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Abstract—Systems with time-varying time delays present a par-
ticularly challenging control problem. They have been observed
across a wide array of domains, from hydraulic actuators to
insulin delivery control systems. Control systems that address
system time-delays, nonlinearities and uncertainty are the subject
of much research but, whilst the specific concept of varying
time delays is sometimes acknowledged (for example in the
control of hydraulic manipulators), this appears to be less widely
investigated than some other types of nonlinearity. In part
motivated by recent research into internal multi-model control, as
similarly applied to systems with unknown time-varying delays,
the present work utilises a Gaussian radial basis function to
switch between two or more partial controllers. Each partial
controller is based on a linear model with a (time-invariant)
time delay. The new algorithm is developed and evaluated via
simulation using a non-minimal state space (NMSS) framework,
with pole assignment as the design criterion. Simulation results
suggest that it yields improved performance in comparison to
a simpler switching approach and the equivalent linear control
system. However, laboratory examples and further research into
robustness and stability is required in the next step.

Index Terms—uncertain time delay, time-varying delay, Gaus-
sian radial basis function, non-minimal state space model

I. INTRODUCTION

Time-varying, time delay systems present a challenging
control problem [1]. This is particularly so when the observed
time delay (also referred to as the dead time or lag), between
the control input variable and the controlled output, is itself
unknown, stochastic and time-varying. In some scenarios, for
example, the time-delay (in seconds) between implementing
a change in the applied voltage (in either open or closed-
loop) and observing the associated angular velocity response
for a hydraulically actuated robotic manipulator, can change
over time. Such variations in the delay may be caused by
the internal dynamics of the system and other nonlinear
characteristics, such as fluid compressibility, varying pressure
dynamics, dead-band of the pump, valve flow properties and
friction characteristics [2–4]. In the latter case, the complex
nature of the time delay variability can appear stochastic
(rather than, say, dependant on a measured system state).

More generally, system time delays typically consist of an
accumulation of delays, including communication delays [5],
calculation delays and other internal system delays. In fact,
time-varying time delays have been observed across a wide
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array of domains, from the hydraulic actuators alluded to
above to e.g. insulin delivery control systems [6].

In part motivated by reference [7], who develop internal
multimodel controllers for systems with unknown delays,
the present work similarly proposes a Gaussian radial basis
function based approach, here using the weighting function to
switch between two or more partial models with different time
delays. The new algorithm is developed and evaluated via sim-
ulation using a non-minimal state space (NMSS) framework,
with pole assignment as the design criterion [8–11].

The Gaussian radial basis function is part of the set of basis
functions and takes the following general form [12],

ϕ(r) = e−r2 (1)

where, for example, r = (x−y)
θ , in which θ is a coefficient.

This definition of r provides a representation of the proximity
between x and y (e.g. for image processing applications) but
other forms are also common. Such functions have been used
across a wide range of disciplines (for data interpolation [13],
electron-nuclear cusp condition calculations [14], etc.). Most
commonly in control, however, Gaussian radial basis functions
are used in machine learning, as either activation functions in
Artificial Neural Networks (ANNs) or as kernel functions in
Support Vector Machines (SVMs) [e.g. 15–17].

The present authors have also found a few examples in the
literature of radial basis functions being used in the context
of variable time-delay systems. However, these are usually
for controllers based on neural networks, in which the basis
function is an activation function or weighting term [5–7]. By
contrast, the present article exploits the existing NMSS model-
based design approach [8–11], adapted here in a novel way so
that the input signal is a weighted sum of the partial control
inputs for different time delay models. This yields a nonlinear
weighted proportional-integral-plus (PIP) control system.

Again, weighting equations span many other applications,
such as fracture mechanics [18], image processing [19] and
time-frequency representations [20]. In the context of variable
time delays, a few controllers do exist that exploit weighting
functions. For example, [21] develop an interval type-2 (IT2)
stochastic fuzzy neural network, where membership functions
and weighting functions are used to handle parameter un-
certainties, while [22] introduces a robust H-∞ controller,
with switching functions and local fuzzy weighting functions.
The present work also uses switching control laws, although



here these are obtained via the proposed weighting matrix
scheme for NMSS models, with the control system solved via
straightforward pole assignment. Section II defines the model
and briefly reviews the underlying control design methodology,
while section III describes new weighting function approach.
This is followed in sections IV and V by a simulation example
and conclusions, respectively.

