker condition in which B ∈ K(R2)- Kato class; that
means B satisfies the following condition

lim
r↓0

sup
x

∫

|x−y|≤r

log |x− y|−1|B(y)|dy = 0.

Furthermore, they gave an explicit example in which the Aharonov-Casher The-
orem does not hold for continuous bounded magnetic fields satisfying only that∫

R2 |B|dx < ∞. However the main result in [25] is the Aharonov-Casher theorem
(more or less) still holds for a big class of ‘reasonable’ magnetic fields which are
measures with bounded total variation. Recently, in [48] the case of magnetic fields
with infinite flux has been investigated.

There is another version of the Aharonov-Casher theorem, but for two dimensional
compact manifolds like the unit ball S2 of R3. We can see it in [17] or more details
in [24]. We will also mention it later in this thesis with our proof for this result (see
Theorem 3.6.1).

1.5 The Loss-Yau zero mode

Loss and Yau obtained the first zero mode in [39] by a ‘reverse’ construction; that
means they chose the zero mode first, then they constructed the vector potential
A, and lastly the corresponding magnetic field B. They started this way of finding
examples of zero modes by supposing they had a spinor ψ and a scalar valued λ(x)
which satisfied

(σ · p)ψ(x) = λ(x)ψ(x), (1.12)
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with 〈ψ, ψ〉(x) 6= 0 for all x. Then, they put

A(x) = λ(x)
〈ψ, σψ〉
〈ψ, ψ〉 (x) (1.13)

By direct calculation we can see that for ψ =

(
ψ1

ψ2

)
, the matrix σ · 〈ψ, σψ〉〈ψ, ψ〉 becomes

1

|ψ1|2 + |ψ2|2
(
|ψ1|2 − |ψ2|2 2ψ1ψ̄2

2ψ̄1ψ2 −|ψ1|2 + |ψ2|2
)
.

Now we can check that

σ · 〈ψ, σψ〉〈ψ, ψ〉 ψ(x) = ψ(x). (1.14)

We notice that formula (1.14) can be verified by another way. Truly, we always have

(σ · a) · (σ · b) = a · b+ iσ · (a× b).

Then, it follows that for any normalised spinor χ

[σ · 〈χ, σχ〉]2 = 〈χ, σχ〉2I2 = I2.

It follows that the eigenvalues of the matrix σ · 〈χ, σχ〉 are ±1. On the other hand
〈χ, σ · 〈χ, σχ〉χ〉 = 〈χ, σχ〉2 = 1. This shows that χ is the eigenvector for the

matrix σ · 〈χ, σχ〉 with 1 as its eigenvalue. Taking χ =
ψ

〈ψ, ψ〉 1

2

gives (1.14).

Finally, (1.12) and (1.14) give us (1.7); that is ψ is a zero mode for the magnetic
potential A.

Loss and Yau gave a specific solution to (1.12); for a constant spinor φ0 with the
unit length we can directly check that

(σ · p) ψLY =
3

1 + |x|2ψLY , where ψLY (x) =
1 + iσ · x
(1 + |x|2) 3

2

φ0.

Then, for w = 〈φ0, σφ0〉 it follows from the formula (1.13) that the corresponding
vector potential for the Loss-Yau zero mode ψLY is

ALY (x) =
3

1 + |x|2
〈ψ, σψ〉
〈ψ, ψ〉

=
3

(1 + |x|2)2
[(1 − x2)w + 2(w · x)x+ 2w × x].

The formula for the corresponding magnetic field for ψLY (x) is

BLY (x) = curl ALY

=
12

(1 + |x|2)3
[(1 − x2)w + 2(w · x)x+ 2w × x].
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If we choose φ0 =

(
1
0

)
we will have the Loss-Yau zero mode

ψLY =
1

(1 + |x|2) 3

2

(
1 + ix3

ix1 − x2

)
(1.15)

with the corresponding magnetic potential

ALY (x) =
3

(1 + |x|2)2




2x1x3 − 2x2

2x2x3 + 2x1

1 − x2
1 − x2

2 + x2
3




T

, (1.16)

and the magnetic field

BLY (x) =
12

(1 + |x|2)3




2x1x3 − 2x2

2x2x3 + 2x1

1 − x2
1 − x2

2 + x2
3




T

, (1.17)

where x = (x1, x2, x3) ∈ R3.

1.6 The zero modes of Elton

In fact Loss and Yau in [39] propose two methods for constructing zero modes. How-
ever, they give only the specific zero mode for the first method, which we met in the
previous section. Motivated by their second method, Elton in [21] has constructed
two other specific zero modes. The key point of this method is to skillfully choose
the spinor ψ such that 〈ψ, ψ〉 6= 0, for all x ∈ R3 and div〈ψ, σψ〉 = 0. Then, Loss
and Yau verify that such a spinor will be the zero mode with the corresponding
vector potential and magnetic field

A(x) =
1

〈ψ, ψ〉

(
1

2
curl〈ψ, σψ〉 + Im〈ψ, ∇ψ〉

)
,

B(x) =
1

2|U |3

[
∑

j

Uj(curlU ×∇Uj) − |U |2∆U +
1

2

∑

ijk

εijkUi∇Uj ×∇Uk

]
,

where U = 〈ψ, σψ〉.

Elton obtains the first specific example of a zero mode by the method above by
taking a function g satisfying the following conditions

• g : R −→ R is smooth compactly supported and non-negative

• g(t) = (4 − t2)
1

2 for t ∈ [−1/2, 1/2]

• supp (g) ⊂ [−1, 1]

• ±g′(t) ≤ 0 for ±t ≥ 0.
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Then, he chooses a real-valued function f on R+, the set of non-negative real numbers
by

f(r) = r−3

(
−
∫ r

0

t4(g2)′(t) dt

) 1

2

, for all r > 0.

It turns out that the spinor

ψ1
E(x) = f(r)

(
x3

x1 + ix2

)
+

(
ig(r)

0

)

is a smooth zero mode with the corresponding vector potential of compact support
in the unit ball.

The second zero mode, which Elton constructs in [21] has the the corresponding
magnetic field, which can be written as a perturbation of a constant magnetic field.
Moreover, the perturbation is smooth, supported on {|x3| ≤ 1} and decays like
o(|x|−1) as |x| → ∞. That zero mode is

ψ2
E(x) = u

(
(ρ2 − 1)(−h+ ig)

2(x1 + ix2)

)
,

where u = exp(−ρ
2

2
− k); ρ = x2

1 + x2
2, k is a smooth function on R3 depending on

x3 and constant in x1 and x2; g above, and h defined as

h(t) =

{
−[4 − g2(t)]

1

2 for t ≤ 0

[4 − g2(t)]
1

2 for t ≥ 0.

1.7 Some results by Adam, Muratori and Nash

Adam et al. in a series of papers (see [2], [3], [4], [5]) developed the results of Loss
and Yau in [39] in some different directions. We notice that Adam et al. use the
term the Abelian Dirac operators in three dimensions for Weyl-Dirac operators.

In [2] Adam et al. firstly constructed some new examples of zero modes by studying

the Loss and Yau zero mode ψLY . They wrote ψLY = (1 + r2)−
3

2 (1 + X)φ0, where
X = iσ · x, r = |x|, and φ0 is the constant unit spinor. Then, they tried to find
other zero modes of the more general type

ψ(l) = (1 + r2)−( 3

2
+l)
[(

1 +
l∑

n=1

anr
2n
)
I2 +

l∑

n=0

bnr
2nX

]
φ0, (1.18)

where I2 is the 2 × 2 identity matrix, by using (1.12) and X2 = −r2I2, xj∂jX = X
and iσj∂jX = −3 · I2. Adam et al. also showed that for each integer l ≥ 0 we always
get one zero mode of the type (1.18) above!
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To express ψLY as g(r)Uψ0, where g(r) =
1

1 + r2
plays the role of a scalar func-

tion; and U =
1

(1 + r2)1/2
(1 + X), an SU(2) matrix (a complex-valued unitary

2 × 2-matrix with determinant 1), Adam et al. found some other zero modes with
the general form ψ(n) = gUnψ0, where g (we have to look for) is dependent of only
r. The key technique is still to use the remark of Loss and Yau (1.12) and calculation.

There is another way of obtaining some more zero modes by replacing φ0 with
another class of spinors (rather than constant unit spinors). More specifically, Adam
et al. used the class

Φl,m =

( √
l +m+ 1/2 Yl,m−1/2

−
√
l −m+ 1/2 Yl,m+1/2

)
,

where m ∈ [−l − 1/2, l + 1/2] and Yl,m±1/2 are spherical harmonics (see [31], p.
38-39 for these spherical harmonics). Then, some zero modes can be found by the
ansatz

ψl,m = rl(1 + r2)−l−3/2(1 + X)Φl,m.

See [2] for details.

Motivated by the zero mode proposed by Elton, Adam et al. in [3] constructed a
whole class of magnetic potentials with compact support (and therefore magnetic
fields with compact support) so that the corresponding Pauli operators (then, the
Weyl-Dirac operators) have zero modes. This is interesting from the physical point
of view because magnetic fields with compact support are the ones which can be
well treated in the computing lab. To do this they firstly remarked that the spinor

Ψ0(x) =
i

r3

(
x3

x1 + ix2

)
satisfies

(σ · p)Ψ0 = 0.

This spinor is well-behaved for large r = |x2
1 + x2

2 + x2
3|

1

2 . So, they constructed zero
modes that are equal to Ψ0 outside a ball with radius r and they differ from Ψ0

inside that ball. One example we want to mention here from [3] are the zero modes

obtained by the ansatz in [2] above with g(r) = exp(−4r2+3r4− 4

3
r6+

1

4
r8) for r < 1

and g(r) = exp(−25
12

)r−2 for r ≥ 1. The magnetic potentials and magnetic fields in
these cases have compact support in the unit ball. Please see [3] for more details.

In [4] Adam et al. constructed a class of magnetic potentials A(l) (there they called
them the gauge fields) such that each A(l) will give more than one zero mode. At
first they remarked that if the function χ satisfies (σ · pχ)(1 + iσ · x)φ0 = 0, then
χnψLY , n ∈ Z also satisfies (1.12) for the same magnetic potential ALY . The function
χ were shown as

χ =
2(x1 + ix2)

2x3 − i(1 − r2)
= S exp(iσ),
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where

S2 =
4(r2 − x2

3)

4x2
3 + (1 − r2)2

and σ = tan−1x2

x1
+ tan−1 1 − r2

2x3
.

Adam et al. chose

Ψl :=
Yl,l+1/2r

l

(1 + r2)l+3/2
(1 + iσ · x)φ0

corresponding to the maximal quantum number m = l + 1/2. Then, they showed
that Ψn,l = χ−nΨl, n = 0, 1, . . . , l are zero modes for the scaled magnetic potential

Al =
3 + 2l

(1 + r2)2




2x1x2 − 2x2

2x2x3 + 2x1

1 − x2
1 − x2

2 + x2
3




T

=
3 + 2l

3
ALY (recall (1.16)).

In [5] Adam et al. extended the results in [4]. They considered a much wider
class of Weyl-Dirac operators which have ‘multiple zero modes’. That means for
one magnetic potential the dimension of the kernel of the corresponding Weyl-Dirac
operator is greater than 1. As far as we know they were the first to give an explicit
example of a magnetic potential for which the corresponding Weyl-Dirac operator
has (at least) l + 1 different zero modes.

1.8 Erdös and Solovej’s work on zero modes

The work by Erdös and Solovej in [24] published in 2001 gave a new insight into the
zero mode problem. They considered this problem from a the geometrical point of
view. The last two chapters, especially Chapter 3 of this thesis, will discuss some
details about this work. Here we will sketch some key points of Erdös and Solovej’s
idea.

Denote by S2 the unit ball in R3 and by S3 the unit ball in R4. The main result in
Erdös and Solovej’s work in [24] is the construction of a certain class of magnetic
fields on R3 for which the dimension of any corresponding Weyl-Dirac operator can
be counted exactly. They obtained this class of magnetic fields by pulling back
magnetic fields from S2 to R3 (we notice that the magnetic fields on S2 are actually
two-forms on S2). Erdös and Solovej in fact used S3 as the bridge while pulling
back two-forms on S

2. More specifically, firstly they pulled back those two-forms
using the Hopf map from S3 to S2. Then, they continued to pull back the obtained
two-forms on S3 to get the class of magnetic fields on R3 we mentioned above using
the inverse stereographic projection from R3 to S3. It turns out that the Loss-
Yau zero mode as well as Adam et al.’s multiple zero modes can be obtained from
this construction if one starts with certain multiples of volS2 , the volume form on S

2.

To show their result Erdös and Solovej constructed Dirac operators with magnetic
fields on the Riemannian manifolds S2 and S3. Therefore they needed to define
the Spinc structures on compact Riemannian manifolds; these include Spinc spinor
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bundles and Spinc connections. Then, the magnetic field is related to the curvature
of the connection. We will discuss more about these in Chapter 3.

1.9 Some other results on the zero mode problem

In 2001 Balinsky and Evans showed in [10] that there are only finite values of
t ∈ [0, T ] such that the kernel of the Pauli operator PtA is non-trivial. That
means that in any compact interval of the positive real line there are only a finite
numbers of values of t such that we can get some zero modes from the operator
DtA = σ · (p− tA) with scaled potential. Balinsky and Evans also showed that the
set of magnetic fields B such that we have no zero modes is “big”; it actually con-
tains an open dense subset of [L

3

2 (R3)]3. These results explain why we are struggling
a bit to construct a zero mode. A point in their proofs of these results is to describe

the Pauli operator (by Theorem 1.11.4) as the form sum of the operator
(
p − A

)2
and its “small” perturbation σ · B.

In 2002 Balinsky and Evans gave another proof (in [12]) for the results (in the view
of the zero mode problem) they had obtained in 2001. This time the point in their
proof is to write σ ·(p−A) (in fact it is + in place of − in their paper) as the operator
sum between σ · p and its ”small” perturbation σ ·A. They also use a bound in [18]
obtained by I. Daubechies to estimate the number of nonpositive eigenvalues for the
operator |p|−V which can be considered as the |p|-version of the well-known Cwikel-
Lieb-Rosenbljum bound (for the operator |p|2 − V ). Furthermore, they obtain an
estimate for the dimension of kernel of DA :

dim KerDA ≤ Cn

∫

Rn

|A|n dx, for n = 2, 3, (1.19)

where the constant Cn independent of A. However, in their proof they have used an
operator estimate that is actually wrong. We will discuss this issue and show the
complete proof for the estimate (1.19) in Theorem 2.2.10.

To study the zero mode problem from another perspective Elton in [22] constructed
a class of magnetic potentials called A, which includes all functions A ∈ C0(R3, R3)
such that A = o(|x|−1) as |x| → ∞. This set A can be equipped with the norm
‖A‖ = ‖(1+ |x|)A‖L∞, making it a Banach space with C∞

0 as a dense subset. Elton
used this set and proved some results for zero modes with magnetic potentials in this
class. Some of those results are that (i) There are finitely many zero modes (maybe
none) for each magnetic potential A ∈ A (ii) The set of all magnetic potentials in
A which give no zero modes is ‘big’; it is actually a dense open subset of A (this is
similar to Balinsky and Evans’ result) (iii) For any positive integer number m and
any open and non-empty set Ω there exists at least one C∞

0 −magnetic potential A
with its support in Ω such that the zero mode equation σ · (p − A)ψ = 0 gives us
m independent zero modes. Coming from struggling to construct one zero mode for
one magnetic potential we are happy to see from this result that there always exists
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some magnetic potentials for which the corresponding zero mode equation gives us
any given number of independent zero modes! (iv) The sets of magnetic potentials
which give m independent zero modes are smooth sub-manifolds of A with corre-
sponding co-dimensions of m2 if m = 1 or m = 2; and are contained in a smooth
sub-manifold with co-dimension of 2m− 1 if m ≥ 3. This conclusion shows us that
in spite of sparsity zero modes are actually abundant!

While most of mathematicians have been focusing on studying the relationship be-
tween the existence of zero modes and the corresponding magnetic potentials or
magnetic fields, Saitō and Umeda studied the relationship between the properties of
zero modes and the corresponding magnetic potentials or magnetic fields; see [49]
and [50]. In those papers Saitō and Umeda were mainly interested in the massless
Dirac operators α · p + Q(x), where α = (α1, α2, α3) is the triple of 4 × 4 Dirac
matrices

αj =

(
02 σj

σj 02

)
, j = 1, 2, 3

with the 2 × 2 zero matrix 02; Q(x) = (qjk(x)) is a 4 × 4 Hermitian matrix-valued
functions. Extending the concept for the Weyl-Dirac operator they defined the zero
modes for the the massless Dirac operator as a non-zero bispinor f ∈ [H1(R3)]4 such
that (α · p+Q)f = 0. In fact in some special cases the massless Dirac operator will
become the operator α · (p− A) or

(
02 σ · (p−A)

σ · (p− A) 02

)
, where 02 is the 2 × 2 zero-matrix.

Then, Saitō and Umeda can obtain some properties of zero modes, not only for the
massless Dirac operators but also for the Weyl-Dirac operators. They assume that
the Hermitian matrix-valued functions qjk(x), j, k = 1, . . . , 4 satisfy the conditions

|qjk(x)| ≤ C(1 + |x|2)−ρ/2, for some ρ > 1 and constant C positive.

If this matrix-potential gives the zero mode f(x) for the massless Dirac operator,
then
(i) |f(x)| ≤ cf(1 + |x2|) for all x ∈ R

3

(ii) the function f is continuous on R3 and for any ω ∈ S2 (the unit ball in R3)

lim
r→∞

r2f(rω) = − i

4π
(α · ω)

∫

R3

Q(y)f(y) dy, uniformly for ω.

For the Weyl-Dirac operator we get a more elaborate formula for the zero mode
ψ(x)

lim
r→∞

r2ψ(rω) =
i

4π

∫

R3

{(ω ·A(y))I2 + iσ · (ω × A(y))}ψ(y) dy, uniformly for ω.
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1.10 About the thesis

We will be concerned with the zero mode problem for the Weyl-Dirac operator as
well. More specifically, let DtA be the Weyl-Dirac operator with magnetic potential
tA, where we think of A as fixed and t > 0 as a scale. We are principally interested
in the quantity nA(T ) and related ones, where

nA(T ) :=
∑

0≤t≤T

dim KerDtA.

We firstly show that (see Theorem 2.3.6) for |A| ∈ L3(R3) we have

nA(T ) ≤ CT 3‖A‖3
L3 . (1.20)

Indeed, it is obvious that the estimate (1.20) is stronger than the one by Balinsky
and Evans in [12]. Their estimate works for the number of zero modes of DtA for
each t ∈ [0, T ]. Ours works for the total of zero modes of DtA which we may obtain
for all t, t ∈ [0, T ]. A similar estimate for nA(T ) in two dimensions is also obtained
with some additional changes in the proof (see Theorem 2.4.1).

Our proof for the estimate for (1.20) may work for some other cases and we then
obtain estimates on nQ(T ) with

nQ(T ) :=
∑

0≤t≤T

dim Ker Tt,

where Tt is the massless Dirac operator with scaled potential, Tt := α · p+ tQ (see
Theorem 2.5.1); and estimates on nA(T,±m) with

nA(T,±m) :=
∑

0≤t≤T

dimE±m(HtA),

where E±m(HtA) is the eigenspace of the Dirac operator with positive mass at the
threshold energy ±m (see Theorem 2.6.1). These estimates are also better versions
of recent ones in [13] and in [51].

We will spend almost a chapter (Chapter 3) discussing the paper [24] of Erdös and
Solovej and our remaining main results in this thesis (in Chapters 3 and 4) build
on ideas in [24]. In Chapter 3 we show explicitly the construction of the Dirac
operator on the sphere S2. The spectrum of the Dirac operator in S2 in a special
case (corresponding to a constant field) is obtained explicitly (see Theorem 3.5.2).
Furthermore, another proof for the Aharonov-Casher theorem on S2 is justified as
a byproduct of the work on S2 (see Theorem 3.6.1). More specifically, in Chapter
3 we will firstly collect some general concepts in differential geometry used in the
thesis. Then, we introduce and construct the Spinc structures on S2. The second
part deals with the Dirac operator defined on S2 based on structures in the first
part. Some properties and spectral details for the Dirac operators defined on S

2 will
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be obtained as well. We also study the Laplacian built on sections of a line bundle,
and its relation to the Dirac operators. This allows us to determine the spectrum

explicitly for a class of Dirac operators on S2 with specific magnetic fields
n

2
volS2.

In this case we show not only all eigenvalues, but also their multiplicity. This is one
of main results in Chapter 3.

In the final chapter, Chapter 4, we first obtain an explicit formula for nB0
(T ) for the

Weyl-Dirac operator with a certain magnetic field B0 (see Theorem 4.3.1). Here,
the magnetic field B0 is the result of pullbacks from the “constant” volume form of
S2, and is in fact, a scaled version of BLY , the magnetic field corresponding to the
first zero mode constructed by Loss and Yau. The final main result in the thesis
(see Theorem 4.5.1) gives a lower bound for nB(T ) for the Weyl-Dirac operator
with scaled magnetic field tB, where B is the result of pullbacks from an arbitrary
two-form on S2. This bound is indeed a strengthened version of an estimate in [24].

1.11 Notation and Background

Although in Chapter 2 and Chapter 3 the mathematical concepts used in these
chapters will be mentioned we would like to list here the background and notation
used throughout the thesis.

1.11.1 Notation

First, as usual N is the set of natural numbers {1, 2, . . .}, while N0 is the set of
natural numbers and 0; that is {0, 1, 2, . . .}. Notation Z is for the set of integer
numbers {0,±1,±2, . . . }. The set of real numbers is denoted by R and C is the set

of complex numbers. The imaginary unit is denoted by i. Notation I2 is for

(
1 0
0 1

)
,

I4 is for 


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,

and 02 is for

(
0 0
0 0

)
.

The notation Ker is for the kernel (of an operator) and dim is for the dimension (of
a vector space). We also use Spec for the spectrum (of an operator), Dom for the
domain while Ran for the range (of an operator). Furthermore, we use # as the
number of elements (of a set). The notation ⇀ is for the weak convergence and →֒
is for the continuous embedding (between spaces).
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We use the notation C∞
0 for the set of smooth functions with compact support,

and C∞ for the set of smooth functions. In addition, C0 denotes the space of con-
tinuous functions. If we use ‖.‖H we mean the norm defined on the Banach space H.

The notation ∂αf means ∂α1

x1
· · ·∂αn

xn
f with α = (α1, . . . , αn), αj ∈ N0 and |α| =

α1 + · · ·+ αn.

For 1 ≤ q <∞,

Lq(Rn) :=

{
f :

∫

Rn

|f(x)|q <∞
}

with norm for f ∈ Lq(Rn) given by

‖f‖Lq :=

(∫

Rn

|f(x)|q
) 1

q

.

We also set

L∞(Rn) =

{
f : ess sup

x∈Rn

|f(x)| <∞
}

with norm for f ∈ L∞ given by

‖f‖L∞ := ess sup
x∈Rn

|f(x)|.

