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Abstract

A theorem of Giesy and James states that c0 is �nitely representable in James' quasi-

re�exive Banach space J2. We extend this theorem to the pth quasi-re�exive James

space Jp for each p ∈ (1,∞). As an application, we obtain a new closed ideal of

operators on Jp, namely the closure of the set of operators that factor through the

complemented subspace (`1
∞ ⊕ `2

∞ ⊕ · · · ⊕ `n∞ ⊕ · · · )`p of Jp.
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1 Introduction

As outlined in the abstract, we shall prove that c0 is �nitely representable in the pth quasi-
re�exive James space Jp for each p ∈ (1,∞) and then show how this result gives rise to
a new closed ideal of operators on Jp. In order to make these statements precise, let us
introduce some notation and terminology.

We denote by N0 and N the sets of non-negative and positive integers, respectively.
Following Giesy and James [5], we index sequences by N0 and write x(n) for the nth

element of the sequence x, where n ∈ N0. For a non-empty subset A of N0, we write
A = {n1 < n2 < · · · < nk} (or A = {n1 < n2 < · · · } if A is in�nite) to indicate that
{n1, n2, . . . , nk} is the increasing ordering of A.

Let K = R or K = C be the scalar �eld, and let p ∈ (1,∞). For a scalar sequence x
and a �nite subset A = {n1 < n2 < · · · < nk+1} of N0 of cardinality at least two, we de�ne

νp(x,A) =
( k∑
j=1

∣∣x(nj)− x(nj+1)
∣∣p) 1

p
;
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for convenience, we let νp(x,A) = 0 whenever A ⊆ N0 is empty or a singleton. Then
νp( · , A) is a seminorm on the vector space KN0 of all scalar sequences, and

‖x‖Jp := sup
{
νp(x,A) : A ⊆ N0, cardA <∞

}
= sup

{( k∑
j=1

∣∣x(nj)− x(nj+1)
∣∣p) 1

p
: k ∈ N, n1, . . . , nk+1 ∈ N0, n1 < · · · < nk+1

}
de�nes a complete norm on the subspace Jp :=

{
x ∈ c0 : ‖x‖Jp < ∞

}
, which we call the

pth James space. The sequence (em)∞m=0, where em ∈ KN0 is given by

em(n) =

{
1 if m = n

0 otherwise
(n ∈ N0),

forms a shrinking Schauder basis for Jp. More importantly, Jp is quasi-re�exive in the
sense that the canonical image of Jp in its bidual has codimension one. This result, as well
as the de�nition of Jp, is due to James [6] in the case p = 2; Edelstein and Mityagin [4]
appear to have been the �rst to observe that it carries over to arbitrary p ∈ (1,∞).

A Banach space X is �nitely representable in a Banach space Y if, for each �nite-
dimensional subspace F of X and each ε > 0, there is an operator T : F → Y such that

(1− ε)‖x‖ 6 ‖Tx‖ 6 (1 + ε)‖x‖ (x ∈ F ). (1.1)

We shall in fact only consider �nite representability of c0, in which case it su�ces to
establish (1.1) for the �nite-dimensional subspaces F = `n∞, where n ∈ N. Although not
required, let us mention the Maurey�Pisier theorem that c0 is �nitely representable in a
Banach space Y if and only if Y fails to have �nite cotype (e.g., see [2, Theorem 14.1]).
This result shows in particular that �nite representability of c0 is an isomorphic invariant,
despite the obvious dependence on the choice of norm in (1.1).

Giesy and James [5] proved that c0 is �nitely representable in J2. Our �rst main result,
to be proved in Section 2, extends this result to arbitrary p ∈ (1,∞).

Theorem 1.1. For each p ∈ (1,∞), c0 is �nitely representable in Jp.

To explain how this result leads to a new closed ideal of operators on Jp, we require
some more notation. For p ∈ [1,∞) and a family (Xj)j∈J of Banach spaces, we write(⊕

j∈JXj

)
p
for the direct sum of the Xj's in the sense of `p; that is,(⊕

j∈J

Xj

)
p

=
{

(xj) : xj ∈ Xj (j ∈ J) and
∑
j∈J

‖xj‖p <∞
}
.

We shall only apply this notation in two cases, namely

Gp :=
(⊕
n∈N

`n∞

)
p

and J (∞)
p :=

(⊕
n∈N0

J (n)
p

)
p
, (1.2)

where J
(n)
p denotes the subspace of Jp spanned by the �rst n+1 basis vectors e0, e1, . . . , en.
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Our interest in these spaces stems from the two facts that (i) Jp contains a complemented

subspace isomorphic to J
(∞)
p ; and (ii) Theorem 1.1 implies that J

(∞)
p contains a comple-

mented subspace isomorphic to Gp (for p = 2, this has already been observed by Casazza,
Lin and Lohman [1, Theorem 13(i)] using the original Giesy�James theorem), and this
subspace gives rise to a new closed ideal of operators on Jp, as we shall now outline.

For Banach spaces X and Y , let

GY (X) =
{
ST : T ∈ B(X, Y ), S ∈ B(Y,X)

}
be the set of operators on X which factor through Y . This de�nes a two-sided algebraic
ideal of the Banach algebra B(X) of bounded operators on X, provided that Y contains a
complemented subspace isomorphic to Y ⊕Y (which will always be the case in this paper),
and hence its norm-closure, denoted by G Y (X), is a closed ideal of B(X).

