
Efficient Pruning-Split LSTM Machine Learning

Algorithm for Terrestrial-Satellite Edge Network

Guhan Zheng∗, Qiang Ni∗, Keivan Navaie∗, Haris Pervaiz∗, and Charilaos Zarakovitis†

∗School of Computing and Communications, Lancaster University, UK
†National Centre for Scientific Research Demokritos, Greece

Email:{g.zheng2, q.ni, k.navaie, h.b.pervaiz}@lancaster.ac.uk, c.zarakovitis@iit.demokritos.gr

Abstract—The recent advances in low earth orbit (LEO)
satellite-borne edge cloud (SEC) enable resource-limited users
to access edge servers via a terrestrial station terminal (TST) for
rapid task processing capability. However, the dynamic variation
in the TST transmit power challenges the served users to
develop optimal computing task processing decisions. In this
paper, we propose an efficient pruning-split long short-term
memory (LSTM) learning algorithm to address this challenge.
First, we present an LSTM algorithm for TST transmit power
prediction. The proposed algorithm is then pruned and split
to decrease the computing workload and the communication
resource consumption considering the limited computing resource
of TSTs and served users’ quality of service (QoS). Finally, an
algorithm split layer selection method is introduced based on the
real-time situation of the TST. The simulation results are shown
to verify the effectiveness of the proposed pruning-split LSTM
algorithm.

I. INTRODUCTION

The sixth-generation (6G) wireless network is anticipated

to provide high data rate, low latency, low communication

cost, and ubiquitous service [1]. This allows for the rapid

development and popularity of the Internet of Things (IoT)

[2]. However, traditional terrestrial networks are often diffi-

cult to fully cover remote regions or disaster areas to meet

the demands for “ubiquitous service”. Fortunately, in recent

years, the development of low earth orbit (LEO) satellites

technologies provide an alternative solution for underserved

and unserved users. It has low cost, high throughput, and wide

coverage to provide communication service to users with low

communication latency [3]. Many countries and companies

have already initiated LEO satellite projects, such as SpaceX

Starlink [4] and OneWeb [5]. It is therefore foreseeable that

in the near future, the integrated terrestrial-satellite network

(TSN) will make communication services truly ubiquitous.

On another front, the popularity and development of IoT

devices have spawned numerous computation-intensive appli-

cations. But dealing with these computation-intensive tasks

is difficult due to IoT devices’ limited computing power and

battery life. To support the rising number of large-scale IoT

applications [6], edge computing [7], which places cloud

service closer to the users and provides abundant computing

resources, is becoming a promising technology [8]. Users

can offload computational tasks to edge cloud servers for

fast processing. For those users without terrestrial network

communication infrastructure support, computational tasks can

only be offloaded to the cloud server for processing via the

LEO satellite network. However, the high propagation latency

makes it hard to satisfy those users’ real-time requirements.

Edge cloud servers can therefore be placed on LEO satellites

to improve edge cloud service range and reduce users’ com-

putation latency [3], [9].

Today, the LEO satellite-borne edge cloud (SEC) has at-

tracted much academic attention. There are mainly two types

of methods for terrestrial users to offload computing tasks to

LEO satellites: 1) Devices offloading to SEC directly over the

C-band; 2) Offloading over the Ka-band with the assistance of

terrestrial-station-terminals (TSTs) [10]. Tang et al. [11] con-

sidering terrestrial cloud presented a computing offloading de-

cision problem, where suggested alternating direction method

of multipliers (ADMM) algorithm is used to approximate the

optimal solution. Wang et al. [12] proposed a TSN model and

an offloading strategy based on game theory, in which users

can choose computing tasks locally or offload tasks to SEC.

Further, as same as [11] and [12], users were suggested directly

offloading tasks to satellites via Ka-band and nonorthogonal

multiple access were employed to improve the transmission

rate [13]. However, limited by users’ energy consumption

and the number of satellite links, it is not practical for all

users to offload directly [14]. Consequently, user offloading

via TST assistance received more attention. For example,

[3], [14]- [17] optimize users’ computing offloading strategies

considering offloading via TSTs, thus reducing latency and

energy consumption of users.