Denote by S (for each positive integer n) the Schwartz class: the set of all smooth
functions f (defined on Rn) such that

sup
x

|xβ∂αf(x)| <∞, for all α, β.

We observe that S is a dense subspace for L2, and C∞
0 ⊂ S.

Given the Schwartz class S (for functions defined on Rn) and f ∈ S we define

F(f)(ω) =
1√

(2π)n

∫

Rn

f(x)e−iωxdx.

We may check that (F∂αf)(ω) = (iω)α(Ff)(ω) and F(xαf)(ω) = i|α|∂αF(ω) for
every f ∈ S and multi-index α. Obviously, this is well defined and in fact it is a
bijection from S to itself with its inverse as

(F−1f)(x) =
1√

(2π)n

∫

Rn

(Ff)(ω)eixωdω.

There is a fact that 〈f, g〉 = 〈Ff,Fg〉 for all f, g ∈ S. Then, it follows from the
density of S in L2(Rn) that we may extend F to all functions in L2(Rn). We will
obtain the Fourier transform for functions in L2(Rn). We sometimes use f̂ instead
of Ff for convenience. We summarise some key properties of the Fourier transform
in the following result
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Theorem 1.11.1. (See [43], for instance) The Fourier transform F is a unitary
operator L2(Rn) −→ L2(Rn). That means FF∗ = F∗F = I, the identity.

We use Hk(Rn), k ∈ Z, k ≥ 0 to denote the Sobolev space

{f : ∂αf ∈ L2(Rn), |α| ≤ k};

with norm for f ∈ Hk(Rn) given by

‖f‖Hk =

( ∑

|α|≤k

‖∂αf‖2
L2

) 1

2

.

When we want to emphasise that we may use a more general class of Sobolev spaces,
we take the Sobolev space Hs as the space

{
f ∈ S

′ :

∫
(1 + |ω|2)s|Ff(ω)|2dω <∞

}
,

where Ff is the Fourier transform of f. The norm for f ∈ Hs is defined as

‖f‖Hs =

(∫
(1 + |ω|2)s|Ff(ω)|2dω

)1

2

.

1.11.2 Operators

We briefly summarise some concepts on linear operators used in the thesis; material
here comes from [42], [15], [43], [45], [20] and [36].

Let T ∈ B(H) denote the space of bounded linear operators acting on a Hilbert
space H . For a compact operator T ∈ B(H) we set |T | =

√
T ∗T as usual. The

eigenvalues of the operator |T | are called the singular values of T . By the multiplic-
ity of an eigenvalue λ for the operator T we mean the geometric multiplicity of λ, or
the dimension of the subspace {x ∈ H : (T − λ)x = 0}. In general this multiplicity
may be slightly different from the algebraic multiplicity of λ for T , which is the
dimension of the subspace {x ∈ H : (T − λ)nx = 0 for some positive interger n}.
However for self-adjoint operators these two concepts of multiplicity are the same.

If T ∈ B(H) is compact we may enumerate its eigenvalues (including multiplicity)
as

|λ1| ≥ |λ2| ≥ · · · ≥ 0.

If in addition T is self-adjoint its eigenvalues are real so we can enumerate them
(including multiplicity) as

λ+
1 ≥ λ+

2 ≥ · · · ≥ 0 ≥ · · · ≥ λ−2 ≥ λ−1 .

The singular values of T will be enumerated (including multiplicity) as

µ1 ≥ µ2 ≥ · · · ≥ 0.
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When we need to emphasise the dependence on T we also write λj(T ), λ±j (T ) and
µj(T ).

Take a compact operator T ∈ B(H). If

(∑

j≥1

µq
j

) 1

q

<∞

for some 1 ≤ q < ∞, we say that T belongs to the Schatten class Sq. In fact one
may show that Sq along with

‖T ‖Sq :=

(∑

j≥1

µq
j

) 1

q

is a Banach space. We will also use the notation Sq to refer to this Banach space.
We observe that Sq1

⊆ Sq2
if q1 < q2. One often denotes by S∞ the class of com-

pact operators. In case q = 2 the Schatten space S2 is in fact a Hilbert space and
elements in S2 are called Hilbert-Schmidt operators. Similarly, elements in S1 are
called trace class operators. See [42] for more details.

By a positive operator T ∈ B(H) we mean that T is non-negative; that is T is
self-adjoint and 〈T x, x〉 ≥ 0, for all x ∈ H, where 〈 ·, · 〉 denotes the inner product
in H. Then, we may write T ≥ 0. We observe that a self-adjoint operator is positive
if and only if its spectrum is non-negative. In addition, we will write T1 ≥ T2 or
T2 ≤ T1 for T1, T2 ∈ B(H) if T1 − T2 ≥ 0.

In addition to bounded operators we will also need to consider unbounded operators.
If a linear operator T : H −→ H is bounded, then there is a constant C ≥ 0 such
that

‖T x‖ ≤ C‖x‖, for all x ∈ H.

An unbounded operator T is a linear map defined on a domain Dom(T ) ⊆ H such
that there is a sequence {xj}, xj ∈ Dom(T ), ‖xj‖ = 1, j = 1, 2, . . . and ‖T xj‖ −→
∞ as j → ∞. Normally, Dom(T ) is a dense linear subspace of H. Now we will give
an example. Let T be the operator defined on the subspace S of L2(R), such that
T f(x) = −f ′′(x) + x2f(x) for f ∈ S. We may show that if

fj = (2jj!)−
1

2 (−1)jπ− 1

4 e
1

2
x2 dj

dxj
(e−x2

),

then fj ∈ S, ‖fj‖ = 1 and T fj = 2j + 1 for j = 1, 2, . . . so ‖T fj‖ = 2j + 1 → ∞ as
j goes to ∞. (In fact {fj} is an orthonormal base for L2(R)). We call f ′

js Hermite
functions. See [42] for details.

Suppose we have an unbounded operator T defined on Dom(T ). We say T is closed
if whenever xj ∈ Dom(T ), xj → x and T xj → y, then x ∈ Dom(T ) and T x = y.We
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will call an operator T ′ an extension of T if Dom(T ) ⊆ Dom(T ′) and T x = T ′x for
all x ∈ Dom(T ). In addition, we will say T is closable if T has a closed extension.
Then, every closable operator has a smallest closed extension, called its closure,
which is often denoted by T . If T is closed a core for T is a subset of Dom(T ) such
that the closure of T restricted to this set is exactly T .

Next we consider the adjoint of an unbounded operator T . We will denote by
Dom(T ∗) the set of y ∈ H for which there is a z ∈ H such that for all x ∈ Dom(T )
we have

〈T x, y〉 = 〈x, z〉.
For each y ∈ Dom(T ∗) we set T ∗y = z and this T ∗ is called the adjoint of T . It
is the case that not all unbounded operators T have an adjoint (as an unbounded
operator). However if T is closable there always exists T ∗. In fact we may show that
T is closable if and only if Dom(T ∗) is dense in H. In that case we have T ∗

= T ∗.
There is a difference between symmetric (or Hermitian) and self-adjoint operators for
unbounded operators, which is obviously not the case for bounded operators. More
specifically, an unbounded operator T is called symmetric if T ∗ is an extension of
T . We may see that T is symmetric if

〈T x, y〉 = 〈x, T y〉, for all x, y ∈ Dom(T ).

If we want T to be self-adjoint, we need T not only to be symmetric, but also to
satisfy Dom(T ∗) = Dom(T ). To prove a symmetric operator T is self-adjoint we
need only show that T is closed and the kernel of T ± i is trivial or the range of
T ± i is exactly H.

Suppose T is symmetric. We may see from above that T is closable. In case its
closure T is self-adjoint, the symmetric operator T is called essentially self-adjoint.
In fact we may prove that symmetric operator T is essentially self-adjoint if it has
only one self-adjoint extension. To prove a symmetric operator is essentially self-
adjoint we need only show that the kernel of T ∗ ± i is trivial or the range of T ± i
is dense in H. To use all remarks above we may justify the following result, which
allows us to consider operator sums.

Theorem 1.11.2. (Kato-Rellich theorem (see [43], Theorem X.12)) Suppose that T1

is self-adjoint and T2 is symmetric with Dom(T1) ⊆ Dom(T2). Furthermore, suppose
that there exist a, b with a < 1 such that

‖T2x‖ ≤ a‖T1x‖ + b‖x‖,

for all x ∈ Dom(T1). Then the operator T1 + T2 is self-adjoint on Dom(T1) and
essentially self-adjoint on any core of T1.

The operator T2 in the Kato-Rellich Theorem may be seen as a small perturbation
of T1.
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Let T be an unbounded operator on H. We say that a complex number ρ is in the
resolvent set of T if T − ρI is a bijection from Dom(T ) onto H with a bounded
inverse, where I is the identity. The spectrum of T , denoted by Spec(T ) is the set
of complex numbers which are not in the resolvent set of T . Any eigenvalue of T is
obviously in Spec(T ). The discrete spectrum of T is the set of isolated eigenvalues
with finite multiplicity, while the essential spectrum of T , denoted by Specess(T ) is
the set Spec(T ) excluding the discrete spectrum. As we know the spectrum set of a
bounded operator is bounded. However that is not the case for unbounded operators.

There is another method to define the self-adjoint extension of some certain kinds
of unbounded operators; that is through the quadratic form. A quadratic form is
a map q : Q(q) × Q(q) −→ C, where Q(q) is a dense linear subset of H called
the form domain, such that q(x, ·) is linear and q(·, y) is conjugate linear for all
x, y ∈ Q(q). We will briefly summarise how to relate a quadratic form and an
unbounded operator. Firstly, we observe that the definition of a positive operator
extends to unbounded operators; that is T is positive, denoted by T ≥ 0, if T is
symmetric and 〈T x, x〉 ≥ 0 for all x ∈ Dom(T ). For a positive operator T we may
define an inner product 〈x, y〉T on Dom(T ) by

〈x, y〉T = 〈T x, y〉 + 〈x, y〉.

If we denote by Q(T ) the completion of Dom(T ) with respect to the norm ‖.‖T
induced by the inner product above, then Dom(T ) ⊆ Q(T ) ⊂ H. Truly, we observe
that if {xj} is a Cauchy sequence in Dom(T ), it will also be a Cauchy sequence in
H because ‖x‖ ≤ ‖x‖T . It follows that we may identify the limit in Q(T ) with the
limit we have in H. Therefore, the quadratic form associated with T , denoted by qT
can be extended to every x ∈ Q(T ) by setting

qT (x) = 〈x, x〉T − ‖x‖2.

We will call by Q(T ) the form domain of T . Now we can say that consideration of
quadratic forms leads to a useful way of defining a self-adjoint operator if we start
with a semi-bounded symmetric operator by looking at the following result.

Theorem 1.11.3. (Friedrichs extension) Let T be a semi-bounded symmetric op-
erator; that is, suppose there exists γ ∈ R such that

qT (x) = 〈T x, x〉 ≥ γ‖x‖2, for all x ∈ Dom(T ).

Then there is a self-adjoint extension T ′ of T which is also bounded below by γ and
which satisfies Dom(T ′) ⊆ Q(T ). Moreover, T ′ is the only self-adjoint extension of
T with domain contained in Q(T ).

The converse of this result is also important; given a quadratic form q, is there a
corresponding operator T such that q = qT ? The answer is yes under certain condi-
tions, although we will not discuss this further here (see [42] for more details).
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Now we will consider the quadratic form version of the Kato-Rellich theorem; this
is called the KLMN theorem, and is due to Kato, Lions, Lax, Milgram and Nelson
(see Theorem X.17, [43]). The theorem will allow us to consider the form sum of
operators.

Theorem 1.11.4. Let T1 be a positive self-adjoint operator and qT2
be a quadratic

form associated with a symmetric operator T2 which is defined on Q(T1). If there are
real numbers a < 1 and b such that

|qT2
(x)| ≤ aqT1

(x) + b〈x, x〉, for all x ∈ Q(T1),

then there exists a unique self-adjoint operator T with Q(T ) = Q(T1) such that T
is associated with the form qT1

+ qT2
.

In this case we also call T2 a small perturbation of T1.

Suppose that T1 is self-adjoint. We will say that T2 is relatively compact with re-
spect to T1 if Dom(T1) ⊆ Dom(T2) and the operator T2(T1 + i)−1 is compact. In
fact we may replace i here by any complex number in the resolvent set of T1. We
may show that T2 is relatively compact with respect to T1 if whenever we have
a sequence {xj} ⊂ Dom(T1) ⊆ Dom(T2) such that ‖T1xj‖ + ‖xj‖ ≤ C, for some
C ≥ 0, then we may choose a subsequence {xjk

} such that {T2xjk
} is convergent.

We also have the following (for example, [45], p.113); if T1 is self-adjoint and T2

is relatively compact with respect to T1, then the operator sum T1 + T2 defined
on Dom(T1) is closed. Moreover the operator sum has the same essential spectrum
as T1. If we require T2 to be symmetric, then the operator sum is self-adjoint as well.
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Chapter 2

Upper bounds for the number of
zero modes of the Weyl-Dirac
operator

2.1 Overview

In [12] Balinsky and Evans studied zero modes of the Weyl-Dirac operator on
R

n, n = 2, 3, where the potential was assumed to be in Lq with q = 3 when
n = 3 and q = 2 when n = 2. They gave an upper bound on the multiplicity of zero
modes in the form

dim KerDA ≤ Cn

∫

Rn

|A|n dx, (2.1)

with the constant Cn independent of A. This result is reviewed in Section 2.2, where
we present an argument that circumvents an error in [12].

Balinsky and Evans also considered the question of how common zero mode pro-
ducing potentials are; one result was to show that if we scale a given potential A
by t ∈ R then the operator DtA has zero modes for only a discrete set of values of
t, in particular, given T > 0 there is only a finite number of t ∈ [0, T ] such that
dim KerDtA > 0. Thus the quantity

nA(T ) :=
∑

0≤t≤T

dim KerDtA,

is finite. Information about the behaviour of nA(T ) as T varies clearly tells us
something about how common zero mode producing potentials are. Furthermore
this quantity will be less sensitive than dim KerDtA, to perturbations in t (or in A).
In Section 2.3 and Section 2.4 we obtain bounds for nA(T ) of the form (Theorem
2.3.6 and Theorem 2.4.1)

nA(T ) ≤ CT n

∫

Rn

|A|n dx, n = 2, 3,
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which clearly strengthens the Balinsky and Evans bound on multiplicity (see (2.1)
above).

We will see that we must change our approach in the proof of Theorem 2.3.6 to ob-
tain the justification for the two dimensional case. We will need some “wiser” skills
to overcome difficulty which arises; that is the result of Cwikel does not work for
q = 2 although |x|−1 is in L2

w(R2). However we can overcome that difficulty by using
the weak Weyl inequality (see [47], p.85)) as well as relations between the eigenval-
ues and the singular values for compact operators to obtain the similar bound for
nA(T ) in two dimensions (Theorem 2.4.1).

Finally in Section 2.5 and Section 2.6 we will apply one of the main results in this
chapter (That is Theorem 2.3.6 in Section 2.3) to show stronger estimates than the
ones in [13] for massless Dirac operators and in [51] for Dirac operators with pos-
itive mass at the threshold energies. In fact these follow directly from Theorem 2.3.6

2.2 An estimate on the kernel of DA

2.2.1 Set up

Denote by Hn, n = 2, 3 the Hilbert space [L2(Rn)]2 with the standard scalar product
and its induced norm. Let p be the momentum operator −i∇ with core [C∞

0 (Rn)]2.
It is well known that p is (componentwise) essentially self-adjoint in [C∞

0 (Rn)]2 (see
[57], p. 113). We can then extend p uniquely to be a self-adjoint operator in Hn

which we still denote by p with Dom(p) =
[
H1(R2)

]2
.

Suppose that f ∈
[
H1(Rn)

]2
, n = 2, 3. It follows from the properties of the Fourier

f(x) 7−→ F(f)(ω) that

pf(x) = F−1(ωF(f))(x).

Therefore, the momentum operator p with the domain Dom(p) =
[
H1(R3)

]2
, is

unitarily equivalent to the multiplication operator

(FpF−1)f(x) = xf(x), Dom(x) = {f ∈ Hn : xf ∈ Hn}.

Then, since the Fourier transform F is unitary and the spectrum of the multiplica-
tion operator is very easy to determine we come up with the following result

Theorem 2.2.1. The momentum operator p is componentwise self-adjoint in Hn, n =

2, 3 with Dom(pj) =
[
H1(Rn)

]2
, and its spectrum is given by

Spec(pj) = Specess(pj) = R, j = 1, . . . , n.
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As usual, |p| := (p∗p)
1

2 = (p2)
1

2 is a positive self-adjoint operator in Hn. We can

define the operator |p| 12 (or
√
|p| hereafter) to be a positive self-adjoint operator in

Hn as well. We note that if ψ ∈ Hn, then in Hn :

〈|p|ψ, ψ〉Hn =

∫

Rn

|ξ| |ψ̂(ξ)|2 dξ = 0 ⇐⇒ ψ̂ = 0 ⇐⇒ ψ = 0,

using the isometric property of the Fourier transform from Hn to itself. Therefore,
if
√

|p|ψ = 0 for some ψ ∈ Hn, then ‖
√
|p|ψ‖Hn = 0 ⇐⇒ 〈|p|ψ, ψ〉 = 0 ⇐⇒ ψ =

0 (in Hn) =⇒ Ker
√

|p| = {0}. It follows that we can define the operator
1√
|p|

on

Ran(
√

|p|), the range of
√
|p|. For s = 1 ,

1

2
and s = −1

2
, we define Ds(Rn) to be

the completion of Dom(|p|s) (the domain of |p|s) with respect to the norm

‖u‖Ds(Rn) = ‖|p|su‖Hn.

Observe that in case s = 1 we have

D1(Rn)
⋂

Hn =
[
H1(Rn)

]2
.

Obviously, [C∞
0 (Rn)]2 is dense in Ds(Rn) for s = 1 and

1

2
. For ψ ∈ Dom(

√
|p|) =

Ran

(
1√
|p|

)
we have

∥∥∥∥
1√
|p|
ψ

∥∥∥∥
D

1
2 (Rn)

=

∥∥∥∥
√
|p| 1√

|p|
ψ

∥∥∥∥
Hn

= ‖ψ‖Hn.

Since
√

|p| is self adjoint, then

Ker(
√
|p|) ⊕ [Ran(

√
|p|)]⊥ = Hn.

So we have that Dom(
√
|p|) and Ran(

√
|p|) are dense in D

1

2 (Rn) and Hn respec-

tively. It follows that we can extend
1√
|p|

to a unitary map from Hn onto D
1

2 (Rn).

Similarly,
1√
|p|

can be extended to a unitary map from D− 1

2 (Rn) onto Hn. The

notation
1√
|p|

should be understood correspondingly in a specific context.

We recall here notations of σ = (σ1, σ2, σ3) the triple of Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

and by A the vector potential (A1, A2, A3), where Aj is the measurable and real-
valued function on R3 for j = 1, 2 and 3. To study zero modes of the Weyl-Dirac
operator DA = σ · (p−A), we will use the idea in [12]; namely we will consider DA

as the sum of operators σ · p and −σ · A. Similarly to Theorem 2.2.1 we have the
following.
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Theorem 2.2.2. The operator D0 = σ · p is self-adjoint in Hn, n = 1, 2 with
Dom(D0) = D1(Rn)

⋂Hn, and its spectrum is given by

Spec(D0) = Specess(D0) = R.

In order to treat σ ·A as a small purturbation of D0 we need the following continuous
embeddings to achieve that end. These results can be seen in [36], Theorem 8.4,
Theorem 8.3 and Theorem 8.5, respectively. They are:

1. If n ≥ 2, then

D
1

2 (Rn) →֒ [L
2n

n−1 (Rn)]2, (2.2)

2. We have
D1(R3) →֒ [L6(R3)]2, (2.3)

3. For q ≥ 2, we have
[H1(R2)]2 →֒ [Lq(R2)]2. (2.4)

We also need the following inequality which can been found in [35], p.304; that is
there exists a constant Cn such that

∫

Rn

1

|x| |u(x)|
2 dx ≤ Cn ‖u‖2

D
1
2 (Rn)

, for f ∈
[
C∞

0 (Rn)
]
2. (2.5)

We remark that the dual
(
D

1

2 (Rn)
)∗

of D
1

2 (Rn) (with respect to the extension

of the standard L2 pairing) is D− 1

2 (Rn). As usual for a vector valued function

A = (A1, . . . , An) the notation ‖A‖Lq means the norm of |A| :=
(∑n

j=1 |Aj|2
) 1

2

in Lq(Rn), q ≥ 1.

2.2.2 DA as an operator sum

We will need some results relating to |A| so that we can consider the Weyl-Dirac
operator DA as the sum of operators σ ·p and −σ ·A. The following two results from
[12] will help us.

Lemma 2.2.3. For n = 2, 3 assume that |A| ∈ Ln(Rn). Then the operator
1√
|p|
(
σ ·

A
) 1√

|p|
: Hn −→ Hn is compact. Moreover, for all ϕ ∈ D

1

2 (Rn), we have

‖
(
σ · A

)
ϕ‖

D−1
2 (Rn)

≤ γ2
n‖A‖Ln(Rn) · ‖ϕ‖D

1
2 (Rn)

,

where γn is the norm of the embedding (2.2).
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Remark 2.2.4. The result of this lemma can be justified neatly by appying the result
of Cwikel which we will meet later in the next two sections. We would like here to
be faithful with the arguments in [12].

To prove this lemma, we notice that C∞
0 (Rn) is dense in Ln(Rn), so for a given ε > 0

there is a1 ∈ C∞
0 (Ωε), where Ωε is some ball in Rn such that ‖ |A| − a1‖Ln(Rn) < ε.

Setting a2 := |A| − a1, and we can write |A| = a1 + a2, where ‖a1‖ ≤ Kε and

‖a2‖ ≤ ε, for a given ε. Moreover, we also remark that
1√
|p|

is a unitary map from

Hn onto D
1

2 (Rn) and
1√
|p|

is a unitary map from D− 1

2 (Rn) onto Hn. So, to justify

the lemma, we only need to prove that if ϕn ⇀ 0 (weakly converges to 0) in D
1

2 (Rn),

then
(
σ · A

)
ϕn −→ 0 in D− 1

2 (Rn). The proof is now straightforward; see [12] for
details.

The result of Lemma 2.2.3 gives us

Lemma 2.2.5. Suppose that the following conditions are satisfied:

• when n = 3, then |A| is a function in L3(R3),

• when n = 2, then |A| is a function in Lr(R2) for some r > 2.

Then for any given ε > 0, there is a constant Cε (depending on ε) such that for all
functions ϕ ∈ D1(Rn)

⋂Hn, we have

‖
(
σ · A

)
ϕ‖2 ≤ ε2‖ϕ‖2

D1(Rn) + Cε‖ϕ‖2.