Edelstein and Mityagin [4] made the easy, but fundamental, observation that the quasi-
re�exivity of Jp for p ∈ (1,∞) implies that the ideal W (Jp) of weakly compact opera-
tors has codimension one in B(Jp), hence is a maximal ideal. Loy and Willis [11, Open
Problems 2.8] formally raised the problem of determining the structure of the lattice of
closed ideals of B(J2), having themselves proved that K (J2) ( G `2(J2) ( W (J2) and
S (J2) = E (J2) 6⊇ G `2(J2), where S (J2) and E (J2) denote the ideals of strictly singular and
inessential operators, respectively (see [11, Theorem 2.7] and the text preceding it). Saks-
man and Tylli [13, Remark 3.9] improved the latter result by showing that K (J2) = S (J2),
while the third author [9, 10] generalized these results to arbitrary p ∈ (1,∞) and, more
importantly, complemented them by showing that the lattice of closed ideals in B(Jp) has
the following structure:

B(Jp)

W (Jp) = G
J
(∞)
p

(Jp) = G
J
(∞)
p

(Jp)

G `p(Jp)

K (Jp) = S (Jp) = E (Jp) = V (Jp)

{0},
where V (Jp) is the ideal of completely continuous operators, the vertical lines indicate
proper set-theoretic inclusion, and further closed ideals may be found only at the dotted
line. In particular, W (Jp) is the unique maximal ideal of B(Jp).

The second main result of this paper, which we shall prove in Section 3, states that
B(Jp) contains at least one other closed ideal than those listed above.

Theorem 1.2. For each p ∈ (1,∞), the operator ideal G Gp(Jp) lies strictly between G `p(Jp)
and W (Jp), where Gp is the Banach space given by (1.2).

Hence the lattice of closed ideals in B(Jp) has at least six distinct elements, namely

{0} ( K (Jp) ( G `p(Jp) ( G Gp(Jp) ( W (Jp) ( B(Jp).
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2 Proof of Theorem 1.1

Throughout this section, we �x a number p ∈ (1,∞). Our aim is to prove Theorem 1.1
by modifying the proof of Giesy and James [5]. The general scheme of the proof is the
same, but at several points, identities that are simple in the case p = 2 have to be replaced
with estimations applying to other p. We follow their notation as far as possible. We show
that there is a near-isometric embedding of `K∞ for each K ∈ N in the real case. It then
follows easily, by standard techniques, that there is at least an isomorphic embedding in
the complex case. Hence in the remainder of this section we shall assume that the scalar
�eld is R.

Spiky vectors play a central role in the proof. As in [5, p. 65], let

z2k =
1

(2k)1/p

k∑
j=1

e2j−1 ∈ Jp (k ∈ N),

so that z2k is a unit vector with spikes in its initial k odd coordinates.
The other key ingredient is the �stretch� operator Tn : Jp → Jp which, for n ∈ N and

x ∈ Jp, is given by (Tnx)(kn) = x(k) whenever k ∈ N0 and by linear interpolation between
these points. One can easily check that Tn is linear and isometric.

We use the notation [j, k] for the set of integers n such that j 6 n 6 k.
By an inductive process, we construct, for each K ∈ N, a set of K stretched spiky

vectors with the parameters chosen suitably, and show that these vectors are equivalent to
the usual basis of `K∞. The inductive step is captured by the following lemma, corresponding
to [5, Lemma 1].

Lemma 2.1. Let m ∈ N and γ, ε ∈ (0,∞). Suppose that x is an element of Jp supported
on the integer interval [0, 2m− 1] and satisfying

max
06j<2m

∣∣x(j)− x(j + 1)
∣∣p 6 γ

2m
and ‖x‖pJp − νp

(
x, [0, 2m]

)p
6 ε. (2.1)

For some even n, let w = Tnx + γ1/pz2mn. Then w is supported on the integer interval
[0, 2mn− 1] and satis�es

max
06j<2mn

|w(j)− w(j + 1)|p 6 γ

2mn

(
1 +

1

n1−1/p

)p
(2.2)

and
‖w‖pJp − νp

(
w, [0, 2mn]

)p
6 2ε+ γϕ(m,n), (2.3)

where ϕ(m,n)→ 0 as n→∞ with m �xed.

We show next how Theorem 1.1 follows, and then return to the proof of Lemma 2.1.

Proof of Theorem 1.1. With ε > 0 and K ∈ N given, we construct vectors x1, . . . , xK ∈ Jp
with ‖xi‖Jp > 1 for 1 6 i 6 K such that ‖

∑K
i=1 δixi‖Jp 6 1 + 2ε for all choices of

4



δ1, . . . , δK ∈ {−1, 1}. We then deduce equivalence with the usual basis of `K∞ as follows.
By convexity, we have

∥∥∑K
i=1 λixi

∥∥
Jp

6 1 + 2ε for all real λi with |λi| 6 1. Suppose that

max16i6K |λi| = |λj| = 1. Then
∥∥∑K

i=1 λixi − 2λjxj
∥∥
Jp

6 1 + 2ε (the coe�cient of xj has

been changed to −λj), so∥∥∥ K∑
i=1

λixi

∥∥∥
Jp

> ‖2λjxj‖Jp −
∥∥∥ K∑
i=1

λixi − 2λjxj

∥∥∥
Jp

> 2− (1 + 2ε) = 1− 2ε.

Let εk = ε/3K−k. At stage k, we will de�ne nk ∈ N, γk ∈ R and x
(k)
1 , . . . , x

(k)
k ∈ Jp

such that the following properties hold. Firstly, x
(k)
1 , . . . , x

(k)
k are supported on the integer

interval [0, 2mk − 1], where mk := n1n2 . . . nk, and ‖x(k)
i ‖Jp > 1 for 1 6 i 6 k. Secondly,

1 6 γk 6 1 +
εk

K
.

Thirdly, for all choices of δ1, . . . , δk ∈ {−1, 1} and with y
(k)
δ :=

∑k
i=1 δix

(k)
i , we have

max
06j<2mk

∣∣y(k)
δ (j)− y(k)

δ (j + 1)
∣∣p 6 γk

2mk

(2.4)

and
‖y(k)

δ ‖
p
Jp
− νp

(
y

(k)
δ , [0, 2mk]

)p
6 εk. (2.5)

By (2.4) and (2.5), we then obtain ‖y(k)
δ ‖

p
Jp

6 γk + εk 6 1 + 2ε 6 (1 + 2ε)p, from which the
desired conclusion follows.

