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Assessment of non-directed computer-use behaviours in the home can 1 

indicate early cognitive impairment: A proof of principle longitudinal 2 

study. 3 

Abstract 4 

Introduction: Computer-use behaviours can provide useful information about an individual’s 5 

cognitive and functional abilities. However, little research has evaluated unaided and non-6 

directed home computer-use. In this proof of principle study, we explored whether computer-7 

use behaviours recorded during routine home computer-use i) could discriminate between 8 

individuals with subjective cognitive decline (SCD) and individuals with mild cognitive 9 

impairment (MCI); ii) were associated with cognitive and functional scores; and iii) changed 10 

over time. 11 

Methods: Thirty-two participants with SCD (n=18) or MCI (n=14) (mean age = 72.53 years; 12 

female n = 19) participated in a longitudinal study in which their in-home computer-use 13 

behaviour was passively recorded over 7-9 months. Cognitive and functional assessments 14 

were completed at three time points: baseline; mid-point (4.5 months); and end point (month 15 

7 to 9).  16 

Results: Individuals with MCI had significantly slower keystroke speed and spent less time 17 

on the computer than individuals with SCD. More time spent on the computer was associated 18 

with better task switching abilities. Faster keystroke speed was associated with better visual 19 

attention, recall, recognition, task inhibition, and task switching. No significant change in 20 

computer-use behaviour was detected over the study period.    21 

Discussion/Conclusion: Passive monitoring of computer-use behaviour shows potential as an 22 

indicator of cognitive abilities, and can differentiate between people with SCD and MCI.  23 

Future studies should attempt to monitor computer-use behaviours over a longer time period 24 
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to capture the onset of cognitive decline, and thus could inform timely therapeutic 25 

interventions. 26 

 27 

Keywords: dementia, mild cognitive impairment, cognitive function, instrumental activities 28 

of daily living, computer-use.  29 



5 
 

1. Introduction 30 

Subtle changes in instrumental activities of daily living (IADL) may be a marker of the 31 

development of a neurodegenerative condition leading to dementia. For instance, difficulties 32 

with IADL such as managing finances and taking medication may manifest in the prodromal 33 

and preclinical stages (S. T. Farias et al., 2013; Jekel et al., 2015; Marshall et al., 2012; 34 

Sikkes et al., 2011), and can discriminate between cognitively healthy individuals and 35 

individuals with mild cognitive impairment (MCI) (S. Farias et al., 2009; Rodakowski et al., 36 

2014), as well as being able to predict whether a healthy person will go on to develop MCI 37 

(Marshall et al., 2015). However, clinic-based assessments of IADL can only provide 38 

episodic information; are highly subjective; and lack temporal precision, intraindividual 39 

specificity and ecological validity (Dorsey et al., 2017; J. A. Kaye et al., 2011).  40 

Advances in ubiquitous computer software and “smart home” technologies have made 41 

it possible to unobtrusively monitor IADL, providing continuous real-time information about 42 

a person’s cognitive and functional ability from within their own homes (Gold et al., 2018; 43 

Piau et al., 2019). These technologies range from sensors distributed around the home (Dodge 44 

et al., 2012; Hagler et al., 2010; Hayes et al., 2008); wearable sensors (Kirste et al., 2014; 45 

Patel et al., 2012); and software for monitoring computer activities (J. Kaye et al., 2014a; J. 46 

A. Kaye et al., 2011; Seelye et al., 2015; Seelye et al., 2018).  47 

Personal computer-use is increasingly common in older adults. In the UK, internet use 48 

in retired older adults aged 65 to 74 has increased from 52% in 2011 to 83.2% in 2019 49 

(Office for National Statistics, 2019b). As such, monitoring older adults’ personal computer-50 

use is a particularly viable option for continuously and unobtrusively monitoring functional 51 

and cognitive ability. Previous studies have shown that three main aspects of computer-use 52 

differ between individuals with cognitive impairment and cognitively healthy controls: time 53 

spent on the computer (J. Kaye et al., 2014a; Seelye et al., 2018); frequency, variability and 54 
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efficiency of mouse movements (Seelye et al., 2015); and keystroke speed (Vizer & Sears, 55 

