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Abstract: A working wind turbine generates a large amount of multivariate time-series data, which 
contain abundant operation state information and can predict impending anomalies. The anomaly 
detection of the wind turbine nacelle that houses all of the generating components in a turbine have been 
challenging due to its inherent complexities, systematic oscillations and noise. To address these problems, 
this paper proposes an unsupervised time-series anomaly detection approach, which combines deep 
learning with multi-parameter relative variability detection. A normal behavior model (NBM) of nacelle 
vibration is firstly built upon training normal historical data of the supervisory control and data acquisition 
(SCADA) system in the high-resolution domain. To better capture the temporal characteristics and 
frequency information of vibration signals, the vibration spectrum vector is integrated with the 
multivariate time-series data as inputs and the spectrum-embedded temporal convolutional network 
(SETCN) is then used to extract latent features. The anomalies are detected through a multi-variate 
coefficient of variation (MCV) based anomaly assessment index (AAI) of relative variability among 
vibration residuals and environment parameters of the nacelle. The approach considers the time-series 
characteristics of input data and preserves the spatio-temporal correlation between variables. Validations 
using data collected from real-world wind farms demonstrate the effectiveness of the proposed approach.  

Keywords: Abnormal detection, wind turbine, supervisory control and data acquisition (SCADA), multi-
variate coefficient of variation (MCV).  

1  Introduction 

As one of the most important renewable energy generation technologies, wind power technology has 
been paid more attentions by researchers. According to statistics, the global cumulative installed capacity 
has reached 621GW by 2020 [1]. However, due to the harsh working environment and changing working 
conditions, abnormalities occur frequently, which brings great challenges to maintenance [2]. Thus, it is 
necessary to develop new anomaly detection methods to upgrade the maintenance mode and reduce 
maintenance costs [3]. 

                                                      
*  Corresponding author 

Email address: zhanjun20@nudt.edu.cn (Jun Zhan) 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



 

2 

 

At present, the monitoring of wind farms mainly relies on the Supervisory Control and Data 
Acquisition (SCADA) system or Condition Monitoring System (CMS) [4]. Compared with the CMS 
system which needs high-frequency signal acquisition for off-line analysis [5][6], the acquisition 
frequency of the SCADA system is usually  (sampled per second) or  (averaged and 
then sampled per 10 minutes) [7], which can directly collect from the wind turbine control system and 
realize long-term online monitoring and data storage. It has become a common monitoring system for 
wind farms [8][9][10][11]. Therefore, the detection of wind turbine anomalies based on the existing 
SCADA data will be the low-cost and most efficient means to help us realize intelligent operation and 
maintenance. The SCADA system monitors hundreds of related condition parameters of wind turbines, 
such as wind speed, generator speed, power and temperature, which contain a wealth of operation state 
information of the turbines. Among these variables, the vibration signal can directly reflect the operation 
status and has become an interesting research topic [12][13][14][15]. However, wind turbines represents 
a complex electromechanical system, resulting in widespread non-stationary changes in operating 
parameters. Consequently, fault information may be covered by non-stationary changes, resulting in a
high rate of misjudgment of anomaly detection [16]. 

Statistical and machine learning methods have been used in the data-based vibration abnormal 
detection of wind turbines. Guo Peng et al. [17] applied the nonlinear state estimation technique (NSET) 
to the vibration modeling of the wind turbine tower, by constructing a reasonable process memory matrix 
to represent dynamic process of the normal operation of the turbines. Wu Xin et al. [18] studied the fault 
characteristics of the wind turbine gearboxes, and proposed an anomaly detection method based on echo 
state network (ESN) and dynamic threshold scheme. Jin Xiaohang et al. [19] proposed an ensemble 
approach to detect anomalies and diagnose faults in wind turbines. In this method, historical data collected 
from healthy wind turbines are used to establish a Mahalanobis space as a reference space to model their 
normal behaviors. By comparing the predicted behavior from the training model with the reference space, 
anomalies can be detected. However, these methods smooth the training data, which may lose many 
statistical characteristics of the signal. The detection method using original  signal of SCADA 
system can be more effective [20]. Compared with the method based on the 10-minute averaged data, 
those high-resolution SCADA data preserve the statistics and frequency characteristics of the original 
signal and thus has a higher accuracy. Jun OGATA et al. [21] introduced a method of vibration time-
frequency feature extraction based on Fourier local autocorrelation. However, this method not only 
requires overall understanding of mechanical and other associated domain knowledge, but also cannot 
cope with a huge amount of historical data to extract complex nonlinear dynamic information; therefore 
the application is greatly limited. 

