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Abstract. The composition operators preserving total non-negativity and total pos-
itivity for various classes of kernels are classified, following three themes. Letting a
function act by post composition on kernels with arbitrary domains, it is shown that
such a composition operator maps the set of totally non-negative kernels to itself if
and only if the function is constant or linear, or just linear if it preserves total positiv-
ity. Symmetric kernels are also discussed, with a similar outcome. These classification
results are a byproduct of two matrix-completion results and the second theme: an
extension of A.M. Whitney’s density theorem from finite domains to subsets of the
real line. This extension is derived via a discrete convolution with modulated Gauss-
ian kernels. The third theme consists of analyzing, with tools from harmonic analysis,
the preservers of several families of totally non-negative and totally positive kernels
with additional structure: continuous Hankel kernels on an interval, Pólya frequency
functions, and Pólya frequency sequences. The rigid structure of post-composition
transforms of totally positive kernels acting on infinite sets is obtained by combining
several specialized situations settled in our present and earlier works.
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1. Introduction and main results

1.1. Total positivity. Let X and Y be totally ordered sets. A kernel K : X×Y → R
is said to be totally positive if the matrix (K(xi, yj))

n
i,j=1 is totally positive (that is,

all of its minors are positive) for any choice of x1 < · · · < xn and y1 < · · · < yn,
where n is an arbitrary positive integer. Similarly, the kernel K is said to be totally
non-negative if (K(xi, yj))

n
i,j=1 is totally non-negative (that is, all of its minors are

non-negative)1. For almost a century, these classes of kernels and matrices surfaced
in the most unexpected circumstances, and this trend continues in full force today.
The foundational work [26], the survey [3], the early monograph [27], and the more
recent publications [40, 28, 48, 18] offer ample references to the fascinating history of
total positivity, as well as accounts of its many surprising applications. Total positivity
continues to make impacts in areas such as representation theory [45, 46, 51], network
analysis [50], cluster algebras [11, 23, 24], Gabor analysis [31], statistics [17, 42], and
combinatorics [15, 16]. A surprising link between positive Grassmannians, seen as
the geometric impersonation of total positivity, and integrable systems [43, 44] is also
currently developing at a fast pace.

A natural way to construct new kernels from existing ones is to compose them with
a given function F . More precisely, every suitable function F induces a composition
operator CF mapping the kernel K to CF (K) := F ◦K. The aim of the present work is
to determine for which functions F the operator CF leaves invariant the set of totally
positive kernels defined on X × Y , and to answer the analogous question for total
non-negativity. When X and Y are finite, this is equivalent to determining when the
entrywise calculus (aij) 7→ (F (aij)) induced by F preserves the total positivity or total
non-negativity of matrices.

The study of when entrywise transformations preserve notions of positivity has a
long history. One of the first rigidity theorems for such transforms was proved by
Schoenberg, who showed in the 1940s that entrywise transforms preserving positive
semidefiniteness of matrices of all sizes must be given by convergent power series with
non-negative coefficients [55]. That any such function preserves positive semidefinite-
ness when applied to matrices of arbitrary dimensions follows immediately from the
Schur product theorem [60]. Reformulated in the language of kernels, Schoenberg’s
theorem shows that the composition operator CF leaves invariant the set of positive-
semidefinite kernels if and only if F admits a power series representation with non-
negative coefficients. Schoenberg’s discovery was part of a larger project of classifying
the invariant distances on homogeneous spaces which are isometrically equivalent to a
Hilbert-space distance; see Bochner’s very informative article [14] for more details. This
circle of ideas was further extended by the next generation of analysts, to operations
which preserve Fourier coefficients of measures [33]. The analogous result to Schoen-
berg’s theorem for matrices of a fixed size is more subtle. Roger Horn’s doctoral disser-
tation contains the fundamental observation, attributed by Horn to Löwner, that the
size of the positive matrices preserved by a smooth transform imposes non-negativity
constraints on roughly the same number of its derivatives [36]. This observation left

1The monographs [40, 48] use the terms “strict total positivity” and “total positivity” instead of
“total positivity” and “total non-negativity” respectively.
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a significant mark on probability theory [37]. Determining the exact set of functions
that preserve positivity when applied entrywise to positive-semidefinite matrices of a
fixed dimension remains an open problem and the subject of active research [6, 9, 41].

More detail about the evolution of matrix positivity transforms and their applica-
tions in areas such as data science and probability theory are contained in our recent
surveys [7, 8]. The investigation of entrywise transforms preserving total positivity
have recently revealed novel connections to type-A representation theory and to com-
binatorics. We refer the reader to the recent works [6, 29] and the recent paper [41] by
Khare and Tao for more details.

1.2. Main results. Recall that a kernel is said to be totally non-negative of order p,
denoted TNp, if all of its minors of size p × p and smaller are non-negative. Similarly
one defines TPp kernels; see Definition 2.2 for the precise details.

An initial step in classifying total-positivity preservers over an arbitrary domain
X × Y is to consider separately the cases where at least one of X and Y is finite and
when both are infinite. The first of these cases leads to the following theorem.

Theorem 1.1. Let X and Y be totally ordered sets, each of size at least 4, and let
F : [0,∞) → R. The operator CF : K 7→ F ◦ K maps the set of totally non-negative
kernels of any fixed order at least 4 to itself if and only if F is constant, so that
F (x) = c, or linear, so that F (x) = cx, with c ≥ 0. The same holds if totally non-
negative kernels are replaced by totally positive kernels of any fixed order at least 4,
now with the requirement that c > 0.

We develop the proof of Theorem 1.1 over several sections. In fact, we prove more;
we provide a full characterization of entrywise transforms that preserve total non-
negativity on m × n matrices or symmetric n × n matrices, for any fixed values of m
and n, finite or infinite. We also prove the analogous classifications for preservers of
total positivity on matrices of each size. See Tables 2.1 and 2.2 for further details,
including variants involving test sets of symmetric matrices.

The proof strategy is broadly as follows. For preservers of total non-negativity, note
that totally non-negative matrices of smaller size can be embedded into larger ones;
this allows us to use, at each stage, properties of preservers for lower dimensions. Thus,
we show the class of preservers to be increasingly restrictive as the dimension grows,
and as soon as we reach 4× 4 matrices (or 5× 5 matrices if our test matrices are taken
to be symmetric), we obtain the main result.

For total positivity, the problem is more subtle: as zero entries are not allowed, one
can no longer use the previous technique. Instead, the key observation is that totally
positive matrices are dense in totally non-negative matrices; this is an approximation
theorem due to A.M. Whitney, which reduces the problem for continuous functions and
finite sets X and Y to the previous case. The next step then is to prove the continuity
of all total-positivity preservers; we achieve this by solving two totally positive matrix-
completion problems. Finally, to go from finite X and Y to the case where one of
X and Y is infinite, we extend Whitney’s approximation theorem to totally positive
kernels on arbitrary subsets of R, as follows.
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Theorem 1.2. Given non-empty subsets X and Y of R, and a positive integer p,
any bounded TNp kernel K : X × Y → R can be approximated locally uniformly at
points of continuity in the interior of X × Y by a sequence of TPp kernels on X × Y .
Furthermore, if X = Y and K is symmetric, then the kernels in the approximating
sequence may be taken to be symmetric.

The proof of Theorem 1.2 is developed in Section 6, using discretized Gaussian
convolution. The Gaussian function is found throughout mathematics, and this paper
is no exception. It finds itself a crucial ingredient for several of the arguments below.
As well as the discrete convolution, it allows regular Pólya frequency functions to be
approximated by totally positive ones, and is employed in various places as a totally
positive kernel which is particularly straightforward to manipulate.

The only remaining case is the classification of total positivity-preservers for kernels
over X × Y , with both X and Y infinite. In this situation, the test sets used to obtain
the previous results are no longer sufficient, and new tools and test classes of kernels
with additional structure are called for.

When considering other forms of structured kernels, the Hankel and Toeplitz classes
stand out. The study of Hankel kernels with countable domains leads naturally to
moment-preserving maps, and these form the main body of our previous investigation
[9]. In the present article, we provide the classification of preservers for both Hankel
and Toeplitz kernels with domains which are a continuum. A Hankel kernel has the
form

X ×X → R; (x, y) 7→ f(x+ y),

whereas a Toeplitz kernel has the form

X ×X → R; (x, y) 7→ f(x− y),

where X ⊆ R.
The main results are summarized by the next five theorems; for more details, see

Theorems 7.8 and 7.11 (the Hankel case), Theorems 8.5 and 8.10 (Pólya frequency
functions), Theorems 8.7 and 8.10 (measurable Toeplitz kernels), Theorems 9.2 and 9.5
(Pólya frequency sequences), and Theorems 10.1 and 10.3 (one-sided Pólya frequency
functions and sequences).

The class of TN or TP preservers for Hankel kernels consists essentially of absolutely
monotonic functions. This is outlined in the following result, and our proof relies on
prior work of Bernstein, Hamburger, Mercer, and Widder.

Theorem 1.3. Let X ⊆ R be an open interval and let F : [0,∞) → R. The composition
map CF preserves the set of continuous TN Hankel kernels on X × X if and only if
F (x) =

∑∞
k=0 ckx

k on (0,∞), with ck ≥ 0 for all k and F (0) ≥ 0.
A similar statement holds for preservers of TP Hankel kernels on X ×X.

In contrast, TN Toeplitz kernels possess a far more restricted class of preservers.
Recall that a Pólya frequency function Λ is an integrable function on R, non-zero at
two or more points, such that the Toeplitz kernel TΛ : R× R → R; (x, y) 7→ Λ(x− y)
is TN.
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Theorem 1.4. Let F : [0,∞) → [0,∞). The composition map CF preserves the set of
Pólya frequency functions if and only if F (x) = cx with c > 0.

A similar statement holds for preservers of the class of TP kernels of the form TΛ,
where Λ is a Pólya frequency function.

If the integrability condition is removed, then the class of preservers of Toeplitz
kernels is enlarged slightly. In the following theorem, measurability is required to hold
in the sense of Lebesgue.