2015). Furthermore, Stringer et al. (2018) showed that performance on a specific set of 56 

computer-use behaviours (including pauses, mouse clicks and typing) could discriminate 57 

between individuals with cognitive impairment and cognitively healthy controls, and that 58 

these behaviours were associated with performance on cognitive and functional assessments, 59 

in particular, those related to memory. Previous studies have used either directed (Seelye et 60 

al., 2018; Stringer et al., 2018; Vizer & Sears, 2015) or non-directed tasks (J. Kaye et al., 61 

2014a; Seelye et al., 2015). In studies that have used non-directed tasks, the focus has been 62 

on single computer use behaviours such as amount of use (J. Kaye et al., 2014a) or mouse 63 

moves (Seelye et al., 2015). Non-directed tasks are more challenging to monitor as the nature 64 

of the computer use activity is unknown (or difficult to determine), but they are arguably 65 

more useful because they reflect real-world, everyday computer-use. What remains to be 66 

explored is the utility of a range of non-directed computer use behaviours for predicting 67 

cognitive and functional abilities.  68 

In the present proof of principle study, we evaluated the potential of continuously 69 

recorded home computer-use as a marker of the level of, or change in, cognitive and 70 

functional ability. To achieve this objective we examined whether this method could show 71 

the following expected patterns of behaviour: 1) non-directed computer-use behaviour could 72 

differentiate between individuals with MCI and individuals with SCD; 2) associations 73 

between non-directed, continuous computer-use behaviour and cognitive and functional 74 

scores measured across three time periods; 3) change over time in non-directed computer-use 75 

associated with change in cognitive and functional test scores. 76 

 77 

2. Materials and Methods 78 

2.1. Procedure 79 
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This was a proof of principle longitudinal study of in-home computer-use behaviours using 80 

custom-made monitoring technologies. Participants were recruited to the study on a rolling 81 

basis over a period of 2 months. The length of time participants were in the study ranged 82 

from 7 to 9 months (mean = 31.94 weeks, SD = 4.47). Participants completed a battery of 83 

cognitive and functional assessments at three testing time points: 1) baseline: 2) mid-point 84 

(4.5 months); and 3) end point (month 7 to 9). Cognitive and functional assessments, 85 

combined with continuous recording of specific computer activities for the entire study 86 

period, was completed in participants’ own homes. 87 

2.2. Participants 88 

Thirty-two participants with subjective cognitive impairment (n=18) or mild cognitive 89 

impairment (n=14) (age range = 65 to 84 years) participated in the study (Table 1). 90 

[Table 1 here] 91 

Participants were recruited through the UK dementia research registry ‘Join Dementia 92 

Research’, as well as memory clinics and local community groups in the Greater Manchester 93 

area. Participants who had taken part in a previous study on assessing computer-use 94 

behaviour in controlled settings (Stringer et al., 2018) were also invited to take part. 95 

Participants were eligible to take part in the study if they: had the capacity to consent; were 96 

65 years of age or older; were regular computer-users (defined as using a laptop or desktop 97 

computer at least once a week); owned a personal computer or laptop that used Microsoft 98 

Windows versions 7, 8 or 10; had a home internet connection; and were able to communicate 99 

verbally in English.  100 

Participants with MCI referred from memory clinics had all received a clinical 101 

diagnosis from a qualified memory specialist based on Peterson's criteria for MCI (Petersen, 102 

2004). Participants who self‐referred to the study all reported a diagnosis of MCI given by a 103 

specialist memory clinic. Specific clinical subtypes of MCI (i.e. amnestic vs non‐amnestic; 104 
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single vs multiple domain) were not ascertained. SCD participants were identified if they 105 

indicated on the ECog (S. T. Farias et al., 2008) that they were “concerned they have a 106 

memory or other thinking problem” and their total score was greater than 1.43. This cut-off 107 

score corresponds to the upper 95% confidence interval of the mean total ECog scores from a 108 

sample of healthy control participants (Stringer et al., 2018), who indicated that they were not 109 