II. BACKGROUND

The plant is represented as a Transfer function (TF) model,
albeit with a time-varying, time delay element, as follows,

y(k) =
B(z−1)

A(z−1)
u(k − τ(k) + 1) (2)

where y(k) is the output, u(k) is the control input and τ(k)
is the time delay at sample k. Here, B(z−1) = b1z

−1 + ...+
bmz−m and A(z−1) = 1+a1z

−1+ ...+anz
−n, in which z−1

is the backward shift operator, i.e. z−1y(k) = y(k − 1).
For control system design, it will be assumed that τ(k) is

known at sample k. Of course, in general, τ(k) is unknown
and must be estimated using one of the methods from the
literature, such as the multi-model approach of [7], an on-line
version of the first author’s recently proposed polynomial-
based approach [23], or e.g. [24, 25]. The focus below is
to develop a control methodology for the plant model (2),
although the robustness to time delay modelling errors is
nonetheless investigated via the simulation study (section IV).

Consider a set of Np control models,

yi(k) =
Bi(z

−1)z−τi+1

Ai(z−1)
ui(k) (3)

where i = 1 . . . Np, Bi(z
−1) = bi,1z

−1 + . . . + bi,mi
z−mi ,

Ai(z
−1) = 1 + ai,1z

−1 + . . .+ ai,ni
z−ni and τi is the time-

invariant time delay of the i-th model. In general, analytical or
system identification methods can be used to help determine
a suitable number of models and their time delays. For the
later simulation example, Np = 3 is chosen, with τ1 = 6,
τ2 = 16 and τ3 = 26, since this spans the known range of
time delays for the problem under study, and yields promising
results following initial trial and error experimentation.

Each model (3) is represented in NMSS form and linear
PIP control system design proceeds in the usual manner. Page
constraints preclude full discussion of the NMSS/PIP approach
here; see [8–11] and the numerous references therein. For
the model (3), the non-minimal state vector xi(k) consists
of yi(k), yi(k − 1), . . ., yi(k − ni + 1), ui(k − 1), . . .,
ui(k−mi−τi+2) and qi(k), where qi(k) = qi(k−1)+yd(k)−
yi(k), which is the integral–of–error state associated with
the i-th model, introduced to ensure type 1 servomechanism
performance i.e. steady state tracking of the set point yd(k).

The NMSS/PIP framework has been chosen here since it
facilitates straightforward pole assignment design for (nor-
mally time-invariant) time delay systems. The designer selects
ni+mi+τi−1 closed-loop poles pi (see example below) and
equates these to the closed-loop characteristic equation. The
second author’s CAPTAIN Toolbox can be used to solve such

design problems in MATLAB [26]. Subsequently, the control
algorithm is most obviously implemented in conventional state
variable feedback form,

ui(k) = −kixi(k) (4)

where xi(k) is the non-minimal state vector, ki consists of
the ni + mi + τi − 1 control gains, and ui(k) is the control
input associated with the i-th model. In practice, the above
algorithm is usually converted into one of several common
implementation structures, for example an incremental form
to avoid integral wind-up problems [10].

III. WEIGHTED CONTROLLER

The nonlinear weighted PIP controller is designed for
the plant (2), where the variable time delay in seconds is
represented in discrete time as an integer number of samples,
τ(k). The controller consists of a set of Np partial controllers,
based on the partial models (3), whose control inputs ui(k)
(i = 1, . . . , Np) are combined in a weighted sum to determine
the composite input u(k) for application to the plant.

For a plant with a known range of time delays, from τmin

to τmax samples, Np is chosen so that each partial controller
provides a stable response for a suitable part of this range.
Most obviously, the partial models are obtained so that the
associated time delays τ1, τ2, . . . , τNp

are equally spaced in
the range τmin to τmax. These values will be referred to as
the ‘centres’ of the partial models and controllers.

The weighted control algorithm is,

u(k) =

Np∑
i=1

µi(w(k))ui(k) (5)

where u(k) is the control input, expressed as a weighted sum
of the control inputs ui(k) associated with each partial model,
and µi(w(k)) is the following weighting function variable,

µi(w(k)) =
Ni(w(k))

D(w(k))
(6)

in which,

Ni(w(k)) = exp

(
−(w(k)− τi)

2

σ2
d

)
(7)

and,

D(w(k)) =

Np∑
i=1

exp

(
−(w(k)− τi)

2

σ2
d

)
(8)

where τi are user-defined values that represent the centres of
the partial controller operating ranges, σd ≥ 1 is a dispersion
value (a user selected coefficient) and w(k) is the decision
variable. Here, w(k) represents the latest estimate of the time
delay. In the ideal case, as initially assumed below, the decision
variable w(k) = τ(k).