To start, take x
(1)
1 = z2 and n1 = γ1 = 1. Suppose now that stage k − 1 has been

completed. For a certain even integer nk to be chosen, de�ne

x
(k)
i = Tnk

(x
(k−1)
i ) (1 6 i 6 k − 1) and x

(k)
k = γ

1/p
k−1z2mk

.

Let δ1, . . . , δk ∈ {−1, 1} be given. We may assume that δk = 1. Apply Lemma 2.1 with

x = y
(k−1)
δ , m = mk−1, n = nk, ε = εk−1 and γ = γk−1. Then

w = Tnk
(y

(k−1)
δ ) + γ

1/p
k−1z2mk

= y
(k)
δ ,

hence (2.2) implies that (2.4) is satis�ed with

γk = γk−1

(
1 +

1

n
1−1/p
k

)p
.

We choose nk large enough to ensure that γk 6 1 + εk/K. By (2.3),

‖y(k)
δ ‖

p
Jp
− νp

(
y

(k)
δ , [0, 2mk]

)p
6 2εk−1 + γk−1ϕ(mk−1, nk).

Since εk = 3εk−1, to ensure (2.5), we choose nk also to satisfy γk−1ϕ(mk−1, nk) 6 εk−1.
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Remark 2.2. Because of the dependence of ϕ(m,n) on m, it is not possible to take nk equal
to the same value n for each k, as in [5] for the case p = 2. We shall actually see later that
ϕ(m,n) only depends on m when p > 2.

Outline of proof of Lemma 2.1. Write y = Tnx and z = γ1/pz2mn, so that w = y + z.
Clearly, y and z are both supported on the integer interval [0, 2mn − 1]. Also, from the
de�nitions, we have |z(j)− z(j + 1)| = (γ/2mn)1/p and

∣∣(Tnx)(j)− (Tnx)(j + 1)
∣∣ 6 1

n

( γ

2m

) 1
p

= n
1
p
−1
( γ

2mn

) 1
p

(0 6 j < 2mn),

from which (2.2) follows.
The bulk of the work is the proof of (2.3). Since w is supported on the integer interval

[0, 2mn− 1], we can �nd a set A = {a1 < a2 < · · · < ak+1}, with a1 = 0 and ak+1 = 2mn,
such that ‖w‖Jp = νp(w,A). The aim is to show that the whole interval acts as a reasonable
substitute for this set A. This will be accomplished by four steps, summarized as follows:

νp(w,A)p 6 νp(y, A)p + νp(z, A)p + ρ1 (2.6)

6 νp
(
y, A ∪ ([0, 2mn] ∩ nN0)

)p
+ νp

(
z, A ∪ ([0, 2mn] ∩ nN0)

)p
+ ρ1 + ρ2 (2.7)

6 νp
(
y, [0, 2mn]

)p
+ νp

(
z, [0, 2mn]

)p
+ ρ1 + ρ2 (2.8)

6 νp
(
w, [0, 2mn]

)p
+ ρ1 + ρ2 + ρ3, (2.9)

where ρ1, ρ2 and ρ3 are error terms which will emerge from the proofs. Step 1 moves from
w = y+ z to y and z separately, and step 4 reverses this. Working with y and z separately,
step 2 adjoins multiples of n to A, and step 3 adjoins all intervening integers. Because of
the concepts involved, we present these four steps in the order 1, 4, 3, 2.

Lemma 2.3. Suppose that a, b > 0. Then (a+ b)p − ap − bp 6 2p(ap−1b+ abp−1).

Proof. With no loss of generality, we may assume that a > b. Writing b/a = t, we see
that the stated inequality is equivalent to (1 + t)p − 1 − tp 6 2p(t + tp−1) for 0 < t 6 1.
For such t, since the function t 7→ (1 + t)p is convex and t = (1 − t) · 0 + t · 1, we have
(1 + t)p 6 (1 − t) · 1 + 2pt, hence (1 + t)p − 1 6 (2p − 1)t, which of course implies the
required inequality.

Remark 2.4. The estimation in Lemma 2.3 is quite adequate for our purposes. In fact, the
best constant on the right-hand side of the inequality is p for 2 6 p 6 3, and 2p−1 − 1
otherwise [7].

Step 1: Proof of (2.6). Write `i = ai+1 − ai, so that
∑k

i=1 `i = 2mn. Then we have, by
de�nition,

∣∣y(ai)− y(ai+1)
∣∣ 6 `i

n

( γ

2m

) 1
p

and
∣∣z(ai)− z(ai+1)

∣∣ 6 ( γ

2mn

) 1
p

(1 6 i 6 k).
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Lemma 2.3 implies that νp(y + z, A)p − νp(y, A)p − νp(z, A)p 6 2ps, where

s :=
k∑
i=1

(∣∣y(ai)− y(ai+1)
∣∣p−1∣∣z(ai)− z(ai+1)

∣∣+
∣∣y(ai)− y(ai+1)

∣∣ ∣∣z(ai)− z(ai+1)
∣∣p−1

)
6

k∑
i=1

((`i
n

)p−1( γ

2m

)1− 1
p
( γ

2mn

) 1
p

+
`i
n

( γ

2m

) 1
p
( γ

2mn

)1− 1
p

)
= γ

( ∑k
i=1 `

p−1
i

2mnp−1+1/p
+

1

n1−1/p

)
,

since
∑k

i=1 `i = 2mn. For 1 < p 6 2, we have `p−1
i 6 `i, hence

s 6 γ
( 1

np−2+1/p
+

1

n1−1/p

)
,

whereas for p > 2,
∑k

i=1 `
p−1
i 6

(∑k
i=1 `i

)p−1
= (2mn)p−1, so that

s 6 γ
((2m)p−2

n1/p
+

1

n1−1/p

)
.