“concerned they have a memory or other thinking problem”. 110 

2.3. Cognitive and functional measures 111 

Different versions of tests containing visual and verbal memory elements (i.e. Addenbrooke’s 112 

Cognitive Evaluation (ACE) III, Free and Cued Selective Reminding Test (FCSRT) and The 113 

Doors and People Test) were used at each time point to counteract practice effects.  114 

2.3.1. Global functional status 115 

Global cognitive status was assessed using the ACE III (Hsieh et al., 2013): a concise 116 

neuropsychological assessment of cognitive functions commonly used in the UK with 117 

validated cut-off scores for MCI and dementia. The test includes five cognitive subdomains: 118 

attention, memory, verbal fluency, language and visuospatial abilities, which provide a 119 

cognitive score out of a maximum of 100 (a higher score indicates better cognitive function).  120 

2.3.2. Functional ability 121 

Subjective ratings of cognitive and functional capacity were obtained using the self and 122 

informant versions of the ECog (S. T. Farias et al., 2008), which requires informants or the 123 

participant to rate the current functional abilities of the participant compared to 10 years 124 

previously. The 39-item questionnaire assesses cognitively-based functional items across six 125 

neurological domains: memory, language, visuospatial abilities, planning, organisation and 126 

divided attention. Scores range from 1 (“Better or no change”) to 4 (“Consistently much 127 

worse”). The informant version was used for the 26 of the 32 participants who had an 128 

informant (i.e. someone who knew the participant well, either as co-habitants or seeing the 129 
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participant in-person at least three times per week). The self-report version was used for the 130 

other six participants who did not have an informant (MCI n = 2).   131 

2.3.3. Processing speed 132 

Trails Making Test A (TMT A) (Lezak et al., 2012), simple reaction time (SRT) and four-133 

choice reaction time (CRT) (Deary et al., 2011) were used to assess cognitive processing 134 

speed. Participants completing TMT A are required to draw lines to connect circled numbers 135 

in a numerical sequence (i.e., 1-2-3, etc.) as quickly as possible. Simple reaction time (SRT) 136 

and four-choice reaction time (CRT) means and standard deviations were measured for each 137 

participant on the Deary-Liewald reaction time task (Deary et al., 2011).  138 

2.3.4. Episodic memory 139 

Episodic memory was measured using the FCSRT (Grober et al., 2009). The FCRST 140 

produces three scores: free recall, total recall and cue efficiency. Free recall (cumulative sum 141 

of free recall from three trials, range 0-48) was evaluated for the current analysis because it 142 

has been shown to be more sensitive to dementia than the other two measures (Grober et al., 143 

2010).  144 

2.3.5. Recall and recognition 145 

The Doors and People Test was administered to assess verbal and visual recall and 146 

recognition (Baddeley et al., 1994). The subtests were administered in the following order: 147 

verbal recall (people subtest); visual recall (shapes subtest); verbal recognition (names 148 

subtest); visual recognition (doors subtest). Both recognition memory tasks adopt a multiple-149 

alternative forced-choice design. A higher score indicates worse performance. New stimuli 150 

for the recall tasks, using different photos and names for the people and altered shapes, were 151 

created by the research team for time points two and three. These alternate versions have not 152 

been validated. Total age-scaled recall score, total age-scaled recognition score and overall 153 

forgetting score were assessed for the current analysis.  154 



10 
 

2.3.6. Executive function 155 

Executive function was captured using the Trails Making Test B (TMT B) and Digit Span 156 

Backwards (DSB) test (Lezak et al., 2012). Participants completing TMT B are required to 157 

draw lines to connect circled numbers and letters in an alternating numeric and alphabetic 158 

sequence (i.e., 1-A-2-B, etc.) as rapidly as possible.  159 

Participants completing DSB are asked to report digit sequences backwards, 160 

beginning with a length of two digits up to eight digits, with two trials at each increasing list 161 

length. The test is discontinued after a score of 0 on both trials of any item. 162 