Remark 2.2.6. It follows from the result of this lemma that σ ·A is a small purtur-
bation of σ · p.
The assumptions in Lemma 2.2.5 guarantee that the embeddings (2.2) and (2.4) are
applicable. Please refer to [12] for details.

Finally, by the Kato-Rellich theorem (Theorem 1.11.2) we obtain from the result of
Lemma 2.2.5 that

Theorem 2.2.7. Let A be the potential which satisfies the conditions in Lemma
2.2.5. Then, the operator DA is well defined as the operator sum of D0 and −σ ·A;
that is −σ · A is a small perturbation of D0.

The corollaries of Theorem 2.2.7 are DA is self-adjoint and Dom(DA) = Dom(D0) =
D1(Rn)

⋂Hn.

29



2.2.3 Upper bounds for Ker(DA)

Now we can proceed to consider one of the main result of this section; that is we
will show a proof for upper bounds for dim KerDA.

Firstly, we observe that if ϕ ∈ Dom(DA) = D1(Rn)
⋂Hn, then the function ψ :=

√
|p|ϕ

will satisfy ψ ∈ D
1

2 (Rn)
⋂Hn; clearly we have ψ ∈ D

1

2 (Rn). While, we also have
ψ ∈ Hn since

‖ψ‖2 = 〈
√
|p|ϕ,

√
|p|ϕ〉 = 〈|p|ϕ, ϕ〉 ≤ ‖ |p|ϕ‖ ‖ϕ‖,

so

‖ψ‖2 ≤ 1

2

(
‖pϕ‖2 + ‖ϕ‖2

)
≤ 1

2

(
‖ϕ‖2

D1(Rn) + ‖ϕ‖2
)
.

Now we define the operators

E :=
1√
|p|
(
σ · p

) 1√
|p|

: Hn −→ Hn,

and

K :=
1√
|p|
(
σ · A

) 1√
|p|

: Hn −→ Hn.

We remark that E is self-adjoint and E2 = I. So, if ϕ ∈ KerDA, then
(
σ ·p
) 1√

|p|
ψ =

(
σ · A

) 1√
|p|
ψ. It follows that (E −K)ψ = 0 and hence (I − EK)ψ = 0. Moreover

if ϕ1, ϕ2 ∈ KerDA and linear independent, then it follows from Ker
√

|p| = {0}
that ψ1, ψ2 are independent, where ψj =

√
|p|ϕj, j = 1, 2. So we get dim KerDA ≤

dim Ker(I − EK). To use this relationship and the compactness of EK (which
follows from the result of Lemma 2.2.3), Balinsky and Evans show that for the one-
parameter family of potentials tA there are at most a finite set of values of t in [0, T ]
for any T > 0 such that dim KerDtA 6= 0. Although the result below is weaker than
the later one in this thesis (see Theorem 2.3.6) we still want to show it here with
our proof. The reason is in the proof of Balinsky and Evans they used an incorrect
inequality which we also discuss later. Let

L :=
1√
|p|

|A| 1√
|p|

: Hn −→ Hn.

Then L is positive and self-adjoint.

Lemma 2.2.8. We have ∓K ≤ L.

Proof. We will prove that σ · A ≤ |A| in [C∞
0 (Rn)]2; then, using the density of

[C∞
0 (Rn)]2 in D

1

2 (Rn), we obtain K ≤ L. The inequality −K ≤ L follows from a
similar argument.
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There is a fact that the self-adjoint 2 × 2 matrix

(
a b
b̄ c

)
≥ 0 if and only if a, c and

ac− |b|2 are all non-negative. Here we have

|A| − σ · A =

(
|A| −A3 −(A1 − iA2)

−(A1 + iA2) |A| + A3

)
.

Then, |A| − σ · A ≥ 0 follows by applying the result above with

a = |A| −A3 ≥ 0, c = |A| + A3 ≥ 0 and b = −(A1 − iA2)

for which ac− |b|2 = 0.

Remark 2.2.9. At first I proved σ · A ≤ |A| by checking directly. The proof was
quite long compared to the proof above. I would like to thank Dr G. Jameson for
reminding me of the fact in the proof so I can have the version above.

Next we can state and prove the following result.

Theorem 2.2.10. Let |A| be in L3(R3) when n = 3, and in L2(R2)
⋂
Lr(R2) for

some r > 2 when n = 2. Then, we have

dim KerDA ≤ Cn‖A‖n
Ln,

where Cn is a constant which is independent of A.

Proof. Firstly, we see that if ϕ ∈ Dom(DA), then the above arguments give (E −
K)ψ = 0, where

ψ =
√

|p|ϕ ∈ D
1

2 (Rn)
⋂

Hn and K =
1√
|p|
(
σ · A

) 1√
|p|
.

It follows that dim KerDA ≤ dim Ker(I − EK). Set S = EK, so we already have
dim KerDA ≤ dim Ker(I − S). We remark that if ψ ∈ Ker(I − S), then ψ = Sψ.
Next,

〈|S|2ψ, ψ〉 = 〈S∗Sψ, ψ〉 = 〈Sψ, Sψ〉 = 〈ψ, ψ〉 = ‖ψ‖2.

Therefore,
Ker(I − S) ⊆ K|S|2(1),

where K|S|2(1) is the set of all closed linear subspaces V of Hn such that 〈|S|2ψ, ψ〉 ≥
1 · ‖ψ‖2 for all ψ ∈ V . By min-max theorem (see [20], p.84), if we enumerate the
eigenvalues (counting also multiplicities) of the positive compact operator T as usual
λ1(T ) ≥ λ2(T ) ≥ · · · ≥ 0 we get

#{n : λn(|S|2) ≥ 1} ≥ dim Ker(I − S) ≥ dim KerDA. (2.6)

Furthermore, we have shown that K is compact and self-adjoint, while

|S|2 = (EK)∗(EK) = K2.
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Thus

#{n : λn(|S|2) ≥ 1} = #{n : λ+
n (K) ≥ 1} + #{n : λ−n (K) ≤ −1}

= #{n : λ+
n (K) ≥ 1} + #{n : λ+

n (−K) ≥ 1}. (2.7)

Lemma 2.2.8 and the min-max theorem give

#{n : λ+
n (±K) ≥ 1} ≤ #{n : λn(L) ≥ 1}, (2.8)

since L is positive so λ+
n (L) = λn(L), where eigenvalues of L are enumerated as

usual (thank to [26]). It follows from (2.8) and (2.7) that

#{n : λn(|S|2) ≥ 1} ≤ 2 · #{n : λn(L) ≥ 1}. (2.9)

By the Birman-Schwinger principle (see [14], [45]), we have

#{n : λn(L) ≥ 1} = N(|p| − |A|), (2.10)

where

N(|p| − |A|) := #{non-positive eigenvalues of the operator |p| − |A|}.
Indeed we may see the flavour of the Birman-Schwinger principle as follows: Let
λ ≥ 1 be an eigenvalue of L with corresponding eigenfunction φ. Then,

Lφ = λφ

⇐⇒ λ
√

|p|φ = |A| 1√
|p|
φ

⇐⇒ λ|p|ψ = |A|ψ for ψ such that
√

|p|ψ = φ

⇐⇒ (|p| − 1

λ
|A|)ψ = 0.

So, 0 is eigenvalue of the operator |p| − 1

λ
|A| with eigenfunction ψ. Then, the

Birman-Schwinger principle gives us (2.10). Back to our main arguments we obtain
from (2.6), (2.9) and (2.10) that

dim KerDA ≤ #{n : λn(|S|2) ≥ 1} ≤ 2N(|p| − |A|). (2.11)

Now we can apply Daubechies inequality (see [18]) to get

N(|p| − |A|) ≤ C1

∫

Rn

|A|n dx

= C1‖A‖n
Ln.

(2.12)

Then, (2.11) and (2.12) give

dim KerDA ≤ 2C1

∫

Rn

|A|n dx,

or

dim KerDA ≤ C

∫

Rn

|A|n dx

with C = 2C1, which completes the justification for Theorem 2.2.10.
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Theorem 2.2.10 was given in [12], but in their proof the authours have used the
operator inequality

K2 ≤ L2 (2.13)

We see in Lemma 2.2.8 that
−L ≤ K ≤ L.

Remark 2.2.11. We observe that K2 ≤ L2 would follow from −L ≤ K ≤ L if K and
L commute. However, here K and L do not commute. I would like to thank Dr. G
Jameson for his advice in this remark.

We will show below that the operator inequality (2.13) is wrong. Indeed, we have
the following.

Proposition 2.2.12. Given r > 1 there exists a potential A = (A1, A2, A3) with
|A| ∈ L3(R3) and φ ∈ H3 with

〈K2φ, φ〉 > r〈L2φ, φ〉. (2.14)

Proof. Let η ∈ R
3 be a unit vector, choose α > 3 and set

A(x) = (1 + |x|2)−α
2 (cos(2r〈η, x〉), sin(2r〈η, x〉), 0).

Clearly, A is smooth, while

|A(x)| = (1 + |x|2)−α
2

so |A| ∈ L3(R3) (using the fact that α > 3). Furthermore,

σ ·A
|A| = cos(2r〈η, x〉)

(
0 1
1 0

)
+ sin(2r〈η, x〉)

(
0 −i
i 0

)

=

(
0 e−2ir〈η,x〉

e2ir〈η,x〉 0

)
.

(2.15)

Now let χ ∈ C∞
0 (R3) with supp(χ) ⊂ B1 := {ξ : |ξ| < 1} (the open unit ball in R

3)
and

∫
R3 |χ|2dx = 1. Let f be the inverse Fourier transform of ξ 7−→ χ(ξ+ (1+ 2r)η)

(a translated version of χ). Finally, set

φ1 = |p| 12 (|A|−1f) and φ =

(
φ1

0

)
.

Now f ∈ S (the Schwartz class) and |A|−1 = (1 + |x|2)α
2 so |A|−1f ∈ S. It follows

that φ1 (and hence φ) is smooth and φ ∈ H3. A direct calculation gives

Lφ = |p|− 1

2 |A||p|− 1

2

(
|p| 12 (|A|−1f)

0

)
=

(
|p|− 1

2f
0

)

so

〈L2φ, φ〉 = ‖Lφ‖2 = 〈|p|−1f, f〉L2 =

∫

R3

|ξ|−1|f̂(ξ)|2dξ.
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Since f̂(ξ) = χ(ξ + (1 + 2r)η) we get

ξ ∈ supp(f̂) ⇒ ξ + (1 + 2r)η ∈ B1 ⇒ |ξ| > |(1 + 2r)η| − 1 = 2r

and thus

〈L2φ, φ〉 < 1

2r

∫

R3

|f̂(ξ)|2dξ =
1

2r

∫

R3

|χ|2dx =
1

2r
. (2.16)

On the other hand

Kφ = |p|− 1

2 (σ · A)|p|− 1

2

(
|p| 12 (|A|−1f)

0

)
= |p|− 1

2

σ · A
|A|

(
f
0

)
=

(
0

|p|− 1

2 (e2ir〈η,x〉f)

)
,

using (2.15). Setting g = e2ir〈η,x〉f we thus get

〈K2φ, φ〉 = ‖Kφ‖2 = 〈|p|−1g, g〉L2 =

∫

R3

|ξ|−1|ĝ(ξ)|2dξ.

However ĝ(ξ) = f̂(ξ − 2rη) = χ(ξ + η) so

ξ ∈ supp(ĝ) ⇒ ξ + η ∈ B1 ⇒ (0 <) |ξ| < 2

and hence

〈K2φ, φ〉 > 1

2

∫

R3

|ĝ(ξ)|2dξ =
1

2

∫

R3

|χ|2dx =
1

2
. (2.17)

Estimate (2.14) clearly follows from (2.16) and (2.17).

Remark 2.2.13. The potential A is smooth and satisfies |A| = (1+ |x|2)−α
2 . It follows

that the corresponding magnetic field B = curlA is also smooth, while a straight-
forward check gives |B| ≤ C(1 + |x|2)−α

2 for some constant C. Since α > 3 was
arbitrary we can ensure that A and B have arbitrary algebraic decay.
Using Fourier transforms it is easy to see that φ1 and its derivatives of arbitrary
order belong to L2; thus φ1 ∈ Hs (the Sobolev space of order s) for any s ∈ R.

However φ̂1(ξ) has a |ξ| 12 type singularity at 0, which will prevent φ1 from having
rapid decay. A straightforward scaling argument applied to the inverse Fourier
transform of φ1 shows that we have |φ1(x)| ≤ c′(1 + |x|2)− 7

4 for some constant c′.
Using an approximation argument it should be possible to obtain (2.14) with some
φ ∈ C∞

0 .

2.3 An estimate on nA(T ) in three dimensions

For a given T > 0, there are at most a finite set of t, 0 ≤ t ≤ T such that
dim KerDtA 6= 0 (see [12]). The proof with flavour we met in the previous section
is based on Fredholm theory and a much shorter version of a similar result in [10],
but for dim KerPtA. However, we will show a stronger result by proving that the
estimate works not only for the number of zero modes for each operator DtA, but
also for the total of zero modes for all Weyl-Dirac operators DtA, 0 ≤ t ≤ T (see
Theorem 2.3.6). To prepare, we will prove the following lemmas.
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Lemma 2.3.1. If 0 < β < 1 and n ∈ N, then
∑n

k=1 k
−β ≤ 1

1 − β
n1−β .

Proof. Consider the function

f : [0,∞) −→ R

: x 7−→ x−β .

One addition is that f(0) = 0. Now take a partition of the interval [0, n] into n
intervals of length 1. Since f is decreasing on (0, n) the area of each rectangle, which
is defined by [k, k+1] as the base and f(k+1) as its height, is less than or equal to
the area of region which is bounded by the horizontal axis, lines x = k, x = k + 1
and the graph of function f. Summing up we get

n−1∑

k=0

f(k + 1) ≤
n−1∑

k=0

∫ k+1

k

f(x) dx,

or
n∑

k=1

k−β ≤
∫ n

0

x−β dx.

Another fact we will use in the proof of Theorem 2.3.6 is the following.

Lemma 2.3.2. If 0 < q < 1, then

(
3

3 − q

) 3

q

<
27

8
. (2.18)

Proof. We can obtain (2.18) by proving that

f(x) =
1

(1 − x)
1

x

is increasing on (0, 1). (2.19)

(Hence in particular f(x) ≤ f(1
3
) =

27

8
for 0 < x ≤ 1

3
, x =

q

3
). To prove (2.19) we

note that
− log(1 − x) ≤ x

1 − x
for 0 < x < 1, (2.20)

for instance by comparing the Maclaurin’s series for functions on both sides of (2.20).

Observe that log f(x) = −1

x
log(1 − x) and for 0 < x < 1

log′ f(x) =
f ′(x)

f(x)
=

1

x2
log(1 − x) +

1

x(1 − x)
=

1

x2

(
log(1 − x) +

x

1 − x

)
≥ 0.

Now (2.19) follows since f ′(x) ≥ 0 for 0 < x < 1.

35



Remark 2.3.3. I would like to thank Dr G. Jameson for his advice to show this less
strange proof for Lemma 2.18 compared to the initial version.

We want to apply the result of Cwikel (see, for example Theorem XI.22, p.47 in
[44]) and obtain the compactness of a class of operators such as T1’s later. We will
consider the concept of Lq-weakness as follows.

Definition 2.3.4. A function f is weak-Lq(Rn) for 1 ≤ q <∞ if

‖f‖Lq
w

:= sup
t

(tqµ{x : |f(x)| > t}) 1

q < +∞,

where µ is the usual Lebesgue measure on Rn.

The set of all weak-Lq(Rn) functions (for each q and n) is denoted by Lq
w(Rn).

‖ · ‖Lq
w

is not actually a norm on Lq
w (it does not satisfy the triangle inequality). It

is straight-forward to check that ‖x−n
q ‖Lq

w
= vol(Bn)

1

q where vol(Bn) is the volume

of the unit ball in R
n; thus x−

n
q ∈ Lq

w(Rn) even though x−
n
q /∈ Lq′(Rn) for any q′.

Refer to [43] or [36] for more details.

The following result is an easy consequence of the result in [16].

Theorem 2.3.5. (See [44], p. 47-49) Let 2 < q < ∞ and suppose that g ∈ Lq
w(Rn)

and f ∈ Lq(Rn). Then f(x)g(−i∇) is a compact operator with singular values µj

satisfying
µj ≤ C(q, n)j−q‖f‖Lq‖g‖Lq

w
, j ≥ 1.

Now time to state and prove the main result of this section.

Theorem 2.3.6. Let |A| be in L3(R3). For an arbitrary T > 0 we have the following
estimate

nA(T ) ≤ CT 3 · ‖A‖3
L3 ,

where C is a constant, not dependent on T or on A.

Here we recall that
nA(T ) =

∑

0≤t≤T

dim KerDtA.

Proof. We see that

(σ · A)2 = (σ1A1 + σ2A2 + σ3A3)
2 =

(
A3 A1 − iA2

A1 + iA2 −A3

)2

= |A|2, (2.21)

where |A|2 := |A|2I2 with I2 is the 2 × 2 identity matrix.
Similarly, we also have

(σ · p)2 = −∆ = |p|2. (2.22)

It follows from (σ · A)2 = |A|2 and (σ · p)2 = |p|2 that

|A||p|−2|A| = |A|(σ · p)−1(σ · p)−1|A|. (2.23)
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Let U =
σ · A
|A| and T = (σ · p)−1(σ ·A). We remark that U is unitary. Furthermore,

it follows from (2.23) that

|A||p|−2|A| = U∗T ∗T U . (2.24)

Let T1 = |A||p|−1. Then, we also have

|A||p|−2|A| = T1T ∗
1 . (2.25)

Now we can show the compactness of T1. Truly, it is because function f(x) = |A| ∈
L3(R3), and g(x) = |x|−1 ∈ L3

w(R3), we can apply Cwikel’s result for q = 3 (see
Theorem 2.3.5). Apart from the compactness for T1 Theorem 2.3.5 tells us that

µj(T1) ≤ C1‖A‖L3j−
1

3 = αj−
1

3 , (2.26)

where
α := C1‖A‖L3,

and C1 independent of A. Here we recall that singular values of T1, including
multiplicity, are arranged as µ1(T1) ≥ µ2(T1) ≥ · · · ≥ 0.
We notice that U is unitary, so µj(T ) = µj(T1) and hence

µj(T ) ≤ αj−
1

3 . (2.27)

Now it follows from the result by Lemma 2.3.1 above we have for any 0 < q < 1 (in
fact we can take 0 < q < 3)

n∑

j=1

(
µj(T )

)q ≤ αq

n∑

j=1

j−
q
3 ≤ αq 3

3 − q
n1− q

3 . (2.28)

Now let NT := #
{
j : |λj(T )| ≥ 1

T

}
, so

1

T
≤ |λNT

(T )|. Next we will apply

the localisation of eigenvalues for a compact operator ((see [47])); that is, if K is
is a compact operator, and λj and µj are the eigenvalues and singular values of
K (including multiplicity), then we have the localisation of eigenvalues for K and
0 < q < 1 as

|λn| ≤
[

1

n

n∑

j=1

µq
j

] 1

q

. (2.29)

So it follows from (2.29) that

1

T
≤
(

1

NT

NT∑

j=1

(µj(T ))q

) 1

q

, for 0 < q < 1.

Applying the inequality (2.28) for 0 < q < 1, we get

1

T
≤
(
αq 3

3 − q
N− q

3

T

) 1

q

= α

(
3

3 − q

) 1

q

N− 1

3

T .
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That means NT ≤ α3

(
3

3 − q

) 3

q

T 3 ≤ 27

8
α3T 3, as the result of Lemma 2.18. Thus

we have

NT ≤ 27

8
C1T

3‖A‖3
L3. (2.30)

Now we see that if ψ ∈ Ker DtA, then ψ is an eigenvector of T with the eigenvalue
1

t
. Indeed, we have

DtAψ = 0 ⇐⇒ σ · pψ = σ · tAψ ⇐⇒ ψ = t(σ · p)−1(σ · A)ψ ⇐⇒ T ψ =
1

t
ψ.

Therefore,

ψ ∈ KerDtA ⇐⇒ ψ is the eigenfunction of T with the eigenvalue λ =
1

t
.

We notice that for 0 ≤ t ≤ T, then

λ =
1

t
≥ 1

T
.

So, we have

nA(T ) ≤ NT .

And then our conclusion follows from (2.30) with a re-selection of the constant

C =
27

8
C1.

2.4 An estimate on nA(T ) in two dimensions

In the three dimensional case of the previous section we applied the result of Cwikel
and obtained the compactness of operator T (actually T is in the Schatten class
Sq for some q ≥ 1) as well as important estimates for the singular values of T . We
used the fact that the function |x|−1 ∈ L3

w(R3) and we can apply Cwikel’s result
for q = 3. However Cwikel’s result does not include q = 2, despite the fact that
|x|−1 ∈ L2

w(R2) as well. It follows that we cannot obtain directly the estimate for
nA(T ) in two dimensions by the same method we used in three dimensions above.
However, we can change some arguments, so that at last we can again apply Cwikel’s
result to obtain the following.

Theorem 2.4.1. Let |A| be in L2(R2)
⋂
Lr(R2) for some r > 2. For an arbitrary

T > 0 we have the following estimate

nA(T ) ≤ CT 2 · ‖A‖2
L2 ,

where the constant C is independent of T and A.
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Proof. Let U =
σ · A
|A| and V =

σ · p
|p| . Observe that U and V are unitary. Apply-

ing the Birman-Schwinger principle we have if 0 is eigenvalue for DtA, then
1

t
is

eigenvalue (with the same multiplicity) for S = |p|− 1

2 (σ · A)|p|− 1

2V. Next, we write

S = |p|− 1

2 |A| 12U|A| 12 |p|− 1

2V. Let R1 = |A| 12 |p|− 1

2 . Then, we have

S = R∗
1UR1V. (2.31)

It is time to look back to Cwikel’s result for R1.We write R1 = |A| 12 |p|− 2

4 . Therefore,

we can apply Cwikel’s result for p = 4, n = 2, f(x) = |A| 12 ∈ L4(R2) since |A| ∈
L2(R2) and |x|− 2

4 ∈ L4
w(R2). Then, we obtain the compactness of R1, then R∗

1. We
also notice that since V is unitary, then

µj(S) = µj(R∗
1UR1), (2.32)

where the nonzero singular values are enumerated as usual. It also follows from
Cwikel’s result that

µj(R1) ≤ C1

{∫

R2

(|A| 12 )4

} 1

4

j−
1

4 = C1‖A‖
1

2

L2j
− 1

4 , (2.33)

where C1 is independent of j and A as well. We observe that for any q, 0 < q < 1

N∑

j=1

[µj(R∗
1UR1)]

q

=

N∑

j=1

|λj(R∗
1UR1)|q since R∗

1UR1 is self-adjoint

=

N∑

j=1

|λj(R1R∗
1U)|q using λj(AB) = λj(BA)

≤
N∑

j=1

[µj(R1R∗
1U)]q using the weak Weyl inequality (see [47], p.85)

=
N∑

j=1

[µj(R1R∗
1)]

q since U is unitary

=

N∑

j=1

λq
j(R1R∗

1) since R1R∗
1 ≥ 0

=

N∑

j=1

λq
j(R∗

1R1) since λj(AB) = λj(BA)

=
N∑

j=1

[µj(R1)]
2q.
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Now the estimate above along with (2.31), (2.32) and (2.33) allows us to do ex-
actly the same as in three dimensions and obtain the estimate for the case of two
dimensions.