Multiplying these upper bounds on s by 2p, we conclude that (2.6) is satis�ed with

ρ1 =


2pγ
( 1

np−2+1/p
+

1

n1−1/p

)
for 1 < p 6 2,

2pγ
((2m)p−2

n1/p
+

1

n1−1/p

)
for p > 2.

Step 4: Proof of (2.9), with ρ3 = γ/np−1. Letting

s` =

(`+1)n−1∑
j=`n

(∣∣w(j)− w(j + 1)
∣∣p − ∣∣y(j)− y(j + 1)

∣∣p − ∣∣z(j)− z(j + 1)
∣∣p),

we can write

νp
(
w, [0, 2mn]

)p − νp(y, [0, 2mn]
)p − νp(z, [0, 2mn]

)p
=

2m−1∑
`=0

s`.

Our claim is that this quantity is at least −γ/np−1.
To verify this, �x integers ` ∈ [0, 2m−1] and j ∈ [`n, (`+1)n−1]. Then z(j)− z(j + 1)

is alternately ±c, where c := (γ/2mn)1/p, while y(j) − y(j + 1) = 1
n

(
x(`) − x(` + 1)

)
,

and by assumption d` := 1
n

∣∣x(`)− x(`+ 1)
∣∣ 6 1

n
(γ/2m)1/p. Since c > d`, we see that∣∣w(j)− w(j + 1)

∣∣ is alternately c+ d` and c− d`. Hence, as n is even,

s` =
n

2

(
(c+ d`)

p + (c− d`)p − 2dp` − 2cp
)
. (2.10)

By convexity of the function t 7→ tp, we have (c + d`)
p + (c − d`)

p > 2cp. Therefore
s` > −ndp` > −γ/2mnp−1, so

∑2m−1
`=0 s` > −γ/np−1, as required.
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Remark 2.5. Equation (2.10) shows that s` = 0 for p = 2, and in fact one can prove that
s` > 0 whenever p > 2, thus rendering the error term ρ3 super�uous for such p.

We now come to Step 3, which is really the heart of the method, and it is the one
where it is essential to work with νp( · , · )p rather than νp( · , · ) itself. We shall adjoin
all intervening integers to the set A ∪ ([0, 2mn] ∩ nN0). This has the e�ect of reducing
νp(y, · )p, but the reduction is more than o�set by an increase in νp(z, · )p.

Lemma 2.6. Suppose that t > 1. Then tp − t 6 (t− 1)(t+ 1)p−1.

Proof. For 1 < p 6 2, we have tp−1 6 t, hence tp − t 6 tp − tp−1 = (t − 1)tp−1, which
is stronger than the stated inequality. For p > 2, we use the convexity of the function
t 7→ tp−1. Since

t =
t− 1

t
(t+ 1) +

1

t
· 1,

we have

tp−1 6
t− 1

t
(t+ 1)p−1 +

1

t
,

which is again stronger than the stated inequality.

Step 3: Proof of (2.8). Let B = A ∪ ([0, 2mn] ∩ nN0). Our aim is to prove that

δ := νp
(
y, [0, 2mn]

)p
+ νp

(
z, [0, 2mn]

)p − νp(y,B)p − νp(z,B)p

is non-negative. Writing B = {b1 < b2 < · · · < bh+1}, we have δ =
∑h

j=1

(
∆j(y) + ∆j(z)

)
,

where

∆j(y) =

(bj+1−1∑
i=bj

∣∣y(i)− y(i+ 1)
∣∣p)− ∣∣y(bj)− y(bj+1)

∣∣p
and ∆j(z) is de�ned similarly. Hence it su�ces to prove that ∆j(y) + ∆j(z) > 0 for each
integer j ∈ [1, h].

The de�nition of B shows that bj and bj+1 both belong to an interval of the form
[rn, (r + 1)n] for some r ∈ N0. As in the proof of Step 4, this implies that∣∣y(i)− y(i+ 1)

∣∣ = dr (bj 6 i < bj+1) and
∣∣y(bj)− y(bj+1)

∣∣ = `jdr,

where dr := 1
n

∣∣x(r)− x(r + 1)
∣∣ 6 1

n
(γ/2m)1/p and `j := bj+1 − bj, so ∆j(y) = (`j − `pj)dpr.

Meanwhile,
∣∣z(i) − z(i + 1)

∣∣ = c for each i, where c := (γ/2mn)1/p, and
∣∣z(bj) − z(bj+1)

∣∣
equals 0 if `j is even and c if `j is odd, thus in both cases ∆j(z) > (`j − 1)cp.

Now if `j 6 n− 1, we �nd

∆j(y) + ∆j(z) > (`j − `pj)dpr + (`j − 1)cp >
(
(`j − `pj) + (`j − 1)np−1

)
dpr

because cp > np−1dpr. Since n > `j + 1, Lemma 2.6 gives (`j − 1)np−1 > `pj − `j, hence
∆j(y) + ∆j(z) > 0, as required. Otherwise `j = n, which is assumed even, so that
∆j(z) = ncp, and

∆j(y) + ∆j(z) = (n− np)dpr + ncp > (n− np + np)dpr = ndpr > 0.
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Finally, we reach Step 2 where multiples of n are adjoined to the set A. We require two
lemmas, the �rst of which describes the e�ect on νp( · , A)p of substituting new end points
in A, while the second considers the e�ect of �lling in gaps in A.

Lemma 2.7. Consider integers ` > 3 and 0 6 c 6 b1 < b2 < · · · < b` 6 c′, let B =
{b1, b2, . . . , b`} and C = {c, b2, . . . , b`−1, c

′}, and suppose that v ∈ Jp satis�es

v(c) 6 v(b1) 6 v(bj) 6 v(b`) 6 v(c′) or v(c) > v(b1) > v(bj) > v(b`) > v(c′) (2.11)

for 1 < j < `. Then

νp
(
v, {b1, b`}

)p − νp(v,B)p 6 νp
(
v, {c, c′}

)p − νp(v, C)p.