In equations (7) and (8), −(w(k) − τi)
2 determines the

distance of w(k) from the centres of the partial controllers.
This enables the control input of the controller with the centre
closest to w(k) to have the highest weighting. In equation (6),



the weighting value is calculated as a percentage of the whole,
ensuring that 0 ≤ µi(w(k)) ≤ 1 and

∑Np

i=1 µi(w(k)) = 1.
For example, if τmin = 1, τmax = 31 and Np = 3, as in

the later simulation example, τ1, τ2 and τ3 can be chosen
as 6, 16 and 26, respectively. In practice, this choice will
depend on the system under study and the chosen sampling
rate. Fig. 1 shows how the weighting function values (y-axis of
each subplot) determine the relative input from each controller,
for time delays w(k) in the range 1 → 31 (x-axis). The
upper leftmost subplot of Fig. 1 shows the case when the
dispersion variable is set to unity. When σd = 1, for almost
all values of w(k), the control effort will come entirely from
the partial controller based on the model that is closest to
this time delay decision variable; the exceptions are that for
w(k) = 11 and w(k) = 21 (the mid points between τ1, τ2
and τ3), equation (5) becomes u(k) = (u1(k) + u2(k)) /2
and u(k) = (u2(k) + u3(k)) /2 respectively, i.e. a 50–50 split
between the two closest controllers.

As shown by the other subplots of Fig. 1, increasing the
value of the dispersion coefficient σd results in a flattening
of the functions, presaging a smoother transition between the
partial controllers as the time delay evolves. For σd ≈ 5 → 10,
the weighting function has three clear peaks, each associated
with the partial model closest to the current time delay, but
with contributions from the other models. For sufficiently large
σd, equation (5) becomes u(k) = (u1(k) + u2(k) + u3(k)) /3
and the three partial controllers contribute equally, something
that is unlikely to be useful in practice.

IV. SIMULATIONS

The preliminary simulation results described here are for a
first order model with long time delays, analogous to some of
the hydraulic manipulator control models developed by [2–4]
i.e. the plant (2) with n = m = 1, a1 = −0.9, b1 = 1.2
and τ(k) represented by a pseudo-Random Walk (RW) in the
range τmin = 1 to τmax = 31 samples. As already alluded
to above, three partial models have been chosen, each based
on the same plant coefficients but with τ1 = 6, τ2 = 16 and
τ3 = 26, i.e.,

yi(k) =
1.2z−τi

1− 0.9z−1
ui(k) (9)

The non-minimal state vector for each model is,

x(k) = [yi(k), ui(k − 1), . . . , ui(k − τi + 1), qi(k)] (10)

and the closed-loop poles are denoted p1, p2, . . . , p1+τi .
Following some trial and error experimentation via simula-

tion, a Smith Predictor forward path form [8] of NMSS/PIP
control is selected. The authors are also investigating other
implementation forms, which may have advantages in practice
and this will be reported in future articles. For this model
structure, the Smith Predictor is straightforwardly obtained
within the NMSS/PIP framework by choosing p1 and p2
freely (within the unit circle of the complex z-plane) and the
remaining τ − 1 poles to the origin [8, 10]. The results below
are based on p1 = p2 = 0.6, obtained by trial and error

simulation to obtain a realistic speed of response in the context
of a robotic manipulator.

Guidance on how to chose the dispersion coefficient is being
developed by the authors, with σd = 5 used for illustrative
purposes here (again selected following some initial trial and
error adjustments).

In addition to the new weighted controller, two baseline
controllers are developed, as follows,

• Linear PIP control based on the model (9) with τ = 16.
• Basic switching control, in which PIP controllers are

designed for each partial model (9), and the time delay is
used to select the controller at each sample k, i.e. a simple
scheduling controller without a weighting function.

The response of the linear and basic switching controllers,
when these are applied to the nonlinear plant (2), are shown
in Fig. 2. As might be expected, given the substantial time
delay variation illustrated by the lower subplot of Fig. 2,
the linear controller yields a highly oscillatory response for
much of the simulation. However, when the time delay is
comparatively close to the design operating condition for this
linear controller, the system is nonetheless stabilised and well
controlled for a time. This is a testament to the relative robust-
ness of the Smith Predictor forward path NMSS/PIP approach,
even in the simplest linear case [8, 10]. By contrast, the
response of the switching controller is satisfactory throughout
the simulation experiment.

Fig. 3 and Fig. 4, for sine and square wave set point signals,
respectively, highlight the potential improvements obtained
using the new weighted algorithm, in comparison to the basic
switching approach. The simulation scenario is the same as
for Fig. 2, but Fig. 3 is zoomed in to focus on the part of
the response were the two approaches most differ. Also, in
this case, rather than plotting the sine wave set point, the
red trace (upper subplot) shows the theoretical designed-for
response of the pole assignment system. The latter is obtained
by simulating a TF with the chosen design poles, and a steady
state gain of unity, in open loop. Hence, it represents the
damping, speed of response etc. that the controller systems
designer has chosen via the pole assignment method.