Theorem 1.5. Let F : [0,∞) → [0,∞) be non-zero. The composition map CF pre-
serves TN measurable Toeplitz kernels on R× R if and only if F (x) = c or F (x) = cx
or F (x) = c1x>0, for some c > 0.

The only preservers of TP Toeplitz kernels on R×R, whether measurable or not, are
the dilations F (x) = cx with c > 0.

The discrete analogue of a Pólya frequency function or a Toeplitz kernel is a Pólya
frequency sequence, that is, a real sequence a = (an)n∈Z such that the Toeplitz kernel
Ta : Z × Z → R; (i, j) 7→ ai−j is TN. These sequences have been widely studied in
function theory, approximation theory, and combinatorics. It turns out their preservers
display the same rigidity.

Theorem 1.6. Let F : [0,∞) → [0,∞). The composition map CF preserves Pólya
frequency sequences if and only if F (x) = c or F (x) = cx, with c ≥ 0.

A similar result holds for the preservers of TP Pólya frequency sequences.

In fact, we prove a more general version of Theorem 1.6 with the same rigidity,
Theorem 9.5, where the common domain of the kernels is a pair of subsets that each
contain arbitrarily long arithmetic progressions with equal increments.

As a final variation, we characterize the preservers of one-sided analogues of Pólya
frequency functions and sequences, and of Toeplitz kernels, where a kernel is said to be
one-sided if the associated function is: that is, it vanishes on an infinite semi-axis. The
preservers of such kernels, when compared to the classifications obtained in the three
previous theorems, turn out to be similarly restricted.

Theorem 1.7. Let F : [0,∞) → [0,∞). The composition map CF preserves the
following classes,

(1) one-sided Pólya frequency functions,
(2) one-sided TN measurable Toeplitz kernels on R× R,
(3) one-sided Pólya frequency sequences,

if and only if the function F has the following form in each case, where c > 0:

(1) F (x) = cx;
(2) F (x) = cx, F (x) = c1x>0, or F (x) = 0;
(3) F (x) = cx, or F (x) = 0.

These results on the preservers of Toeplitz kernels rely on work of Schoenberg and his
collaborators on Pólya frequency functions and sequences; a comprehensive exposition
of this is found in Karlin’s treatise [40].
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As expected, these classes of invariant kernels and their preservers touch harmonic
analysis, in particular the Fourier–Laplace transform. We elaborate a few details along-
side our classification proofs in the main body of this article.

As part of our analysis, we provide an example of an even Pólya frequency function
M with the property that Mn is not a Pólya frequency function for every integer n ≥ 2,
and also a one-sided version of such a function.

As a final consequence, we come full circle to classify TP preservers, by refining the
class of test matrices used to prove Theorem 1.1 and its ramifications.

Theorem 1.8. Let X and Y be infinite, totally ordered sets that admit a TP kernel
on X × Y . A function F : (0,∞) → (0,∞) is such that CF preserves the set of TP
kernels on X × Y if and only F (x) = cx with c > 0.

A similar result holds for the non-constant preservers of TN kernels on X × Y , and
for the preservers of symmetric TP or TN kernels on X ×X.

The proof for preservers of TP kernels on X×Y uses Theorem 9.5, together with the
observation that any TP kernel on X × Y may be used to realize X and Y as subsets
of R. To classify the preservers of symmetric TP kernels on X × X, we exploit and
unify in a coherent proof most of the concepts arising in this paper: Vandermonde and
Hankel kernels, Pólya frequency functions and sequences, order-preserving embeddings,
discretization, and Whitney-type density theorems.

1.3. Contents. This work has three distinct themes: preservers of TN kernels and
TP kernels, approximation of TN kernels by TP kernels, and preservers of structured
kernels possessing various forms of positivity. In Sections 3 and 4, we provide char-
acterizations for endomorphisms of TN and TP kernels, under various restrictions:
symmetric or not, matricial (having finite domains) or not, and so on. See Section 2.1
for a tabulated compilation of these. Next, in Section 5, we strengthen a result of
Vasudeva to show that TN preservation for symmetric 2 × 2 matrices with positive
entries is equivalent to preservation of positive semidefiniteness on a much smaller set,
and show that such functions must be continuous. Section 6 contains the results on
discrete Gaussian convolution required to extend Whitney’s approximation theorem
and so establish some of the preceding characterizations. Section 7 is devoted to the
classification of composition operators which preserve TN Hankel kernels defined on
a continuum, and also the TP case. Section 8 examines those transforms which leave
invariant the class of Pólya frequency functions and measurable Toeplitz kernels (for
both the TN and TP cases), and Section 9 considers the analogous Pólya frequency
sequences. The preservers of one-sided Pólya frequency functions and sequences are
characterized in Section 10. We conclude in Section 11 by completing the classification
problem for TP preservers in both the general setting and for the case of symmetric
kernels. With the practitioner in mind, our final section collects some information
about minimal test families that assure the rigidity of preservers for the larger class of
kernels to which they belong. At the end of this last section, we record some of the ad
hoc notation used in this paper.

The determination of post-composition transforms for totally positive kernels that
is obtained in the following pages may seem rather discouraging at first sight: there
are only trivial ones. However, many of the technical ingredients appearing in the
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proofs may be of independent interest, such as the Whitney-type approximation for
kernels with infinite support, the TP completion of Hankel matrices, the structure of
Loewner monotone maps, TN transforms of the Gaussian kernel, a family of even Pólya
frequency functions whose higher integer powers cease to be Pólya frequency functions,
and an order-preserving embedding of the supports of TP2-kernels into the real line.
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2. Preliminaries and overview

Throughout this paper, the abbreviation “TN” stands either for the class of totally
non-negative matrices, or the total-non-negativity property for a matrix or a kernel,
and similarly for “TP”. A kernel is a map K : X × Y → R, where X and Y are sets; a
kernel is symmetric if X = Y and K(x, y) = K(y, x) for all x, y ∈ X.

Notation 2.1. If X is a totally ordered set and n ∈ N := {1, 2, 3, . . .}, then

Xn,↑ := {x = (x1, . . . , xn) ∈ Xn : x1 < · · · < xn}

and [n] := {1, . . . , n}. If K : X × Y → R, where X and Y are totally ordered sets,
together with x ∈ Xm,↑ and y ∈ Y n,↑, then K[x;y] is defined to be the m× n matrix
such that

K[x;y]ij = K(xi, yj) (i = 1, . . . ,m; j = 1, . . . , n).

Definition 2.2. Let p ∈ N. We say that K is

(i) TNp if detK[x;y] ≥ 0 for all n ∈ [p], x ∈ Xn,↑, and y ∈ Y n,↑;

(ii) TPp if detK[x;y] > 0 for all n ∈ [p], x ∈ Xn,↑, and y ∈ Y n,↑.

If this holds, we say that the kernel is TN or TP of order p, denoted by TNp and TPp

respectively. The kernel K is said to be TN if it is TNp for all p ∈ N, and similarly for
TP, in which case the order is infinite.

Example 2.3. Given n ∈ N, positive constants u1 < · · · < un and real constants
α1 < · · · < αn, the generalized Vandermonde matrix V = (u

αj

i )ni,j=1 is totally positive

[25, Chapter XIII, §8, Example 1]. Reversing the order of both the rows and columns
of V preserves TP (and TN), so the same is true if both sets of inequalities are reversed.
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In particular, the kernels

K : I × R → R; (x, y) 7→ xy and K ′ : I ′ × R → R; (x, y) 7→ exy

are TP for any sets I ⊆ (0,∞) and I ′ ⊆ R.

Example 2.4. As a generalization of Example 2.3, let X and Y be totally ordered
sets, let gX : X → (0,∞) and gY : Y → (0,∞) be arbitrary, and let hX : X → (0,∞)
and hY : Y → R be increasing. Then the kernel

K : X × Y → (0,∞); (x, y) 7→ gX(x)hX(x)hY (y)gY (y) (2.1)

is TP. To see this, note that if n ∈ N, x ∈ Xn,↑ and y ∈ Y n,↑, then

K[x;y] = diag(gX [x])(hX(xi)
hY (yj))ni,j=1 diag(gY [y]),

where diag(gX [x]) is the matrix with (gX(x1), . . . , gX(xn)) on the leading diagonal and
zeros elsewhere, and similarly for diag(gY [y]). Example 2.3 now gives that K[x;y] has
positive determinant.

In general, for any kernel on X × Y , the properties of being TN, TNp, TP, or TPp

are each preserved after multiplying by functions gX : X → (0,∞) or gY : Y → (0,∞).

2.1. Overview of classification results for TN and TP kernels. Our primary
focus in this paper is to classify the functions which, under composition, preserve
classes of totally positive or totally non-negative kernels on X×Y , where X and Y are
totally ordered sets. In Section 3 and 4, we consider sixteen different classes of kernels,
according to the following binary possibilities:

(1) totally non-negative or totally positive;
(2) matricial, so that X and Y are finite, or non-matricial, so that at least one of

X and Y is infinite;
(3) order p with p ≥ min{|X|, |Y |} or p < min{|X|, |Y |};
(4) symmetric, requiring that X = Y , or not.

Remark 2.5. If at least one of X and Y is finite, then the preservers of TP kernels on
X×Y are precisely the preservers of TPp kernels on X×Y , for any p ≥ min{|X|, |Y |}.
The same observation holds if TP is replaced by TN, and whether or not symmetry is
imposed. Thus, the first alternative in (3) above may be replaced by p = min{|X|, |Y |}
and we do this henceforth.

We now present tabulations of our classification results from the next two sections.

Characterization of matricial non-matricial symmetric symmetric

endomorphisms matricial non-matricial

p = min{|X|, |Y |} Theorem 3.3 Corollary 3.4 Theorem 3.6 Theorem 3.6

p < min{|X|, |Y |} Theorem 3.3, Corollary 3.4, Theorem 3.7 Theorem 3.7

Remark 3.5 Remark 3.5

Table 2.1. Total non-negativity preservers
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Characterization of matricial non-matricial symmetric symmetric

endomorphisms matricial non-matricial

p = min{|X|, |Y |} Theorem 4.1 Theorem 4.4 Theorem 4.9 Corollary 4.11

p < min{|X|, |Y |} Theorem 4.4 Theorem 4.4 Theorem 4.12 Theorem 4.12

Table 2.2. Total-positivity preservers

For the most part, the conclusions in the matricial and non-matricial situations are
similar or even the same. However, and especially for TP preservers, the proofs are
harder when at least one of the index sets is infinite. In addition to the results for
the matricial cases, and the ideas behind their proofs, we require other, more involved
techniques to extend these results to kernels. A particular issue is the lack of a tractable
test set of TP kernels.