Proof. We consider only the case where the �rst set of inequalities in (2.11) is satis-
�ed; the other case is similar. We replace the end points of B one at a time. Let
D = {c, b2, . . . , b`−1, b`}. In the sum under consideration, r := v(b2) − v(b1) is replaced
with s := v(b2) − v(c), and both are non-negative, so νp(v,D)p − νp(v,B)p = sp − rp.
Di�erentiation shows that the function t 7→ (s + t)p − (r + t)p is increasing on [0,∞) be-
cause s > r, and hence sp−rp 6 (s+ t)p− (r+ t)p for each t > 0. Taking t := v(b`)−v(b2),
we obtain s+ t = v(b`)− v(c) and r + t = v(b`)− v(b1), so

νp(v,D)p − νp(v,B)p 6 νp
(
v, {c, b`}

)p − νp(v, {b1, b`}
)p
.

A similar argument with r := v(b`) − v(b`−1), s := v(c′) − v(b`−1) and t := v(b`−1)− v(c)
shows that

νp(v, C)p − νp(v,D)p 6 νp
(
v, {c, c′}

)p − νp(v, {c, b`})p.
Adding these two inequalities, we conclude that

νp(v, C)p − νp(v,B)p 6 νp
(
v, {c, c′}

)p − νp(v, {b1, b`}
)p
,

from which our statement follows.

Lemma 2.8. Let ` ∈ N, and suppose that C1, . . . , C` and D1, . . . , D` are �nite subsets
of N0 with minCj = minDj =: mj and maxCj = maxDj =: m′j, where m

′
j 6 mj+1 for

each j. Suppose further that E1, . . . , E`−1 are �nite subsets of N0 such that minEj = m′j
and maxEj = mj+1 for each j (so Ej is between Cj ∪ Dj and Cj+1 ∪ Dj+1), and let
E` = {m′`}. Then∑̀
j=1

(
νp(v,Dj)

p − νp(v, Cj)p
)

= νp

(
v,
⋃̀
j=1

(Dj ∪ Ej)
)p
−νp

(
v,
⋃̀
j=1

(Cj ∪ Ej)
)p

(v ∈ Jp).

Proof. Clearly, we have

νp

(
v,
⋃̀
j=1

(Cj ∪ Ej)
)p

=
∑̀
j=1

νp(v, Cj)
p +

∑̀
j=1

νp(v, Ej)
p,

which together with the corresponding formula for νp
(
v,
⋃`
j=1(Dj ∪ Ej)

)p
gives the result.
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Step 2: Proof of (2.7), with ρ2 = 2ε. Let N = [0, 2mn]∩nN0. The e�ect on z of adjoining
elements to the set A = {a1 < · · · < ak+1} is easily seen. Let `i = ai+1 − ai for 1 6 i 6 k.
As in the proof of Step 3 above,

∣∣z(ai) − z(ai+1)
∣∣ is c := (γ/2mn)1/p if `i is odd, and 0 if

`i is even. If `i is odd and new points are inserted between ai and ai+1, then at least one
of the new intervals, say [bj, bj+1], has odd length, so

∣∣z(bj)− z(bj+1)
∣∣ = c. Hence

νp(z, A) 6 νp(z, A ∪N).

We shall now prove the corresponding inequality for y, just with an error term added
on the right-hand side. Recall that a1 = 0 and ak+1 = 2mn. Note that if there is
some b ∈ N such that ai < b < ai+1 for some i and either y(b) < min

{
y(ai), y(ai+1)

}
or y(b) > max

{
y(ai), y(ai+1)

}
, then

∣∣y(ai)− y(b)
∣∣p +

∣∣y(b)− y(ai+1)
∣∣p > ∣∣y(ai)− y(ai+1)

∣∣p.
Hence we may adjoin any such points b to the set A, thereby increasing νp(y, A) without
changing A ∪N ; we still use the notation A = {a1 < · · · < ak+1} for the augmented set.

Let the intervals [ai, ai+1] (1 6 i 6 k) that contain at least one multiple of n be relabelled
[bj, b

′
j] (1 6 j 6 h) and ordered increasingly; that is, b1 < b′1 6 b2 < b′2 6 · · · 6 bh < b′h.

Note that b1 = a1 = 0 and b′h = ak+1 = 2mn, and that b′j may or may not be equal to bj+1

for 1 6 j 6 h− 1. Then, with Bj :=
(
[bj, b

′
j] ∩ nN

)
∪ {bj, b′j} for 1 6 j 6 h, we obtain

νp(y, A)p − νp(y, A ∪N)p =
h∑
j=1

(
νp
(
y, {bj, b′j}

)p − νp(y,Bj)
p
)
. (2.12)

Let cj = max
(
[0, bj]∩nN0

)
and c′j = min

(
[b′j,∞)∩nN0

)
, and let Cj = [cj, c

′
j]∩nN0. Then

c1 = 0 and c′h = 2mn, and we have

νp
(
y, {bj, b′j}

)p − νp(y,Bj)
p 6 νp

(
y, {cj, c′j}

)p − νp(y, Cj)p (1 6 j 6 h) (2.13)

by Lemma 2.7, which applies because the augmentation of the set A carried out in the pre-
vious paragraph ensures that y satis�es the hypothesis (2.11). Indeed, it is clear that y(b)
lies between y(bj) and y(b′j) for each b ∈ Bj. To check the remaining inequalities concern-
ing the values of y at the points cj and c

′
j, let us for de�niteness consider the case where

y(bj) 6 y(b′j) and explain why y(cj) 6 y(bj); the other cases are similar. The inequality is
obvious if cj = bj. Otherwise we write cj = rn, where r ∈ N0, and note that (r + 1)n > bj
by the de�nition of cj. Since [bj, b

′
j] ∩ nN0 6= ∅, we conclude that (r + 1)n 6 b′j, so the

augmentation of A implies that y(bj) 6 y
(
(r + 1)n

)
6 y(b′j). Now recall that y = Tnx, so

y(bj) is found by interpolation between x(r) = y(rn) = y(cj) and x(r + 1) = y
(
(r + 1)n

)
.