Naturally, vibration signals are time series, presenting temporal dynamics and nonlinear 
characteristics due to the interaction and dependency between different subsystems or components [22]. 
To deal with such complex data, the deep neural network algorithm could provide an effective solution. 
Chao Guo et al. [23] studied a new high-speed train (HST) failure analysis using deep belief network 
(DBN) to automatically learn features of raw data. Shao Haidong et al. [24] studied the vibration 
abnormality detection method of rotating machinery under variable working conditions, and proposed a 
fault diagnosis method based on deep autoencoder (DAE) feature learning. Ke Yan et al. [25] studied the 
impact of training data enhancement on model performance, and the chiller fault diagnosis are realized 
through the optimized VAE network. For the gearboxes with frequent failures, Jianbo Yu et al. [26] 
proposed a new DNN, one-dimensional residual convolutional autoencoder (1-DRCAE) to learn features 
from vibration signals directly in an unsupervised-learning way. A. E. Elsaid et al. [27] developed a 
recurrent neural network (RNN) capable of predicting aircraft engine vibrations by using long short-term 
memory (LSTM) neurons. These methods prove that deep learning algorithms are advantageous in the 
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field of vibration anomaly detection. However, most of these methods have mainly focused on either 
individual statistical characteristics or time series characteristics[28][29][30]. 

To overcome the above problems, this paper proposes a condition monitoring method based on the 
combination of temporal convolutional network (TCN) and MCV to perform spatio-temporal fusion of 
SCADA data. The research objective focuses on the high dynamic vibration of the wind turbine nacelle 
of  (original time series data), which has been considered to be more challenging than analyzing the 
inertial data such as the temperature and pressure of wind turbine. The main contributions of this paper 
are summarized as follows:   

The input data of the model is enhanced by embedding the frequency spectrum of the vibration 
signal into the multivariate time series data as domain knowledge, which improves the 
visibility and effectiveness of the SCADA data, and makes the model more suitable for actual 
application scenarios. 

The deep TCN network is applied to model with the high dynamic original high-resolution 
SCADA nacelle vibration data in , rather than using the data after down-sampling or 
smoothing. To our best knowledge, this is the first attempt of the deep learning method in this 
field. It can retain the temporal and frequency characteristics of the signals, which helps to 
improve the accuracy of the NBM. 

MCV is utilized to fuse nacelle acceleration residual and environmental parameters and 
construct AAI with higher sensitivity for detecting small drift of vibration signals.  

The rest of the paper is organized as follows. Section II introduces the proposed detection approach 
including overall framework, SETCN model and MCV based AAI. Section III presents case studies for 
vibration anomaly detection of wind turbines. The conclusions and possible future work are given in 
Section IV. 

2  Proposed Anomaly Detection Approach 

2.1  Overall framework 

The study of this paper is focused on the turbine nacelle because it houses all of the generating 
components in a turbine. Analysis and detection of nacelle vibration has been challenging due to its 
inherent complexities, systematic oscillations and noise. Firstly, historical data under healthy conditions 
is used to model normal behavior. The frequency spectrum of the vibration data is extracted and embedded 
into the time-series data to form new training data. The major goal is to represent the energy of a vibration 
signal in both temporal and frequency dimensions at the same time, so as to help the network in extracting 
the characteristic information with limited data and computational resources better [31][32][33][34][35]. 
Then, these embedded vectors are further inputted into the deep TCN model to filter out high-value 
information and produce output through a fully connected layer. The whole process maps the multi-
dimensional mixed time-frequency data to the vibration signal by searching for the optimal non-linear 
function expression. MCV is subsequently introduced to calculate the relative variability between the 
output signal of the NBM and the actual signal. Finally, the alarm threshold is determined through the 
training data. For the proposed method, the temporal dependency and inter-correlations of data are 
considered simultaneously to accurately identify the operation state of the wind turbine. 

From a data perspective, anomalies of wind turbines are defined as the situation in which the 
observation data obviously deviates from its historical healthy data. These anomalies only account for a 
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small proportion of the data, which are often hidden in large amounts of data and hard to be found. Due 
to the small number of abnormal samples and the difficulty of collection, it is hard to use supervised 
algorithms to identify anomalies. However, it is easy to collect healthy data which are usually collected 
from the newly built or overhauled turbines after stable operation for more than one year. The 
characteristics of the healthy conditions can be extracted from a large amounts of SCADA historical data 
to establish a NBM, and the alarm threshold of the observation data is estimated to realize unsupervised 
anomaly detection, which is very useful for realizing wind turbine online condition monitoring. During 
operation of the wind turbines, the real-time data collected are inputted into these models after the same 
processing as the training process. When the calculated AAI exceeds the threshold obtained in the healthy 
state, the observed signal is considered to have undergone abnormal changes, indicating that a failure or 
potential failure is pending to occur. The overall scheme framework of anomaly detection method 
proposed in this paper is depicted in Figure 1. Three major stages are involved:  