The preservers of symmetric TNp or TPp kernels differ depending on whether p =
min{|X|, |Y |} or p < min{|X|, |Y |}, and in the latter case these preservers coincide
with the preservers of all p × p matrices which are TN or TP. The proofs rely on the
careful analysis of preservers of totally non-negative kernels in each fixed dimension:
we show that our test sets of p× p matrices which are TN occur already as minors of
(p+ 1)× (p+ 1) symmetric TN matrices.

3. Total non-negativity preservers

We now begin to formulate and prove our characterization results for TN preservers.
In this section, we are interested in understanding the following family of functions.

Definition 3.1. Given two totally ordered sets X and Y , let

FTN
X,Y := {F : [0,∞) → R | if K : X × Y → R is totally non-negative, so is F ◦K}.

(3.1)

We observe first that FTN
X,Y depends on only rather coarse features of X and Y . A

totally ordered set has an ascending chain if it contains an infinite sequence of elements
x1 < x2 < · · · , and similarly for a descending chain. It is well known that an infinite
totally ordered set must contain an ascending chain or a descending chain (or both).2

We say that two totally ordered sets have chains of the same type if both contain an
ascending chain or both contain a descending chain.

Recall that [n] := {1, . . . , n} whenever n ∈ N.

Proposition 3.2. Let X and Y be totally ordered sets. Then

(1) FTN
X,Y = FTN

[n],[n] if at least one of X and Y is finite, and n = min{|X|, |Y |},

2Here is a proof for completeness: let X be infinite and totally ordered, let x1 ∈ X and suppose
{x ∈ X : x > x1} is infinite. (The proof is similar if {x ∈ X : x < x1} is infinite.) If there is no
maximum element in X, then starting from x1 one can inductively produce an ascending chain, as
desired. Else, set y1 := maxX. Inductively, given y1, . . . , yk, either the infinite set [x1, yk) has a
maximum element yk+1, or one can find an ascending chain x1 < x2 < · · · in [x1, yk) as before. Thus,
if there is no ascending chain starting from x1, there is a descending chain y1 > y2 > · · · .
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(2) FTN
X,Y = FTN

N,N if X and Y have chains of the same type,

(3) FTN
X,Y = FTN

N,−N if X and Y are infinite and do not have chains of the same
type.

Proof. The key observation is that, for any X0 ⊆ X and Y0 ⊆ Y , a totally non-
negative kernel K : X0 × Y0 → R trivially extends to a totally non-negative kernel
K̃ : X × Y → R by “padding by zeros”, that is, by setting K(x, y) = 0 whenever
(x, y) ∈ (X ×Y ) \ (X0×Y0). Conversely, it is immediate that any totally non-negative
kernel on X × Y restricts to a totally non-negative kernel on X0 × Y0.

If X and Y are both infinite, then each contains a copy of N or −N. If they both
contain copies of N, then padding by zeros gives (2); similarly, if they both contain
copies of −N, noting that reversing the order of both rows and columns preserves TN,
as observed in Example 2.3. If X and Y do not contain chains of the same type, then
(3) holds, reversing rows and columns to swap the roles of N and −N if required. □

Proposition 3.2 shows that characterising FTN
X,Y is equivalent to determining which

functions F : R → R preserve total non-negativity when applied entrywise to totally
non-negative matrices of a fixed dimension (if X or Y is finite), or to totally non-
negative matrices of all dimensions (if X and Y are infinite). The main result in this
section answers this question.

Given a domain I ⊆ R, a function F : I → R, and a matrix A = (aij) ∈ Im×n, we
denote by F [A] := (F (aij)) the matrix obtained by applying F to the entries of A. We
denote the Hadamard powers of A by A◦α := (aαij). The convention 00 := 1 is adopted
throughout.

Theorem 3.3. Let F : [0,∞) → R be a function and let d := min{m,n}, where m
and n are positive integers. The following are equivalent.

(1) F preserves total non-negativity entrywise on m× n matrices.
(2) F preserves total non-negativity entrywise on d× d matrices.
(3) F is either a non-negative constant or

(a) (d = 1) F (x) ≥ 0;
(b) (d = 2) F (x) = c1x>0 or cxα for some c > 0 and some α > 0;
(c) (d = 3) F (x) = cxα for some c > 0 and some α ≥ 1;
(d) (d ≥ 4) F (x) = cx for some c > 0.

Proof. That (1) ⇐⇒ (2) is obvious, since the minors of a m×n matrix have dimension
at most d. We will now prove that (2) ⇐⇒ (3) for each value of d.

The result is obvious when d = 1, since in this case a matrix is TN if and only if its
entry is non-negative.

Suppose F [−] preserves TN on 2× 2 matrices and note that F (x) ≥ 0 for all x ≥ 0.
Next, consider the following totally non-negative matrices:

A(x, y) :=

(
x xy
1 y

)
and B(x, y) :=

(
xy x
y 1

)
(x, y ≥ 0). (3.2)

Considering the determinants of F [A(x, y)] and F [B(x, y)] gives that

F (xy)F (1) = F (x)F (y) for all x, y ≥ 0. (3.3)
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If F (1) = 0, then F (x)F (y) = 0, so F (x) = 0 for all x ≥ 0. We will therefore assume
that F (1) > 0. If F (x) = 0 for any x > 0, then Equation (3.3) implies that F ≡ 0, so
we assume that F (x) > 0 for all x > 0. Applying F to the TN matrix(

x
√
xy√

xy y

)
(x, y ≥ 0), (3.4)

we conclude that F (
√
xy)2 ≤ F (x)F (y). As a result, the function G(x) = logF (ex) is

mid-point convex on R. Also, applying F to the TN matrix(
y x
x y

)
(y ≥ x ≥ 0)

implies that F , so G, is non-decreasing. By [52, Theorem 71.C], we conclude that
G is continuous on R, and so F is continuous on (0,∞). Moreover, since F (1) ̸= 0,
Equation (3.3) implies

F (xy)

F (1)
=

F (x)

F (1)

F (y)

F (1)
,

that is, the function F/F (1) is multiplicative. From these facts, there exists α ≥ 0 such
that F (x) = F (1)xα for all x > 0. Finally, setting y = 0 in Equation (3.3), we see that

F (0)F (1) = F (x)F (0) for all x ≥ 0.

Thus either F (0) = 0 or F ≡ F (1); in either case, the function F has the required
form. The converse is immediate, and this proves the result in the case d = 2.

Next, suppose F preserves TN on 3×3 matrices and is non-constant. Since the matrix
A⊕ 01×1 is totally non-negative if the 2× 2 matrix A is, we conclude by part (b) that
F (x) = cxα for some c > 0 and α ≥ 0. The matrix

C :=

 1 1/
√
2 0

1/
√
2 1 1/

√
2

0 1/
√
2 1

 (3.5)

is totally non-negative, and detF [C] = c3(1−21−α). It follows that F does not preserve
TN on 3× 3 matrices when α < 1. For higher powers, we use the following result [39,
Theorem 4.2]; see [20, Theorem 5.2] for a shorter proof.

α ≥ 1 =⇒ xα preserves TN and TP on 3× 3 matrices. (3.6)

This concludes the proof of the case d = 3.
Finally, suppose F is non-constant and preserves TN on 4× 4 matrices. Similarly to

the above, considering matrices of the form A⊕01×1 gives, by part (c), that F (x) = cxα

for some c > 0 and some α ≥ 1. We now appeal to [20, Example 5.8], which examines
Hadamard powers of the family of matrices N(ε, x) := 14×4 + xM(ε), where

14×4 :=


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 and M(ε) :=


0 0 0 0
0 1 2 3
0 2 4 + ε 6 + 5

2ε
0 3 8 14 + ε

 . (3.7)
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As shown therein, the matrix N(ε, x) is TN for all ε ∈ (0, 1) and x > 0. Moreover, for
small x and any α > 1, the determinant of the Hadamard power

detN(ε, x)◦α = ε2α3x3 +
1

4
(8− 70ε− 59ε2 − 4ε3)(α3 − α4)x4 +O(x5).

Thus detF [N(ε, x)] < 0 for sufficiently small ε = ε(α) > 0 and x > 0. We conclude
that F (x) = cx if d = 4. More generally, if F preserves TN on d × d matrices, where
d ≥ 4, then F also preserves TN on 4× 4 matrices, and so F (x) = cx for some c > 0,
as desired. The converse is immediate. □

Proposition 3.2 and Theorem 3.3 immediately combine to yield the following exact
description of the set FTN

X,Y .

Corollary 3.4. Let X and Y be totally ordered sets. Then

(1) FTN
X,Y = {F : R → R | F (x) ≥ 0 for all x ∈ R} if min{|X|, |Y |} = 1.

(2) FTN
X,Y = {c, c1x>0, cxα : c ≥ 0, α > 0} if min{|X|, |Y |} = 2.

(3) FTN
X,Y = {c, cxα : c ≥ 0, α ≥ 1} if min{|X|, |Y |} = 3.

(4) FTN
X,Y = {c, cx : c ≥ 0} if min{|X|, |Y |} ≥ 4 or if X and Y are infinite.

Remark 3.5. Given a positive integer p ≤ min{|X|, |Y |}, Corollary 3.4 immediately
classifies the collection of all functions mapping the set of TNp kernels on X × Y to
itself. This is because any TNp kernel on [p] × Y or X × [p] extends by “padding by
zeros”, as in the proof of Proposition 3.2, to a TN kernel on X × Y .

3.1. Preservers of symmetric TN matrices and kernels. Theorem 3.3 and Corol-
lary 3.4 have a natural analogue for totally non-negative matrices and kernels which
are symmetric. Note that any such matrix has non-negative principal minors and is
therefore positive semidefinite.

Theorem 3.6. Let F : [0,∞) → R and let d be a positive integer. The following are
equivalent.