Executive function was also captured using the Color-Word Interference Test (CWIT) (Delis 163 

et al., 2001); a recently developed modification of the Stroop test (Stroop, 1935) that includes 164 

four conditions (colour naming, word reading, inhibition and task switching). Completion 165 

time (seconds) for each condition was used to calculate an interference and task switching 166 

score (for details on scoring the Stroop test see (Scarpina & Tagini, 2017)). 167 

2.4. Depression and apathy 168 

Baseline measures of depression and apathy were captured using the Geriatric Depression 169 

Scale [short form] (GDS) (Yesavage, 1988) and the Starkstein Apathy Scale (Starkstein et al., 170 

1992). Higher scores on these tests indicate a greater level of depression/apathy. 171 

2.5. Computer-use behaviours 172 

2.5.1. SAMS system architecture 173 

Computer-use behaviours were recorded using custom-made software developed by the 174 

SAMS (Software Architecture for Mental Health Self-Management) technical team (for 175 

further details of SAMS software see (Bull et al., 2016; Gledson et al., 2016)). The SAMS 176 

recording software captures computer-use activities as a list of time-stamped events. The 177 

SAMS desktop logger records all computer activities, including mouse clicks and keystrokes. 178 

All alpha numeric keystrokes typed in secure browsers, such as banking or email passwords, 179 
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are suppressed, but keystroke count and timestamp are still captured. All computer-use data 180 

captured by SAMS is immediately encrypted. The software and user interface was developed 181 

with input from clinical domain experts and potential end-users, including study participants 182 

from initial pilot studies. 183 

2.5.2 SAMS installation and setup 184 

All participants had the SAMS software installed on their home computer. If the computer 185 

was used by others in the household, either separate user accounts were set up, or an on-186 

screen prompt would ask the user if they were the participant and only the participant’s 187 

computer-use would be recorded. This pop-up would occur following a 10-minute period of 188 

computer inactivity, with the participant given the option to extend the time between pop-ups 189 

to up to 4 hours.  190 

Following the SAMS software set-up, a short training session was undertaken to 191 

introduce the participant to the software. It was explained that the SAMS software would 192 

always run in the background of the computer unless they paused it. A link to the software 193 

was available on the desktop and in the windows notification tray (shown in Fig. 1. a and b). 194 

If the participant wished to work privately, they could click on the software icon link and a 195 

pop-up window would allow them to pause and resume monitoring (shown in Fig. 1. c). 196 

[Fig. 1 here] 197 

The participants were provided with a technical helpline, which they could call if 198 

there was a problem with their computer related to the SAMS software. All participants 199 

received a monthly check-up phone call to discuss any computer issues, and to report any 200 

days the computer was ‘inaccessible’ (i.e. planned holiday, no access to computer or 201 

computer not working). 202 

2.5.3. Computer-use variables 203 
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Although the SAMS recording software is capable of capturing a variety of computer-use 204 

behaviours, the current study focussed on mouse clicks, keystroke speed, and computer-use 205 

duration, all of which have been previously shown to be associated with cognitive ability 206 

(Kaye, 2014; Seelye, 2015; Vizer and Sears, 2015; Stringer, 2018).  207 

The data collected by the SAMS software on day one were not included in the 208 

analysis because this included activity from the SAMS technical team when installing the 209 

software.  210 

Computer-use duration was recorded across each computer-use ‘session’:  defined as 211 

a period of activity on the computer (i.e. mouse moves, clicks, and keystrokes) with a pause 212 

of no longer than 15 minutes. For the longitudinal analysis of change in computer-use over 213 

time, and the examination of differences between individuals with MCI and SCD, total daily 214 

computer-use was averaged across all days of the study, irrespective of whether the computer 215 

was used or reported inaccessible. This method was used as it provides more feasible, 216 

unobtrusive, and less burdensome way of measuring computer-use than relying on 217 

participants to report periods where the computer was inaccessible. In addition, the pattern of 218 

results obtained using this method of calculating daily computer-use was broadly similar to 219 

results obtained if computer-use was calculated only on the days that the computer was 220 

accessible (i.e. the participant had not reported that the computer was inaccessible),   221 

irrespective of whether the computer was used or not (see supplementary Tables 1 and 3).  222 