Figure 1 Temporal-spectrum fusion anomaly detection framework for wind turbines  

Stage 1, Normal behavior modeling: The data stably operating for more than one year after 
new construction and overhaul are selected as normal data. Then the data preprocessed by the 
sliding window with the length of  samples are regarded as the input of the NBM 
of nacelle vibration. To make full use of the time-frequency characteristics of the vibration 
signal to improve the accuracy of the model, we transform the vibration signal into a spectrum 
vector with Short-Time Fourier Transform (STFT) and embed it into the time series to enhance 
the training data. Finally, the regression training is conducted based on the constructed TCN 
prediction model using the vibration signals in the X (horizontal) and Y (vertical) directions 
at the next time moment as the target value, and the NBM can be gained.  

Stage 2, Calculate anomaly assessment index: In this stage, the real-time data which are 
preprocessed in the same way as the offline training stage are delivered to the NBM for 
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prediction, and the predicted value is then compared with the actual value to obtain the residual 
signal. The MCV based AAI is calculated by using the residuals in the X and Y directions, 
combined with the current wind speed. Taking into account the impact of environmental 
conditions, the AAI is not static, which fluctuates within a certain range. With the same 
method, the proposed threshold of AAI under healthy conditions can also be calculated by 
using the training dataset.  

Stage 3, Real-time anomaly detection: If the value of AAI sequence obtained from the online 
detection process exceeds the maximum AAI value in the normal state, an alarm of anomaly 
will be produced, which provides a basis for operation and maintenance personnel to perform 
the troubleshooting and maintenance. The data used in this paper are from the yaw system. 
Driven by the yaw system, nacelle of wind turbine rotates keeping vane on the windward side, 
which is conducive to the capture of wind energy by the wind turbine. The main components 
of the yaw system are the yaw motors and gear-driven bearings. The fault of this system will 
cause abnormal vibration of the nacelle.  

2.2  SETCN Normal behavior model 

2.2.1  Dilated Causal Convolutions and TCN Residual Module 

In this paper, the TCN which is based on the model in reference [36] is adopted to model nacelle 
vibration signals. For the analysis of time series data, the most commonly used neural network is the RNN, 
such as LSTM, GRU[37], which can employ the internal memories to process input time series. However, 
the TCN, a member of the convolutional neural network (CNN) family, performs better than the RNN in 
processing long sequences of inputs [38]. Temporal convolutional network (TCN), first proposed by Lea 
et al. in 2016, is a deep learning approach for extracting time series data features. It is widely used in fields 
like time series prediction [39], probability prediction [40], traffic prediction [41]. In terms of structure, 
TCN uses one-dimensional causal convolution and dilated convolution as standard convolution layer, 
encapsulates each two such convolution layers and identical mapping into a residual module, and then 
stacks the depth network by the residual module. The convolution layer of TCN combines causal 
convolution and dilated convolution. The purpose of using causal convolution is to ensure that the 
prediction of previous time steps will not use future information, because the output of time step T will 
only be obtained according to the convolution operation on T-1 and its previous time steps. The purpose 
of using dilated convolution is to increase the size of the receptive field. Dilated convolutions are identical 
to regular one-dimensional convolution, except that a new parameter called "dilation rate" is added to the 
convolution layer, which controls the spacing of values when the convolution kernel processes data. In 
the convolution process, not all positions in the convolution window are involved in the calculation, but 
certain holes will be left based on the dilation rate, and the operation will be completed once these hole 
positions are filled with zero. With the more layers, more holes need to be filled in the convolution window. 

The vibration signals are modelled with input parameters of high-resolution ( ) SCADA data 
without smoothing. As a result, the network needs to deal with long historical data sequence, which results 
in a complicated network structure and heavy calculation burden. Dilated causal convolution of TCN 
network can solve this problem, which can make receptive field grow exponentially. For a 1-D sequence 
input  and convolution kernel , the convolution at the moment t is defined 
as: 

(1) 
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where  is the dilation factor representing step length among the convolution kernels. When , a 
dilated convolution becomes a regular convolution.  is the size of convolution kernel, and 
indicates the direction of the past. The basic structure of network is shown in Figure 2. 