(1) F preserves total non-negativity entrywise on symmetric d× d matrices.
(2) F is either a non-negative constant or

(a) (d = 1) F (x) ≥ 0;
(b) (d = 2) F is non-negative, non-decreasing, and multiplicatively mid-convex,

that is, F (
√
xy)2 ≤ F (x)F (y) for all x, y ∈ [0,∞), so continuous on

(0,∞);
(c) (d = 3) F (x) = cxα for some c > 0 and some α ≥ 1;
(d) (d = 4) F (x) = cxα for some c > 0 and some α ∈ {1} ∪ [2,∞);
(e) (d ≥ 5) F (x) = cx for some c > 0.

The same characterizations hold for the preservers of symmetric TN kernels on X×X,
where X is a totally ordered set of size d, which may now be infinite.

Proof. The result is trivial when d = 1. When d = 2, a symmetric matrix is TN if and
only if it is positive semidefinite, so part (b) follows immediately from [30, Theorem 2.5].

Now, suppose F preserves TN entrywise on symmetric 3 × 3 matrices and is non-
constant. Considering matrices of the form A ⊕ 01×1, it follows from part (b) that F
is non-decreasing and continuous on (0,∞). Applying F entrywise to the matrix x Id3
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for x > 0, where Id3 is the 3× 3 identity matrix, it follows easily that F (0) = 0. Next,
let L := limε→0+ F (ε), which exists since F is non-decreasing, and let C be the TN
matrix in Equation (3.5). Then 0 ≤ limε→0+ detF [εC] = −L3, whence L = 0. Thus F
is continuous on [0,∞). Next, consider the symmetric totally non-negative matrices

A′(x, y) :=

x2 x xy
x 1 y
xy y y2

 and B′(x, y) :=

x2y xy x
xy y 1
x 1 1/y

 (x ≥ 0, y > 0).

(3.8)
Note that A′(x, y) contains the matrix A(x, y) from Equation (3.2) as a submatrix, and
the same is true for B′(x, y) and B(x, y). As in the proof of Theorem 3.3(a), it follows
that

F (xy)F (1) = F (x)F (y) for all x, y ≥ 0.

Proceeding as there, and noting that the matrix C from Equation (3.5) is symmetric,
we obtain c > 0 and α ≥ 1 such that F (x) = cxα. Moreover, each function of this form
preserves TN entrywise, by (3.6). This concludes the proof of part (c).

To prove (d), we suppose the non-constant function F preserves TN on symmetric
4× 4 matrices, and use part (c) with the usual embedding to obtain c > 0 and α ≥ 1
such that F (x) = cxα. To rule out α ∈ (1, 2), let x ∈ (0, 1) and note that the infinite
matrix (1 + xi+j)i,j≥0 is the moment matrix of the two-point measure δ1 + δx. Its
leading principal 4×4 submatrix D is TN, by classical results in the theory of moments
[26, 61], but if α ∈ (1, 2) then D◦α is not positive semidefinite, hence not TN, by [38,
Theorem 1.1]. The converse follows from [20, Proposition 5.6]. This proves (d).

Finally, suppose F is non-constant and preserves TN on 5 × 5 symmetric matrices,
and apply part (d) to obtain c > 0 and α ∈ {1} ∪ [2,∞) such that F (x) = cxα. To
rule out the case α ≥ 2, we appeal to [20, Example 5.10], which studies the symmetric,
totally non-negative matrices

T (x) := 15×5 + x


2 3 6 14 36
3 6 14 36 98
6 14 36 98 276
14 36 98 284 842
36 98 276 842 2604

 (x > 0). (3.9)

It is shown there that, for every α > 1, there exists ε = ε(α) > 0 such that the upper
right 4× 4 submatrix of T (x)◦α has negative determinant whenever x ∈ (0, ε). It now
follows that F (x) = cx if d = 5. The general case, where d ≥ 5, follows by the usual
embedding trick, and the converse is once again immediate.

The final assertion is immediate, via padding by zeros. □

We conclude this section with a characterization of symmetric TNp preservers which
is parallel to Remark 3.5.

Theorem 3.7. Let F : [0,∞) → R and let d and p be positive integers, with p < d.
The following are equivalent.

(1) F preserves TNp entrywise on symmetric d× d matrices.
(2) F preserves TNp entrywise on d× d matrices.
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(3) F is either a non-negative constant or
(a) (p = 1) F (x) ≥ 0;
(b) (p = 2) F (x) = cxα for some c > 0 and some α ≥ 0;
(c) (p = 3) F (x) = cxα for some c > 0 and some α ≥ 1;
(d) (p ≥ 4) F (x) = cx for some c > 0.

The same functions characterize the preservers of symmetric TNp kernels on X ×X,
where X is a totally ordered set of size at least p+ 1 (and possibly infinite).

In a sense, this result not immediately following from Theorem 3.6 is a manifestation
of the fact that the definition of TNp for a symmetric kernel differs from asking for every
principal r × r minor being non-negative for 1 ≤ r ≤ p.

Proof. That (2) =⇒ (1) is immediate, while the equivalence (2) ⇐⇒ (3) follows from
Theorem 3.3, since (2) is equivalent to preserving TN for p × p matrices. To see that
(1) =⇒ (3), it suffices to note that test matrices used to prove Theorems 3.3 and 3.6
occur as submatrices of d× d symmetric matrices which are TNp.

This is immediate for p = 1, while for p = 2 the matrices in (3.2) and (3.4) embed as
required, using (3.8) for the former and padding with zeros as necessary. Now working
as in the proof of Theorem 3.3(b) gives that F (x) = cxα with c > 0 and α ≥ 0.

Next, suppose p = 3. Then the p = 2 case, together with the matrix (3.5), implies
as in the proof of Theorem 3.3(c) that α ≥ 1. Finally, if p = 4, then the matrices (3.9)
imply as in the proof of Theorem 3.6(e) that α = 1.

This concludes the proof for matrices, and the extension to kernels follows once again
via padding by zeros. □

4. Total-positivity preservers. I. Semi-finite domains

We now turn to the more challenging problem of determining the functions which
leave invariant the set of totally positive kernels,

FTP
X,Y := {F : (0,∞) → R | if K : X × Y → R is totally positive, so is F ◦K}.

There are two technical challenges one encounters once the underlying inequalities are
strict. First, the embedding technique used to prove Theorem 3.3, which realises totally
non-negative d × d matrices as submatrices of totally non-negative (d + 1) × (d + 1)
matrices, is lost. Second, the crucial property of multiplicative mid-point convexity
is no longer available, since the matrices in (3.2) and (3.4) are not always totally
positive. Following the approach of the previous section, we begin by indicating how
these challenges can be addressed in the finite-dimensional case.

Theorem 4.1. Let F : (0,∞) → R be a function and let d := min{m,n}, where m
and n are positive integers. The following are equivalent.

(1) F preserves total positivity entrywise on m× n matrices.
(2) F preserves total positivity entrywise on d× d matrices.
(3) The function F satisfies

(a) (d = 1) F (x) > 0;
(b) (d = 2) F (x) = cxα for some c > 0 and some α > 0;
(c) (d = 3) F (x) = cxα for some c > 0 and some α ≥ 1.
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(d) (d ≥ 4) F (x) = cx for some c > 0.

In order to prove Theorem 4.1, we formulate two auxiliary results. We say that
an m × n matrix (aij) occurs as a submatrix of a kernel K on X × Y if there exist
x1 < · · · < xm and y1 < · · · < yn such that aij = K(xi, yj) for all i ∈ [m] and j ∈ [n].

Lemma 4.2. Fix integers m ≥ 2 and n ≥ 2. Every totally positive 2 × 2 matrix
occurs as the leading principal submatrix of a positive multiple of a m× n generalized
Vandermonde matrix, which is necessarily totally positive.

In fact, any TP 2 × 2 matrix can be embedded at any specified location within
a generalized Vandermonde matrix.3 A stronger version of this result is given by
Theorem 4.6 below.

Lemma 4.2 is an example of a totally positive completion problem [19]. Embed-
ding results are known for arbitrary totally positive matrices, using, for example, the
exterior-bordering technique discussed in [18, Chapter 9] or the parametrizations avail-
able in [11, 24]. Lemma 4.2 has the advantage of providing an explicit embedding into
the well-known class of Vandermonde kernels, and is crucial to our final characterization
results, found in the penultimate section of this paper.

The second result we require is a density theorem derived by A.M. Whitney in 1952,
using generalized Vandermonde matrices and the Cauchy–Binet identity. The symmet-
ric variant has the same proof as the version without this requirement.

Theorem 4.3 (Whitney, [66, Theorem 1]). Given positive integers m, n, and p, the
set of TPp m × n matrices is dense in the set of TNp m × n matrices. The same is
true if both sets of matrices are taken to be symmetric.

With these two observations to hand, we can now classify total-positivity preservers.

Proof of Theorem 4.1. That (3) =⇒ (2) and (2) =⇒ (1) are immediate, with the
former using (3.6) when d = 3. We now prove that (1) =⇒ (3). The case d = 1 is
immediate, so we assume that d ≥ 2. By Lemma 4.2, the map F [−] preserves TP on
2× 2 matrices. Considering the action of F [−] on the matrices(

y x
x x

)
(y > x > 0)

gives that F takes positive values and is increasing on (0,∞). Thus F is Borel mea-
surable and continuous outside a countable set. Let a > 0 be a point of continuity and
consider the totally positive matrices

A(x, y, ε) :=

(
ax axy

a− ε ay

)
and B(x, y, ε) :=

(
axy ax
ay a+ ε

)
(x, y > 0, 0 < ε < a).

Then

0 ≤ lim
ε→0+

detF [A(x, y, ε)] = F (ax)F (ay)− F (axy)F (a)

and 0 ≤ lim
ε→0+

detF [B(x, y, ε)] = F (a)F (axy)− F (ax)F (ay).

3We thank Prakhar Gupta and Pranjal Warade for this observation.
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Hence, letting G(x) := F (ax)/F (a), we have that

G(xy) = G(x)G(y) for all x, y > 0.