However, existing research ignores the fact that TSTs are

also IoT devices. Constrained by the tough environment in

which they are deployed, their computing resources and en-

ergy are limited, and they cannot guarantee optimal QoS at

all times. In particular, the movement of satellites, complex

climate dynamics, and energy conditions result in fluctuations

in transmit power. Previous research treated the transmit power

as fixed, which may lead to the QoS being lower than expected,

causing users’ task completion strategies to be not optimal.

It hence becomes an issue of how to anticipate TSTs’ next-

moment service capacity and inform it to the users to make

users’ reasonable offloading decisions. Further, when they

expect to offload tasks to the SEC, it can cause service

disruption, due to the radio resources taken up. This becomes

a challenge for TSTs to ensure timely service to users while

optimizing the latency and energy of their own computing

tasks.



To tackle these challenges, our work considers a TSN,

where users can choose offload tasks to the SEC via TSTs.

Furthermore, a new pruning-split long short-term memory

(LSTM) algorithm is proposed to predict the TST transmit

power. Specifically, we employ LSTM deep learning approach

to predict the TSTs’ transmit power, and reduce the com-

putational workload of the algorithm by pruning. Moreover,

the algorithm can be split according to the actual scenario,

so that TSTs can choose to compute this algorithm locally

and in the SEC together. This minimises the latency and

power consumption of TST’s power prediction within tolerable

service interruption time. Finally, the predicted information is

informed to the users served and optimizing their computing

offload strategies.

The rest of this paper is organized as follows. Section II

introduces the system model of the TSN. In section III we

described the proposed pruning-split LSTM algorithm. Section

IV presents the simulation results. Finally, we conclude the

paper in Section V.

II. SYSTEM MODEL
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Fig. 1: System model

We consider a TSN (as illustrated in Fig. 1), where users are

in areas without the support of ground edge service and can

access SEC service via TST or connect directly. Denote the set

of LEO satellites as A = {1, 2..., a, ..., A} and the set of TSTs

in LEO satellite a coverage is B = {1, 2..., b, ..., B}. The TST

b provides service to C users within the coverage as a small

cell which the set of users denoted by C = {1, 2..., c, ..., C}.
We consider each terrestrial user and TSTs has indivisible

tasks [18] with the size in bits of m ∈ [1, 2, . . . ,M ], and

the CPU cycle needed to execute one bit of task is δ. One

task computing latency when user c computing task locally

can be given by [19]

tLC
c =

δmc

fc
, (1)

where fc is user c’s CPU-cycle frequency with the unit

cycles/s. The energy required to calculate this task locally is

expressed as

ELC
c = pLC

c tLC
c = εf3

c

δmc

fc
= εδmcf

2
c , (2)

where pLC
c = εf3

c is the power needed to compute locally and

ε is the energy factor related on chip architecture [20].

Similarly, when user c chooses to offload the task to SEC for

faster computation, the computational latency can be obtained

by

tSEC
c =

δmc

fa
, (3)

where fa is the CPU-cycle frequency of edge server in LEO

satellite a.

In addition, when the user c chooses to offload the task to

the SEC, it has to tolerate transmission and propagation delays.

In this paper, we only consider the scenario that users offload

to SEC via TSTs. Thus, the communication delay caused by

offloading can be denoted by

tTS
c =

2h

c
+

mc

Rb

+
mc

Rc

, (4)

where 2h
c

is the propagation delay between TST b and LEO

satellite a. h is the distance between TST b and LEO satellite

a. c is the speed of light. Due to the small coverage of TSTs,

the propagation delay between the user c and the TST b
is negligible. Further, mc

Rb

is the TST transmission delay to

satellite a. mc

Rb

is the transmission delay user c to TST b.
Rb and Rc are the transmission rates of TST and the user,

respectively. According to Shannon Theory, the transmission

rate Rb and Rc can be expressed as

Rb = Bb log2 (1 +
pbgb
σ2
b

), (5)

Rc = Bc log2 (1 +
pcgc
σ2
c

), (6)

where Bb, pb and gb are bandwidth, transmission power

and the channel gain on TST b-satellite a link, respectively.