The analysis of associations between passive computer-use behaviour and cognitive 223 

and functional scores incorporates computer variables measured over temporal bins 224 

corresponding to the dates of the cognitive tests for each participant (see section 2.6.1 for 225 

details of temporal bins). Within each of the temporal bins, total daily computer-use was 226 

averaged across the days when the computer was accessible and used. This method was used 227 

to account for the inconsistent and varied daily computer-use across these shorter temporal 228 
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bin periods, because the data is less skewed by days when there were 0 minutes of computer-229 

use. In addition, the pattern of results obtained using this method of calculating daily 230 

computer-use was broadly similar, with all associations in the same direction, to results 231 

obtained if computer-use was calculated only on the days that the computer was accessible 232 

(see supplementary table 2).   233 

Mouse click frequency was calculated by dividing total mouse clicks (left and right) 234 

per day by the total duration of computer-use per day.  235 

Keystroke speed was calculated by first identifying distinct bursts of keystroke 236 

activity. A burst was defined as a series of at least five consecutive keystrokes with a pause 237 

between keystrokes (keystroke up to keystroke down) of no longer than 1.957 seconds. The 238 

1.957 second pause duration was the upper limit gap (mean gap + 2*SD) between keystrokes 239 

on a Word task used in Stringer et al (2018). Keystroke bursts did not include modifier keys 240 

(CTRL, ALT and Shift), because they are used at the same time as other keystrokes and skew 241 

the keystroke speed. As the removal of specific keys could only be applied to known 242 

keystrokes, and the key code of keys typed in secure browsers was suppressed, all keystrokes 243 

occurring in suppressed browsers were not included in calculations of keystroke speed. Daily 244 

keystroke speed was calculated by dividing the total number of keystrokes in bursts per day 245 

by the total duration of bursts per day. 246 

To encourage participants to type more, and thus collect more data relating to 247 

keystroke speed, participants were asked to complete a weekly diary entry. This involved 248 

asking them to write about general feelings during the week and report key life events.  249 

2.6. Statistical analysis 250 

Statistical analyses were performed using SPSS version 22 and Stata/SE version 12.1. 251 

Outliers were calculated for the cognitive data using the non-recursive procedure described 252 

by Van Selst and Jolicouer (2018). Two participants’ reaction time data were omitted due to 253 
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technical problems with the reaction time recording software. One participant’s Stroop data 254 

was excluded because they were colour blind.  255 

A conventional p value of 0.05 was used because of the small sample size and low 256 

power. However, as the study was a proof of principle, we also considered the results in light 257 

of a false discovery rate (FDR) correction (Q = 0.2), as described by Benjamini and 258 

Hochberg (1995), to account for increased risk of false positives (Benjamini & Hochberg, 259 

1995). 260 

2.6.1. Between-group comparisons 261 

To investigate differences between individuals with MCI and SCD, we used multilevel 262 

modelling (MLM) to allow for the statistical dependency between multiple observations for 263 

the same individuals. We regressed the computer-use and cognitive variables on a variable 264 

capturing membership to the SCD vs MCI group. This analysis was based on all available 265 

data for the full time period of the study. The model was adjusted for variations in age and 266 

years of computer-use as these were significantly different between the two groups.  267 