Since G is measurable, classical results of Sierpińsky [62] and Banach [5] on the Cauchy
functional equation imply there exists α ∈ R such that G(x) = xα for all x > 0. Thus
if c := F (a)a−α > 0, then

F (x) = F (a)(x/a)α = cxα for all x > 0.

As F is increasing, it holds that α > 0. Hence F (x) = cxα for some c > 0 and α > 0.
The result follows immediately if d = 2.

Finally, suppose d ≥ 3. Since F (x) = cxα for some c > 0 and α > 0, it admits

a continuous extension F̃ to [0,∞). By Theorem 4.3, we conclude that F̃ preserves

TN entrywise on m × n matrices. Theorem 3.3 gives the form of F̃ , and restricting
to (0,∞) shows that F is as claimed. This proves that (1) =⇒ (3), which completes
the proof. □

The proof of Theorem 4.1 relies on Lemma 4.2; we will prove a stronger result
presently. For now, we determine the set FTP

X,Y when at most one of X and Y is
infinite.

Theorem 4.4. Let X and Y be non-empty totally ordered sets. Then

(a) FTP
X,Y = {F : (0,∞) → (0,∞)} if min{|X|, |Y |} = 1.

(b) FTP
X,Y = {cxα : c > 0, α > 0} if min{|X|, |Y |} = 2.

(c) FTP
X,Y = {cxα : c > 0, α ≥ 1} if min{|X|, |Y |} = 3.

(d) FTP
X,Y = {cx : c > 0} if 4 ≤ min{|X|, |Y |} < ∞.

Furthermore, if p ∈ N and both X and Y are of size at least p (and possibly infinite),
then the functions preserving TPp kernels on X × Y are as above, with min{|X|, |Y |}
replaced by p.

When X and Y are both finite, Theorem 4.4 follows directly from Theorem 4.1. The
case where one of X or Y is infinite is significantly more complicated. First, observe
that for X0 ⊆ X and Y0 ⊆ Y , a TP kernel on X0 × Y0 cannot be extended to a TP
kernel on X × Y simply by “padding by zeros”, that is, by defining K(x, y) = 0 on
the complement of X0 × Y0. In the absence of a suitable extension result, we instead
generalize Whitney’s approximation theorem (Theorem 4.3) to arbitrary domains; see
Theorem 1.2 above. The proof is obtained in Section 6 with the help of a form of
discretized Gaussian convolution.

Moreover, contrary to the TN case of Proposition 3.2, the set FTP
X,Y does not only

depend on whether X and Y are finite or not. For example, suppose X is of cardinality
strictly larger than the continuum, and |Y | ≥ 2. Choose distinct y1 and y2 in Y ; since
|X| > |R2|, by the pigeonhole principle it follows that K|X×{y1,y2} contains a 2 × 2
submatrix with equal columns, which is therefore singular. This shows that K cannot
be TP, and the “test set” in FTP

X,Y is, in fact, empty. Thus, the existence of a TP kernel
on X × Y already imposes constraints on the sets X and Y .

The following result characterizes such sets, which must be order-isomorphic to sub-
sets of the real line.
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Lemma 4.5. Suppose X and Y are non-empty totally ordered sets. The following are
equivalent.

(1) There exists a totally positive kernel K : X × Y → R.
(2) There exists a TP2 kernel K : X × Y → R.
(3) Either X or Y is a singleton, or there exist order-preserving injections from X

and Y into (0,∞).

The same equivalence holds if X = Y and the kernels in (1) and (2) are taken to be
symmetric.

Proof. If (3) holds and X or Y is a singleton, then the constant kernel K ≡ 1 shows
that (1) holds. Otherwise, identify X and Y with subsets of R via order-preserving
injections, and note that the restriction of K ′ from Example 2.3 is totally positive.
Hence (3) =⇒ (1). Clearly (1) =⇒ (2), so it remains to show that (2) =⇒ (3).

Suppose (2) holds, and neither X nor Y is a singleton. Fix y1 < y2 in Y ; the TP2

property of K implies that the ratio function

φ : X → (0,∞); x 7→ K(x, y2)/K(x, y1)

is strictly increasing, so is an order-preserving injection. The same working applies
with the roles of X and Y exchanged, and so (3) holds.

Finally, note that the same proof goes through verbatim if X = Y and all kernels
under consideration are required to be symmetric. □

Lemma 4.5 is useful not only in proving Theorem 4.4, but also for proving a stronger
form of Lemma 4.2 that was promised above. A TP 2× 2 matrix, which is necessarily
proportional to one of generalized Vandermonde form, can be embedded in any position,
not just in a TP matrix, but in a Vandermonde kernel on an essentially arbitrary
domain.

Theorem 4.6. Let A be a real 2× 2 matrix. The following are equivalent.

(1) Given {i1 < i2} ⊆ [m] and {j1 < j2} ⊆ [n], where m, n ≥ 2, there exists

an m × n matrix Ã, which is a positive multiple of generalized Vandermonde

matrix, such that Ãip,jq = apq for p, q = 1, 2.
(2) Given totally ordered sets X and Y , such that X × Y admits a TP kernel, and

pairs {x1 < x2} ⊆ X and {y1 < y2} ⊆ Y , there exists a TP kernel K on X×Y
such that K[(x1, x2); (y1, y2)] = A.

(3) The matrix A is TP.

This immediately implies Lemma 4.2, and so completes the proof of Theorem 4.1.

Proof. Clearly, (1) and (2) each imply (3). We will show that (3) =⇒ (2); the
construction used for this also shows that (3) =⇒ (1). Furthermore, as X and Y both
embed inside R, by Lemma 4.5, henceforth we will consider X and Y to be subsets
of R.

We first show that an arbitrary TP 2×2 matrix A has the form λ−1(u
αj

i )2i,j=1, where
the terms λ, u1, and u2 are positive, α1 and α2 are real, and either u1 < u2 and
α1 < α2, or u1 > u2 and α1 > α2. The proof goes through various cases.
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Suppose first that three entries of A are equal. Rescaling the matrix A, there are
four cases to consider:

A1 =

(
x 1
1 1

)
, A2 =

(
1 y
1 1

)
, A3 =

(
1 1
y 1

)
, and A4 =

(
1 1
1 x

)
,

where x > 1 and 0 < y < 1. In the first case, the matrix A1 equals (u
αj

i ) where u1 = x,
u2 = 1, α1 = 1, and α2 = 0. A similar construction can easily be obtained for A2, A3,
and A4.

Next, suppose two entries in a row or column of A are equal. There are again four
cases:

A5 =

(
1 1
x y

)
, A6 =

(
y x
1 1

)
, A7 =

(
y 1
x 1

)
, and A8 =

(
1 x
1 y

)
,

where y > x > 0 and x, y ̸= 1. For A5, we can take u1 = 1, u2 = x, α1 = 1, and
α2 = log y/ log x. If u1 < u2, then α1 < α2; similarly, when u1 > u2, we have that
α1 > α2. Thus A5 can be written as desired. The other cases are similar.

The remaining case is when

A :=

(
v w
x y

)
(v, w, x, y > 0, vy − wx > 0),

with {v, y} ∩ {w, x} = ∅. We claim there exist λ, u1, u2 > 0, α1 = 1, and α2 such that

λ

(
v w
x y

)
=

(
u1 uα2

1
u2 uα2

2

)
,

and either u1 < u2 and α1 < α2, or u1 > u2 and α1 > α2. Applying the logarithm
entrywise to both matrices and computing the determinants gives that

(L+ V )(L+ Y ) = (L+W )(L+X),

where L = log λ, V = log v, W = logw, X = log x, and Y = log y. This yields a linear
equation in L, whence

λ = exp

(
logw log x− log v log y

log(vy/wx)

)
.

Clearly, u1 = λv and u2 = λx. Solving for α2 explicitly, we obtain

α2 =
log(w/y)

log(v/x)
.

There are now two cases: if u1 < u2, then v < x, so w/y < v/x < 1 and α2 > 1 = α1.
If, instead, u1 > u2, then v/x > 1 and α2 < 1 = α1.

Thus, for some λ > 0, the matrix λA is of the form (exp(αiβj))
2
i,j=1 with either

α1 < α2 and β1 < β2, or α1 > α2 and β1 > β2. Furthermore, the latter case reduces to
the former, since

λA = (exp(α′
iβ

′
j))

2
i,j=1, with α′

i = −αi and β′
j = −βj .

Thus A occurs as a submatrix of the scaled Vandermonde kernel

R× R → R; (x, y) 7→ λ−1 exp(xy).
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To pass to a kernel on X × Y , where X and Y are real sets, fix x1, x2 ∈ X and y1,
y2 ∈ Y , where x1 < x2 and y1 < y2, and let φX : X → R and φY : Y → R be the
unique linear maps such that φX(xi) := αi and φY (yj) := βj (i, j = 1, 2). Then A
occurs as the submatrix K[(x1, x2); (y1, y2)] of the kernel

K : X × Y → R; (x, y) 7→ λ−1 exp(φX(x)φY (y)). □

Using these results, we can now classify the preservers of TP kernels on possibly
infinite domains.

Proof of Theorem 4.4. We consider the two settings in a uniform manner: suppose
p ∈ N and either (i) p = min{|X|, |Y |} and F preserves TP kernels on X ×Y , or (ii) X
and Y both have size at least p and F preserves TPp kernels on X × Y .

If p = 1 then the result is immediate, so suppose p ≥ 2. By Lemma 4.5, X and Y can
be identified with subsets of (0,∞). Furthermore, by Lemma 4.2 and using suitable
order-preserving maps, every TP 2× 2 matrix can be realized as a submatrix of a TP
kernel on X×Y . Hence, by Theorem 4.1(3b), the function F has the form F (x) = cxα

for some c > 0 and α > 0. Conversely, every such F is easily seen to satisfy (i) and (ii)
above, which completes the case p = 2.

Otherwise, note first that F extends continuously to [0,∞). Let d = min{p, 4} and
suppose A = (aij)

d
i,j=1 is TN. Fix x ∈ Xd,↑ and y ∈ Y d,↑, and let ε > 0 be such that

min{xi+1 − xi, yi+1 − yi : i ∈ [d− 1]} > 2ε, where X and Y are identified with subsets
of R. Define

K : R× R → R; (x, y) 7→

{
aij if |x− xi| < ε and |y − yj | < ε (i, j ∈ [d]),

0 otherwise.