Remark. We also see that the arguments above also work for the case of three
dimensions. But we have to write R1 = |A| 12 |p|− 1

2 = |A| 12 |p|− 3

6 . Then, we can apply

Cwikel’s result with f(x) = |A| 12 ∈ L6(R3), g(x) = |x|− 3

6 ∈ L6
w(R3) and obtained

the compactness of R1 as well as the estimation µj(S) ≤ C1‖A‖L3j−
1

3 .

Remark. In fact the additional assumption compared to the case of three dimensions
that |A| ∈ Lr(R2) for some r > 2 helps only to guarantee the Weyl-Dirac operators
to be expressed in the operator sum as the result of Balinsky and Evans in [12]. We
can use L2 estimates on |A| for the remainder of arguments above.

2.5 An estimate for the zero modes of massless

Dirac operators

We now turn to the massless Dirac operator

T := α · p+Q(x), x ∈ R
3, (2.34)

where α := (α1, α2, α3) is the triple of 4 × 4 Dirac matrices

αj =

(
02 σj

σj 02

)
, j = 1, 2, 3,

with the 2×2 zero matrix 02, and Q(x) is a 4×4 Hermitian matrix-valued function.
In mathematical physics we often meet the operators

α · (p−A(x)) + V (x)I4,

where (V,A) is an electromagnetic potential and I4 is the 4×4 identity matrix. It is
obvious that the family of these operators is a subset of the class of operators (2.34).

Zero modes and their properties for massless Dirac operators are investigated, for
instance, in [49] and [50]. There, assuming that Q(x) is Hermitian for each x ∈ R3

and each element qjk(x) for j, k = 1, . . . , 4 of Q(x) is measurable and satisfies

|qjk(x)| ≤ C(1 + |x|2)− ρ
2 , for some ρ > 1,

Saitō et al. show that if f is a zero mode for the massless Dirac operator T, then f
is a continuous function on R3 and satisfies

|f(x)| ≤ C(1 + |x|2)−1 for all x ∈ R
3.

Moreover, Saitō et al. also prove that

lim
r→∞

r2f(rω) = − i

4π
(α · ω)

∫

R3

Q(y)f(y) dy,
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uniformly with respect to ω ∈ S2.

Motivated by [49], [50] and [13] we want to obtain a similar estimate as we got in
Theorem 2.3.6 for zero modes of massless Dirac operators. To do that we assume
that ‖Q(·)‖4 ∈ L3(R3), where ‖ · ‖4 is any matrix norm on 4×4 matrices. With this
condition in [13] Balinsky et al. show that Q is a small perturbation of α · p. Then,
it follows from the Kato-Rellich theorem (see Theorem 1.11.2 ) that the operator T

can be defined as the operator sum of α · p and the multiplicative operator by Q.

Moreover, we also know the domain of the self-adjoint T is
[
H1(R3)

]4
, the space of 4-

component spinors in
[
L2(R3)

]4
with first derivatives (in the distributional sense) in[

L2(R3)
]4
. In this case we call a zero mode a four-component spinor f ∈

[
H1(R3)

]4
such that Tf = 0.

Balinsky et al. confirm in that case they obtain a similar result as the case of the
Weyl-Dirac operator. That is the massless Dirac operators with scaled potential
Tt := α · p + tQ, t ≥ 0 can have a zero mode for only a countable set values of t,
while

dim Ker T ≤ C

∫

R3

‖Q(x)‖3
4 dx. (2.35)

Please refer to [13] for more details about their assertion.

Hereafter we will show the better estimate than (2.35). Specifically, let

nQ(T ) :=
∑

0≤t≤T

dim Ker Tt.

Then, we have the following.

Theorem 2.5.1. Let ‖Q(·)‖4 be in L3(R3). For an arbitrary T ≥ 0 there are
only finite number of t ∈ [0, T ] such that dim Ker Tt 6= 0. In addition we have the
following estimate

nQ(T ) ≤ CT 3

∫

R3

‖Q(x)‖3
4 dx,

where C is independent of T and Q.

Proof. We use exactly the same argument as we did for Theorem 2.3.6, noticing
that (α · p)2 = −∆I4 = |p|2 for brevity, where I4 is the 4 × 4 identity matrix.

Remark. We remark that we in fact do not need the self-adjointness of Q(·) when
we prove Theorem 2.5.1. However we need this property when showing T is the
operator sum of α · p and Q.
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2.6 An estimate for the eigenfunctions of Dirac

operators with positive mass at the threshold

energies

In this section we consider the following operator with the vector potential A

HA := α · (p−A) +mβ, where m > 0 and β =

(
I2 02

02 −I2

)
,

where I2 is the 2 × 2 identity matrix. We follow, for instance, Saitō and Umeda in
[51] and call the above operator the Dirac operator with positive mass.

In case of A = 0 it is well-known that H0 is essentially self-adjoint on the dense

domain
[
C∞

0 (R3 \ {0})
]4

and self-adjoint on
[
H1(R3)

]4
. It is also classical that the

spectrum of H0 is purely absolutely continuous and given by

Spec(H0) = (−∞,−m] ∪ [m, ∞).

For instance, see [57], Theorem 1.1 for details.

In [51] while Saitō and Umeda study the Dirac operator with positive mass above,
they propose the following condition, which has been used before by Balinsky and
Evans in [12]. Here then, we will call it Assumption BE.

Assumption BE. Each element Aj(x) is a real-valued measurable function satis-
fying

Aj ∈ L3(R3).

With Assumption BE, Saitō and Umeda show that HA is a relatively compact per-
turbation of the operator H0. The consequence of this is we can completely define
HA with the same domain as the one of H0 from the Kato-Rellich theorem. It also
follows that the essential spectrum of HA is (−∞, −m] ∪ [m, ∞) and in the in-
terval (−m, m) there exists only discrete spectrum for HA. So, we can call ±m the
threshold energies for HA.

One of Saitō and Umeda’s interests in [51] is the estimate of the dimension for
the eigenspaces of the Dirac operators with positive mass at eigenvalues ±m. They
consider the class A of potentials, proposed by Elton in [22]

A = {A : Aj(x) ∈ C0(R3, R), Aj(x) = o(|x|−1) as |x| → +∞}.

It is not hard to show that A is a Banach space with the norm ‖A‖ = ‖(1+|x|)A‖L∞

and C∞
0 is a dense subspace of A. Then, with such class of potentials A, Saitō and

Umeda obtain ‘similar’ results (to Elton’s results in [22]) for dimE±m(HA), where
E±m(HA) the eigenspaces of the Dirac operators HA at the threshold eigenvalues
±m: (1) The subsets of potentials in A in which the eigenspaces at eigenvalues ±m
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for the corresponding operators HA have dimension of k are the same (2) The subset
of potentials in A such that the corresponding HA have trivial kernel is open and
dense in A (3) For any non-negative k and any arbitrary open nonempty subset Ω
of R3 we can find find a smooth potential A ∈ A with compact support in Ω such
that the dimensions of eigenspaces at eigenvalues ±m for HA are k.

To combine with the results of Balinsky and Evans in [12] Saitō and Umeda also
obtain that

• the subset of potentials in [L3(R3)]3 such that the corresponding Dirac oper-
ators with positive mass have nontrivial eigenspaces at ±m is ‘sparse’

• there is a constant C, which is independent of potentials A such that

dimE±m(HA) ≤ C

∫

R3

|A(x)|3 dx.

Let
nA(T,±m) :=

∑

0≤t≤T

dimE±m(HtA).

Our result here is stronger; that is

Theorem 2.6.1. For arbitrary T ≥ 0 there are finitely many t ∈ [0, T ] such that
the eigenspaces E±m(HtA) at ±m for the corresponding Dirac operator with positive
mass HtA is nontrivial. Futhermore,

nA(T,±m) ≤ CT 3‖A‖3
L3 ,

and the constant C is independent of T and the potential A.

Proof. It follows from [57], Theorem 7.1 that HtAΨ = mΨ if and only if Ψ =

(
ψ1

0

)

with σ · (p− tA)ψ1 = 0. That means ψ1 is a zero mode for the Weyl-Dirac operator
DtA = σ · (p − tA). Now we can apply the result of Theorem 2.3.6 and obtain
one conclusion above (for nA(T,m)). We repeat the arguments and obtain the
remainder.
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Chapter 3

Dirac operators on S
2

3.1 Introduction

In [24] Erdös and Solovej showed a geometric way to study zero modes for DA =
σ · (−i∇ − A) on R3 through studying the equivalent problem on the 3-sphere S3.
They gave a family of magnetic fields on S3 for which they could characterise the
spectrum and in some special cases they calculated the dimension of the kernel for
the Dirac operator on S3. Then, based on the conformal equivalence of R3 to the
3-sphere with a point removed, they gave results about the kernel of DA on R3.
However to understand the problem on S3 we need information about the spectrum
of related Dirac operators with magnetic field on S2. To define a Dirac operator
with magnetic field on S2, or more generally on a manifold, we need Spinc struc-
tures; these are comprised of a Spinc spinor bundle and a Spinc connection. These
are special cases of vector bundles and connections from differential geometry.

We will introduce Spinc structures (Spinc spinor bundles and Spinc connections)
on the unit ball S2 of R3, so that we can then construct the Dirac operators with
magnetic fields on S

2. We also consider Spinc structures for S
3 as well as Dirac

operators on S3 with magnetic fields. We will consider a specific class of magnetic
fields (tvolS2) on S2 and show explicitly spectrum of the corresponding Dirac opera-
tors. We also give a proof of the Aharonov-Casher theorem for S2. We have already
discussed the version of this theorem for R2 and in fact there are some proofs for
the version on S2; however we will give a proof which reduces the problem to deter-
mining the dimension of the kernels of Dirac operators on S2 which correspond to
constant magnetic fields.

3.2 Spinc structures

We will firstly introduce some general concepts from differential geometry which we
need later in the thesis. The second part of this section is devoted to the construction
of Spinc structures for S

2.
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3.2.1 Generalities

We first remind of some concepts and notations considered on a manifold and for
convenience we take M to show all. We mean here M is an n-dimensional differen-
tiable manifold. The main source for this comes from [41] and [46].

We denote by TpM the tangent vector space at the point p on M . We also use TM
to denote the tangent bundle over M ; this is the union of the tangent spaces at each
point on M. A vector field X is a section of the tangent bundle TM ; that is, X is
a map M −→ TM which sends a point p on M to a tangent vector in the tangent
space TpM at that point. We denote by Γ(TM) the collection of all vector fields
defined on M. A metric g is an assignment of an inner product gp to the vector space
TpM for each p ∈M . The pair (M, g) is called a Riemannian manifold.

For any differentiable function f : M −→ R and vector field X ∈ Γ(TM) we denote
by Xf the derivative of the function f along the vector field X; we can think of
Xf(p) as the derivative of f at the point p in the direction of Xp.

Take X, Y ∈ Γ(TM). We define the Lie bracket of X, Y to be the vector field,
denoted by [X, Y ], such that for any differentiable function f : M −→ R we have

[X, Y ]f = X(Y f) − Y (Xf).

If we have a set of local coordinates (x1, x2, . . . , xn) (defined on an open subset U of
M) we define corresponding coordinate vector fields Xx1

, . . . , Xxn by

Xxi
xj = δij , i, j = 1, . . . , n.

Remark 3.2.1. Suppose that f : M −→ R is a differentiable function. If we consider
the restriction of f to the open subset U to be a function of (x1, x2, . . . , xn) we have

Xxj
f(x1, x2, . . . , xn) =

∂f

∂xj
(x1, x2, . . . , xn)

the j-partial derivative of f . For this reason the notation
∂

∂xj
is often used for Xxj

.

To define spinors on an arbitrary manifold M we need to generalise the idea of
functions on M taking values in some vector space V (for spinors on R2 or R3 we
have V = C2). We first introduce a “twisted” version of M × V called a vector
bundle. We may start with a set of charts Uj for M . On the union Uj × V we
consider an equivalence relation ∼ between (p, ψ) ∈ Uj × V and (p′, ψ′) ∈ Uk × V
by (p, ψ) ∼ (p′, ψ′) if and only if p = p′ and ψ = tjkψ

′ where given transitions
tjk : Uj ∩ Uk −→ GL(V) is a smooth transition map which satisfies the following
conditions;

tjj(p) = I − the identity,

tjk(p) = t−1
kj (p), p ∈ Uj ∩ Uk,

tjk(p)tkl(p) = tjl(p), p ∈ Uj ∩ Uk ∩ Ul.
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Then, we will obtain a vector bundle E with fibre V; that is ∪jUj × V/ ∼. The
mapping π : E −→ M given by π(p, ψ) = p is called the projection for this vector
bundle. For p ∈ M , then π−1(p) is a vector space isomorphic to V; it is called the
fibre of E at p. A section s is a smooth map M −→ E such that πs(p) = p for all
p ∈ M . Sections in fact generalise the idea of V-valued functions on M . The set of
all sections on M is often denoted by Γ(M).

Remark 3.2.2. If M is an n-dimensional manifold, then the tangent bundle and
cotangent bundle are vector bundles with fibre R

n.

In general there is no generic way of associating vectors in different fibres of a
vector bundle; the extra information needed to do this is given by a connection. A
connection ∇ on a bundle E is a map Γ(TM) × Γ(E) −→ Γ(E) satisfying

• ∇fXs = f∇Xs

• ∇X(fs) = (Xf)s+ f∇Xs for all X, Y ∈ Γ(TM), s ∈ Γ(E) and functions f

• ∇X+Y s = ∇Xs+ ∇Y s.

In case the bundle E is the tangent bundle TM for a Riemannian manifold (M, g) we
will consider a special connection. First, we already know that for vector fieldsX and
Y, then the Lie bracket [X, Y ] = XY −Y X is a vector field. A connection is called
Torsion-free if ∇XY − ∇YX = [X, Y ]. The fundamental theorem of Riemannian
manifolds guarantees that there is a unique connection for M , which is Torison-free
and is compatible with a given Riemannian metric g in the sense that

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ).

This connection is called the Levi-Civita connection on the Riemannian manifold
(M, g).

Since TpM at each point p ∈ M is a vector space, there is a dual vector space to
TpM. This dual space is called the cotangent space at that point; we use T ∗

pM to
denote this cotangent space. Each element in T ∗

pM is called a cotangent vector and
the union of all cotangent spaces is called the contangent bundle, denoted by T ∗M .
A section of T ∗M is called a one-form. On a Riemannian manifold (M, g), there
is a natural dual connection of the Levi-Civita one on the cotangent bundle T ∗M ,
which will also be called the Levi-Civita connection on one-forms.

Generalising the construction of the cotangent space, we can consider ∧rT ∗
pM , the

space of totally antisymmetric r-linear maps on TpM . The union of all these is
denoted by ∧rT ∗M and sections of this bundle are called r-forms. The notation
Ωr(M) is used for the space of all r-forms on M . Note that Ω1(M) = Γ(T ∗M).

Suppose that M and N are manifolds, and f : M −→ N is a differentiable map.
The corresponding differential map f∗ is a linear map from TpM to Tf(p)N for each
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p ∈M . Moreover, the map f also induces a pullback on r-forms; this is the map f ∗

from Ωr(N) to Ωr(M) given by

(f ∗ω)(X1, X2, . . . , Xr) = ω
(
f∗X1, f∗X2, . . . , f∗Xr

)
,

where ω ∈ Ωr(N) and X1, X2, . . . , Xr ∈ Γ(TM).

Suppose that M is a Riemannian n-manifold and U is an open subset of M. An
orthonormal frame is a set of vector fields {ê1, ê2, . . . , ên} defined on U which pro-
vides an orthonormal basis for TpM at each point p ∈ U . The corresponding dual
one-forms are denoted by {ê1, ê2, . . . , ên}; that is

êj(êk) = δjk, j, k = 1, 2, . . . , n.

This set provides an orthonormal basis for T ∗
pM for each point p ∈ U .

We can define r-forms

êj1 ∧ êj2 ∧ · · · ∧ êjr , 1 ≤ j1 < j2 < · · · < jr ≤ n

by

(êj1∧êj2∧· · ·∧êjr)(êk1
, êk2

, . . . , êkr) = δj1k1
δj2k2

. . . δjrkr , for 1 ≤ k1 < k2 · · · < kr ≤ n.

Then, the family {êj1 ∧ êj2 ∧ · · · ∧ êjr , 1 ≤ j1 < j2 < · · · < jr ≤ n} provides an
orthonormal basis for r-forms (defined on U).

Remark 3.2.3. Actually, êj1 ∧ êj2 ∧ · · · ∧ êjr is the wedge product or exterior product
of êj1 , êj2, . . . , êjr .

Let (M, g) be an oriented Riemannian manifold. Suppose that ê1, ê2, . . . , ên is an
oriented orthonormal frame for the cotangent space T ∗M. Then, we can define the
volume form volM := ê1 ∧ ê2 ∧ · · · ∧ ên. If the manifold M is compact we may
integrate the volume form over M to obtain the “usual” volume of M . Later we
will need the Hodge star operator ∗ which turns a k-form into an n − k-form. The
Hodge star operator is linear and therefore may be defined on the basis elements
êj1 ∧ êj2 ∧ · · · ∧ êjk , 1 ≤ j1 < j2 < · · · < jk ≤ n of Ωk(M); here we set

∗(êj1 ∧ êj2 ∧ · · · ∧ êjk) = êl1 ∧ · · · ∧ êln−k ,

where êj1 ∧ · · · ∧ êjk ∧ êl1 ∧ · · · ∧ êln−k = volM .

For a manifold M there is a natural differential operator d, called the exterior
derivative, which takes r-forms to r + 1-forms. This can be defined as the unique
linear operator Ωr(M) −→ Ωr+1(M), r = 0, 1, 2, . . . which satisfies the following
conditions

• If f ∈ Ω0(M) (that is f is a function), then df is the one-form given by
df(X) = Xf for any vector field X

• d(α ∧ β) = dα ∧ β + (−1)r1α ∧ dβ for all α ∈ Ωr1(M), β ∈ Ωr2(M)

• d2α = 0 for all α ∈ Ωr(M).
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3.2.2 Spinc structures

Spinors on a manifold will be defined as sections of a particular type of bundle which
is known as Spinc spinor bundle

Definition 3.2.4. ([24]) A Spinc spinor bundle Ψ over a three dimensional Rie-
mannian manifold M is a 2-dimensional complex vector bundle over M with inner
product and an isometry σ : T ∗M −→ Ψ(2), where Ψ(2) := {X ∈ End(Ψ) : X =
X∗, Tr(X) = 0}.

A Spinc spinor bundle Ψ over a two dimensional Riemannian manifold is defined
almost in the same way as for three dimensional case except that the map σ is only
required to be a partial injective isometric.

The map σ is called the Clifford multiplication of the spinor bundle Ψ. On Ψ(2) we

use 〈X, Y 〉 =
1

2
Tr(XY ) as the inner product between X, Y ∈ Ψ(2). We may check

that XY + Y X = Tr(XY ) I2 = 2〈X, Y 〉I2 for any X, Y ∈ Ψ(2). Therefore, for any
α, β ∈ T ∗M we have

σ(α)σ(β) + σ(β)σ(α) = 2〈σ(α), σ(β)〉I2 = 2〈α, β〉I2, (3.1)

where the last equality holds since σ is an isometry.

For brevity, in this thesis Spinc spinor bundles will often be called the spinor bundles.

Remark 3.2.5. In the simple case where M is R
3, a Spinc spinor bundle is given by

the trivial complex vector bundle R3 ×C2 with Clifford multiplication σ defined by
σ(êj) = σj , where {ê1, ê2, ê3} is the standard orthonormal basis for one-forms on R3

and σ1, σ2, σ3 are the usual Pauli matrices.

For Spinc spinor bundle the connection we need is called a Spinc connection. These
are defined as follows.

Definition 3.2.6. ([24]) A connection ∇ on a spinor bundle Ψ over M is called a
Spinc connection if for all vector fields X ∈ Γ(TM) we have

• X〈ξ, η〉 = 〈∇Xξ, η〉 + 〈ξ, ∇Xη〉 for all spinor sections ξ, η

• [∇X , σ(α)] = σ(∇Xα) for all one-forms α on M .

We notice that in Definition 3.2.6 above ∇Xα means the Levi-Civita connection
acting on one-forms.

Now we set up the concept of magnetic fields for connections on a spinor bundle Ψ
over M .
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Definition 3.2.7. The curvature tensor of the Spinc connection ∇ is defined as

RΨ(X, Y )ξ = ∇X∇Y ξ −∇Y ∇Xξ −∇[X, Y ]ξ,

where ξ is a spinor section and X, Y are vector fields on M . Then, the magnetic
field β is defined to be the two-form given by

β(X, Y ) =
i

2
Tr[RΨ(X, Y )] for all vector fields X, Y. (3.2)

Remark 3.2.8. Although magnetic fields are most naturally defined on manifolds as
two-forms this does not amount to a change in view point when working on R2 or R3

(where magnetic fields we previously consider as scalar functions and vector fields
respectively; see (1.10) and (1.1)).
Firstly, consider the case M = R2. Let {ê1, ê2} be the usual orthonormal basis for
TR2 and {ê1, ê2} the dual orthonormal basis for T ∗R2. A Spinc spinor bundle is
given by Ψ = R2 × C2 (the trivial bundle) with Clifford multiplication σ given by
σ(êj) = σj , j = 1, 2-the Pauli matrices; that means spinors are simply C

2-valued
functions on R2. A Spinc connection can be defined by setting ∇bej

= ∂j − iAj , j =
1, 2, where A1, A2 are R-valued functions on R2; we can put these functions together
to give the magnetic potential A1ê

1 +A2ê
2 which is now viewed as a one-form. Now,

observe that [ê1, ê2] = 0 since [ê1, ê2]f = (∂1∂2 −∂2∂1)f = 0 for any smooth function
f on R2. Then, we have

RΨ(ê1, ê2)ξ = (∇be1
∇be2

−∇be2
∇be1

)ξ

= [(∂1 − iA1)(∂2 − iA2) − (∂2 − iA2)(∂1 − iA1)]ξ

= −i(∂1A2 − ∂2A1)ξ.

Thus, the magnetic field β of Definition 3.2.7 is given by β(ê1, ê2) =
i

2
TrRΨ(ê1, ê2) =

∂1A2 − ∂2A1, or
β = (∂1A2 − ∂2A1)ê1 ∧ ê2;

notice that ∂1A2 − ∂2A1 is the scalar function we previously considered as the mag-
netic field.
There is a similar version for R3 and we obtain the magnetic field

B23ê
2 ∧ ê3 +B31ê

3 ∧ ê1 +B12ê
1 ∧ ê2

for a given magnetic potential A = A1ê
1 + A2ê

2 + A3ê
3; here B23 = ∂2A3 −

∂3A2, B31 = ∂3A1 − ∂1A3 and B12 = ∂1A2 − ∂2A1 are the components of the
magnetic field (B23, B31, B12) considered as a vector field.