2.6.2. Associations between computer-use and cognitive/functional measures 268 

In order to examine correlations between computer-use data and cognitive and functional test 269 

scores, computer-use variables were first measured over temporal bins that corresponded to 270 

the dates of the cognitive tests for each participant: the first three weeks after the baseline 271 

assessment (T1); the week of the midpoint assessment (T2) and the two weeks either side; 272 

and the three weeks prior to the end point assessment (T3). The three week timeframe at 273 

baseline and end point and the 5 weeks at mid-point was selected to create a snapshot of 274 

computer use behaviour that balanced capturing enough data whilst also being close enough 275 

to the time the cognitive tests were completed. We then used MLM to examine associations 276 

between computer-use behaviours and cognitive and functional test scores across the entire 277 

study period, again allowing for the statistical dependency between multiple observations for 278 
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the same individuals, and statistically adjusted for age, educational attainment and years of 279 

computer-use.  280 

2.6.2. Change over time 281 

To analyse whether there was any change in computer behaviour and/or cognitive scores over 282 

time, we used MLM for repeated measures, treating time from inclusion in the study as a 283 

continuous predictor variable and allowing for the statistical dependency between multiple 284 

observations per individual. We then adjusted associations for variations in age, educational 285 

attainment, and years of computer-use. We considered statistical significance of the adjusted 286 

regression coefficient of the time variable (p < 0.05) as evidence for a change over time 287 

between baseline and follow-up measurements, with a positive or negative coefficient 288 

signalling improvement or deterioration, respectively.  The computer-use behaviour data 289 

(total computer-use duration, mouse click frequency and keystroke speed) were regressed on 290 

the number of days each participant was in the study. The cognitive and functional scores 291 

were regressed on the time variables for each participant. The time variable represented the 292 

amount of time (in weeks) that passed at each assessment since the baseline assessment. For 293 

baseline this was 0 weeks for all participants, for midpoint assessment this ranged between 16 294 

and 21 weeks (mean = 17, SD = 1.54), and for end point this ranged between 20 and 40 295 

weeks (mean = 34, SD = 3.59). 296 

 297 

3. Results 298 

Median days in the study, median days of use, median days the computer was not used and 299 

median days the computer was inaccessible is reported in Table 1.  300 

3.1. Between-group comparisons 301 

In line with group categorisation, MCI participants had greater impairment on all of the 302 

cognitive and functional assessments compared to the SCD participants, and the majority of 303 
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these differences were significant (Table 2). These effects held significance after applying the 304 

false discovery rate. Significant differences between the two groups on the ECog, TMT B and 305 

Stroop inhibition did not hold after controlling for age and computer-use experience. 306 

Participants with MCI also differed significantly to participants with SCD on two out of three 307 

computer behaviours. Participants with MCI spent significantly less time on the computer (p 308 

= .026) and had slower keystroke speed (p < .001) compared to individuals with SCD. These 309 

effects were significant after controlling for age and computer-use experience and held 310 

significance after applying the false discovery rate. 311 

[Table 2 here] 312 

3.2. Associations between computer-use and cognitive/functional measures 313 

After the application of the FDR, there was a significant association between time spent on 314 

the computer and scores on the Stroop switching test (p = .016) (Table 3). These scores 315 

suggest that those who are least impaired on the Stroop switching test spend longer on the 316 

computer. There were also significant association between keystroke speed and: TMT A (p = 317 

.028); recall on the Doors and People Test (p <.001); recognition on the Doors and People 318 

Test (p <.001); Stroop inhibition (p = .041); and Stroop switching (p =.006). These scores 319 

suggest that individuals who are least impaired on these cognitive tasks have faster keystroke 320 

speed. These effects remained significant after controlling for age, years of education and 321 

computer-use experience.  322 

There were no significant effects for mouse click frequency with any of the functional 323 

or cognitive test scores after the application of the FDR (Table 3).  324 

[Table 3 here]  325 

3.1. Change over time 326 

No change was detected in any of the computer-use behaviours over the course of the study 327 

(Table 4). After the application of the FDR, over the study period, there was a significant 328 
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decrease in recall on the Doors and People Test (p < .001). No change was observed in scores 329 

on any of the other cognitive or functional tests. As there was no change detected in any of 330 

the computer-use variables, further analysis of associations between change in computer-use 331 

behaviour and change in cognitive test scores were not pursued.  332 

[Table 4 here] 333 

 334 

4. Discussion 335 

The results of this study showed that non-directed measures of computer-use, such as 336 

duration of use (i.e. minutes per day) and keystroke speed (i.e. key presses per second), were 337 

able to discriminate between individuals with MCI and individuals with SCD. Whilst no 338 

change was detected in any of the computer-use behaviours, or with most of the cognitive and 339 

functional test scores, over time, measures of computer-use duration and keystroke speed 340 

were also associated with cognitive test scores. Taken together, these results provide proof of 341 

principle that recording routine home computer-use could help to differentiate between 342 

individuals with MCI and individuals with SCD, and to detect change in cognitive ability. 343 