Figure 2 Illustration of the dilated causal convolution with 4-layer 

More layers of the TCN network need always be stacked in the course of actual implementation. As 
a result, it is necessary to include a residual connection in the output of each TCN layer to reduce learning 
complexity while avoiding gradient exploding or vanishing. The basic residual block structure of the TCN 
network is shown in Figure 3, which is composed of two dilated causal networks and each of them includes 
a kernel operation module consisting of a dilated causal convolution, a nonlinear activation function 
(ReLU), a weight normalization, and a dropout regularization. In the meantime, a kernel network of 
is used to connect between input  and output . After the addition of residual connection, the TCN 
module can be expressed as: 

(2) 
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Figure 3 Illustration of the residual block structure of TCN 

2.2.2  Model Structure of SETCN 

The overview of SETCN architecture is shown in Figure 4. The input vector  is applied to extract 
temporal depth features through the TCN network. At the end of the network, a dense layer is added as 
the output layer. The dense layer is included because we need to reduce the dimension of the tensor of 

signal. Since there are many convolution layers stacked in the network, in order to help the network 
converge and reduce the risk of gradient exploding or vanishing, the initialization process before training 
is very important. Significantly, the input  in this study is concatenation by the multivariate time-series 

 collected by SCADA and the spectrum vector  of the vibration signal after passing through the STFT. 
In general, the spectrum vector generated by STFT is a 2D-vector, and its dimension is affected by the 
window size and step size what we have chosen. Therefore, to realize the embedding of the spectrum we 
intercept  the same sequence length with .  is denoted as: 

(3) 

After obtaining , a sliding window with a width of  and a length of  is used to extract data 
accordingly, which generate a set of subsequences of length . In the above denotation,  represents the 
total length of the dataset. Therefore, after sliding window is processed with step size of 1, 
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set of subsequences are obtained. Through the model, the vibration value at time  is predicted by 
the subsequence at time  and recorded as .  represents the dimension of the multivariate 
time series , and  denotes the spectral dimension of the vibration signal after STFT. The total 
dimension of the concatenated input  is . In this paper, we select 6 SCADA parameters and 
set the STFT window length ,  to obtain the spectrum with dimension 31, 
therefore, , .

Figure 4 Illustration of the SETCN architecture 

2.2.3  Model evaluation

When different models are compared and analyzed, their Mean Squared Error ( ), Mean Absolute 
Error ( ) and Coefficient of Determination ( ) are calculated. 

(4) 

(5) 

(6) 

In the above formula,  represents the predicted value of the model,  represents the true value of the 
measurement, and  represents the mean value of the true value . The more ,  tending to 0, 
the better the model effect and the higher the accuracy.  is the ratio of the Sum of Squares for 
regression (SSR) to the Sum of Squares for total (SST), reflecting explainable ratio of the independent 
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variable to the dependent variable. The closer the  value is to 1, the better the model fit. 

2.3  MCV based AAI 

2.3.1 Multivariate coefficient of variation (MCV) 

The residual between the predicted value and the true value is clearly affected by the prediction 
results and cannot be directly used for anomaly identification. Hence, setting an abnormal discriminant 
indicator is extremely important to realize an early warning of the failure. Some researches have proposed 
the evaluation indicators, such as the entire residual(RE) [42], Mahalanobis distance(MD) [43][44]. 
However, these methods only take a single variable and thus ignore the interaction among variables so 
that small abnormal drifts cannot be effectively detected. Therefore, it is necessary to propose an abnormal 
discriminant indicator based on the multivariate analysis. 

Multivariate coefficient of variation was firstly put forward by Reyment (1960). Thereafter various 
definitions were proposed by Van Valen [45], Voinov VG and Nikulin MS [46]. For the method defined 
by Nikulin, the robustness becomes the strongest when there are disturbances or noise pollution in the 
sample data. Meanwhile, asymptotic variance of sample estimator is not affected by dimensional changes. 
Therefore, this paper adopts multivariate coefficient of variation as an anomaly assessment index. 

For random samples X which follows a normal distribution with a length of  and dimension of ,
assuming that its mean value is , covariance matrix is , that is, for , where 

, ,  , the coefficient of variation can be computed as: 

(7) 

In the calculation process, we can use the sample mean  and sample covariance matrix  to estimate 
 and  respectively: 

(8) 

(9) 

Therefore, the estimated value of the coefficient of variation  can be given by: 

(10) 

To achieve a real-time anomaly detection, the newly collected data need to be handled continuously. 
Hence, we use a new time window with length  to obtain sample data sequentially. In the meantime, 
for the convenience of calculation and anomaly observation, the AAI calculated with a sliding window 
length  is monitored and noted as .