Then K is TNp and, by Theorem 1.2, there exists a sequence of TPp kernels (Kl)l≥1

converging to K at (xi, yj) for all i, j ∈ [d]. Hence F ◦ Kl is TPp for all l ≥ 1 and
therefore F [A] is TN. Since A was arbitrary, it follows that F preserves TN entrywise
on d× d matrices. By Theorem 3.3, we see that F has the form claimed. The converse
follows from Theorem 4.1(3c) and (3d). □

The classification problems for preservers of TP kernels on X × Y is still to be
resolved in the case when X and Y are both infinite, and the same is true when X = Y
and the kernels are required to be symmetric. As a first step in this direction, we show
next that any such preserver must be a power function.

Proposition 4.7. Suppose X and Y are totally ordered sets, each of size at least 2
and possibly infinite. If there exists a TP kernel on X × Y , and F : (0,∞) → (0,∞)
preserves all such kernels, or all TP2 kernels on X × Y , then F (x) = cxα for some
c > 0 and α > 0. The same holds if X = Y and the kernels are taken to be symmetric.

Proof. By Theorem 4.6, any TP 2×2 matrix A has the form λ−1(exp(αiβj))
2
i,j=1, where

λ > 0, α1 < α2, and β1 < β2. Fix x1 < x2 in X and y1 < y2 in Y , considered as subsets
of R, and let α : X → R and β : Y → R be order-preserving bijections such that
α(xi) = αi and β(yj) = βj for i, j = 1, 2. Then the kernel

K : X × Y → R; (x, y) 7→ λ−1 exp(α(x)β(y))
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is totally positive and contains A as a submatrix; since F ◦K is totally positive and A
is arbitrary, it follows from Theorem 4.1 that F has the form claimed.

If X = Y then we may arrange that α = β, in which case K is symmetric. Thus, F
has the same form as before. □

The full resolution of this classification question when X and Y are infinite is pro-
vided in Section 11. For now, we apply Proposition 4.7 to classify the TP preservers
on Vandermonde matrices.

Corollary 4.8. The functions which preserve the TP property of the scaled Vander-
monde kernels

R× R → R; (x, y) 7→ µ exp(xy) (µ > 0)

are precisely the power functions F (x) = cxα, where c > 0 and α > 0. The same holds
if “TP” is replaced by “TP2”.

4.1. Preservers of symmetric TP matrices. As in the totally non-negative case,
Theorems 4.1 and 4.4 have analogues for symmetric matrices and kernels. The following
result should be compared with Theorem 3.6.

Theorem 4.9. Let F : (0,∞) → R and let d be a positive integer. The following are
equivalent.

(1) F preserves total positivity entrywise on symmetric d× d matrices.
(2) The function F satisfies

(a) (d = 1) F (x) > 0;
(b) (d = 2) F is positive, increasing, and multiplicatively mid-convex, that is,

F (
√
xy)2 ≤ F (x)F (y) for all x, y ∈ (0,∞), so continuous;

(c) (d = 3) F (x) = cxα for some c > 0 and some α ≥ 1;
(d) (d = 4) F (x) = cxα for some c > 0 and some α ∈ {1} ∪ [2,∞).
(e) (d ≥ 5) F (x) = cx for some c > 0.

We now outline our proof strategy. Akin to Theorem 4.1, the idea is to derive the
continuity of F from the 2 × 2 case, without the use of multiplicative mid-convexity,
and then use the density of symmetric TP matrices in symmetric TN matrices. For the
first step, we require the solution of a symmetric totally positive completion problem.
The following result is analogous to Theorem 4.6.

Theorem 4.10. Let the real 2×2 matrix A be symmetric. The following are equivalent.

(1) For any d ≥ 2 and any pair {k1 < k2} ⊆ [d], there exists a TP Hankel d × d

matrix Ã such that Ãkp,kq = Apq for p, q = 1, 2.
(2) Given a totally ordered set X, such that X×X admits a TP kernel, and a pair

{x1 < x2} ⊆ X, there exists a TP continuous Hankel kernel K on X ×X such
that K[(x1, x2); (x1, x2)] = A.

(3) The matrix A is TP.

Proof. Clearly (1) and (2) each imply (3), and (1) is a special case of (2). We will show
that (3) implies (2).
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The general form of a TP symmetric 2× 2 matrix is

A =

(
a b
b c

)
(a, b, c > 0, ac > b2).

If α = 1
2 log(ac/b

2) and β = 1
2 log(b

4/a3c), then the continuous Hankel kernel

K : R× R → R; (x, y) 7→ a exp(α(x+ y)2 + β(x+ y)),

which is TP by Examples 2.3 and 2.4, contains A as the submatrix K[(0, 1); (0, 1)].
Working as in the final paragraph of the proof of Theorem 4.6 gives the general result.

□

With Theorem 4.10 at hand, we can classify the preservers of total positivity on the
set of symmetric matrices.

Proof of Theorem 4.9. The result is clear when d = 1, so we assume d ≥ 2 henceforth.
First, suppose (1) holds. By Theorem 4.10, F [−] must preserve total positivity for
symmetric 2× 2 matrices. As shown in the proof of Theorem 4.1, it follows that F is
positive and increasing on (0,∞). In particular, F has countably many discontinuities,
and each of these is a jump. Let F+(x) := limy→x+ F (y) for all x > 0. Then F+ is
increasing, coincides with F at every point where F is right continuous, and has the
same jump as F at every point where F is not right continuous. Applying F [−] to the
totally positive matrices

M(x, y, ε) :=

(
x+ ε

√
xy + ε√

xy + ε y + ε

)
(x, y, ε > 0, x ̸= y),

it follows that

F (
√
xy + ε)2 < F (x+ ε)F (y + ε).

Letting ε → 0+, we conclude that

F+(
√
xy)2 ≤ F+(x)F+(y) for all x, y > 0;

this inequality holds trivially when x = y. Thus F+ is multiplicatively mid-convex
on (0,∞). As in the proof of Theorem 3.3, it follows by [52, Theorem 71.C] that F+

is continuous. We conclude that F has no jumps and is therefore also continuous.
For d = 2, this completes the proof that (1) =⇒ (2). If, instead, d ≥ 3, note that

F extends to a continuous function F̃ on [0,∞). As observed in [20, Theorem 2.6],
the set of symmetric totally positive r × r matrices is dense in the set of symmetric
totally non-negative r × r matrices. By continuity, it follows that F̃ preserves total
non-negativity entrywise, and (2) now follows immediately from Theorem 3.6.

Conversely, suppose (2) holds for d = 2, and consider the totally positive matrix

A =

(
a b
b c

)
(a, b, c > 0, ac− b2 > 0).

Since F is increasing, we have F (
√
b2) < F (

√
ac). Using the multiplicative convexity

of F , we conclude that

F (b)2 = F (
√
b2)2 < F (

√
ac)2 ≤ F (a)F (c).
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Thus F [A] is totally positive and (1) holds. The implications for d = 3 and d = 4
follow from [20, Theorem 5.2 and Proposition 5.6], respectively, and the case of d = 5
is clear. □

4.2. Preservers of symmetric TP kernels. The following result is the immediate
reformulation of Theorem 4.9 to the setting of matricial kernels.

Corollary 4.11. Let X be a totally ordered set of size d ∈ N, and let F : (0,∞) → R.
Then F ◦K is totally positive for any symmetric totally positive kernel K : X×X → R
if and only if

(a) (d = 1) F (x) > 0;
(b) (d = 2) F is positive, increasing, and multiplicatively mid-convex, that is,

F (
√
xy)2 ≤ F (x)F (y) for all x, y ∈ (0,∞), so continuous;

(c) (d = 3) F (x) = cxα for some c > 0 and some α ≥ 1;
(d) (d = 4) F (x) = cxα for some c > 0 and some α ∈ {1} ∪ [2,∞);
(e) (d ≥ 5) F (x) = cx for some c > 0.

Next, we formulate and prove a parallel result, in the spirit of the final assertion in
Theorem 4.4.

Theorem 4.12. Let F : (0,∞) → R and let p and d be positive integers, with p < d.
The following are equivalent.

(1) F preserves TPp entrywise on symmetric d× d matrices.
(2) F preserves TPp entrywise on d× d matrices.
(3) F preserves TP entrywise on p× p matrices.
(4) The function F satisfies

(a) (p = 1) F (x) > 0;
(b) (p = 2) F (x) = cxα for some c > 0 and some α > 0;
(c) (p = 3) F (x) = cxα for some c > 0 and some α ≥ 1;
(d) (p ≥ 4) F (x) = cx for some c > 0.

The same functions characterize the preservers of symmetric TPp kernels on X ×X,
where X is a totally ordered set of size at least p+ 1 (and possibly infinite).

Proof. By Theorem 4.4, the statements (2), (3) and (4) are equivalent, and clearly
(2) =⇒ (1). Now suppose (1) holds; we show (4) in several steps. If p = 1, then (4) is
immediate, so we suppose henceforth that p ≥ 2. Now, by Lemma 4.10, every symmet-
ric 2× 2 TP matrix admits an extension to a symmetric d× d TP matrix. Repeating
the proof of Theorem 4.9, it follows that F is continuous. Hence F admits a contin-

uous extension F̃ to [0,∞), so, by the symmetric version of Whitney’s Theorem 4.3,

it follows that F̃ preserves the class of symmetric TNp d× d matrices. The claim now
follows from Theorem 3.7 and the fact that F cannot be constant.

For the final assertion involving kernels, first note that if F is as in (4), then (2)
holds, and so F preserves symmetric TPp kernels on X × X. Conversely, suppose F
preserves the symmetric TPp kernels on X×X. Then the arguments using in the proof
of Theorem 4.4 show that (1) =⇒ (4), with Theorem 4.9 giving continuity of F when
p ≥ 2 and Theorem 3.7 used in place of Theorem 3.3. □
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5. Total-positivity preservers are continuous

As the vigilant reader will have noticed, we have shown above two similar assertions,
that an entrywise map F [−] preserves total non-negativity on the set of 2×2 symmetric
matrices if and only if F is non-negative, non-decreasing, and multiplicatively mid-
convex, with the corresponding changes if weak inequalities are replaced by strict ones.
The variation lies in reducing the set of test matrices with which to work, while arriving
at very similar conclusions.