3.2.3 Spinc structures on S2

The equation for the unit ball S2 in R3 is x2
1+x

2
2+x

2
3 = 1. Denote S2\{(0, 0,−1)} and

S
2\{(0, 0, 1)} by S

2
+ and S

2
− respectively. Each point p in S

2 with the usual Cartesian
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coordinates (x1, x2, x3) is characterised by a pair (θ, φ) in spherical coordinates,
where

φ =






tan−1 x2

x1
if x1 > 0 and x2 ≥ 0

tan−1 x2

x1
+ 2π if x1 > 0 and x2 < 0

tan−1 x2

x1

+ π if x1 < 0

π

2
if x1 = 0 and x2 > 0

3π

2
if x1 = 0 and x2 < 0

0 if x1 = x2 = 0,

and θ = cos−1 x3. We notice that φ ∈ [0, 2π) and θ ∈ [0, π]. For brevity we will
denote sin θ, cos θ, sinφ, cosφ and eiφ by s, c, sφ, cφ and ω, respectively.

Now we will construct spinor bundles on S2. For each n ∈ Z we define a spinor bundle
Ψn on S

2 as follows: Ψn = Ψ+
n ∪ Ψ−

n / ∼, where Ψ+
n = S

2
+ × C

2, Ψ−
n = S

2
− × C

2,
and ∼ is an equivalence relation between (p, ξ+) ∈ Ψ+

n and (p, ξ−) ∈ Ψ−
n given by

(p, ξ+) ∼ (p, ξ−) ⇐⇒ ξ− = Unξ
+, in which

Un =

(
ω−n+1 0

0 ω−n−1

)
= ω−n

(
ω 0
0 ω−1

)
= ω−nW,

where

W =

(
ω 0
0 ω−1

)
∈ SU(2).

Thus, for each p ∈ S2
+ ∩ S2

− the transition map

(S2
+ ∩ S

2
−) × C

2 −→ (S2
+ ∩ S

2
−) × C

2

(p, ξ+) 7−→ (p, ξ−),

is given by ξ− = Unξ
+.

Denote by
{
êθ, êφ

}
the orthonormal basis on TS2 with êθ = Xθ, êφ =

1

s
Xφ, where

Xθ, Xφ are the coordinate vector fields (see Remark 3.2.1). We observe that the Lie

bracket of êθ and êφ is −c
s
êφ; indeed

[êθ, êφ] = [Xθ,
1

s
Xφ] = ∂θ(

1

s
∂φ·) −

1

s
∂φ(∂θ·) = − c

s2
∂φ = −c

s
êφ. (3.3)
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The dual is given by êθ = dθ, êφ = sdφ and {êθ, êφ} is an orthonormal basis for
T ∗S2. The volume form for S2 is volS2 = êθ ∧ êφ = sdθ ∧ dφ. Applying the Hodge
star operator we obtain, for instance

∗1 = êθ ∧ êφ, ∗ êθ = êφ, ∗ êφ = −êθ, ∗ (êθ ∧ êφ) = 1.

To define the Clifford multiplication σ for this spinor bundle Ψn we set

σ(êθ) = σθ, σ(êφ) = σφ,

where

σθ = σθ
+ :=

(
0 ω−1

ω 0

)
, σφ = σφ

+ :=

(
0 −iω−1

iω 0

)

for Ψ+
n , and

σθ = σθ
− :=

(
0 ω
ω−1 0

)
, σφ = σφ

− :=

(
0 −iω

iω−1 0

)

for Ψ−
n .

Since the Clifford multiplication has been defined using local trivilisations we still
need to check the “compatibility” between the definitions on Ψ+

n and Ψ−
n . That

means at any point in the overlap of S+ and S− the transition map between Ψ+
n and

Ψ−
n must commute with the Clifford multiplication. To check this firstly note that

Unσ
θ
+U

∗
n =

(
ω−n+1 0

0 ω−n−1

)(
0 ω−1

ω 0

)(
ωn−1 0

0 ωn+1

)
=

(
0 ω
ω−1 0

)
= σθ

−

and,

Unσ
φ
+U

∗
n =

(
ω−n+1 0

0 ω−n−1

)(
0 −iω−1

iω 0

)(
ωn−1 0

0 ωn+1

)
=

(
0 −iω

iω−1 0

)
= σφ

−.

It follows that if ξ− = Unξ
+, then

σθ
−ξ

− = Unσ
θ
+U

∗
nξ

− = Unσ
θ
+ξ

+.

Similarly, σφ
−ξ

− = Unσ
φ
+ξ

+, so σθ and σφ are well defined on Ψn. In the metric on

Ψ
(2)
n we have 〈σθ, σθ〉 = 1

2
Tr (σθ)2 = 1

2
Tr I2 = 1 etc. Thus, Ψn and σ are well

defined and satisfy the conditions in Definition 3.2.4. Therefore we obtain a spinor
bundle Ψn for each n ∈ Z.
We remark that

−iσθσφ = −iσθ
±σ

φ
± = σ3. (3.4)

Next we will furnish the spinor bundle Ψn with a Spinc connection ∇̃. Since {êθ, êφ}
is a basis for the tangent vector space TS

2 we need only to define ∇̃ for this basis.
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Hereafter we will use the notation ∇̃θ for ∇̃beθ
and ∇̃φ for ∇̃beφ

(and similarly for
other connections to follows).

We begin by defining a particular connection ∇̃ on Ψn by setting

∇̃θ = ∇̃±
θ = ∂θ, (3.5)

and

∇̃φ = ∇̃±
φ =

1

s
∂φ +

is

2(c± 1)
σ3 −

isn

2(c± 1)
=

1

s
∂φ −

is

2(c± 1)

(
n−

(
1 0
0 −1

))
(3.6)

on Ψ±
n . Once again we must check compatibility.

Firstly, since Un is independent of θ, we immediately get Un∂θU
∗
n = ∂θ, so Un∇̃+

θ U
∗
n =

∇̃−
θ . On the other hand

Un∂φU
∗
n = ∂φ +

(
ω−n+1 0

0 ω−n−1

)(
i(n− 1)ωn−1 0

0 i(n+ 1)ωn+1

)

= ∂φ + i

(
n− 1 0

0 n+ 1

)
.

Then, observing that Unσ3U
∗
n = σ3, we get

Un∇̃+
φU

∗
n =

1

s
Un∂φU

∗
n − is

2(c+ 1)
Un

(
n−

(
1 0
0 −1

))
U∗

n

=
1

s
∂φ +

i

s

(
n− 1 0

0 n + 1

)
− is

2(c+ 1)

(
n−

(
1 0
0 −1

))

=
1

s
∂φ + i

(1
s
− s

2(c+ 1)

)(
n−

(
1 0
0 −1

))

=
1

s
∂φ − is

2(c− 1)

(
n−

(
1 0
0 −1

))

= ∇̃−
φ .

Thus, for any tangent vector field X, we have Un∇̃+
XU

∗
n = ∇̃−

X . Hence

∇̃−
Xξ

− = Un∇̃+
XU

∗
nξ

− = Un∇̃+
Xξ

+,

whenever ξ− = Unξ
+.

Therefore ∇̃±
X can be used to define a connection on the spinor bundle Ψn. To be-

come a Spinc connection on Ψn, ∇̃ must satisfy two conditions in Definition 3.2.6
as well.

Before we check these two conditions for ∇̃ we need an expression for the Levi-
Civita connection on one-forms on S2; this standard calculation can be conveniently
summarised by the formulae (see (7.14),(7.57) and (7.25) in [41], for example)

∇θê
θ = ∇θê

φ = 0, ∇φê
θ =

c

s
êφ and ∇φê

φ = −c
s
êθ.
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Since the two conditions in Definition 3.2.6 are linear in X and α we need only check
them for X = êθ, êφ and α = êθ, êφ.

The first condition follows easily from the fact that êθ = Xθ and êφ =
1

s
Xφ (recall

Remark 3.2.1), while
isn

2(c± 1)
and

is

2(c± 1)
σ3 are anti-hermitian.

Now we will check the second condition for convenience).
Since ω = eiφ is independent of θ we get

[∇̃θ, σ
θ] = 0 = σ(∇θê

θ) and [∇̃θ, σ
φ] = 0 = σ(∇θê

φ).

On the other hand we have

[∇̃φ , σ
θ] =

1

s
∂φ

(
0 ω∓1

ω±1 0

)
+

is

2(c± 1)

[(
1 0
0 −1

)
,

(
0 ω∓1

ω±1 0

)]

=
1

s

(
0 ∓iω∓1

±iω±1 0

)
± is

2(1 ± c)
2

(
0 ω∓1

−ω±1 0

)

= ∓
(
− 1

s
+

s

1 ± c

)(
0 −iω∓1

iω±1 0

)

=
c

s

(
0 −iω∓1

iω±1 0

)
since

s

1 ± c
=

1 ∓ c

s

= σ(
c

s
êφ)

= σ(∇φê
θ).

Finally, we have

[∇̃φ , σ
φ] =

1

s
∂φ

(
0 −iω∓1

iω±1 0

)
+

is

2(c± 1)

[(
1 0
0 −1

)
,

(
0 −iω∓1

iω±1 0

)]

=
1

s

(
0 (−i) ∓ iω∓1

(i) ± iω±1 0

)
± is

2(1 ± c)
2

(
0 −iω∓1

−iω±1 0

)

= ∓
(
− 1

s
+

s

1 ± c

)(
0 (−i)(−i)ω∓1

(i)iω±1 0

)

= −c
s

(
0 ω∓1

ω±1 0

)

= σ(−c
s
êθ)

= σ(∇φê
φ).

Suppose that A is a one-form on S2 written as Aθê
θ +Aφê

φ. Since the multiplication
operators −iAθ and −iAφ are anti-hermitian, we may similarly as above define a
more general connection ∇ on Ψn by setting

∇θ = ∇̃±
θ − iAθ and ∇φ = ∇̃±

φ − iAφ. (3.7)
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The bundles Ψn have been introduced so we can define spinors on S2 as a generalised
version of C2-valued functions on S2 (namely sections of Ψn). For some calculations
it will be helpful to have a corresponding generalisation of scalar valued functions
on S2; this requires the introduction of the line bundles or bundles with fibre C. For
each n ∈ Z we define a line bundle Ln over S2 as follows: Ln = L+

n ∪L−
n / ∼′, where

L+
n = S2

+ ×C, L−
n = S2

−×C, and ∼′ is an equivalence relation between (p, ζ+) ∈ L+
n

and (p, ζ−) ∈ L−
n given by (p, ζ+) ∼′ (p, ζ−) ⇐⇒ ζ− = ω−nζ+.

Thus, for each p ∈ L+
n ∩ L−

n , the transition map

(S2
+ ∩ S

2
−) × C −→ (S2

+ ∩ S
2
−) × C

(p, ζ+) 7−→ (p, ζ−)

is given by
ζ− = ω−nζ+. (3.8)

Comparing with the transition map for Ψn it follows that

Ψn = Ln−1 ⊕ Ln+1. (3.9)

On the line bundle Ln we can define a connection ∇ by setting

∇θ = ∇±
θ = ∂θ (3.10)

∇φ = ∇±
φ =

1

s
∂φ − ins

2(c± 1)
=

1

s

(
∂φ +

in

2
(c∓ 1)

)
, (3.11)

on L±
n . We have to check compatibility, but we can repeat same arguments as we

have done for the case Ψ±
n before.

3.3 Dirac operators on S
2

Using the Spinc structures introduced on S2 in the preceeding section, we can now
define Dirac operators on S2.

Let A = Aθê
θ + Aφê

φ = Aθdθ + Aφsdφ ∈ Ω1(S2) and let ∇ denote the Spinc

connection on Ψn given by (3.7). Set D = −i∇; that is

Dθ = D±
θ = −i∇̃±

θ − Aθ = −i∂θ −Aθ,

and

Dφ = D±
φ = −i∇̃±

φ − Aφ = − i

s
∂φ − s

2(c± 1)
(n− σ3) − Aφ.

Now we can define the Dirac operator with a magnetic potential A = Aθê
θ + Aφê

φ

on the manifold S2 above as follows.

Definition 3.3.1. The Dirac operator with magnetic potential A is the operator
DA = σθDθ +σφDφ, where Dθ, Dφ are given as above. This operator acts on spinors,
or sections of the Spinc bundle Ψn on S

2. In the case A = 0 we denote DA by D.
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We recall that the volume form of S2 is volS2 = êθ ∧ êθ = sdθ ∧ dφ. The (formal)
adjoint of Dθ, Dφ acting on sections of Ψ±

n can then be calculated as

(D±
θ )∗ =

−i
s
∂θ(s·) − Aθ = −i∂θ −

ic

s
−Aθ = D±

θ − ic

s
,

and (D±
φ )∗ = D±

φ .
As is the case for operators on R2 and R3 we have the following.

Proposition 3.3.2. The Dirac operator DA is (formally) self-adjoint.

Remark 3.3.3. By “formal” we mean 〈DAξ1, ξ2〉 = 〈ξ1,DAξ2〉 for smooth sections
ξ1, ξ2 of Ψn (with the L2 inner product). For a discussion of self-adjointness in the
sense of unbounded operators see the arguments after Proposition 3.3.6.

Proof for Proposition 3.3.2. We have D∗
A = (Dθ)

∗(σθ·) + (Dφ)
∗(σφ·). Now

(D±
θ )∗(σθ

±·) = (−i∂θ −
ic

s
− Aθ)(σ

θ
±·)

= σθ
±D

±
θ − i∂θ(σ

θ
±) − ic

s
σθ
±

= σθ
±D

±
θ − ic

s
σθ
±.

Next, we have

(D±
φ )∗(σφ

±·) =

(
− i

s
∂φ − s

2(c± 1)
(n− σ3) − Aφ

)
(σφ

±·)

= σφ
±D

±
φ − i

s
∂φ(σ

φ
±) +

s

2(c± 1)
[σ3, σ

φ].

Then,
(D±

θ )∗(σθ
±·) + (D±

φ )∗(σφ
±·) = σθ

±D
±
θ + σφ

±D
±
φ +K,

where

K = −ic
s
σθ
± − i

s
∂φ(σ

φ
±) +

s

2(c± 1)
[σ3, σ

φ
±].

We will show that K = 0. Truly, we have

K =
−ic
s

(
0 ω∓1

ω±1 0

)
− i

s

(
0 (−i)(∓i)ω∓1

i(±i)ω±1 0

)
+

s

2(c± 1)
2

(
0 −iω∓1

−iω±1 0

)

=
i

s

(
− c± 1 + (c∓ 1)

)(
0 ω∓1

ω±1 0

)
= 0, .

since
s

c± 1
= −c∓ 1

s
. Therefore DA is self-adjoint. The Dirac

operator DA is a first order differential operator on S2. A collection of results, known
as Lichnerowicz-Weitzerböck formulae, relate the second order differential operator
D2

A to other second order differential operators. The next result is an example of
such a formula, which will be useful in subsequent calculations.
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Proposition 3.3.4. We have

D2
A = (Dθ)

∗Dθ + (Dφ)
∗Dφ +

1

2
−
(n
2

+B
)
σ3, (3.12)

where B is given by

B =
1

s
∂θ(sAφ) − 1

s
∂φAθ. (3.13)

Remark. On the right hand side of (3.12) the operator (Dθ)
∗Dθ + (Dφ)

∗Dφ is a
Laplacian. The other (zero-order) terms on the right hand side of (3.12) we associ-
ated to the connection ∇. The first is 1

4
R where R = 2 is the scalar curvature of S2.

The final term is connected to the curvature of ∇, and hence the magnetic field; see
Definition 3.2.7 and the remark after the proof of the current result for some more
details.
The R3 version of (3.12) is (1.6), namely that for the Weyl-Dirac operator σ ·(D−A)
we have [

σ · (D − A)
]2

= (D −A)2 − σ · B,
where B = (∂2A3−∂3A2, ∂3A1−∂1A3, ∂1A2−∂2A1); in this case the scalar curvature
is 0.

Proof of Proposition 3.3.4. We have

(D±
A)2 = [(D±

θ )∗(σθ
±·) + (D±

φ )∗(σφ
±·)][σθ

±D
±
θ + σφ

±D
±
φ ]

= (D±
θ )∗(σθ

±)2D±
θ + (D±

φ )∗(σφ
±)2D±

φ + (D±
θ )∗σθ

±σ
φ
±D

±
φ + (D±

φ )∗σφ
±σ

θ
±D

±
θ

= (D±
θ )∗D±

θ + (D±
φ )∗D±

φ + iσ3[(D
±
θ )∗D±

φ − (D±
φ )∗D±

θ ],

since
(σθ

±)2 = (σφ
±)2 = I2, σ

θ
±σ

φ
± = iσ3, σ

φ
±σ

θ
± = −iσ3,

and [(
D±

θ

)∗
, σ3

]
=

[(
D±

φ

)∗
, σ3

]
= 0.

Now, we have

(Dθ±)∗D±
φ − (D±

φ )∗D±
θ =

(
− i∇̃±

θ − Aθ −
ic

s

)(
− i∇̃±

φ − Aφ

)

−
(
− i∇̃±

φ −Aφ

)(
− i∇̃±

θ −Aθ

)

= −
[(

∇̃±
θ − iAθ

)(
∇̃±

φ − iAφ

)

−
(
∇̃±

φ − iAφ

)(
∇̃±

θ − iAθ

)
+
c

s

(
∇̃±

φ − iAφ

)]
.

However from (3.3) we have

[êθ , êφ] = −c
s
êφ.

57



So,
c

s

(
∇̃±

φ − iAφ

)
= −

(
∇̃± − iA

)
[beθ , beφ]

.

Thus, we obtain
(D±

θ )∗D±
φ − (D±

φ )∗D±
θ = −RΨ±

n
(êθ, êφ).

Now all we need to do is to show that RΨ±
n
(êθ, êφ) =

i

2
σ3 − i(

n

2
+ B). Truly, we

have

RΨ±
n
(êθ, êφ) =

(
∇̃±

θ − iAθ

)(
∇̃±

φ − iAφ

)

−
(
∇̃±

φ − iAφ

)(
∇̃±

θ − iAθ

)
− (∇̃± − iA)[beθ , beφ]

= (∂θ − iAθ)

(
1

s
∂φ − isn

2(c± 1)
+

is

2(c± 1)
σ3 − iAφ

)

−
(

1

s
∂φ − isn

2(c± 1)
+

is

2(c± 1)
σ3 − iAφ

)
(∂θ − iAθ) +

c

s

(
∇̃±

φ − iAφ

)

= (∂θ − iAθ +
c

s
)

(
1

s
∂φ − isn

2(c± 1)
+

is

2(c± 1)
σ3 − iAφ

)

−
(

1

s
∂φ − isn

2(c± 1)
+

is

2(c± 1)
σ3 − iAφ

)
(∂θ − iAθ).

Then, expanding and cancelling terms we get

RΨ±
n
(êθ, êφ) =

i

2
(∓1 − c)

1

c± 1
(n− σ3) − i

(
∂θAφ +

c

s
Aφ − ∂φAθ

)

= − i

2
(n− σ3) − i

(
1

s
∂θ(sAφ) − ∂φAθ

)

=
i

2
σ3 − i(

n

2
+B).

This concludes the proof for this proposition.

Remark 3.3.5. In the proof of Proposition 3.3.4 we have obtained

RΨn(êθ, êφ) =
i

2
σ3 − i(

n

2
+B).

It follows from Definition 3.2.7 that the magnetic field on S2 corresponding to the
Spinc connection ∇ on Ψn is

i

2
TrRΨn =

(
n

2
+B

)
êθ ∧ êφ; (3.14)

This magnetic field consists of two parts; there is a constant part n
2

(essentially
coming from the “twist” in the bundle Ψn) and a variable part given by B (which
comes from the magnetic potential A). Notice that the constant part remains even
when we take A = 0.
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Next we observe that

Proposition 3.3.6. We have

DA(σ3·) = −σ3DA. (3.15)

Proof. Since σ3σ
θ
±σ3 = −σθ

± and σ3σ
φ
±σ3 = −σφ

± we get

σ3

(
σθ
±D

±
θ + σφ

±D
±
φ

)
σ3 = −

(
σθ
±D

±
θ + σφ

±D
±
φ

)
.

Thus σ3DA = −σ3DA.

The operator DA is an example of a self-adjoint elliptic differential operator on the
compact manifold S2. There is a well-developed general theory for such operators
(see [32], Section 17.5, for instance); we will briefly outline some aspects of this
theory, with a summary of the results that we need appearing in Proposition 3.3.7.

Initially we have defined DA to be acting on Γ(Ψn), or smooth sections of Ψn. Using
the formal adjoint of DA (which is just DA by Proposition 3.3.2) we can extend the
definition of DA to act on distributional sections of Ψn. Define L2(Ψn) to be the
subspace of those distributions obtained by completing Γ(Ψn) in the norm given by

‖ξ‖2 =

∫

S2

|ξ|2 volS2

(where | · | represents the fibre norm in Ψn). We can then consider DA to be
an unbounded operator on L2(Ψn) with domain given by those ξ ∈ L2(Ψn) with
DAξ ∈ L2(Ψn); this gives a self-adjoint operator.

The principal symbol of the differential operator DA is the function

ρDA
: T ∗

S
2 −→ End(Ψn)

obtained by replacing Dθ and Dφ in the definition of DA with the corresponding
components of the cotangent vector; more precisely,

ρDA
(α) = σθαθ + σφαφ = σ(α)

for α = αθê
θ + αφê

φ. Since σ(α)2 = ‖α‖2
I2 (recall (3.1)), it is clear that ρDA

(α) is
invertible in End(Ψn) whenever α is non-zero; this is precisely the condition that DA

is an elliptic operator. General theory for self-adjoint elliptic differential operators
on compact manifolds now shows that DA has purely discrete spectrum (in other
words, Spec(DA) consists only of eigenvalues with finite multiplicity).

Now suppose that DAξ = λξ for some ξ ∈ L2(Ψn) and λ ∈ R. Elliptic regularity
implies ξ ∈ Γ(Ψn) (that is ξ must be smooth), while Proposition 3.3.6 gives

DA(σ3ξ) = −λ(σ3ξ).

59



Since σ3 is invertible (recall that σ2
3 = I2) we immediately see that the spectrum of

DA is symmetric about 0.

We summarise the above observations in the following result.

Proposition 3.3.7. The operator DA is an unbounded sefl-adjoint opeartor on
L2(Ψn) which has purely discrete spectrum and its spectrum is symmetric about
0.

We will now show that an arbitrary magnetic field (two-form) with interger flux n on
S2 determines a Spinc connection and hence a Dirac operator on Ψn. Furthermore,
all such Dirac operators have the same spectrum, so the magnetic field determines
the spectrum.