Since y
(
(r + 1)n

)
> y(bj), we must therefore have y(cj) 6 y(bj), as required.

We next seek to invoke Lemma 2.8 with the sets {cj, c′j} playing the role of the Dj's. To
do so, we require some more notation. Let c0 = c′0 = 0, C0 = {0}, ch+1 = c′h+1 = 2mn and
Ch+1 = {2mn}. Then clearly min{cj, c′j} = minCj = cj and max{cj, c′j} = maxCj = c′j
for each integer j ∈ [0, h + 1], but c′j 6 cj+1 need not be satis�ed for each j ∈ [1, h]. It
is, however, true that c′j 6 cj+2 for each j ∈ [0, h − 1] because the interval [bj+1, b

′
j+1]

contains a multiple of n. Hence, taking Ej = [c′j, cj+2] ∩ nN0 for 0 6 j 6 h− 1 and letting
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Eh = Eh+1 = {2mn}, we can apply Lemma 2.8 for even and odd indices j separately.
We observe that Cj ∪ Ej = [cj, cj+2] ∩ nN0 for 0 6 j 6 h − 1, so

⋃
j∈Γr

(Cj ∪ Ej) = N
for r ∈ {0, 1}, where Γ0 and Γ1 denote the sets of even and odd integers in [0, h + 1],
respectively. Thus Lemma 2.8 gives∑

j∈Γr

(
νp
(
y, {cj, c′j}

)p − νp(y, Cj)p) = νp

(
y,
⋃
j∈Γr

({cj, c′j} ∪ Ej)
)p
− νp(y,N)p. (2.14)

Since y = Tnx and N = [0, 2mn] ∩ nN0, we have νp(y,N)p = νp
(
x, [0, 2m]

)p
> ‖x‖pJp − ε

by (2.1), while νp
(
y,
⋃
j∈Γr

({cj, c′j} ∪ Ej)
)p

6 ‖y‖pJp = ‖x‖pJp . Hence the sum on the left-
hand side of (2.14) is no greater than ε, so adding the two cases (r = 0 and r = 1) and
using (2.12) and (2.13), we conclude that

νp(y, A)p − νp(y, A ∪N)p 6
h∑
j=1

(
νp
(
y, {cj, c′j}

)p − νp(y, Cj)p)
=

h+1∑
j=0

(
νp
(
y, {cj, c′j}

)p − νp(y, Cj)p) 6 2ε.

Completion of the proof of Lemma 2.1. With the four steps completed, it is clear that
Lemma 2.1 holds with

ϕ(m,n) = 2p
(
ψ(m,n) +

1

n1−1/p

)
+

1

np−1
,

where

ψ(m,n) =


1

np−2+1/p
for 1 < p 6 2

(2m)p−2

n1/p
for p > 2.

Note that m does not appear in the case p 6 2, and that p− 2 + 1/p > 0, so in both cases
ϕ(m,n)→ 0 as n→∞ with m �xed.

3 Proof of Theorem 1.2

We begin with an elementary observation which is tailored to reduce Theorem 1.2 to the
statement that the Banach spaces Gp and J

(∞)
p given by (1.2) are non-isomorphic. A closely

related result can be found in [12, Proposition 5.3.8].

Lemma 3.1. Let X, Y and Z be Banach spaces satisfying:

(i) X contains a complemented subspace isomorphic to Y ;

(ii) Y contains a complemented subspace isomorphic to Z;

(iii) Y ∼= Y ⊕ Y and Z ∼= Z ⊕ Z.
Then G Z(X) ⊆ G Y (X), with equality if and only if Z ∼= Y .
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Proof. The inclusion G Z(X) ⊆ G Y (X) is clear, as is the equality of these two ideals in the
case where Z ∼= Y .

Conversely, suppose that G Z(X) = G Y (X), and let P be a projection on X with
P (X) ∼= Y . Clearly P factors through Y , so P belongs to G Z(X) by the assumption. It
then follows from standard results that Z contains a complemented subspace isomorphic
to Y (e.g., see [9, Proposition 3.4 and Lemma 3.6(ii)] for details), and therefore Y and Z
are isomorphic by the Peªczy«ski decomposition method.

We shall next record the facts required to invoke Lemma 3.1 in the proof of Theorem 1.2.

Lemma 3.2. For each p ∈ (1,∞),

(i) Gp contains a complemented subspace isomorphic to `p;

(ii) J
(∞)
p contains a complemented subspace isomorphic to Gp;

(iii) Jp contains a complemented subspace isomorphic to J
(∞)
p ;

(iv) `p ∼= `p ⊕ `p, Gp
∼= Gp ⊕Gp and J

(∞)
p
∼= J

(∞)
p ⊕ J (∞)

p .

Proof. All but one of these results are well known. The exception is (ii) which, however,
follows from Theorem 1.1 in exactly the same way as the corresponding result for p = 2 is
deduced from the original Giesy�James theorem in [1, Theorem 13(i)].

References for the other statements are as follows; (i) and the �rst part of (iv) are
obvious, while (iii) and the remaining two parts of (iv) follow from [4, Lemmas 5 and 6].
(A key condition appears to be missing in the statement of [4, Lemma 5], though, namely
that the sequence denoted by ν is unbounded.)

Remark 3.3. Let X and Y be Banach spaces. An operator T : X → Y is bounded below
by ε > 0 if ‖Tx‖ > ε‖x‖ for each x ∈ X. In this case T is an isomorphism onto its
image, and the inverse operator has norm at most ε−1, so in particular the Banach�Mazur
distance dBM between the domain X and the image T (X) of T satis�es

dBM
(
X,T (X)

)
6
‖T‖
ε
.