It is clear that the proposed weighted controller more
closely follows the ideal response than the basic switching
algorithm. This result is quantitatively illustrated in Table I,
which shows both the control input variance and the Mean
Absolute Error (MAE) between the output and ideal response,
for both set point scenarios (in both cases, over all 2000
samples of the simulation experiment, cf. Fig. 2). Table I
shows a significant improvement when using the weighted
approach, for no additional cost in control actuator activity.

Finally, Fig. 5 and the last two rows of Table I illustrate the
relative robustness of the switching and weighted controllers
to modelling errors, i.e. when there are substantial differences
between the plant time delay and the time delay utilised by
the control algorithms. This simulation represents time delay
estimation errors, simulated here by using different pseudo-
random walk signals for w(k) and τ(k) (lower subplot of
Fig. 5). Although both the basic switching and weighted



Fig. 1. Graphs showing how weighting values generated by equation (6) depend on the user selected dispersion coefficient σd. Each subplot shows µ1(w(k))
(blue), µ2(w(k)) (red) and µ3(w(k)) (orange) (associated with τ = 6, τ = 16 and τ = 26, respectively), plotted against the time delay decision variable
w(k). The black, vertical lines mark the centres of the partial controllers.

TABLE I
MEAN ABSOLUTE ERROR BETWEEN THE OUTPUT AND THE IDEAL

RESPONSE, AND THE VARIANCE OF THE CONTROL INPUT.

Experiment & Controller MAE var(u)
Sine wave set point
Linear control 4.9e3 2.9e7
Basic switching 1.12 0.53
Weighted switching 0.62 0.50
Square wave set point
Linear control 2.5e3 7.4e6
Basic switching 0.84 0.33
Weighted switching 0.48 0.27
Time delay model mismatch
Basic switching 2.02 0.45
Weighted switching 1.22 0.49

approaches maintain control throughout the experiment, for
some periods of time the new approach yields improved
results, hence the reduced MAEs shown in Table I.

Naturally, general conclusions cannot be drawn from these
isolated simulations, but the on-going simulation and exper-
imental study being conducted by the authors presages the
likely value of the new weighted PIP approach.

Fig. 2. Comparison of the basic switching control system (without a weighting
term) and linear control, showing the set point and outputs (upper subplot),
control inputs (middle) and time delay (lower). The simulation uses the first
order model a1 = −0.9 and b1 = 1.2, with τ1 = 6, τ2 = 16 and τ3 = 26
samples for the time delays of the switching controller. The linear controller
is based on τ2 = 16, the midpoint of the time delay range in this simulation.



Fig. 3. Comparison of the basic switching and weighted controllers, showing
the outputs (upper subplot), control inputs (middle) and time delay (lower).
Based on the same simulation experiment as for Fig. 2 but shows the new
weighted controller, and is zoomed in to selected sample numbers. Also,
instead of the set point, the ideal response (based on the design poles) is
shown as a red trace but is largely obscured by the weighted controller (black
trace) that closely follows it.

Fig. 4. Comparison of the basic switching and weighted controllers for a
square wave set point, showing the ideal response and outputs (upper subplot)
and control inputs (lower). The time delay is the same as for Fig. 2.

V. CONCLUSIONS

This article has considered the control of discrete-time
models with time-varying, sampled time delays. The controller
consists of a set of partial controllers, each based on the partial
models chosen or estimated by the designer. The control inputs
are combined in a weighted sum, based on Gaussian radial
basis functions, to determine the control signal for application
to the plant. The new algorithm has been developed and
implemented using an NMSS framework, with linear PIP pole
assignment as the design criterion.

Simulation results suggest that the weighted approach yields
improved performance, including less chance of instability,

Fig. 5. Comparison of the basic switching and weighted controllers when
there are time delay model mismatch errors, showing the outputs (upper
subplot), control inputs (middle) and time delays (lower). The ‘estimated’
time delay has been artificially created using a pseudo-random walk signal,
so as to represent an example of time delay modelling errors.

and sometimes better set point tracking and smoother input
signals, in comparison to a simpler switching approach and the
equivalent linear control systems. Furthermore, the weighted
approach more closely follows the theoretical or ideal re-
sponse, as set by the designer via the closed-loop poles.

However, the proposed approach does require use of a
suitable on-line time delay estimation algorithm [24, 25]. Our
recent review [2] discusses some of the issues arising in this
context. Fortunately, preliminary simulations with time delay
modelling errors, suggest that the proposed controller might
be relatively robust to realistic scenarios when the time delay
is uncertain. However, an analysis of higher order systems,
laboratory examples and further research into robustness and
stability is required in the next step of this research. Further-
more, the present article assumes the discrete-time plant has
an integer number of samples time delay. In future work,
continuous-time models will be utilised for the simulation
study, so that inter-sampling delays can also be considered.
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