(11) 

2.3.2  Abnormal warning threshold 

When an anomaly occurs in wind turbines, the changes of mean value and covariance of samples 
result in significant change of AAI. Therefore, an appropriate threshold needs to be set so that the fault 
can be detected reliably before a serious failure of nacelle vibration occurs. In this paper, the maximum 
value of AAI by the training dataset of NBM in wind turbines is selected as the threshold: 
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(12) 

where  denotes the AAI at the moment  covering a window length  under the normal condition 
of wind turbines. 

Compared with the traditional method by which all wind turbines are set to the same fixed threshold 
at the manufacturing factory, the proposed method takes into account the inherent differences in terms of 
the performance of wind turbines and calculates the threshold by using operating data in healthy conditions, 
which is beneficial to reduce false alarms. 

3  Experiments and Results 

In this section, the proposed approach is verified by applying the data from real wind farms. The 
experiment is composed of two parts. In the first part, the performance of the model is evaluated under 
the healthy dataset. The second part elaborates how to effectively distinguish the abnormal behavior by 
using the proposed method. The relevant experimental code is developed based on python3.7. TCN, 
LSTM, and GRU are implemented using PyTorch 1.6.0, and all calculations are performed on a 64-bit 
linux operation system installed on a computer with an NVIDIA Tesla V100 GPU. The source code is 
available at https://github.com/zhanjun717/SETCN_MCV_AD/tree/master. 

3.1  Selection of Input Parameters 

To accurately model the vibration of the wind turbine nacelle, we need to determine the inputs of the 
model by analyzing the key parameters causing the vibration. Wind turbines can be divided into double 
fed induction generator (DFIG) and direct-drive wind power generator (DWPG) according to their 
structures. The data in this paper comes from the DWPG, the structure of which mainly includes blades, 
hub, generator, nacelle, and tower. Among them, the blades convert the absorbed wind energy into 
mechanical energy for driving the generator to generate electrical energy. Compared with DFIG, the hub 
of DWPG is directly connected to the generator rotor, eliminating the speed-increasing gearbox. The 
nacelle is positioned on the slewing bearing at top of the tower on which an anemometer measuring wind 
speed and direction is installed. The nacelle also accommodates the power converter and control cabinet. 
The load acting on the blades is transmitted to the nacelle through the hub and generator and finally acts 
on the tower, resulting in the vibration of various structural parts. Different from inertial variables such as 
temperature and pressure, the vibration can reflect the instantaneous characteristics related to the operating 
state of the nacelle in real-time. If the component connected to the nacelle fails, the vibration signal will 
change immediately. Therefore, although the frequency of the vibration signal collected by SCADA is 
low, a long-term online monitoring can still be realized, which is of great significance. 

The vibration sensors are usually installed in the nacelle and can collect the nacelle acceleration 
signals in the horizontal direction (X-direction) and vertical direction (Y-direction) of the nacelle. The 
time interval is generally 1 second or 10 minutes (note SCADA data sampled at 1 second, i.e., , are 
used in this paper). The factors that cause turbine vibration are complicated. The vibration magnitude is 
related to the hub, yaw system, generator, and other excitation sources as well as the design of the nacelle 
structure. Since the inherent characteristics of the structure are relatively stable, this paper does not 
consider the changes of the inherent characteristics, rather mainly analyzes the excitation source that 
causes the vibration. 
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As an example, Figure 5 shows the operating parameters from wind turbine. During the day, the working 
conditions of the wind turbine are constantly changing as the wind speed changes. Among them, mode A 
represents the working condition that the output power of the wind turbine reaches the rated value and 
remains unchanged while mode B represents the shutdown of turbine operation. When the blade angle is 
retracted to the stop position, the output power is 0. Mode C represents the power generation below the 
rated power. During this time period, the wind turbine is running with maximum power point tracking 
(MPPT). It can be seen from the Figure 5 that the change of working conditions is the main factor causing 
the vibration change. When the wind turbine is stopped, the aerodynamic load of the wind on the blades 
will still cause large nacelle vibration. Under healthy working conditions, these parameters will maintain 
a relatively stable non-linear relationship. However, once a fault occurs, the relationship among them will 
mutate and deviate from the healthy mode, which provides a basis for subsequent abnormal detection. 