Participants with MCI had slower typing speeds than those with SCD.  These findings 344 

are consistent with previous work showing a reduction in typing speed with increased 345 

cognitive impairment during semi-directed tasks in a controlled environment [25, 26], and 346 

show that such effects are also observable for non-directed computer tasks in an uncontrolled 347 

home-based setting. Faster typing speed was also associated with better visual attention (as 348 

measured by TMT A), better recall and recognition (as measured by the Doors and People 349 

Test), task inhibition and task switching (as measured by the Stroop) in the current study. The 350 

TMT A, The Doors and People Test recall and recognition scores and the Stroop task are 351 

shown to be sensitive to early stage dementia of the Alzheimer type (Balota et al., 2010; 352 

Greene et al., 1996; Hutchison et al., 2010; Shindo et al., 2013), and the task switching 353 
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version of the Stroop is particularly sensitive to cognitive decline in normal-functioning older 354 

adults (Fine et al., 2008). In our previous work we found that ACE III and ECog Memory 355 

scores were significant predictors of keystroke speed (Stringer et al., 2018). Taken together, 356 

these results give us confidence that non-directed measures of typing speed provide valid 357 

indicators of cognitive function that can help to discriminate between people with MCI and 358 

SCD.  359 

Individuals with MCI spent less time on the computer than individuals with SCD. 360 

This decreased level of use could be an indication of participants with MCI stopping using 361 

the computer when they find tasks difficult or make mistakes; or using the computer less 362 

frequently because they have less activities that they need or want to do on the computer.  363 

This is consistent with Kaye et al. (2014), who found that people with MCI spent less time on 364 

the computer compared with healthy controls.  365 

Computer-use duration was also associated with traditional neuropsychological test 366 

scores. Individuals with stronger task switching abilities spent more time on the computer. 367 

This suggests that increased ability to switch between computer tasks could reflect 368 

conducting multiple computer tasks at once, and so spending more time on the computer to 369 

complete these. In support, Tun and colleagues (2010) observed that increased computer-use 370 

per week was associated with better task-switching performance (Tun & Lachman, 2010). 371 

The current study extends these findings by showing a similar pattern of results during non-372 

directed computer-use, using a more temporally precise measure (i.e. daily computer-use).  373 

Mouse click frequency did not differ significantly between the two groups. In our 374 

previous work using directed computer tasks we also found no group differences on the 375 

number of mouse clicks per minute (Stringer et al., 2018). In this previous cross-sectional 376 

study we did find that cognitively impaired participants executed a higher proportion of 377 

mouse clicks compared with healthy controls, but this is likely to reflect the cognitively 378 
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impaired group spending a longer time on the computer and possibly making more errors on 379 

the semi-directed task, but this is not an appropriate measure for self-directed computer tasks. 380 

Taken together these results suggest that mouse click frequency may not be a particularly 381 

useful measure for detecting differences between groups on directed or non-directed tasks.  382 

Computer-use behaviour did not change over time. For the cognitive and functional 383 

assessments the only change was a decrease in recall scores on the Doors and People Test, 384 

which may be indicative of cognitive decline. The lack of similar change over time on the 385 

FCRST recall test and with the computer-use behaviours could reflect lower sensitivity to 386 

detect decline in this cognitive domain using these measures.  Mitchell (2009) found that 387 

conversion rates of MCI to AD dementia was 8.1% per year in specialist clinical settings and 388 