Further, σ2
b is the additive white Gaussian noise (AWGN)

power in this link. Similarly, Bc, pc, gc and σ2
c are bandwidth,

transmission power, the channel gain and AWGN power on

user c-satellite a link, separately. The transmit power therefore

greatly influences the transmission rate. Since latency and

energy consumption should be considered jointly when user c
is making a task computing processing decision. The change

in transmit power impacts the system QoS and the user’s

offloading decision. In case the transmit power value used

by the user to make the decision differs from the variable

actual transmit power value, it is likely to result in the user



decision not being the actual optimum. Therefore, a scheme is

needed to anticipate the TST transmit power in near future in

advance and give guidance to users to reduce the possibility

of increased user latency and energy consumption due to non-

optimal decisions made by users.

III. PROPOSED PRUNING-SPLIT LSTM ALGORITHM

In this section, we propose our pruning-split LSTM algo-

rithm to address the previously mentioned challenges. The

proposed algorithm consists of 3 steps: 1) offline training

and pruning; 2) online split; 3) deployment. The algorithm

workflow is shown in Figure 2.

A. Offline Training and Pruning

To improve the QoS of the system, we need to design a

transmit power prediction mechanism based on the available

energy, supplementary energy, communication conditions of

the TST b and so on. In this paper, we employ the LSTM

model, an evolved algorithm of recurrent neural network

(RNN), to predict the future transmit power through historical

trajectories. This is because its main feature compared to other

algorithms is that it can learn not only the current data but

also past data sets in order to make future predictions taking

into account the relevant context [21]. It is therefore very

effective in sequential variable prediction such as transmit

power prediction in our paper.
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Fig. 2: Workflow of proposed Pruning-Split LSTM

The LSTM model first learns offline with the realistically

acquired labels. Note that the LSTM algorithm is compu-

tationally intensive, it is usually hard for an IoT device to

complete this model alone. To reduce the computing workload

of this algorithm, after training the model, we use the size

of the weights as the pruning criterion [22]. In each layer, a

given percentage of lower magnitude weights will be consid-

ered insignificant and zeroed out. The pruning range is the

whole test network, and the pruned model must achieve the

allowed minimum accuracy A. As pruning reduces the number

of weights, the model becomes sparse, thus decreasing the

computational workload.

B. Online Split

Because of the limited computation capability of the TST,

performing computing tasks on its own may result in high

latency and energy consumption. But offloading to SEC may

degrade the QoS of the system by taking up too many

communication resources. Hence, the proposed algorithm can

be split online into two computing tasks depending on the TST

conditions. The first half of the algorithm could be chosen to

be computed locally and the second half offloaded to the SEC.

The first half is not chosen to be computed at the SEC in

order to avoid leaking the original data and to protect TST’s

privacy. The ground station can therefore perform a better

computing strategy by choosing at which layer to split the

model. This minimises the latency and energy consumption in

transmit power prediction while satisfying acceptable service

interruption time.

In order to find the optimal splitting point, we need to

know the following profiles: 1) weights and output data size

for each layer in the pruned model; 2) maximum interruption

time tolerance ς (ms); 3) system factors such as TST’s CPU

frequency and wireless channel condition. We assume that the

LSTM network splits at layer i and there are I layers in the

prediction model. When TST can offload the model after layer

i to the SEC on satellite a for calculation within the tolerable

time ς , similar to the users, the delay ti for computing and

transmission can be expressed as

ti =

{

δMbi

fb
, if i = 0

δMbi

fb
+

δMb(I−i)

fa
+ 2h

c
+

Mb(I−i)

R
, if i > 0

, (7)

where Mb(I−i) is the output size of i-th layer and weights

size of the remaining layers, fb is the TST b’s CPU-cycle

frequency. Furthermore, R is the transmission rate. We can

also have the energy consumption as

ei =

{

εδMbif
2
b , if i = 0

pbMT (I−i)

R
+ εδMbif

2
b , if i > 0

, (8)

where pb is the real-time transmission power.