Figure 5 The vibration signals in the x and y directions of the nacelle and its related variables under 
different working conditions 

3.2  Validation on healthy wind turbines 

3.2.1  Normal Behavior Data 

The SCADA data used in this study were collected from five real wind farms located in different 
regions of China. As shown in Table 1, the data contain historical data in the healthy condition, labelled 
as WT1, WT2, WT3, WT4 and WT5, which are used to verify the feature extraction capabilities of the 
proposed NBM under different working conditions and wind turbine types. The other two datasets 
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labelling WT6, WT7 (details will be given in the next subsection) contain the data collected from historical 
healthy condition as well as two different abnormal operation patterns, which are used to compare the 
performance of the proposed NBM. It should be noted that although the signals of these two wind turbines 
are abnormal, none of them trigger the currently set alarm threshold, which poses a potential threat to the 
equipment. 

Table 1 Dataset from Healthy Wind Turbines 

NO. Working condition Rate Describe

WT1
Location: Mountain
Environment: Hot and Humid 
Power: 2MW

1 second Healthy condition

WT2
Location: Gobi 
Environment: Cold, Sand wind
Power: 2MW

1 second Healthy condition

WT3
Location: Flatlands 
Environment: Warm, Rainy
Power: 2MW

1 second Healthy condition

WT4
Location: Coastal 
Environment: Salt spray, hot
Power: 2MW

1 second Healthy condition

WT5
Location: Offshore 
Environment: Salt fog, typhoon
Power: 5MW

1 second Healthy condition

3.2.2  Selection of SETCN model hyperparameters 

As mentioned before, TCN can obtain different receptive fields through stacking, thereby affecting 
the model performance. To determine the best structure of the SETCN model for NBM tasks, numerous 
model structures were compared. Table 2 shows the changing trend of model performance indicators under 
different hyperparameters. It can be seen from the table that when the layers of the TCN model are 8 and 
the number of hidden layer nodes is 32, the model achieves the best overall performance. After that, the 
increasing of layers causes performance degradation, which may be caused by overfitting owing to too 
many model parameters. At the same time, with the increase of network complexity, the training time has 
also increased dramatically. Therefore, a structure with 8 layers and 32 hidden units is finally adopted. In 
our study, SCADA data with high resolution contain both temporal and frequency information. Too small 
convolution kernel may ignore temporal domain information, whereas too large convolution kernel may 
have difficulty in acquiring frequency domain information. Furthermore, the convolution kernel with an 
even number cannot guarantee to remain the size of input and output of feature map unchanged although 
padding is added symmetrically. Therefore, the kernel size is set to 5.  

Table 2 The results of NBM under different network structures 

Hidden 
Layer

Hidden 
Units MSE MAE R2 Time 

cost(s/epoch)
SETCN-1 4 16 0.0011376 0.0203212 0.74016 151
SETCN-2 8 32 0.000704287 0.0142384 0.76608 252
SETCN-3 16 64 0. 00068965 0. 0139541 0.76903 8795

3.2.3  Comparison with other methods 

There are many other models that have been applied to anomaly detection. This subsection makes a 
detailed comparison in terms of multiple performance indicators between the SETCN method and these 
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models. The compared models mainly include echo state network(ESN) [18], multi-layer neural 
network(MLP) [18], multi-layer LSTM, multi-layer GRU [49], convolutional bi-directional LSTM 
networks(CNN+LSTM) [50], transformer [51] and base-TCN [36]. In these models, the base-TCN is used 
to validate the efficiency of spectrum embedding, hence it only accepts the original vibration signal as 
input, and uses the same network topology and superparameters as the SETCN in the experimental stage. 
To ensure the objectivity of the comparison results, the experiment process uses the same WT1 dataset, 
and the training set and test set duration are 10 days and 1 day respectively. 

As can be seen from Table 3 that ESN and MLP show the worst results. This is because these methods 
mainly consider the statistical characteristics of the data and ignore the temporal characteristics of the 
vibration signal. Furthermore, the indicators show that the TCN algorithm performs the best, and the 
coefficient of determination  reaches 0.7661.  