Proposition 3.3.8. Suppose that f is a smooth function on S2 and

1

2π

∫

S2

f volS2 = n ∈ Z.

Then, there is a Spinc connection ∇A on the Spinc bundle Ψn with corresponding
magnetic field f volS2. Furthermore ∇A is unique up to gauge equivalence. It follows
that the spectrum (including multiplicities) of the corresponding Dirac operator DA

is determined by f.

Proof. Recall that Ωr(S2) is the set of r-forms on S2 and d denotes the usual exterior
derivative acting from Ωr(S2) to Ωr+1(S2). We need the adjoint exterior derivative
operator for d, denoted by δ : Ωr(S2) −→ Ωr−1(S2), in which δ = ∗d∗, where ∗ is
the Hodge ∗. The Laplacian acting on Ωr(S2) is defined as −∆r := δd+dδ. We will
call an r-form ω on S2 harmonic if −∆rω = 0. Denote by Harmr(S2) the set of all
harmonic r-forms of S2.

Back to the proof of Proposition 3.3.8 we have f volS2 ∈ Ω2(S2). Now the Hodge
decomposition theorem for S2 (see, for instance Theorem 7.52 in [41]) gives

Ω2(S2) = dΩ1(S2) ⊕ δΩ3(S2) ⊕ Harm2(S2) = dΩ1(S2) ⊕ Harm2(S2)

since Ω3(S2) = {0}. We observe that Harm2(S2) = {β ∈ Ω2(S2) : − ∆2β = 0} =
{b volS2 : b ∈ R}; indeed, if b is a function on S2 and β = b volS2 ∈ Ω2(S2), then
since dβ = 0 we get

− ∆2β = 0

⇐⇒ dδβ = 0

⇐⇒ d ∗ d ∗ (b volS2) = 0

⇐⇒ d ∗ db = 0

⇐⇒ b ∈ Harm0(S2)

⇐⇒ b is a constant.
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Therefore, we may find A ∈ Ω1(S2) and a constant b such that

f volS2 = dA+ b volS2 .

It follows from Stokes’ theorem and the given assumption that

n =
1

2π

∫

S2

f volS2 =
1

2π

∫

S2

dA+
1

2π

∫

S2

b volS2 = 0 + 2b = 2b.

Thus
b =

n

2
.

Take ∇A on Ψn and use (3.14) to get corresponding magnetic field

β = dA+
n

2
volS2 = f volS2 .

To show uniqueness we suppose that A,A′ ∈ Ω1(S2) give the same magnetic field;
that is

dA+
n

2
volS2 = dA′ +

n

2
volS2 .

Then we have d(A′ −A) = 0. It follows that A′ −A = dg for some smooth function
g (since H1(S2) = 0). Now we may check that

∇A′ = eig∇Ae
−ig,

showing that ∇′
A and ∇A are gauge equivalent. It follows that we also have

DA′ = eigDAe
−ig

for the corresponding Dirac operators; in particular DA and DA′ are unitarily equiv-
alent so they then have the same spectrum.

Remark 3.3.9. The integer number n is called the Chern number for Ψn.

3.4 The Laplacian on the line bundle Ln and its

spectrum

Now we return to line bundle Ln and the connection ∇ over Ln defined at the end
of Section 3.2.3. In order to calculate the spectrum of the Dirac operator D on Ψn

we will firstly consider the spectrum of an auxiliary operator which is defined using
this connection.

First, it follows from (3.10) and (3.11) that

(∇±
θ )∗ = −1

s
∂θ(s·) (3.16)

and

(∇±
φ )∗ = −1

s

(
∂φ +

in

2
(c∓ 1)

)
. (3.17)

Then we can define the Laplacian −∆n acting on the line bundle Ln as follows.
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Definition 3.4.1. We call the Laplacian and denote by −∆n the operator

∇∗
θ∇θ + ∇∗

φ∇φ = −1

s
∂θ(s∂θ·) −

1

s2

(
∂φ +

in(c∓ 1)

2

)2

acting on Γ(Ln), sections of the line bundle Ln.

Remark 3.4.2. The line bundle L0 is the trivial bundle S2 ×C, so sections of L0 are
simply functions on S2. The operator −∆0 is then the Laplace-Beltrami operator
on S2 with its usual metric.

Let L2(Ln) be the completion of the linear space of sections ξ ∈ Γ(Ln) in the norm
given by

‖ξ‖2 =

∫

S2

|ξ|2 volS2.

We can repeat arguments similar to the ones at the end of the previous section
for DA to see that −∆n can be defined in L2(Ln) to be an elliptic differential and
unbounded self-adjoint operator which has purely discrete spectrum. This spectrum
can be determined precisely as follows.

Theorem 3.4.3. For each n ∈ Z the spectrum of −∆n is purely discrete and its
eigenvalues are of the form

(
j +

|n| + 1

2

)2

− n2 + 1

4
= j(j + |n| + 1) +

|n|
2
,

where j is in any non-negative integer. Moreover, the multiplicity of this eigenvalue
is 2j + |n| + 1.

Remark. Specialising to the case of n = 0, we see that the spectrum of −∆0 consists
of eigenvalues of the form j(j+1) with multiplicity 2j+1, where j is a non-negative
interger; this is a well-known result for the Laplace-Beltrami operator (see [19], p.49,
for example).

Proof of Theorem 3.4.3. To investigate the spectrum of −∆n we need only find all
λ ∈ R and ξ ∈ Γ(Ln) such that

−∆nξ = λξ. (3.18)

More precisely we must find λ ∈ R and ξ± ∈ Γ(L±
n ) such that

−∆nξ
± = λξ±. (3.19)

and
ξ− = ω−nξ+. (3.20)

Define an operator Lφ on Γ(Ln) by setting

Lφ = L±
φ = −i∂φ ∓ n

2
(3.21)
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on Γ(L±
n ). We can check compatibility and we then see that Lφ is self-adjoint and

commutes with −∆n. Thus, we can choose eigenfunctions for −∆n which are also
eigenfunctions for Lφ. Actually, Lφ will play the role of L3 in the same process of
looking for orbital angular momentum as in [31], p. 155-117.

Now suppose that Lφξ = mξ, for some ξ ∈ Γ(Ln) and m ∈ R. As before, this means
we need ξ± ∈ Γ(L±

n ) with

ξ− = ω−nξ+ ⇐⇒ ξ−(θ, φ) = e−inφξ+(θ, φ). (3.22)

Then, we need

L±
φ ξ

± = mξ±

⇐⇒
(
− i∂φ ∓ n

2

)
ξ± = mξ±

⇐⇒ ξ±(θ, φ) = u±(θ)eim±φ

for some functions u±(θ), where we set m± = m± n

2
. We observe that

m± = m∓ ± n. (3.23)

On the other hand we want ξ±(θ, φ+2π) = ξ±(θ, φ), so m± must be integral; thus

we must have m ∈ Z +
n

2
. We also need the compatibility between ξ+ ∈ Γ(L+

n ) and

ξ− ∈ Γ(L−
n ) as given by condition (3.22). It means

u−(θ)eim−φ = ω−nu+(θ)eim+φ,

which follows provided

u− = u+ since m− = −n +m+ and ω = eiφ.

By using the spectral decomposition of Lφ we can write L2(Ln) as ⊕m∈Z+ n
2
Hm, in

which restricted to each Hm the operator Lφ is just mI (where I is the identity).
Furthermore, an element ξ ∈ Hm has the form u(θ)eim±φ on L±

n , for some function u.

Since −∆n commutes with Lφ we can now solve (3.18) on each subspace Hm sepa-
rately: Thus, for each m ∈ Z + n

2
, we need to find all λ ∈ R and functions u such

that
−∆n

(
u(θ)eim±φ

)
= λu(θ)eim±φ (3.24)

on L±
n ; the condition that our eigenfunctions should belong to L2(Ln) becomes

∫ π

0

|u(θ)|2 sdθ < +∞. (3.25)

We notice that −1

s
∂θ(s∂θu) = −∂θ(

1

s
∂θ(su)) −

1

s2
u, so equation (3.24) become

−∂θ

(1
s
∂θ(su)

)
+

1

s2
[(m± +

n

2
(c∓ 1))2 − 1]u− λu = 0. (3.26)
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Now we put x := c, then s = (1 − x2)
1

2 , ∂θ = −s∂x or ∂x = −1

s
∂θ; and w := su,

then (3.26) becomes

∂2
xw − 1

(1 − x2)2

[
(m± +

n

2
(x∓ 1))2 − 1

]
w +

λ

1 − x2
w = 0.

With the help of (3.23) we can write this as

∂2
xw +

[
1 −m2

∓

4(x± 1)2
+

1 −m2
±

4(x∓ 1)2
+

2λ+ 1 −m±m∓

2(1 − x2)

]
w = 0. (3.27)

We remark that (3.27) is in the type of g2(x)∂
2
xy + g1(x)∂xy + g0(x)y = 0, where

g2(x) = 1, g1(x) = 0, and

g0(x) =
1

4

1 − α2

(1 − x)2
+

1

4

1 − β2

(1 + x)2
+

2n(n + α + β + 1) + (α + 1)(β + 1)

2(1 − x2)
.

Solutions of (3.27) are expressed in the type of (1 − x)
α+1

2 (1 − x)
β+1

2 p
(α,β)
k (x) with

p
(α,β)
k (x), the Jacobi polynomials, k = 0, 1, 2, . . . (see [1], p.781). We remark that

coefficients of solutions above must obey those following conditions




β2 = (m+ − n)2 = m2
−

α2 = m2
+

2k(k + α + β + 1) + (α + 1)(β + 1) = 2λ+ 1 −m+m−.

(3.28)

It follows that





β2 = m2
−

α2 = m2
+

2k(k + α + β + 1) + (α + 1)(β + 1) = 2λ+ 1 −m+m−

(3.29)

We notice that p
(α,β)
k (1) =

(
k + α
k

)
and p

(α,β)
k (−1) = (−1)k

(
k + β
k

)
(see [1], p.777).

Then w(x) ∼ (1−x)
α+1

2 as x ↑ 1 and w(x) ∼ (1+x)
β+1

2 as x ↓ −1. Now, we observe
that a function r(θ)eimφ, where r(θ) ∼ θν as θ → 0 is smooth at 0 only if ν ≥ |m|.
Therefore, it follows from the necessary condition for the smoothness of u coming
from the elliptic regularity, where u = (1 − x2)−

1

2w that

α

2
≥ |m+|

2
and

β

2
≥ |m−|

2
.

It follows that
α ≥ |m+| and β ≥ |m−|.

Then, it follows from (3.29) that α = |m+|, and β = |m−|, where m+ = m− +n. We
also get, in particular, that

α ≥ 0; β ≥ 0. (3.30)
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Now we get from (3.29) that

2λ+ 1 −m+m− = 2k(k + |m+| + |m−| + 1) + (|m+| + 1)(|m−| + 1).

Then, we have

λ = k2 + (|m+| + |m−| + 1)k +
1

2
(|m+m−| +m+m− + |m+| + |m−|)

= k2 + (|m+| + |m−| + 1)k +
1

4
[m2

+ +m2
− + 2|m+m−| + 2|m+| + 2|m−|+

+ 1 − (m2
+ +m2

− − 2m+m− + 1)]

=

(
k +

|m+| + |m−| + 1

2

)2

− n2 + 1

4

=

(
k +

|m+| + |m+ − n| + 1

2

)2

− n2 + 1

4
.

In conclusion, we have

− ∆+
nφk,m+

= µk,m+
φk,m+

, where

φk,m+
= (1 − x)

|m+|

2 (1 + x)
|m−|

2 p
(|m+|,|m−|)
k (x)ωm+

µk,m+
=

(
k +

|m+| + |m+ − n| + 1

2

)2

− n2 + 1

4
with m− = m+ − n.

By investigating the expression k +
|m+| + |m+ − n| + 1

2
, we see that there is a

j ∈ Z, j ≥ 0 such that

k +
|m+| + |m+ − n| + 1

2
=

|n| + 1

2
+ j. (3.31)

We also get that {
−j ≤ m+ ≤ n + j if n ≥ 0

n− j ≤ m+ ≤ j if n < 0.

Therefore if we denote by En,j the eigenspace of eigenvalue

(
j+

|n| + 1

2

)2

− n2 + 1

4
(in which n, j satisfy the relation (3.31)) for −∆n, then En,j is generated by 2j+1+n
in case of n ≥ 0 or 2j + 1 − n in case of n < 0 independent functions φj,m (in place
of φk,m+

). Then, we obtain the conclusion of the theorem.

Remark 3.4.4. We may determine an orthonormal basis of eigenfuctions for the
Laplacian above. We already have

−∆+
nφk,m+

= µk,m+
φk,m+

, where

φk,m+
(x) = (1 − x)

|m+|

2 (1 + x)
|m−|

2 p
(|m+|,|m−|)
k (x)ωm

+
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µk,m+
=
( |n| + 1

2
+ j
)2 − n2 + 1

4
with m− = m+ − n

and

k +
|m+| + |m+ − n| + 1

2
=

|n| + 1

2
+ j, j ∈ Z, j ≥ 0.

Hereafter we will denote φk,m+
(x) by φj,m(x). Next, we determine the norm of

φj,m(x). It comes to calculate the following integral in the polar coordinates (θ, φ)
∫ π

0

sdθ

∫ 2π

0

dφ |φj,m(θ, φ)|2 = 2π

∫ π

0

(1 − c)|m|(1 + c)|m−n||p(|m|,|m−n|)
k (c)|2sdθ

= 2π

∫ 1

−1

(1 − x)|m|(1 + x)|m−n||p(|m|,|m−n|)
k (x)|2 dx.

To apply formulae 2.2 and 2.1 in [1], p. 774 we get the value of the above integral
as follows

2π
2|m|+|m−n|+1

2k + |m| + |m− n| + 1

Γ(k + |m| + 1)Γ(k + |m− n| + 1)

k!Γ(k + |m| + |m− n| + 1)
.

At first we will consider n ≥ 0. Then, we notice that Γ(n + 1) = n! for n ∈ Z and
get

‖φj,m‖2 =
2π · 2|m|+|m−n|+1

n+ 1 + 2j

(k + |m|)!(k + |m− n|)!
k!(k + |m| + |m− n|)! .

Now we split in three different cases of m and we get

‖φj,m‖2 =
4π

n+ 1 + 2j





2n−2m · (k −m)!(k −m+ n)!

k!(k − 2m+ n)!
: m < 0

2n · (k +m)!(k −m+ n)!

k!(k + n)!
: 0 ≤ m ≤ n

22m−n · (k +m)!(k +m− n)!

k!(k + 2m− n)!
: m > 0

=
4π

n+ 1 + 2j





2n−2m · j!(j + n)!

(j +m)!(j + n−m)!
: m < 0

2n · (j +m)!(j + n−m)!

j!(j + n)!
: 0 ≤ m ≤ n

22m−n · j!(j + n)!

(j + n−m)!(j +m)!
: m > n.

It follows that we have to multiply each φj,m(x) by the following constant so that
we can obtain a family of eigenfunctions with unit norm for the Laplacian:

√
n+ 1 + 2j

2
√
π






2m−n
2 ·
√

(j +m)!(j + n−m)!

j!(j + n)!
: m < 0

2−
n
2 ·
√

j!(j + n)!

(j +m)!(j + n−m)!
: 0 ≤ m ≤ n

2−m+ n
2 ·
√

(j +m)!(j + n−m)!

j!(j + n)!
: m > 0.
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The case n < 0 can be obtained from the case of n ≥ 0 by replacing n with −n and
m with −m. We can see this from the following

|m| = | −m|; |m− n| = |n−m| = |(−m) − (−n)|.

3.5 Constant magnetic fields on S
2

In this section we will determine the spectrum of the Dirac operator D in the case
A = 0; that is when the magnetic field is only n

2
volS2 . Firstly we need a preliminary

result.

Looking back to relation (3.9) we know that Ψn = Ln−1 ⊕ Ln+1. Thus, a spinor in
Ψn can be described as a pair of spinors on Ln−1 and Ln+1 and we can think of the
Dirac operator D as a 2 × 2 matrix of operators acting on such pairings.

Proposition 3.5.1. We have

D2 =



−∆n−1 −

n− 1

2
0

0 −∆n+1 +
n + 1

2


 .

Proof. It follows from Proposition 3.3.4 for A = 0 that

D2 = (−i∂θ −
ic

s
)(−i∂θ) +

(−i
s
∂φ +

c∓ 1

2s
(n− σ3)

)2

+
1

2
(1 − nσ3).

Comparing this with the definition of the Laplacian (see Definition 3.4.1) now gives
the result.

Now we will determine the spectrum of the Dirac operator D in case of having no
variable part in its magnetic field; that is the Dirac operator with magnetic field
n
2
volS2.

Theorem 3.5.2. For each n ∈ Z, the Dirac operator D on Ψn has purely dis-
crete spectrum with eigenvalues ±

√
j(j + |n|) for j ∈ N0. Moreover, the eigenvalue

±
√
j(j + |n|) has a multiplicity of 2j + |n|.

Proof. It follows from Proposition 3.5.1 that

D2 =



−∆n−1 −

1

2
(n− 1) 0

0 −∆n+1 +
1

2
(n+ 1)


 .
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Then the set of eigenvalues of D2 is the union of the eigenvalues of −∆n−1−
1

2
(n−1)

and −∆n+1 +
1

2
(n + 1). For convenience we will first consider n > 0. By Theorem

3.4.3 we know that the eigenvalues of −∆n are given by

(
j +

n+ 1

2

)2

− n2 + 1

4
=

(
j +

n+ 1

2

)2

−
(n + 1

2

)2
+
n

2

= j(j + n + 1) +
n

2

for j ∈ N0. Then the eigenvalues of −∆n−1 −
1

2
(n − 1) are j(j + n) for j ∈ N0.

Similarly, we can write

(
j +

n + 1

2

)2

− n2 + 1

4
=

(
j +

n + 1

2

)2

−
(n− 1

2

)2 − n

2

= (j + 1)(j + n) − n

2
.

So the eigenvalues of −∆n+1 +
1

2
(n+ 1) are (j + 1)(j+ 1 + n) for j ∈ N0 or j(j +n)

for j ∈ N.

For n ≤ 0 we see that eigenvalues of −∆n−1−
1

2
(n−1) are (j+1)(j+1−n) for j ∈ N0,

or j(j−n) for j ∈ N, while the eigenvalues of −∆n+1+
1

2
(n+1) are j(j−n) for j ∈ N0.

Therefore, for any interger n the eigenvalues of D2 (defined on Ψn) are j(j+ |n|) for
j ∈ N0. Looking back to Proposition 3.3.7 we can conclude that for any interger n
the spectrum of D (defined on Ψn) are the eigenvalues ±

√
j(j + |n|) for j ∈ N0.

Let Fn,j be the eigenspace of D2 for the eigenvalue j(j + |n|). We firstly consider
j ∈ N. Let n > 0. Recall that En,j the eigenspace of −∆n for the eigenvalue(
j+

|n| + 1

2

)2

− n2 + 1

4
. That means En−1,j is the eigenspace of −∆n−1 − 1

2
(n− 1)

for the eigenvalue j(j+n), while En+1,j−1 is the eigenspace of −∆n+1 + 1
2
(n+1) for

the eigenvalue j(j + n). Therefore, it follows from Proposition 3.5.1 that

Fn,j =

{(
ξ
0

)
: ξ ∈ En−1,j

}
⊕
{(

0
ξ

)
: ξ ∈ En+1,j−1

}
.

Thus,

dimFn,j = dimEn−1,j + dimEn+1,j−1.

Then, Theorem 3.4.3 gives

dimFn,j = 2j + (n− 1) + 1 + 2(j − 1) + (n+ 1) + 1 = 2(2j + n) = 2(2j + |n|).
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The case n ≤ 0 is treated similarly and we still get dimFn,j = 2j + (−n− 1) + 1 +
2(j − 1) + (−n+ 1) + 1 = 2(2j − n) = 2(2j + |n|).
Now consider j = 0. Obviously we cannot get the second eigenspace (since −∆n+1 +
1

2
(n + 1) > 0 in case of n ≥ 0; and −∆n−1 −

1

2
(n − 1) > 0 in case of n < 0). It

follows that

dimFn,0 =

{
2j + (n− 1) + 1 = n = |n| if n ≥ 0

2(j − 1) − n+ 2 = −n = |n| if n < 0.

Combining all we have dimFn,j = 2(2j + |n|) if n ∈ N and dimFn,0 = |n|. Now,
recall Propostion 3.3.7 and it tells us that σ3Dσ3 = −D and the spectrum of D is
symmetric about 0. Therefore, the multiplicity of the eigenvalue λ = ±

√
j(j + |n|)

of the Dirac operator D is 2j + |n|. (The case λ = 0 or j = 0 is obviously included
in this formula as well).

3.6 The Aharonov-Casher theorem for S
2

The results from the previous section allows us to obtain the Aharonov-Casher
theorem for S2; indeed, for the spinor bundle Ψn along with the Spinc connection
∇̃ given by (3.5) and (3.6), it follows from (3.14) that the corresponding magnetic

field for the Dirac operator is β =
n

2
volS2 . Therefore, the total flux for this magnetic

field is
1

2π

∫

S2

β = n.

On the other hand it obviously follows from Theorem 3.5.2 above that dim KerD =
|n|. Thus we have

dim KerD = |n| =
1

2π

∣∣∣∣
∫

S2

n

2
volS2

∣∣∣∣, (3.32)

which is the Aharonov-Casher theorem in this case. Now we will show how the
general version of this result (for an arbitrary Dirac operator on S2) can be obtained
from this special result.

Theorem 3.6.1. (Aharonov-Casher theorem on S2) Let ∇ be the Spinc connection

on Ψn given by (3.7) with corresponding magnetic field β =
n

2
volS2 + dA. Then, for

the Dirac operator DA on S2, we have

dim KerDA = |n| =
1

2π

∣∣∣∣
∫

S2

β

∣∣∣∣.

We will prove this result using some ideas from differential geometry as outlined
in Section 3.2.1. Note that in particular both the total flux and the dimension of
KerDA depend only on the Spinc bundle Ψn (and not on the choice of A).

First, we prove the following result
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Lemma 3.6.2. If A = Aθê
θ +Aφê

φ ∈ Ω1(S2), then there exist smooth functions f, g
on S2 such that

Aθ = ∂θg −
1

s
∂φf and Aφ =

1

s
∂φg + ∂θf. (3.33)

Proof. By Hodge’s Theorem (see, for instance Theorem 7.55 in [41]) we know that
Harm1(S2) ∼= H1(S2), in which H1(S2) is the 1st de Rham cohomology group of S2

(see [41], p.195). On the other hand we also have H1(S2) = 0 (or, equivalently any
closed two-form on S2 is exact; see, for instance [41], p.202). Then, applying the
Hodge decomposition theorem for S

2 (Theorem 7.52 in [41]) we have

Ω1(S2) = dΩ0(S2) ⊕ δΩ2(S2) ⊕ Harm1(S2) = dΩ0(S2) ⊕ δΩ2(S2).