6.8% in community settings. Therefore, given our small sample size and a study period of 389 

less than a year, the probability of conversion, as well as the likelihood of detecting it, were 390 

low. In order to detect change in IADL using self-chosen computer activities, future studies 391 

should examine data over a longer period of time and in a larger sample.  392 

There are some limitations of the study that need to be considered.  First, whilst the study 393 

provides proof of principle for passive monitoring and can inform the direction of future 394 

larger-scale investigations, the study is underpowered and potentially too short to detect all 395 

effects.  396 

Second, participants varied in how many days they used their computer and there were a 397 

considerable number of days where there was no data for some participants. This variability 398 

could impact the statistical power, cause bias in the estimation of parameters, and reduce the 399 

representativeness of the sample. Although we attempted to disentangle accessibility and 400 

usage in the analysis, gaps in computer use data is reflective of how some individuals use 401 

their computer in real-life, and is therefore a more valid test of proof of principle. Additional 402 

data could be collected by also monitoring mobile or wearable devices. This would not only 403 
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provide digital biomarker data outside of the home, but also inside the home when 404 

individuals choose to use a mobile device over a static home computer or laptop. The number 405 

of adults over the age of 65 who accessed the internet on a mobile phone or smartphone 406 

outside the home increased from 9% in 2013 to 40% in 2019 (Office for National Statistics, 407 

2019a), suggesting that it will become even more relevant to monitor mobile devices in this 408 

age group in the coming years.  409 

Third, there were significant differences in age and years of computer use between the 410 

two participant groups.  Despite accounting for these covariates within the models, statistical 411 

precision may have been improved by matching participants on these criteria.  412 

Fourth, we did not include a cognitively healthy group who did not have concerns about 413 

their cognitive abilities to see if their computer use behaviours differed to those with SCD 414 

and MCI. We surmised that by focussing on SCD and MCI participants specifically, we may 415 

have been able to capture change more easily within a short time frame. In addition, all SCD 416 

participants were cognitively healthy according to the Addenbrookes examination, and so 417 

effectively serve as a control for cognitive function when making comparisons to MCI 418 

participants. Looking at subtle differences between people with SCD and MCI also expands 419 

on previous research that has primarily focused on differences between healthy controls 420 

without subjective decline and people with MCI (J. Kaye et al., 2014b; Seelye et al., 2015; 421 

Seelye et al., 2018). Nevertheless, also including an objectively and subjectively cognitively 422 

healthy control group is a more comprehensive approach for future research.   423 

 424 

5. Conclusion 425 

In summary, this study provided proof of principle that passive monitoring of time spent on 426 

the computer and keystroke speed can differentiate between groups with SCD and MCI. 427 

Moreover, keystroke speed was related to a number of neuropsychological test scores and 428 
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shows potential as an indicator of a person’s cognitive status. Importantly, this is true even 429 

though participants were engaging in non-directed computer tasks, where the exact nature of 430 

the activity was unknown. Such measures of computer-use behaviour could therefore be used 431 

to supplement existing means of detecting functional and cognitive decline by collecting 432 

information about a person’s cognitive status in an unobtrusive way. The next step is to test 433 

these relationships in a larger study sample, over a longer period, to gather a better indication 434 

of whether computer-use behaviours can capture clinically significant cognitive and/or 435 

functional change. It will also be important to develop the SAMS software for touch screen 436 

devices such as tablets, smart phones and wearable as their use becomes more ubiquitous 437 

amongst older adults.   438 
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Table 1. Demographic, psychometric and computer use variables at baseline 632 

Table 2. Multi-level models for the comparison of MCI participants to SCD participants on 633 

computer-use behaviours and cognition. 634 

Table 3. Multi-level models for the association between cognition and computer-use 635 

behaviours. 636 
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Figure 1. Examples of SAMS software visible to participants on their computers. a. Example 639 

screen showing the SAMS icon on the desktop and in the Windows notification tray. b. 640 

Enlarged notification tray icons, the top image is the icon when SAMS is paused (top) and 641 

the bottom image is the icon when SAMS is monitoring. c. The pop-ups that appear when the 642 

SAMS icon is pressed, the option to pause (left) when SAMS is monitoring and the option to 643 

resume when SAMS is paused (right).  644 
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