Table 3 Effect of NBM under different algorithms 

Algorithms MSE MAE R2

Echo State Network (ESN) [18] 0.00227118 0.0288218 0.4837

Multi-layer NN (MLP) [18] 0.00224838 0.0285943 0.4889

Multi-layer LSTM 0.00129546 0.022662 0.7052

Multi-layer GRU [49] 0.00137155 0.0233322 0.6879

CNN+LSTM [50] 0.00149661 0.0232127 0.6595

Transformer (6 layer) [51] 0.0012909 0.0220651 0.7062

Base-TCN [36] 0.00110303 0.0199301 0.749

Proposed SETCN 0.000704287 0.0142384 0.7661

The existing vibration anomaly detection methods based on deep learning can be mainly classified 
into two categories: time series-based methods and spectral analysis methods [52][53]. Therefore, in our 
research, we input both the time-series signal and the frequency spectrum of the vibration into the feature 
extraction model at the same time. The experimental result in the last two lines of Table 3 shows that the 
accuracy of the proposed SETCN is higher than that of the basic TCN model without an embedded 
spectrum under the same network structure. As an example, Figure 6 and Figure 7 show the forecasted 
curves with LSTM and SETCN, respectively. It can be known from the figure that SETCN has a better 
fitting performance than LSTM. The main reasons are i) for vibrations with high dynamic characteristics, 
short-term temporal dependence is more important than long-term temporal dependence, and ii) the 
vibration signal not only contains the time-domain features, but also the high dynamic frequency features 
that those ordinary inertial signals do not have. The time-frequency characteristics of the signal extracted 
by STFT help the deep network to learn more information. 
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Figure 6 Prediction results of LSTM algorithm 

The vibration prediction results for the test set using SETCN are shown in Figure 7. Results show 
that the predicted value can follow the changing trend of the original vibration, and its peak-to-peak value 
is also closer. When an abnormality occurs, the abnormal data will deviate from the predicted vibration, 
which will facilitate to detect the occurrence of the abnormality. The abnormality will be verified on the 
dataset of WT6 and WT7. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



 

15 

 

Figure 7 Prediction results of SETCN algorithm 

3.2.4  Analysis of normal behavior model under different working conditions

Wind turbines of different types are usually built in areas with heterogeneous environmental 
conditions, which inevitably result in the difference in operating conditions. To demonstrate the versatility 
of NBM on different wind turbines, the datasets from different regions of China were collected for 
comparative experiments. As shown in Table 4, the SETCN algorithm is equally effective when applied 
to different wind turbines. 

Table 4 SETCN results under different wind turbines 

Dataset MSE MAE R2

WT1 0.000704287 0.0142384 0.7661

WT2 0.000411282 0.0107143 0.7862

WT3 0.000365426 0.00986525 0.7532

WT4 0.000354641 0.01256566 0.7668

WT5 0.00179644 0.0317397 0.7668

3.3  Anomaly Detection 

3.3.1  Abnormal Behavior Data 

After the NBM based on SETCN is trained offline, the next task is to use the proposed framework to 
detect the abnormalities of the real-time operating data. We use the historical data from two different wind 
turbines, WT6 and WT7, as shown in the Table 5, to assess the feasibility of the proposed approach. The 
two turbines were built in 2015 and have been operating in good condition for a period of time. However, 
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abnormalities occurred in the later period. The nacelle vibration data of WT6 showed abrupt anomalies in 
Jan. 2018, while the data of WT7 contained periodic anomalies in Jan. 2016. It is worth noting that after 
the signal changes, none of the existing monitoring systems trigger the predefined fixed threshold, 
producing an alarm. 

Table 5 Data from Abnormal Wind Turbines 

NO. Time Samples Rate Describe

WT6
(Case 1)

Jun. 2017 - Dec. 2017 18358519 1 second Healthy condition

Jan. 2018 - Feb. 2018 30818719 1 second
Abrupt abnormality caused by yaw 
bearing abnormality

WT7
(Case 2)

Dec. 2015 - Feb. 2016 950052 1 second Healthy condition

Feb. 2016 - Mar. 2016 777343 1 second
Periodic abnormality caused by hub 
aerodynamic imbalance

3.3.2  Case 1, Abrupt abnormality 

The wind turbine can automatically track the direction of the wind to capture the maximum wind 
energy. The most important component to realize this process is the yaw system. The yaw system consists 
of the yaw motors, the yaw bearing, and the yaw brake based on hydraulic equipment. As the overall 
weight of the nacelle and hub is very large, if the yaw bearing is abnormal (such as cog breaking) during 
the yaw process, it will cause an abrupt change of the nacelle vibration. 

Abrupt abnormality is usually defined as an abnormal state at which the signal suddenly deviates 
from the original general state. If the deviation is large enough to exceed the existing fixed threshold, it is 
generally easy to detect and vice versa. Figure 8 shows the wind speed, vibration, and the AAI curve of 
WT6 before and after the failure. The light green area in the figure is to show where the abnormality 
occurs. From the wind speed Figure 8(a) and the vibration diagrams Figure 8(b) and Figure 8(c), it can be 
seen that before the abnormality occurs, the vibration signal changes with the change of wind speed, and 
the trend remains stable. When the wind speed exceeds 10m/s, the wind turbine enter the rated power 
generation mode, the amplitude of vibration reaches the maximum. However, after the abnormality occurs, 
the vibration behaves differently. Having checked the event logs of SCADA system, it is found that this 
wind turbine experienced a yaw system abnormality after January 2018. Through the analysis of data, it 
is found that on January 18th, at the position marked by the red line in the figure, the signal had a sudden 
change. However, the peak-to-peak value  did not exceed the fixed alarm threshold 

 that was preset in the main control program of wind turbines, and therefore no alarm 
shutdown was triggered. 