Therefore we can write A = dg+ δF, for some g ∈ Ω0(S2) (so g is a smooth function
on S2), and F ∈ Ω2(S2). Now, êθ∧êφ is a basis for Ω(S2), so we can write F = f êθ∧êφ

for some smooth function f on S2. Observe that F = ∗f and ∗ ∗ f = f . Then, we
obtain

A = dg + ∗df
= (∂θg)dθ + (∂φg)dφ+ (∂θf)(∗dθ) + (∂φf)(∗dφ)

= (∂θg)dθ +

(
1

s
∂φg

)
(sdφ) + (∂θf)(∗dθ) +

(
1

s
∂φf

)
(∗sdφ

)

= (∂θg)ê
θ +

(
1

s
∂φg

)
êφ + (∂θf)(∗êθ) +

(
1

s
∂φf

)
(∗êφ)

=

(
∂θg −

1

s
∂φf

)
êθ +

(
∂θf +

1

s
∂φg

)
êφ,

completing the result.

Using the smooth functions f and g from Lemma 3.6.2 we can define multiplicative

transformations e±ig and efσ3 =

(
ef 0
0 e−f

)
acting on spinor sections of the spinor

bundle Ψn over S
2. We remark that e±ig and efσ3 are invertible;

(
e±ig

)−1
= e∓ig and

(efσ3)−1 = e−fσ3 . Thus e±ig is unitary, although efσ3 is not in general. We can use
these multiplicative transformations to relate the general Dirac operator DA to that
with A = 0.

Lemma 3.6.3. We have

DA = eigefσ3De−fσ3e−ig.

Remark. The unitary map eig induces a usual gauge transformation in A while
the map efσ3 induces a “real gauge transformation”; the latter is specific to two
dimensions.
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Proof of Lemma 3.6.3. We observe that scalar functions and σ3 commute with efσ3 .
Furthermore we also have

∂θ

(
efσ3 .

)
=

(
∂θ

(
ef .
)

0
0 ∂θ

(
e−f .

)
)

=

(
ef 0
0 e−f

)(
∂θ + (∂θf) 0

0 ∂θ − (∂θf)

)

= efσ3
(
∂θ + (∂θf)σ3

)
.

Similarly, we also have

∂φ

(
efσ3 .

)
= efσ3

(
∂φ + (∂φf)σ3

)
.

On the other hand we have

σθ
±e

fσ3 =

(
0 ω∓1

ω±1 0

)(
ef 0
0 e−f

)
=

(
ef 0
0 e−f

)(
0 ω∓1

ω±1 0

)

= e−fσ3σθ
±.

Similarly, σφ
±e

fσ3 = e−fσ3σφ
±. Thus,

efσ3De−fσ3 = efσ3
(
σθ
±(−i∇̃±

θ ) + σφ
±(−i∇̃±

φ )
)

= efσ3

(
σθ
±e

fσ3
(
− i∇̃±

θ − i(∂θf)σ3

)
+ σφ

±e
fσ3
(
− i∇̃±

φ − i

s
(∂φf)σ3

)

= efσ3e−fσ3

(
σθ
±(−i∇̃±

θ ) − i∂θfσ
θ
±σ3 + σφ

±(−i∇̃±
φ ) − i

s
∂φfσ

φ
±σ3

)

= σθ
±(−i∇̃±

θ +
1

s
∂φf) + σφ

±(−i∇̃±
φ − ∂θf),

since σθ
±σ3 = −iσφ

± and σφ
±σ3 = −iσθ

±. We also notice that e±ig commutes with all
the σ’s, while ∂θ(e

−ig.) = e−ig(∂θ − (i∂θg)) and ∂φ(e
−ig.) = e−ig(∂φ − (i∂φg)). Thus

eigefσ3De−fσ3e−ig = σθ
±(−i∇̃±

θ − (∂θg −
1

s
∂φf)) + σφ

±(−i∇̃±
φ − (

1

s
∂φg + ∂θf))

= σθ
±(−i∇̃±

θ −Aθ) + σφ
±(−i∇̃±

φ − Aφ)

= DA,

with the help of (3.33).

Proof of Theorem 3.6.1. It follows from the result of Lemma 3.6.3 that ξ ∈ Ker DA

if and only if ξ = e−fσ3eigη for some η ∈ Ker D. Therefore, we have

dim Ker D = dim KerDA.

By Stokes’ theorem, ∫

S2

dA = 0,
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so (3.32) gives us

dim Ker DA = |n| =
1

2π

∣∣∣∣
∫

S2

n

2
volS2

∣∣∣∣ =
1

2π

∣∣∣∣
∫

S2

(
n

2
volS2 + dA

)∣∣∣∣ =
1

2π

∣∣∣∣
∫

S2

β

∣∣∣∣,

completing the result.

Remark 3.6.4. Our proof of the Ahanorov-Casher theorem on S2 is based fully on
results we have obtained in this Chapter. In [24] Erdös and Solovej prove the same
result using the relationship between Dirac operators on S

2 and R
2 ∼= C; they turn

the problem into the similar problem in R2, where the techniques used in the proof
of the Aharonov-Casher theorem in R2 can be applied (as was done in the proof of
Theorem 1.4.1 in Chapter 1).

72



Chapter 4

Zero modes for Weyl-Dirac
operators on R

3

4.1 Introduction

In this chapter we will return to discuss Weyl-Dirac operators on R3, the main theme
of this thesis. First, we will introduce the geometric construction used by Erdös and
Solovej in [24] to construct a certain class of Weyl-Dirac operators on R

3 with zero
modes. They considered magnetic fields, or two-forms on R3 which are obtained by
pulling back arbitrary two-forms on S2, firstly to S3 using the Hopf map, and then
to R3 using inverse strereographic projection.

For the remainder of the chapter we return our attention to the quantity nA(T ), the
total number of zero modes for the Weyl-Dirac operator DtA with scaled potential
tA, as we vary t from 0 to T . Using the fact that the original Loss-Yau example
of a zero mode is the simplest of the Erdös-Solovej class of examples, together with
the explicit spectral calculation in Section 3.5, we determine an explicit formula for
nALY

(T ) (a formula for ALY is given in (1.16)).

In the next part of this chapter we obtain a relationship between the Dirac operator
on S2 and the Dirac operator on R2. This one is a preparation step to show a lower
bound for the number of zero modes of the Weyl-Dirac operators on R

3. Actually,
we need to obtain an estimate on the number of the “small” eigenvalues for Dirac
operators on S2 through a similar one for Pauli operators on a disc.

In the final part of the chapter we consider nA(T ) for general magnetic potentials
A with corresponding magnetic fields in the class considered by Erdös and Solovej
in [24]. In this case an explicit O(T 2) lower bound is obtained (see Theorem 4.5.1).
The construction of Erdös and Solovej reduces this problem to the study of “small”
eigenvalues of Dirac operators on S

2 as studied in Section 4.4.
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4.2 The construction of Erdös and Solovej

In this section we will introduce the construction of Erdös and Solovej from [24].
The purpose is to construct a large class of magnetic fields on R

3 such that the
corresponding Weyl-Dirac operators have zero modes with a prescribed multiplicity.
The key idea is to consider a class of magnetic fields on S3, which are in fact the
pullbacks of two-forms on S2, and then use the conformal invariance of the dimen-
sion of kernels of Dirac operators.

4.2.1 The class of magnetic fields

We will use the Hopf map, here denoted by κ. It acts from S
3 to S

2 and we will explain
a little bit more about this mapping: Here S3 and S2 are unit balls in R4 and R3,
respectively. Given (x1, x2, x3, x4) ∈ S3 we have κ(x1, x2, x3, x4) = (ξ1, ξ2, ξ3), where
(ξ1, ξ2, ξ3) ∈ S2 is given by

ξ1 = 2(x1x3 + x2x4)

ξ2 = 2(x2x3 − x1x4)

ξ3 = x2
1 + x2

2 − x2
3 − x2

4.

Remark. We can check that κ is surjective. Furthermore, we can check that κ∗
actually is a surjective partial isometry between S3 with usual metric and S2 with
1
4
gS2 as its metric (see [24], Lemma 7.1). Then, κ is a Riemannian submersion. In

fact this is one of the important properties of the Hopf map which is used in [24]; a
Riemannian submersion between Riemannian manifolds M and N allows us to pull
back Spinc structures including spinor bundles (with Clifford multiplication), Spinc

connections and finally lift Dirac operator from N to M .

Let τ−1 be the stereographic projection from S3 \ {(0, 0, 0,−1)} to R3; that is

τ−1(x1, x2, x3, x4) =
( x1

1 + x4
,

x2

1 + x4
,

x3

1 + x4

)
∈ R

3

for all (x1, x2, x3, x4) ∈ S3. The inverse of this map gives us a smooth map τ :
R3 −→ S3. Now denote by ι : R3 −→ S2, where ι = κ ◦ τ .

Recall that two-forms on S2 are fvolS2 , where f is a smooth function on S2, and any
two-form on S2 is closed. Then, the pullback of any two-form on S2 by ι∗ is also a
closed two-form on R

3. Thus ι∗(fvolS2) is a magnetic field on R
3 for any smooth

function f on S2 (see [41]). Therefore, we can define the following class of magnetic
fields on R3.

Definition 4.2.1. Let BES be the class of magnetic fields on R3 given by

BES =
{
ι∗(fvolS2) : f ∈ C∞(S2)

}
.
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Remark. We may see from [22] that

BLY = ι∗
(

3

4
volS2

)
, (4.1)

where BLY is given in (1.17). We then have

ι∗(volS2) =
16

(1 + |x|2)3




2x1x3 − 2x2

2x2x3 + 2x1

1 − x2
1 − x2

2 + x2
3




T

. (4.2)

Using ι∗(fvolS2) = (f ◦ ι)ι∗(volS2) we observe that B ∈ BES iff (as a vector field)

B(x) = f(ι(x))
16

(1 + |x|2)3




2x1x3 − 2x2

2x2x3 + 2x1

1 − x2
1 − x2

2 + x2
3




T

(4.3)

for some f ∈ C∞(S2). In particular it follows that the decay rate of a general element
of BES is O(|x|−4) as |x| → ∞.

4.2.2 The construction

We have given the general definition of a Spinc spinor bundle and Spinc connection
for an arbitrary two or three dimensional manifold (see Definition 3.2.4 and Defini-
tion 3.2.6, respectively). We have also given a more detailed description of possible
Spinc bundles and connections on S2 (see Subsection 3.2.3) and R2 (see Remark
3.2.8). The situation on S3 is actually simpler; it is known (see [24] for example)
that, up to isomorphism, there is a unique Spinc bundle on S3 (which we can take to
be the trivial bundle S3 × C2), while for an arbitrary magnetic field on S3 (that is,
an arbitrary closed two form) there is a Spinc connection and corresponding Dirac
operator on S3 with this magnetic field. Furthermore, this connection and hence
Dirac operator, are unique up to gauge equivalence; in particular, from a spectral
point of view, the Dirac operator is determined by the magnetic field. The situation
on R3 is similar (see the discussion on DA in Section 1.1 of Chapter 1 for more
details).

Now we will consider the construction of Erdös and Solovej from [24]. Let B ∈ BES

in (4.3), so B = τ ∗ b, b = κ∗β, where β = fvolS2 for some f ∈ C∞(S2). Denote by
Φ the total flux of β; that is

Φ =
1

2π

∫

S2

β.

For each integer k, we define βk :=
[
f − 1

2
(Φ − k)

]
volS2. We see that

1

2π

∫

S2

βk =
1

2π

∫

S2

f volS2 − (Φ − k)

4π

∫

S2

volS2 = k,
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since
∫

S2 volS2 = 4π. We can then use the result of Propostion 3.3.8 and get the
Dirac operator on Ψk, which we denote by Dβk,S2.

Denote by Sk the set

Sk =





{−k + Φ − 1
2
} if k > 0

∅ if k = 0

{k − Φ − 1
2
} if k < 0.

Denote by Db,S3 the Dirac operator on S3 with magnetic field b. Then, Erdös and
Solovej showed how the spectrum of Db,S3 can be expressed through the positive
spectrum of the Dirac operators Dβk,S2 on S2 with magnetic fields βk as follows.

Theorem 4.2.2. (Theorem 8.1 in [24]) Suppose that ∇S3 is a Spinc connection on
ΨS3 with magnetic field b. Suppose that Spec+(Dβk,S2) is the positive spectrum of
that Dirac operator Dβk,S2 on S2 with magnetic βk. Then, we have

• the spectrum of Db,S3 is given by

Spec(Db,S3) =
⋃

k∈Z

(
Sk ∪

{
±
√
λ2 + (k − Φ)2 − 1

2
: λ ∈ Spec+(Dβk,S2)

})

(4.4)

• the multiplicity of an eigenvalue in Spec(Db,S3) is equal to the number of ways

it can be written as ±
√
λ2 + (k − Φ)2 − 1

2
with k ∈ Z and λ ∈ Spec+(Dβk,S2)

counted with multiplicity, or as an element in Sk counted with multiplicity |k|.

By the invariance property of the dimension of the kernel for the Dirac operators
up to conformal transformations Erdös and Solovej then showed that

Theorem 4.2.3. (Theorem 8.7 in [24]) Let DB,R3 be the Dirac operator on R3 with
magnetic two-form B, and Db,S3 the Dirac operator on S3 with magnetic two-form
b. Then,

dim KerDB,R3 = dim KerDb,S3 .

For any magnetic field B ∈ BES Theorem 4.2.2 and Theorem 4.2.3 shows us where
zero modes of the Weyl-Dirac operator DB,R3 come from. More precisely, there are
only two types of zero modes of DB,R3; that is

• Type I zero modes of DB,R3. These are zero modes coming from the set Sk.
In particular, DB,R3 has exactly |k| zero modes if

∓(k − Φ) − 1

2
= 0 ⇐⇒ Φ = k ± 1

2
for k ∈ Z, ± k > 0. (4.5)
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• Type II zero modes of DB,R3 . These are zero modes coming from strictly
positive eigenvalues of Dβk,S2; this happens when

√
λ2 + (k − Φ)2 − 1

2
= 0 ⇐⇒ λ2 + (k − Φ)2 =

1

4
(4.6)

for some λ ∈ Spec+(Dβk,S2). In particular we need λ to satisfy

0 < λ <

√
1

4
− (k − Φ)2 ≤ 1

2
.

We observe that we cannot have Type I and Type II zero modes simultaneously,

since (4.6) cannot be satisfied by λ > 0 when Φ = k ± 1

2
.

Considering Type I zero modes we thus arrive at the following corollary of Theorem
4.2.2 and Theorem 4.2.3

Corollary 4.2.4. Suppose B = i∗(fvolS2) ∈ BES, where f ∈ C∞(S2) satisfies

Φ =
1

2π

∫

S2

fvolS2 = ±(k +
1

2
)

for some k ∈ N. Then,
dim KerDB,R3 = k.

Ultimately this is the result used by Erdös and Solovej to construct zero mode
producing magnetic fields on R3. The simplest (non-trivial) example is given by the

constant function f =
3

4
, for which Φ =

3

2
and k = 1; the corresponding magnetic

field is the original example given by Loss and Yau (see (1.17)). We notice that in
[24] Erdös and Solovej do not investigate the Type II zero modes.

4.3 The Loss-Yau example revisited

Looking back to Theorem 3.5.2 we see that we know all eigenvalues and their multi-

plicities for the Dirac operator with magnetic field
n

2
volS2 on S2. The Chern number

for the spinor bundle here is

1

2π

∫

S2

n

2
volS2 = n,

while the positive spectrum of the Dirac operator is the set {
√
j(j + |n|), j ∈ N},

where the eigenvalue
√
j(j + |n|) has multiplicity 2j + |n|.

We will now consider the magnetic field b0 = κ∗(1
2
volS2) on S3 where κ is the Hopf

map as above. Therefore, in the notation of the previous section we are taking f = 1
2
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as a constant function on S2. Additionally, tb0 = κ∗( t
2
volS2), for t ≥ 0 is a scaling

of the initial magnetic field b0. We pullback the magnetic field tb0 by τ ∗ as above.
Then we can get a magnetic field tB0 ∈ BES on R

3 and the corresponding Weyl-
Dirac operator DtB0,R3 defined on R3 as discussed in Theorem 4.2.3; in particular,
tB0 = ι∗( t

2
volS2). Observe from (4.1) that

BLY =
3

2
B0. (4.7)

Denote by Dtb0,S3 the Dirac operators on S3 with magnetic fields tb0. We have

Φtb0 =
1

2π

∫

S2

t

2
volS2 = t.

It then follows from Theorem 3.5.2 and Theorem 4.2.2 that

Spec(Dtb0,S3) =
⋃

k∈Z, j∈N

(
Sk ∪

{
±
√
j(j + |k|) + (k − t)2 − 1

2

})
,

where

Sk =






{
− k + t− 1

2

}
if k > 0

∅ if k = 0
{
k − t− 1

2

}
if k < 0.

Using Maple we can illustrate the spectrum of the Dirac operators Dtb0,S3 corre-
sponding to the scaled magnetic field for tb0 as Figure 4.1. As discussed above the
multiplicity for all eigenvalues of Dtb0,S3 may be determined by the result of Theorem
4.2.2. In paticular we can determined exactly the multiplicity of 0 as an eigenvalue.
Therefore, we can determine exactly the total number of zero modes for all of the
Weyl-Dirac operators DtB0,R3, t ≥ 0. In turn, this allows us to obtain an explicit
formula for the quantity nB0

(T ).

Theorem 4.3.1. Let DtB0,R3 be the Weyl-Dirac operators on R3 with magnetic fields
tB0. Then, for any T > 0 we have

nB0
(T ) =

[T − 1](1 + [T − 1])

2
,

where nB0
(T ) denotes the number of zero modes for the Weyl-Dirac operators DtB0

for 0 ≤ t ≤ T. Here [x] denotes the nearest integer to x, rounded up if x ∈ Z + 1
2
.

Proof. Looking back to the discussion after Theorem 4.2.3 we have Type I zero
modes for DtB0,R3 when

t = ±(n +
1

2
) for n ∈ N (with multiplicity n),

or since we are only considering t ≥ 0,

t = n+
1

2
for n ∈ N.
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Figure 4.1: Spectrum of the Dirac operators Dtb0,S3 when scaling a ’constant’ magnetic

field b0. Note: Horizontal axis: t- axis; Vertical axis: “spectrum” axis; Colour of curves:

multiplicity for eigenvalues

79



However there are no Type II zero modes of DtB0,R3 since we cannot have λ2 + (k−
Φ)2 =

1

4
for λ =

√
j(j + |k|) ≥ 1 when j ∈ N. In conclusion zero modes of DtB0,R3

only occur when t = n +
1

2
for n ∈ N and each time we have exactly n zero modes.

Observe that t = n +
1

2
≤ T ⇐⇒ n ≤ T − 1

2
⇐⇒ n ≤ [T − 1]. Thus we have

nB0
(T ) =

[T−1]∑

n=1

n =
[T − 1](1 + [T − 1])

2

as required.

Remark 4.3.2. We can see partly the result of Theorem 4.3.1 in Figure 4.1. We can
see the spectrum for DtB0,R3 there: they are all intersections between curves and
vertical line passing through t on the horizontal axis. Therefore we do not see any
Type II zero modes: intersections with curves. Type I zero modes occur only when
t = 3/2, 5/2, . . . , or only for real number t such that 2t := 3, 5, . . . . The colour of
the line shows us the different multiplicity of zero modes corresponding to different
t. The intersections between curves show us the different expressions in the type of
±
√
λ2 + (k − t)2 − 1

2
, k ∈ Z. Finally, we observe that it follows from (4.7) that

nBLY
(T ) = nB0

(
3

2
T

)
for T > 0.

4.4 Small eigenvalues of Dirac operators on S
2

We remark that in the explicit example of the previous section we are able to count
nB0

(T ) since there were no Type II zero modes; that is zeros of

√
λ2 + (k − t)2 − 1

2
for λ ∈ Spec+(Dβk,S2).

All zero modes of Dtb0,S3 were Type I; that is they came from sets Sk. However, for a
general smooth function f on S

2 we may not have as complete information about λ

as for the case for f =
1

2
; in particular we may obtain some Type II zero modes. For

instance, when the Dirac operator on S2 has an eigenvalue λ such that 0 < λ < 1
2

it would induce more zero modes for DtB,R3 which correspond to eigenvalue 0 of

Dtb,S3 coming from the equation
√
λ2 + (k − t)2− 1

2
= 0. In our opinion it is hard to

determine such “small” eigenvalues of the Dirac operator on S2, but we can estimate
their number and obtain a lower bound for nB(T ) for a general function f . This
section will deal with that estimate.

We will first use the idea of conformal transformation between S2 and R2 to in-
terchange the concept of the Dirac operators on S2 and Dirac operators on R2 as
we did for S

3 and R
3 in Theorem 4.2.3. It is because the usual metric gS2 on S

2
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considered as C ∪ {∞} is conformally equivalent to the standard metric gR2 on R2.
The main idea is to use once again the stereographic projection from S2 \ {p} to R2

to pullback the Spinc structure on S
2 to R

2. Then, we can study some properties of
small eigenvalues of the Dirac operator on S2 through the property of eigenvalues of
the Dirac operator on R2.

We re-use here the notation of Chapter 3. We considered the following Spinc con-
nection on Ψn :

∇±
θ = ∂θ − iAθ and

∇±
φ =

1

s
∂φ +

is

2(c± 1)
σ3 −

isn

2(c± 1)
− iAφ.

Then, we can define
D±

θ = −i∇±
θ −Aθ = −i∂θ − Aθ,

and

D±
φ = −i∇±

φ −Aφ :=
−i
s
∂φ +

s

2(c± 1)
σ3 −

sn

2(c± 1)
− Aφ.

It follows that we obtained the Dirac operator DA,S2 := σθDθ + σφDφ defined on
spinors on S2; namely sections Γ(Ψn) of Ψn. Our purpose here is to establish a
formula to show the relationship between DnA,S2 and the usual Dirac operator on
R2 with some magnetic potential A′.

Let z+ : S2
+ −→ R2 denote the strereographic projection from the sphere with the

south pole removed to the plane. More precisely, for p = (sin θeiφ, cos θ) ∈ S
2
+

(where we are viewing S2 as the unit sphere in C × R ∼= R3), we have z+(p) =
2 tan θ

2
eiφ = x+ iy, where

x =
2s

1 + c
cφ and y =

2s

1 + c
sφ. (4.8)

Now set µ :=
s

1 + c
, so x = 2µcφ and y = 2µsφ. Also let Ω :=

s

2µ
=

2

c+ 1
. Set

A′ = (Ax + n
2
αx)dx+ (Ay + n

2
αy)dy, where

(
Ax

Ay

)
=

s

4µ2

(
x −y
y x

)(
Aθ

Aφ

)
,

and (
αx

αy

)
=

s

4µ2

(
x −y
y x

)(
0
µ

)
.