Now suppose that X is a closed subspace of Y and that T : X → Y is linear and satis�es

‖x− Tx‖ 6 η‖x‖ (x ∈ X)

for some η ∈ (0, 1). Then we have (1− η)‖x‖ 6 ‖Tx‖ 6 (1 + η)‖x‖ for each x ∈ X, so by
the previous paragraph T is an isomorphism onto its image, and

dBM
(
X,T (X)

)
6

1 + η

1− η
.
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De�nition 3.4. Let F be a �nite-dimensional Banach space. The unconditional basis
constant of a basis b = {b1, . . . , bn} for F is given by

Kb := sup

{∥∥∥ n∑
j=1

αjβjbj

∥∥∥ : αj, βj ∈ K, |αj| 6 1 (j = 1, . . . , n),
∥∥∥ n∑
j=1

βjbj

∥∥∥ 6 1

}
.

The in�mum of the unconditional basis constants of all possible bases for F is the uncon-
ditional constant of F ; we denote it by uc(F ).

It is easy to verify that, for Banach spaces E and F of the same �nite dimension, we
have

uc(E) 6 dBM(E,F ) uc(F ). (3.1)

De�nition 3.5. (Dubinsky, Peªczy«ski and Rosenthal [3, De�nition 3.1].) Let C ∈ [1,∞).
A Banach space X has local unconditional structure (or l.u.st. for short) with constant
at most C if each �nite-dimensional subspace of X is contained in some larger �nite-
dimensional subspace F of X with uc(F ) 6 C.

A Banach space with an unconditional basis has l.u.st. This applies in particular to Gp.
On the other hand, Johnson and Tzafriri [8, Corollary 2] have shown that no quasi-re�exive

Banach space has l.u.st. We shall use this result to prove that J
(∞)
p does not have l.u.st.

We begin with a generalization of the above-mentioned fact that every Banach space
with an unconditional basis has l.u.st. This result is probably well-known to specialists,
but as we have been unable to locate a reference, we include a proof.

Lemma 3.6. Let X be a Banach space with a Schauder basis (bn)n∈N0, and let C ∈ [1,∞).
Suppose that X contains a sequence (Fn)n∈N0 of �nite-dimensional subspaces satisfying

b0, b1, . . . , bn ∈ Fn and uc(Fn) 6 C (n ∈ N0). (3.2)

Then X has l.u.st. with constant at most C + δ for each δ > 0.

Proof. Take ε ∈ (0, 1
2
) such that C/(1−2ε) < C+δ, and let E be a k-dimensional subspace

of X for some k ∈ N. Approximation of each vector of an Auerbach basis for E shows
that, for each η > 0, there is M ∈ N0 such that

‖x− Pmx‖ 6 η‖x‖ (m >M, x ∈ E), (3.3)

where Pm denotes the mth basis projection associated with (bn)n∈N0 . Applying this con-
clusion with η > 0 chosen such that

η
√
k

1− η
6

ε

1− ε
, (3.4)

we obtain by Remark 3.3 that the operator U : x 7→ PMx, E → PM(E), is an isomorphism
with ‖U‖ 6 1 + η and ‖U−1‖ 6 (1− η)−1.
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Since U(E) = PM(E) ⊆ span{b0, b1, . . . , bM} ⊆ FM and dimU(E) = k, we can �nd
a projection Q on FM such that Q(FM) = U(E) and ‖Q‖ 6

√
k by the Kadec�Snobar

theorem (e.g., see [2, Theorem 4.18]). The operator T : x 7→ x−Qx+ U−1Qx, FM → X,
then satis�es

‖x− Tx‖ = ‖Qx− U−1Qx‖ = ‖PMU−1Qx− U−1Qx‖ 6 η‖U−1Qx‖ 6 η‖U−1‖ ‖Q‖ ‖x‖,

where the penultimate estimate follows from (3.3), and hence ‖x−Tx‖ 6 ε(1−ε)−1‖x‖ for
each x ∈ FM by (3.4). Since ε(1− ε)−1 < 1, Remark 3.3 implies that T is an isomorphism
onto its image, and

dBM
(
FM , T (FM)

)
6

1 + ε(1− ε)−1

1− ε(1− ε)−1
=

1

1− 2ε
,

so uc
(
T (FM)

)
6 C/(1− 2ε) 6 C + δ by (3.1).

The conclusion now follows because E ⊆ T (FM). Indeed, for each x ∈ E, y := Ux
belongs to FM and satis�es Qy = y, so that

T (FM) 3 Ty = y −Qy + U−1y = x,

as desired. (In fact, an easy dimension argument shows that T (FM) = kerQ+ E.)

Proposition 3.7. The Banach space J
(∞)
p does not have l.u.st. for any p ∈ (1,∞).

Proof. Assume towards a contradiction that J
(∞)
p has l.u.st. with constant at most C > 1

for some p ∈ (1,∞), and let n ∈ N0. Denote by ιn : J
(n)
p → J

(∞)
p and ρn : J

(∞)
p → J

(n)
p

the canonical nth coordinate embedding and projection, respectively, and let jn : J
(n)
p → Jp

be the natural inclusion operator. By assumption, ιn(J
(n)
p ) is contained in some �nite-

dimensional subspace Fn of J
(∞)
p with uc(Fn) 6 C.

Let Rn : Jp → Jp be the (n + 2)-fold right shift given by Rnek = en+k+2 for each
k ∈ N0. This de�nes an operator of norm 21/p on Jp, and Rn is bounded below by 1.