Such a result was proved originally by Vasudeva [63], when classifying the entrywise
preservers of positive semidefiniteness for 2× 2 matrices with positive entries. To date,
this remains the only known classification of positivity preservers in a fixed dimension
greater than 1.

It is natural to seek a common strengthening of the results above, as well as of
Vasudeva’s result. We conclude by recording for completeness such a characterization,
which uses a small test set of totally positive 2× 2 matrices.

Notation 5.1. Let P denote the set of symmetric totally non-negative 2× 2 matrices
with positive entries, and let the subsets

P ′ :=

{
A(a, b) :=

(
a b
b a

)
: a > b > 0, a and b not both irrational

}
and P ′′ :=

{
B(a, b, c) :=

(
a b
b c

)
: a, b, c > 0, ac > b2, a, b and c rational

}
.

Theorem 5.2. Let F : (0,∞) → R be a function. The following are equivalent.

(1) The map F [−] preserves total non-negativity on the set P.
(2) The function F is non-negative, non-decreasing, and multiplicatively mid-convex

on (0,∞).
(3) The map F [−] preserves positive semidefiniteness on the set P ′ ∪ P ′′.

Moreover, every such function is continuous, and is either nowhere zero or identically
zero.

The sets P ′ and P ′′ are in bijection with the sets (R×Q)∪(Q×R) and Q, respectively,
whereas P is a three-parameter family. The equivalence of (1) and (2) is Vasudeva’s
result.

Proof. To see that (2) =⇒ (1), note that if A =

(
a b
b c

)
∈ P, then a, b, c > 0 and

0 < b ≤
√
ac. By (2), the matrix F [A] has non-negative entries and

0 ≤ F (b)2 ≤ F (
√
ac)2 ≤ F (a)F (c),

so F [A] is totally non-negative. Clearly, (1) =⇒ (3). The main challenge in the
proof is to show (3) =⇒ (2). The first step is to observe that F is non-negative and
non-decreasing on (0,∞). Let y > x > 0, choose rational a such that x < a < y, and
consider the matrices F [A(a, x)] and F [A(y, a)], which are both positive semidefinite.
From this, it follows that F (y) is non-negative, and F (y)2 ≥ F (a)2 ≥ F (x)2.

We now show that F is identically zero if it vanishes anywhere. Suppose F (x) = 0
for some x > 0. Then, as F is non-decreasing and non-negative, F ≡ 0 on (0, x].
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Given y > x > 0, choose rational b and c such that 0 < c < x < y < b. Considering
F [B(1 + (b2/c), b, c)] and then F [A(b, y)] shows that F (b) = 0 and then F (y) = 0. It
follows that F ≡ 0.

Finally, we claim that F is multiplicatively mid-convex and continuous. Clearly this
holds if F ≡ 0, so we assume that F is never zero. We first show that the function

F+ : (0,∞) → [0,∞); F+(x) := lim
y→x+

F (y)

is multiplicatively mid-convex and continuous. Note that F+ is well defined because
F is monotone. Given x, y > 0, we choose rational numbers an ∈ (x, x + 1/n) and
cn ∈ (y, y + 1/n) for each positive integer n. Since ancn > xy, we may choose rational
bn ∈ (

√
xy,

√
ancn). The matrix B(an, bn, cn) ∈ P ′′ for each n, therefore

0 ≤ lim
n→∞

detF [B(an, bn, cn)] = F+(x)F+(y)− F+(
√
xy)2.

Thus F+ is multiplicatively mid-convex on (0,∞), and F+ is non-decreasing since F
is. Repeating the argument in the proof of Theorem 3.3, which requires the function
to take positive values, it follows that F+ is continuous. Hence F and F+ are equal,
and this gives the result. □

Remark 5.3. The analogous version of Theorem 5.2 holds for any bounded domain,
that is, for matrices with entries in (0, ρ), with ρ > 0. The proof is a minimal modi-
fication of that given above, except for the argument to show that either F ≡ 0 or F
vanishes nowhere. For this, see [30, Proposition 3.2(2)]. Also, it is clear that the set of
rational numbers in the definitions of P ′ and P ′′ may be replaced with any countable
dense subset of the domain of F .

6. Extensions of Whitney’s approximation theorem

The present section is devoted to constructive approximation schemes derived from
discrete convolutions with the Gaussian kernel. The proof of Theorem 1.2 is obtained
as an application.

6.1. Discretized Gaussian convolution.

Notation 6.1. For all κ > 0, let

Gκ : R× R → R; (x, y) 7→ exp(−κ(x− y)2).

A key observation, going back at least to Pólya and Schoenberg, is the total positivity
of this kernel. In our terminology, this means that Gκ is TPp for all p ∈ N, and this
follows as a particular case of Example 2.4.

Proposition 6.2. Let the kernel K : A×B → R be TNp, where A, B ⊆ R and p ∈ N.
Suppose that κ > 0 and n, N ∈ N are greater than or equal to p. If z ∈ An,↑ and
w ∈ BN,↑, then

Tκ,z,w(K) : A×B → R; (x, y) 7→
n∑

j=1

N∑
k=1

Gκ(x, zj)K(zj , wk)Gκ(wk, y)
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is TNp and TPmin{p,r}, where r is the rank of K[z;w], which is the same as the rank
of Tκ,z,w(K)[z;w].

Proof. Let x ∈ Am,↑ and y ∈ Bm,↑, where m ∈ [p]. The Cauchy–Binet formula gives
that

detTκ,z,w(K)[x;y] =
∑

j∈[n]m,↑

∑
k∈[N ]m,↑

detGκ[x; zj] detK[zj;wk] detGκ[wk;y], (6.1)

where zj := (zj1 , . . . , zjm) if j = (j1, . . . , jm) and similarly for wk.
Since K[z;w] has rank r, it has a non-zero r×r minor, and so a non-zero minor of all

smaller dimensions, but every strictly larger minor is zero. The result now follows. □

Notation 6.3. Given a vector µ ∈ Rm and a positive-definite matrix V ∈ Rm×m,
where m is a positive integer, the multivariate Gaussian probability density

fµ,V : Rm → [0,∞); x 7→ (detV )1/2

(2π)m/2
e−

1
2
(x−µ)TV (x−µ)

has mean µ and inverse covariance matrix V . Note that

fµ,V (x) = cµ,V gµ,V (x) for all x ∈ Rm,

where

cµ,V := (2π)−m/2(detV )1/2e−
1
2
µTV µ and gµ,V (x) := e−

1
2
xTV x+xTV µ.

For all n ∈ N, let the n× n matrix Q be defined by setting Q1 = 1 and

Qn+1 = Qn ⊕ 01×1 + 0n−1×n−1 ⊕
(

1 −1
−1 1

)
,

so that

Qn =


2 −1 0 · · ·
−1 2 −1
0 −1 2 −1
...

. . . 2 −1
−1 1

 .

Lemma 6.4. Let κ > 0. If x0, . . . , xm ∈ R, then
m∏
j=1

Gκ(xj−1, xj) = e−κx2
0gµ,V (x1, . . . , xm) = (π/κ)m/2fµ,V (x1, . . . , xm), (6.2)

where µ = x01m×1 and V = 2κQm. Moreover, detV = (2κ)m and e−κx2
0 = e−

1
2
µTV µ.

Proof. Let x0, . . . , xm+1 ∈ R be arbitrary. The first identity holds when m = 1,
because

Gκ(x0, x1) = exp(−κx20) exp(−κx21 + 2κx0x1) = exp(−κx20)gx0,2κ(x1).

Now suppose

Gκ(x0, x1) · · ·Gκ(xm−1, xm) = exp(−κx20)gµ,V (x1, . . . , xm)
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for some µ = (µ1, . . . , µm) ∈ Rm and V ∈ Rm×m. Then

m+1∏
j=1

Gκ(xj−1, xj) = exp(−κx20)gµ,V (x1, . . . , xm)Gκ(xm, xm+1)

and, letting x := (x1, . . . , xm+1)
T and z ∈ R,

gµ,V (x1, . . . , xm)Gκ(xm, xm+1)

= exp(−1

2
xT (V ⊕ 0)x+ xT (V ⊕ 0)(µ⊕ z)− κ(xm − xm+1)

2)

= exp(−1

2
xTV ′x+ xTV ′µ′),

where

V ′ := V ⊕ 01×1 + 0m−1×m−1 ⊕
(

2κ −2κ
−2κ 2κ

)
and µ′ = µ⊕ µm.

By induction, this gives the first identity. For the penultimate claim, note that adding
the last row of V ′ to the penultimate row gives the matrix

V ⊕ 01×1 + 0m−1×m−1 ⊕
(

0 0
−2κ 2κ

)
,

which has determinant equal to 2κ times the determinant of V . The final identity is
immediate, and the second identity in (6.2) now follows. □

Notation 6.5. Given z ∈ A ⊆ R and w ∈ B ⊆ R, let

δ(z,w) : A×B → R; (x, y) 7→

{
1 if x = z and y = w,

0 otherwise.

Proposition 6.6. With the notation and hypotheses of Proposition 6.2 and Nota-
tion 6.5, if r < p, then the kernel

Tκ,z,w(Tκ,z,w(K) + e−κδ(z1,w1))

is TNp and TPr+1.