Similar to the users, the TST requires minimal latency and

energy consumption for the design of the task computing

strategy. Thus, the selection of split point should minimise

ti and ei, i.e., min αti + βei, when
Mb(1−i)

R
⩽ ς . The weight

parameters α and β are used to weigh up the importance of

delay versus energy consumption. Further, we define αti+βei
as the cost, which has no units, and choose the value when



Algorithm 1 Pruning-split LSTM for transmitter power pre-

diction

1: initialize: layers I in LSTM, allowed lowest accuracy A
2: training LSTM model and get the model accuracy A

′

3: if A
′

> A
4: pruning to scale

5: for i=1,2...I

6: if Ai > A
7: ti ←− (6)
8: ei ←− (7)
9: end if

10: end for

11: if ti and ei exist

12: determining the weighting α, β of latency

and energy consumption respectively

13: min (αti + βei), i = 1, 2, ...I

14: s.t.
Mb(1−i)

R
⩽ ς

15: return min (αti + βei)
16: else

17: return NULL

18: end if

19: else

20: return NULL

21: end if

the time unit is second and the power unit is watt. As this

calculation is a simple linear computation, the number of

model layers is also very limited. It is possible to iterate

according to the sequence of the layer to find the optimal

result, with much less complexity than power prediction.

C. Deployment

In the deployment phase, the first half of the split LSTM

model is computed locally. The results, together with the

second half of the pruned weights, are then offloaded to the

SEC for computing. The entire algorithm process is shown in

Algorithm 1.

IV. NUMERICAL EVALUATION

In this section, we evaluate the performance of the proposed

algorithm. The algorithm used in simulations has three hidden

layers, each with a weights’ pruning ratio of 70%. In the

simulations, the LEO satellite vertical altitude is 780 km

based on Iridium satellite system [23], which is a classical

LEO satellite system. We set the frequency of Ka-band as

30 GHz, and the maximum transmit power of each TST

is 2 W [14]. Furthermore, we set the requirement of CPU

cycles for computing one bit, δ being 120 cycle/bit and energy

factor ε being 10−26, according to the real applications [20].

The computation capability of SEC on satellite a and TST b
are assumed to be 3 × 109cycles/s and 0.3 × 109cycles/s,

respectively [11]. The weight parameters of latency and energy

TABLE I: SIMULATION PARAMETERS

Parameters Default Values

Ka-band carrier frequency 30 GHZ

Maximum transmit power of TST 2 W

Number of LSTM hidden layers 3

Number of neurons per layer 256

h 780km

δ 120 cycle/bit

ε 10
−26

fa 3× 10
9cycles/s

fb 0.3× 10
9cycles/s

α 1

β 1

consumption are set as α = 1 and β = 1. The simulation

parameters are also listed in Table I.
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Fig. 3: Cost performance in different TST’s service interrupt

delay tolerance

In Fig. 3, the minimum latency and energy consumption cost

versus the different TST’s service interrupt delay tolerance

is demonstrated, where the proposed pruning-split LSTM is

compared with the original LSTM algorithm and non-pruning

but split LSTM algorithm. We assume that a floating-point

number takes up four bytes and the unit of time is millisecond.

It can be found that the TST cost is decreasing as the tolerable

time increases. This is because the TST has more time to

offload this task to the SEC for computation thus reducing

latency and energy consumption. Besides, the TST can obtain

less cost by splitting the model in some fixed tolerance time.

Furthermore, via the pruning and split, the TST computing

cost can be reduced to a minimum.

Fig. 4 compares the successfully finished ratio of users’

tasks for fixed transmission power and pruning-split LSTM

at different times (2 p.m.-5 p.m.). We assume that the TST

transmission is based on orthogonal frequency division mul-

tiplexing (OFDM) with carriers assigned to the user. When a

user chooses TST-assisted offloading but does not receive the

expected number of allocated subcarriers for transmission, the

offloading strategy ultimately chosen by the user is not optimal



for the actual situation, is unsuccessful. It can be observed that

the success rate of our proposed pruning-split LSTM algorithm

is close to reality. As the energy supplement available to the

TST gradually decreases with time, the transmitting power

also decreases. It causes the gap between actual transmission

power and fixed power increasingly large and thus reduces the

success rate.
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Fig. 4: Successfully finished ratio of tasks

V. CONCLUSION

In this paper, we investigated transmit power prediction

problem for TST in a TSN. Considering the special position

of the TST in the system, a pruning-split LSTM machine

learning algorithm is proposed. It predicts the transmit power

of the TST while considering the delay and energy consump-

tion of the TST to calculate this algorithm. The simulation

results show the effectiveness of the proposed algorithm in

transmitting power prediction and reducing computational

consumption.
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