By using the method proposed, we first select the data from the WT6 in the healthy state to train the 
NBM, then calculate the MCV based AAI value as the threshold by equation (12). In the subsequent 
abnormal identification process, the abnormal data is inputted into the trained model, according to 
equation (11), we choose  as observed every hour,, the AAI is calculated. Figure 8 shows AAI 
is calculated for wind speed, X-direction vibration residual and Y-direction vibration residual. According 
to equation (12), the maximum AAI threshold  is obtained. Figure 8(d) shows the change 
of AAI value. It can be seen from the figure that at the sample 118990, the proposed method detects the 
abnormality, which represents 10:00 on Jan. 18, 2018 when the signal changes. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



 

17 

 

Figure 8 Abrupt vibration detection result 

3.3.3  Case 2, Periodic Abnormality

The data, in this case, comes from a wind turbine with an aerodynamically unbalanced hub. As a 
rotating power generation equipment, periodic abnormality from the vibration of the wind turbine nacelle 
often occurs due to impeller imbalance. This kind of periodic abnormality is difficult to detect by the 
traditional threshold methods because of the weak signal in the early stage of the fault. As time goes on, 
this abnormality will further deteriorate and cause catastrophic damage to wind turbines. 

Figure 9 shows the wind speed, vibration, and the AAI curve of the data of WT7 before and after the 
failure. The light green area in the figure is periodic vibration abnormality occurred. It can be seen that 
before the anomaly occurrence, the AAI maintains fluctuations within a certain range during which we 
calculate the maximum AAI threshold  based on the training data. As can be seen from 
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Figure 9(b) and Figure 9(c), the wind turbine began to experience periodic abnormal vibrations on Feb. 
14, 2016, however, the peak-to-peak value did not exceed the fixed alarm threshold  and 
trigger an alarm to shutdown the turbine operation. With the proposed method, this weak abnormal signal 
can be accurately detected. Figure 9(d) shows that through the AAI observed every hour, this abnormality 
can be detected almost at the same time when appearing. 

The above cases demonstrate that the proposed method can quickly detect the weak abnormal 
changes in the vibration signals of the wind turbines, which are often submerged in complex interference. 
The NBM establishes a highly dynamic non-linear relationship between the vibration signal and these key 
signals causing the vibration through the deep learning network so that the environmental interference can 
be eliminated, thus enhancing anomaly detection. The proposed AAI considers signal changes over 
temporal domain as well as the direct coupling among the signals, which can further improve the detection 
accuracy. In these two cases, the processing time of 3600 sampling points per hour is about 0.6 seconds, 
which can ensure a real-time detection of anomalies. 

Figure 9 Periodic vibration detection result 
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4  Conclusion

In this paper, we present an anomaly detection framework of wind turbines considering nacelle 
vibration signals. The first step is to construct a NBM of wind turbines based on SETCN. This is novel 
when compared with currently prevailing time series vibration prediction methods with SCADA data. 
Through an input data augmentation in the training phase to learn temporal characteristics and spectral 
characteristics simultaneously, our model outperformed other well-established models and achieved better 
results on real-word data from wind turbines of different types under different working conditions. For 
anomaly detection, we proposed a MCV based AAI, which represents a quantified metric for anomaly 
assessment. AAI outperforms other methods by taking into account relative variability among parameters. 
Experiments are carried out with real-world wind farm data under complicated operating conditions. The 
results demonstrate that the proposed approach can deliver effective detection for high dynamic vibration 
anomaly even in situations where weak abnormal vibrations occur. 

The proposed method in this paper has a potential to allow for a real-time monitoring and diagnosis 
as to whether the wind turbine operates normally or not without much prior knowledge on abnormal 
behavior detection. This would be significant to ensure the safe operation of wind turbines and improve 
their electricity production by incorporating the proposed method with the turbine controller. Should the 
methodology be adopted in wind turbines, it can impact the broad wind industry in a very positive manner. 
Future work will consider the influence of measurement noise and SCADA sampling frequency on the 
NBM. A more refined method to define threshold will also be explored to further enhance the universality 
of the framework. 
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