Lemma 3.2(iii) implies that there are operators U ∈ B(J
(∞)
p , Jp) and V ∈ B(Jp, J

(∞)
p )

such that V U = I
J
(∞)
p

; we may clearly suppose that V has norm 1. We shall now consider

the operator Sn := jnρn + RnU(I
J
(∞)
p
− ιnρn) ∈ B(J

(∞)
p , Jp). The obvious norm estimates

show that ‖Sn‖ 6 1 + 21/p ‖U‖. To prove that Sn is bounded below by 1, let x ∈ J (∞)
p and

ε > 0 be given. Introducing y := (I
J
(∞)
p
− ιnρn)x ∈ J (∞)

p , we obtain

‖x‖p
J
(∞)
p

= ‖ρnx‖pJp + ‖y‖p
J
(∞)
p

= ‖jnρnx‖pJp + ‖V Uy‖p
J
(∞)
p

6 ‖jnρnx‖pJp + ‖RnUy‖pJp (3.5)

because ‖V ‖ = 1 and Rn is bounded below by 1. Since jnρnx ∈ span{e0, e1, . . . , en},
there is a subset A of [0, n+ 1] ∩ N0 such that ‖jnρnx‖Jp = νp(jnρnx,A). Similarly, as
RnUy ∈ span {en+2, en+3, . . .}, we can �nd a �nite subset B of [n + 1,∞) ∩ N such that
‖RnUy‖pJp 6 νp(RnUy,B)p + ε. Combining these identities with (3.5), we conclude that

‖x‖p
J
(∞)
p

− ε 6 νp(jnρnx,A)p + νp(RnUy,B)p 6 νp
(
jnρnx+RnUy,A ∪B

)p
6 ‖Snx‖pJp ,

and letting ε tend to 0, we see that Sn is bounded below by 1, as stated.
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Thus Remark 3.3 implies that dBM
(
Fn, Sn(Fn)

)
6 ‖Sn‖ 6 1 + 21/p‖U‖, and therefore

uc
(
Sn(Fn)

)
6 C

(
1 + 21/p‖U‖

)
by (3.1). Moreover, for each k ∈ {0, 1, . . . , n}, we have

ιnek ∈ Fn, so that Sn(Fn) 3 Sn(ιnek) = ek because jnρnιnek = ek and (I
J
(∞)
p
− ιnρn)ιn = 0.

Hence the sequence
(
Sn(Fn)

)
n∈N0

satis�es both parts of (3.2), so Lemma 3.6 implies that Jp
has l.u.st., contradicting the above-mentioned theorem of Johnson and Tzafriri that this is
impossible for a quasi-re�exive Banach space.

Corollary 3.8. The Banach spaces Gp and J
(∞)
p are not isomorphic for any p ∈ (1,∞).

Proof. This is clear because, as remarked above, Gp has an unconditional basis and thus

l.u.st., whereas J
(∞)
p does not by Proposition 3.7.

The proof of Theorem 1.2 is now easy. Recall that W (Jp) = G
J
(∞)
p

(Jp). The inclusions

G `p(Jp) ( G Gp(Jp) and G Gp(Jp) ( G
J
(∞)
p

(Jp) both follow from Lemma 3.1, which applies

by Lemma 3.2 and the facts that `p 6∼= Gp and Gp 6∼= J
(∞)
p . The second of these facts was

proved in Corollary 3.8, while the �rst can be justi�ed in various ways; for instance, `p is
uniformly convex with type min{2, p} and cotype max{2, p}, whereas Gp is not uniformly
convexi�able, has type 1 and fails to have �nite cotype.

Acknowledgement

The third author is grateful to Nigel Kalton and Charles Read for helpful conversations
regarding the approach taken in Section 3 to prove that the Banach space J

(∞)
p does not

have l.u.st.

References

[1] P. G. Casazza, Bor-Luh Lin, R. H. Lohman, On James' quasi-re�exive Banach
space, Proc. American Math. Soc. 67(1977), 265�271.

[2] J. Diestel, H. Jarchow, A. Tonge, Absolutely summing operators, Camb. Stud.
Adv. Math. 43, Cambridge University Press, 1995.

[3] E. Dubinsky, A. Peªczy«ski, H. P. Rosenthal, On Banach spaces X for which
Π2(L∞, X) = B(L∞, X), Studia Math. 44(1972), 617�648.

[4] I. S. Edelstein, B. S. Mityagin, Homotopy type of linear groups of two classes of
Banach spaces, Functional Anal. Appl. 4(1970), 221�231.

[5] D. P. Giesy, R. C. James, Uniformly non-`1 and B-convex Banach spaces, Studia
Math. 48(1973), 61�69.

[6] R. C. James, Bases and re�exivity of Banach spaces, Ann. of Math. 52(1950), 518�
527.

15



[7] G. J. O. Jameson, Inequalities comparing (a + b)p − ap − bp and ap−1b + abp−1,
Elemente Math. 68(2013), 1�6.

[8] W. B. Johnson, L. Tzafriri, Some more Banach spaces which do not have local
unconditional structure, Houston J. Math. 3(1977), 55�60.

[9] N. J. Laustsen, Maximal ideals in the algebra of operators on certain Banach spaces,
Proc. Edinburgh Math. Soc. 45(2002), 523�546.

[10] N. J. Laustsen, Commutators of operators on Banach spaces, J. Operator The-
ory 48(2002), 503�514.

[11] R. J. Loy, G. A. Willis, Continuity of derivations on B(E) for certain Banach
spaces E, J. London Math. Soc. 40(1989), 327�346.

[12] A. Pietsch, Operator ideals, North Holland, 1980.

[13] E. Saksman, H.-O. Tylli, Weak compactness of multiplication operators on spaces
of bounded linear operators, Math. Scand. 70(1992), 91�111.

Department of Mathematics and Statistics, Fylde College
Lancaster University, Lancaster LA1 4YF, UK;

e-mail: alistairbird@gmail.com, g.jameson@lancaster.ac.uk and
n.laustsen@lancaster.ac.uk

16