Denote by DA′,R2 the usual Dirac operator on R2 with magnetic potential A′; that
is the operator

DA′,R2 := σ · (−i∇−A′) = (σ1 σ2)

[(
−i∂x

−i∂y

)
−
(
Ax

Ay

)
− n

2

(
αx

αy

)]
.

The next result gives the link between the Dirac operators DA,S2 and DA′,R2.
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Theorem 4.4.1. We have Ω
3

2DA,S2Ω− 1

2 = DA′,R2 in the sense that for all functions
η : R2 −→ C2 we have

(Ω
3

2DA,S2Ω− 1

2 )(η ◦ z+) = (DA′,R2η) ◦ z+.

First, we notice that η ◦ z+ is a map S2
+ −→ C2, which we view as a section of Ψ+

n .
Second, in Theorem 4.4.1 we are considering S2

+. A similar result can be obtained
for S2

−. We need to use the stereographic projection z− : S2
− −→ R2 from the sphere

with the north pole removed to the plane; for p = (− sin θeiφ, − cos θ) ∈ S
2
− (where

we are viewing S2 as the unit sphere in C × R ∼= R3) we have z−(p) = 2 cot θ
2
eiφ =

x + iy. Then, we will have A′
− and Ω− for S2

− as well. Notice that Ω− =
2

1 − c
.

When necessary we will use notations Ω± and A′
± to correspond to the ones with

respect to S
2
±. The corresponding statement for Theorem 4.4.1 is that

(Ω
3

2

±DA,S2Ω
− 1

2

± )(η ◦ z±) = (DA′
±,R2η) ◦ z± (4.9)

for all η : R2 −→ C2.
Finally, denote by H± the northern and southern hemisphere of S2, respectively.
Then, we remark that z±(H±) = D, where D is the disc

{(x, y) ∈ R
2 :
√
x2 + y2 ≤ 2}.

Proof of Theorem 4.4.1 Truly, it follows from our setting

x =
2s

1 + c
cφ := 2µcφ and y =

2s

1 + c
sφ := 2µsφ,

for µ :=
s

1 + c
and Ω =

s

2µ
that

(
∂θ

∂φ

)
=

(
∂θx ∂θy
∂φx ∂φy

)(
∂x

∂y

)
=




2cφ
1 + c

2sφ

1 + c−2ssφ

1 + c

2scφ
1 + c



(
∂x

∂y

)
=

( x

s

y

s
−y x

)(
∂x

∂y

)
.

Then, we have
(
êθ

êφ

)
=

(
∂θ

1

s
∂φ

)
=

1

s

(
x y
−y x

)(
∂x

∂y

)
.

Similarly, we have

(
dx
dy

)
=

(
∂θx ∂φx
∂θy ∂φy

)(
dθ
dφ

)
=



x

s
−y

y

s
x



(
dθ
dφ

)
.
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Therefore, we obtain

(
êθ

êφ

)
=

(
dθ
sdφ

)
=

(
1 0
0 s

)

x

s
−y

y

s
x




−1(
dx
dy

)
.

We see that x2 + y2 = 4µ2, then

(
êθ

êφ

)
=

(
1 0
0 s

)
s

x2 + y2

(
x y
−y
s

x

s

)(
dx
dy

)
=

s

4µ2

(
x y
−y x

)(
dx
dy

)
.

Thus, the volume form becomes

êθ ∧ êφ = (
s

4µ2
)2(xdx ∧ ydy) ∧ (−ydx+ xdy) =

s2

4µ2
dx ∧ dy.

We observe that

σθ =

(
0 ω−1

ω 0

)
=

1

2µ

(
0 x− iy

x+ iy 0

)
=

1

2µ
(xσ1 + yσ2),

and similarly

σφ =
1

2µ
(−yσ1 + xσ2).

We simply put both in the following expression

(
σθ

σφ

)
=

1

2µ

(
x y
−y x

)(
σ1

σ2

)
.

This can help us to change the magnetic potential A =
(
Aθ Aφ

)(σθ

σφ

)
into the

magnetic potential on R2 as Axdx + Aydy = (Ax Ay)

(
dx
dy

)
. Truly, it follows from

the expression above we have

A = (Aθ Aφ)
s

4µ2

(
x y
−y x

)(
dx
dy

)
.

Then, (
Ax

Ay

)
=

s

4µ2

(
x y
−y x

)T (
Aθ

Aφ

)
=

s

4µ2

(
x −y
y x

)(
Aθ

Aφ

)
. (4.10)

Note that

Ω
3

2DA,S2Ω− 1

2 = ΩDA,S2 + Ω
3

2σθ
(
(−i∂θ)Ω

− 1

2

)
= ΩDA,S2 + Ω

3

2σθ i

2
Ω− 3

2 (∂θΩ)

= ΩDA,S2 − is

4
σθ

.
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Therefore, we have

Ω
3

2DA,S2Ω− 1

2 = Ω(σθ σφ)

(
−i∇θ

−i∇φ

)
− is

4
σθ

= Ω(σθ σφ)

(
− i

(
∂θ

1

s
∂φ

)
+

(
0
µ

2
σ3

)
−
(

Aθ

Aφ +
nµ

2

))
− is

4
σθ

=
s

4µ2

(
x y
−y x

)T [
− i

1

s

(
x y
−y x

)(
∂x

∂y

)
−
(

Aθ

Aφ +
nµ

2

)]
+
s

4
σφσ3 −

is

4
σθ

= (σ1 σ2)

[(
−i∂x

−i∂y

)
− s

4µ2

(
x −y
y x

)(
Aθ

Aφ +
nµ

2

)]
since σφσ3 = iσθ

= (σ1 σ2)

[(
−i∂x

−i∂y

)
−
(
Ax

Ay

)
− n

2

(
αx

αy

)]
,

where

(
αx

αy

)
=

s

4µ2

(
x −y
y x

)(
0
µ

)
. The last expression is clearly the Dirac oper-

ator DA′,R2 on R2 as expected.

The case on S2
− we do all similar steps above and then conclude the justification for

Theorem 4.4.1 here.

Remark 4.4.2. We notice that the magnetic field ∂xAy − ∂yAx on R2 will corre-

spond to the magnetic field
1

s
∂θ(sAφ)−

1

s
∂φ(Aθ); and

n

2

(
αx

αy

)
is responsible for the

”constant” magnetic field
n

2
volS2 on S2. In fact we have implemented a variable

substitution for (θ, φ) on S2 to (x, y) on R2.

Now we will use the result of Theorem 4.4.1 above to show a lower bound for the
number of ”small” eigenvalues for the Weyl-Dirac operator on S2 as follows

Theorem 4.4.3. Let f ∈ C∞(S2) be a smooth function on S2 such that

1

2π

∫

S2

f volS2 = 1.

Consider the Weyl-Dirac operator Dnf on S2 with magnetic field nfvolS2 defined on
the spinor bundle Ψn.Then, for each ε > 0

#
{
eigenvalues λ of Dnf such that |λ| < ε

}
≥ n

2π

∫

S2

|f | volS2 + o(n) as n→ ∞.

By o(n) we mean that

lim inf
n→∞

1

n

(
#
{
eigenvalues λ of Dnf such that |λ| < ε

}
− n

2π

∫

S2

|f | volS2

)
≥ 0.
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To prove this we need to apply the similar result for the Pauli operator on a disc
initiated by Elton in [23]. First, we will meet the Pauli operator PA on a disc D of
R

2. That is the self-adjoint operator with Dirichlet condition which is associated
with the following quadratic form

〈PAψ, ψ〉 =

∫

D

|σ · (p− A)ψ|2, (4.11)

ψ =

(
ψ+

ψ−

)
∈ [C∞

0 (D)]2, where the magnetic potential Axdx+Aydy is good enough

(for instance, Ax, Ay are R-valued smooth functions). Since 〈PAψ, ψ〉 ≥ 0 for
ψ ∈ [C∞

0 (D)]2 the Friedrichs extension of this quadratic form results in a unique self-
adjoint operator associated with the self-adjoint extension for the above quadratic
form with core as [C∞

0 (D)]2; that is the Pauli operator defined on D (see [43], p.177
for details of discussion). We still keep the notation PA for the self-adjoint operator
associated with that self-adjoint Friedrichs extension. To prepare for our result later
we here remind of Elton’s result in [23] which gives an estimate for the number of
small eigenvalues of the Pauli operator defined on a disc in R

2.

Theorem 4.4.4. (See [23]) Let Ax, Ay be R-valued and smooth functions defined on
the unit disc D. Suppose that B = ∂xAy − ∂yAx. Consider the Pauli operator PtA,
defined on D. Then, for a given ε > 0 we have

#
{
eigenvalues λ of PtA such that |λ| < ε

}
≥ t

2π

∫

D

|B|dxdy + o(t) as t→ ∞.

Here o(t) means

lim inf
t→∞

1

t

(
#
{
eigenvalues λ of PtA such that |λ| < ε

}
− t

2π

∫

D

|B|dxdy
)
≥ 0.

Here we will show how to move the result of Theorem 4.4.4 to obtain the result
of Theorem 4.4.3. The key idea is to apply the variational method (see [19], for
instance) and the relation between the Dirac operators on S2 and on R2 (Theorem
4.4.1).

Proof of Theorem 4.4.3 We observe that for the magnetic field nfvolS2 the Chern
number for the spinor bundle is

1

2π

∫

S2

nf volS2 = n.

Therefore, we will deal with Ψn , the Spinc spinor bundle of S2 with Chern number
n. On the other hand we may write

nf =
n

2
+ nf̃ ,
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where the smooth function f̃ satisfies

1

2π

∫

S2

f̃ volS2 = 0.

It follows from the proof of Proposition 3.3.8 that there is a Spinc connection on Ψn

which gives the magnetic field nfvolS2 with

∇±
θ = ∂θ − inAθ and

∇±
φ =

1

s
∂φ +

is

2(c± 1)
σ3 −

isn

2(c± 1)
− inAφ.

For convenience we denote by DnA,S2 the operator Dnf , the corresponding Dirac op-
erator with magnetic field nfvolS2 on S2. Now, consider the Dirac operators on R2

resulting in Theorem 4.4.1 with magnetic potential nA′
± and corresponding magnetic

field nB±. Denoted this operator on R2 by DnA′
±,R2. In fact nB± is the combination

of two parts: one corresponds to the integral part of magnetic field
n

2
volS2 and the

other corresponds to nf̃volS2 .

Re-introduce Ω± and A′
± from Theorem 4.4.1. Note that Ω± is bounded and bounded

away from 0 on H±; in particular

c1 := max
p∈H±

Ω−1
± > 0. (4.12)

The result of Theorem 4.4.1 is pointwise, so we have

(DnA′
±,R2η) ◦ z± =

(
Ω

3

2

±DnA,S2Ω
− 1

2

±

)
(η ◦ z±), (4.13)

for all functions η : D −→ C2, where η ◦ z± will be defined on hemispheres H±.

Let V± be the spectral subspace of PnA′
±
, the Pauli operator operator with Dirichlet

boundary condition on D corresponding to the spectral interval [0, ε2

c2
1

) ⊂ R; that

is V± is the span of the eigenfunctions of PnA′
±

with corresponding eigenvalues λ

satisfying 0 ≤ λ <
ε2

c21
.

Let

W± =

{
ξ ∈ Γ(Ψn) : ξ =

{
Ω

− 1

2

± η± ◦ z± on H±

0 on H∓

}
, where η± ∈ V±.

Let W = W+ ⊕W−. We observe that η satisfies the Dirichlet boundary condition
on D so the spinors in W± will be continuous on S2 giving W ⊆ Dom(DnA,S2). We
also observe that spinors in W+ and W− are supported on H+ and H−, respectively.
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Thus, 0 is the only spinor section in the intersection of W+ and W−. Also dimW± =
dimV±. Therefore, we have

dim W = dim W+ + dim W− = dim V+ + dim V−.

Let ξ = ξ+ + ξ− ∈W . Then, there exits η± ∈ V± with

ξ± = Ω
− 1

2

± η± ◦ z±, (4.14)

on H±. Then,
‖ξ‖2 = ‖ξ+‖2 + ‖ξ−‖2,

where

‖ξ±‖2 =

∫

H±

|ξ±|2 volS2 =

∫

H±

Ω−1
± |η± ◦ z±|2 volS2.

We here observe from the proof of Theorem 4.4.1 that if we subsitute variables from
(θ, φ) on S2 to (x, y) on R2, then the Jacobian of this substitution is Ω−2

± . By (4.12),
1
c1

≤ minp∈H± Ω±. It follows that

‖ξ±‖2 =

∫

D

|η±|2(Ω± ◦ z±) dxdy ≥ 1

c1

∫

D

|η±|2 dxdy =
1

c1
‖η±‖2.

Then,
‖η+‖2 + ‖η−‖2 ≤ c1‖ξ‖2 (4.15)

Also,
‖DnA,S2ξ‖2 = ‖DnA,S2ξ+‖2 + ‖DnA,S2ξ−‖2,

where using (4.13) and (4.12),

‖DnA,S2ξ±‖2 =

∫

H±

|DnA,S2ξ±|2 volS2

=

∫

H±

Ω−3
± |(DnA′

±,R2η±) ◦ z±|2 volS2

=

∫

D

|DnA′
±,R2η±|2(Ω−1

± ◦ z−1
± ) dxdy

≤ c1

∫

D

|DnA′
±,R2η±|2 dxdy

= c1〈PnA′
±
η±, η±〉,

where the last line follows from (4.11) (essentially the definition of PnA′
±

via its
quadratic form). However, from the definition of V±,

0 ≤ 〈PnA′
±
η±, η±〉 <

ε2

c21
‖η±‖2.

Putting these calculations together we have

‖DnA,S2ξ‖2 ≤ c1
ε2

c21
(‖η+‖2 + ‖η−‖2) ≤ c21

ε2

c21
‖ξ‖2 = ε2‖ξ‖2.
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Then, the variational principle tells us that

#
{
eigenvalues λ of DnA,S2 such that |λ| < ε

}
≥ dim W.

We will estimate the quantity dim W. First we notice that dim W = dim V+ +
dim V−. Next, we will apply the result of Theorem 4.4.4. We observe that

dim V± = #
{
eigenvalues λ of PnA′± such that |λ| < ε2

c21

}
.

So we get

dim V± ≥ n

2π

∫

D

|B±|dxdy + o(n) =
n

2π

∫

H±

|f | volS2 + o(n),

where the last line is since fvolS2 is the pullback of nB± by z∗± on H± (see the proof
of Theorem 4.4.1). Therefore, for ε > 0 we have

#
{
eigenvalues λ of DnA,S2 such that |λ| < ε

}

≥ dimW = dimV+ + dimV−

≥ n

2π

∫

H+

|f | volS2 + o(n) +
n

2π

∫

H−

|f | volS2 + o(n)

≥ n

2π

∫

S2

|f |volS2 + o(n).

Now recall that operator DnA,S2 is Dnf , then which completes the proof.

4.5 A lower bound for the number of zero modes

corresponding to scaled Erdös and Solovej type

magnetic fields

In this section we will apply the result of the previous section and consider the class
BES of magnetic fields on R3 as we discussed in Section 4.2 to obtain a lower bound
for the number of zero modes for the Weyl-Dirac operators on R3.

Suppose f is a smooth function on S
2 such that 1

2π

∫
S2 f volS2 = 1. Consider the

closed two-form β = fvolS2 on S2. For each non-negative number t we set βt =
tfvolS2 as the scaled magnetic field on S2. Using κ∗, where κ is the Hopf map, we
pull back these magnetic fields βt and obtain tb = κ∗(βt) as magnetic fields on S3.
Finally, we use τ ∗ with τ is the inverse of the stereographic projection considered in
Section 4.2 to pull back again to get magnetic fields tB ∈ BES (magnetic field on
R3); that is tB = ι∗(βt) ∈ BES, where ι = κ ◦ τ . Denote by DtB,R3 the Weyl-Dirac
operators on R3 with magnetic fields tB. We will prove the following lower bound
for the number of zero modes of DtB,R3 , 0 < t ≤ T.
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Theorem 4.5.1. Consider the Weyl-Dirac operator DtB,R3 on R3 with magnetic
field tB ∈ BES with tB = ι∗(βt), where

∫
S2 β = 1 and βt = tβ. For T > 0 denote

by nB(T ) the total number of zero modes for DtB,R3 with 0 < t ≤ T. We have

nB(T ) ≥ T 2

2

1

2π

∫

S2

|f | volS2 + o(T 2),

as T → ∞.

Here we remind that o(T 2) means

lim inf
T→∞

1

T 2

(
nB(T ) − T 2

2

1

2π

∫

S2

|f | volS2

)
≥ 0.

Proof. It follows from the assumption on f that the total flux Φt of the magnetic
field tB is

Φt =
1

2π

∫

S2

tf volS2 = t.

To apply the results of Erdös and Solovej (namely, Theorem 4.2.2) we need to
consider

βt,k = βt −
1

2
(Φt − k)volS2, or βt,k =

[
tf − 1

2
(t− k)volS2

]

for k ∈ Z. It follows from the result of Theorem 4.2.2 that

Spec(Dtb,S3) =
⋃

k∈Z

(
St,k ∪

{
±
√(

λ+
j (βt,k)

)2
+ (k − t)2 − 1

2

})
,

where λ+
j (βt,k) are the positive eigenvalues of Dβt,k,S2 including multiplicity, listed

so that 0 < λ+
1 (βt,k) ≤ λ+

2 (βt,k) ≤ · · · , and

St,k =






{−k + t− 1
2
} if k > 0

∅ if k = 0

{k − t− 1
2
} if k < 0.

Theorem 4.2.3 tells us that if we want to know dim KerDtB,R3 and then nB(T ) we
need know dim KerDtb,S3 for 0 < t ≤ T . Define

Nk :=
∑

k− 1

2
<t≤k+ 1

2

dim KerDtB,R3 .

Since k +
1

2
≤ T ⇐⇒ k ≤ [T − 1] we get

nB(T ) =
∑

0≤t≤T

dim KerDtB,R3 ≥
[T−1]∑

k=1

Nk. (4.16)
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We now estimate Nk by considering two different contributions.

Case 1: t = k +
1

2
for k ∈ N (see Theorem 4.3.1). In this case we have exactly k

Type I zero modes and no Type II zero modes to Nk.

Case 2: k − 1

2
< t < k +

1

2
. There are no Type I zero modes in this case. We need

only to look for the Type II zero modes for Nk. Observe that Dβt,k,S2 is an analytic
Type I family of operators in t. Thus, eigenvalues of Dβt,k,S2 can be parametrised
as continuous functions of t (see [35]). Furthermore, dim KerDβt,k,S2 is fixed (at
k) for all t, so all except the k curves corresponding to KerDβt,k,S2 the eigenvalue
curves are either everywhere positive or everywhere negative. Thus t 7−→ λ+

j (βt,k)
is continuous for all j ∈ N. Let

Λ(t) :=

√(
λ+

j (βt,k)
)2

+ (k − t)2 − 1

2
.

We have Λ(t) is continuous in t. Moreover, we observe that

Λ(k − 1

2
) =

√
(
λ+

j (βt,k)
)2

+
1

4
− 1

2
> 0,

and

Λ(k +
1

2
) =

√
(
λ+

j (βt,k)
)2

+
1

4
− 1

2
> 0.

On the other hand,

Λ(k) =

√(
λ+

j (βt,k)
)2 − 1

2
.

Therefore, Λ(k) < 0 if λ+
j (βt,k) <

1

2
. By Immediate Value Theorem we get

∑

k− 1

2
<t<k+ 1

2

dim KerDtB,R3 ≥ 2#

{
j : λ+

j (βk,k) <
1

2

}

= #

{
λ ∈ Spec(Dkβ,S2) : 0 < |λ| < 1

2

}

= #

{
λ ∈ Spec(Dkβ,S2) : |λ| < 1

2

}
− k,

since dim KerDkβ,S2 = k and the spectrum of Dkβ,S2 is symmetric about 0 (see
Proposition 3.3.7).

It is time to apply the estimate from Theorem 4.4.3 for the Dirac operator Dkβ,S2;
this gives

#{λ ∈ Spec(Dkβ,S2) : |λ| < 1

2
} ≥ k

2π

∫

S2

|f | volS2 + o(k)
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for each k = 1, 2, . . . , [T − 1]. Combining contributions from Case 1 and Case 2 it
follows that

Nk ≥ k

2π

∫

S2

|f | volS2 + o(k). (4.17)

Let

xk = Nk −
k

2π

∫

S2

|f | volS2

for k = 1, 2, . . . . Then, it follows from the definition of o(k) that

lim inf
k→∞

1

k
xk ≥ 0. (4.18)

We will prove the following result.

Lemma 4.5.2. For {xk} satisfying (4.18), then

N∑

k=1

xk ≥ o(N2) as N → ∞,

meaning that

lim inf
N→∞

1

N2

N∑

k=1

xk ≥ 0.

First, we will apply the result of Lemma 4.5.2 to complete the proof of Theorem
4.5.1. Truly, by Lemma 4.5.2 we have

[T−1]∑

k=1

xk = o([T − 1]2), so

[T−1]∑

k=1

Nk −
[T−1]∑

k=1

k
1

2π

∫

S2

|f | volS2 ≥ o([T − 1]2).

Since
[T−1]∑

j=1

j =
[T − 1](1 + [T − 1])

2
=
T 2

2
+O(T ),

we have

nB(T ) ≥ T 2

2

1

2π

∫

S2

|f | volS2 +O(T ) + o([T − 1]2)

=
T 2

2

1

2π

∫

S2

|f | volS2 + o(T 2)

(4.19)

as T → ∞. That is our conclusion in Theorem 4.5.1.

Finally, we will prove the result of Lemma 4.5.2. Truly, for any ε > 0 it follows from
(4.18) that there exists a natural number n such that

1

m
xm ≥ −ε, ∀m ≥ n. (4.20)
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Now we write
1

N2

N∑

k=1

xk =
1

N2

n−1∑

m=1

xm +
1

N2

N∑

m=n

xm. (4.21)

It follows from (4.20) that

1

N2

N∑

m=n

xm ≥ −ε 1

N2

N∑

m=n

m ≥ −ε 1

N2

N∑

m=1

m ≥ −ε
2

N(N + 1)

N2
≥ −ε. (4.22)

On the other hand we may choose m0 such that m2
0 ≥

|S1|
ε

, where

S1 =
1

N2

n−1∑

m=1

xm.

Then, for all N ≥ max{m0, n} we have

1

N2

n−1∑

m=1

xm =
S1

N2
≥ −|S1|

N2
≥ −εm

2
0

N2
≥ −ε. (4.23)

Now looking at (4.21) and using (4.22) and (4.23) we have

1

N2

N∑

k=1

xk ≥ −2ε, for all ε > 0. (4.24)

Clearly, (4.24) justifies the conclusion in Lemma 4.5.2.
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[50] Y. Saitō and T. Umeda, The asymptotic limits of zero modes of massless Dirac
operators, To appear in Letters in Math. Phys..
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