Proof. Let K ′ := Tκ,z,w(K) + e−κδ(z1,w1) and fix m ∈ [p]. If j ∈ [n]m,↑ and k ∈ [N ]m,↑,
then

K ′[zj;wk] = Tκ,z,w(K)[zj;wk] + e−κδ(z1,w1)(zj1 , wk1)E11,

where E11 is the m×m matrix with (1, 1) entry equal to 1 and 0 elsewhere. Hence

detK ′[zj;wk]

= detTκ,z,w(K)[zj;wk] + e−κδ(z1,w1)(zj1 , wk1) detTκ,z,w(K)[zj \ {z1};wk \ {w1}],

where detTκ,z,w(K)[∅, ∅] = 1. This shows that K ′ is TNp and that K ′[zj;wj] has
positive determinant if j = (1, . . . , r + 1), since Tκ,z,w(K) is TPr. Thus K ′[z;w] has
rank at least r+1, but since K ′[z;w] is a rank-one perturbation of Tκ,z,w(K)[z;w], its
rank is exactly r + 1. The result now follows from Proposition 6.2. □
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Corollary 6.7. With the notation and hypotheses of Proposition 6.2 and Notation 6.5,

if m = max{0, p− r}+ 1, then the kernel K
(m)
κ,z,w is TPp, where

K
(1)
κ,z,w := Tκ,z,w(K)

and K
(m)
κ,z,w := Tm

κ,z,w(K) + e−κ
m−1∑
j=1

T j
κ,z,w(δ(z1,w1)) (m ≥ 2).

6.2. Finite–continuum kernels. As a prélude to our main result, we establish the
following. Recall that the set of continuity for a function is the set of points in its
domain where it is continuous.

Theorem 6.8. Let d, p ∈ N, and suppose K : [d]×R → R is bounded and TNp. Then
there exists a sequence of TPp kernels (Kl)l≥1 converging to K locally uniformly on its
set of continuity.

This theorem is an immediate consequence of the next result on discrete Gaussian
convolution. For any d, n ∈ N, let d := (1, . . . , d) and

zn := (−n,−n+ 2−n, . . . , n) ∈ [−n, n]N,↑, where N = n2n+1 + 1.

Proposition 6.9. Let K : [d]×R → R be bounded and let K(m) be as in Corollary 6.7.
Then

2−mn(n/π)m/2K
(m)
n,d,zn

→ K as n → ∞,

locally uniformly on the set of continuity for K.

Proof. Note first the elementary estimate

∥Tκ,z,w(G)∥∞ ≤ dN∥G∥∞
for any kernel G : A × B → R, where κ > 0, z ∈ Ad,↑, w ∈ BN,↑, and ∥ · ∥∞ is the
supremum norm on A×B. Thus, if j ∈ [m], then

∥T j
n,d,zn

(δ(1,z1))∥∞ ≤ djN j ≤ dm(4n)m2mn = (4d)mnm2mn,

hence

∥2−mn(n/π)m/2e−n
m−1∑
j=1

T j
n,d,zn

(δ(1,z1))∥∞ ≤ 2−mn(n/π)m/2e−nm(4d)mnm2mn

= m(16d2/π)m/2n3m/2e−n

→ 0 as n → ∞.

Next, let (j0, x0) ∈ [d]× R. Lemma 6.4 gives that

2−mn(n/π)m/2Tm
n,d,zn(K) =

∑
j1,...,jm∈[d]

Ij1,...,jm ,

where

Ij1,...,jm(j0, x0) := exp(−n

m∑
k=1

(jk−1 − jk)
2)

∫
[−n,n]m

K(jm, φn(xm))fx01,V (φn(x)) dx,
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with V = 2nQm and φn(z) := ⌊2nz⌋2−n if z ∈ R and φn(z) := (φn(z1), . . . , φn(zm)) if
z ∈ Rm. Now let εn(z) := z− φn(z) ∈ [0, 2−n]m and note that

(φn(z)− µ)TV (φn(z)− µ) = zTV z− 2εn(z)
TV (z− µ) + εn(z)

TV εn(z),

so

fµ,V (φn(z)) = fµ,V (z) exp(Rn(z;µ)),

where

Rn(z;µ) := εn(z)
TV (z− µ)− 1

2
εn(z)

TV εn(z). (6.3)

Note that, if z ∈ [−n, n]m, then

|Rn(z;x01)| ≤ Cn(x0) := m2−n(n+ |x0|+ 2−n−1)(6m− 5)1/2(2n)m → 0

as n → ∞. Hence, if (j1, . . . , jm) ̸= (j0, . . . , j0), then

|Ij1,...,jm | ≤ e−n∥K∥∞ exp(Cn(x0)) → 0 as n → ∞,

locally uniformly in x0 on R. Furthermore, if the random variable X has the probability
density function fx01,V , then X → x01 in distribution as n → ∞, by Lévy’s continuity
theorem [13, p. 383] and the fact that V −1 = (2n)−1Q−1

m → 0 as n → ∞. Thus
X → x01 in probability, and so

|Ij0,...,j0 −
∫
Rm

K(j0, φn(xm))fx01,V (x) dx|

≤
∫
[−n,n]m

∥K∥∞fx01,V (x)(exp(Cn(x0))− 1) dx+ ∥K∥∞P(∥X∥∞ > n) → 0

as n → ∞, locally uniformly in x0 on R: if n > |x0|+ 1/2 then

P(∥X∥∞ > n) ≤ P(∥X∥∞ > |x0|+ 1/2)

≤ P(
∣∣∥X∥∞ − |x0|

∣∣ > 1/2)

≤ P(∥X − x01∥2 > 1/2),

since

∥X − x01∥2 ≥ |Xj − x0| ≥
∣∣|Xj | − |x0|

∣∣ for any j ∈ [m].

Finally, if ε > 0, then

|
∫
Rm

K(j0, φn(xm))fx01,V (x) dx−K(j0, x0)|

≤
∫
[x0−ε,x0+ε]m

|K(j0, φn(xm)−K(j0, x0)|fx01,V (x) dx+ 2∥K∥∞P(∥X − x01∥∞ > ε)

≤ sup{|K(j0, φn(x))−K(j0, x0)| : |x− x0| ≤ ε}+ 2∥K∥∞P(∥X − x01∥2 > ε).

This gives the result. □
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6.3. Continuum–continuum kernels. Finally, we provide the technical heart of the
proof of Theorem 1.2, which is the following modification of Proposition 6.9.

Theorem 6.10. Let K : R× R → R be bounded and let K(m) be as in Corollary 6.7.
Then

4−mn(n/π)mK
(m)
n,zn,zn → K as n → ∞,

locally uniformly on the set of continuity for K.

Proof. Working as in the proof of Proposition 6.9, note first that

∥4−mn(n/π)me−n
m−1∑
j=1

T j
n,zn,zn(δ(z1,w1))∥∞ ≤ 4−mn(n/π)me−nm(4n)2m4mn

= m(16/π)mn3me−n

→ 0 as n → ∞.

Next, fix (x, y) ∈ R2. Lemma 6.4 gives that

Jn := 4−mn(n/π)mTm
n,zn,zn(K)(x, y)

=

∫
[−n,n]m

∫
[−n,n]m

K(φn(xm), φn(ym))fx1,V (φn(x))fy1,V (φn(y)) dxdy,

where V = 2nQm, φn(z) := ⌊2nz⌋2−n if z ∈ R and φn(z) := (φn(z1), . . . , φn(zm)) if
z ∈ Rm. As above, let εn(z) := z− φn(z) ∈ [0, 2−n]m and note that

fµ,V (φn(z)) = fµ,V (z) exp(Rn(z;µ)),

where Rn(z;µ) is as in (6.3). Hence∣∣∣Jn −
∫
[−n,n]m

∫
[−n,n]m

K(φn(xm), φn(ym))fx1,V (x)fy1,V (y) dxdy
∣∣∣

≤ ∥K∥∞
∫
[−n,n]m

∫
[−n,n]m

| exp(Rn(x;x1) +Rn(y; y1))− 1|fx1,V (x)fy1,V (y) dxdy

≤ ∥K∥∞(exp(m2−n(2n+ |x|+ |y|+ 2−n)(6m− 5)1/2(2n)m)− 1)

→ 0 as n → ∞,

locally uniformly in (x, y) on R2.
Next, let (X,Y ) have probability density function fx1,V × fy1,V and note that

(X,Y ) → (x1, y1) in probability. Thus,∫
Rm

∫
Rm

(1− 1[−n,n]m(x)1[−n,n]m(y))K(φn(xm), φn(ym))fx1,V (x)fy1,V (y) dx dy

≤ ∥K∥∞(P(∥X∥∞ > n) + P(∥Y ∥∞ > n))

→ 0 as n → ∞,
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locally uniformly in (x, y) on R2. Finally, fix ε > 0 and note that∫
Rm

∫
Rm

|K(φn(xm), φn(ym))−K(x, y)|fx1,V (x)fy1,V (y) dxdy

≤
∫
[x−ε,x+ε]m

∫
[y−ε,y+ε]m

|K(φn(xm), φn(ym))−K(x, y)|fx1,V (x)fy1,V (y) dx dy

+ 2∥K∥∞(P(∥X − x1∥∞ > ε) + P(∥Y − y1∥∞ > ε))

≤ sup{|K(φn(ξ), φn(η))−K(x, y)| : |ξ − x| ≤ ε, |η − y| ≤ ε}
+ 2∥K∥∞(P(∥X − x1∥2 > ε) + P(∥Y − y1∥2 > ε)).

The result follows. □

Remark 6.11 (Symmetric kernels). If K : R×R → R is symmetric, then, since Gκ is
symmetric as well,

Tκ,z,w(K)(x, y) = Tκ,w,z(K)(y, x) for all κ > 0, z ∈ Xn,↑, w ∈ XN,↑ and x, y ∈ X,

In particular, the map Tκ,z,z preserves symmetry. Thus, the kernels K
(m)
n,zn,zn used in

Proposition 6.10 are symmetric if K is.

We conclude as follows.

Proof of Theorem 1.2. We first extend K to a TNp kernel K̃ on R × R via padding

by zeros. Proposition 6.10 now gives a sequence (K̃l)l≥1 of TPp kernels on R × R
converging locally uniformly on the set of continuity of K̃, which contains the points
in the interior of X × Y where K is continuous. The result now follows by restricting
each of these to X × Y . The symmetric variant is proved in the same way, noting that

if K is symmetric, then so are K̃ and the kernels K̃l, by Remark 6.11. □

Remark 6.12. Propositions 7.4 and 8.9 provide further TP-density results, for TN
Hankel kernels and Pólya frequency functions, respectively.

7. Totally non-negative and totally positive Hankel kernels

Having explored variations on our original theme, we now return to classification
problems for total non-negativity and total positivity, now in the presence of additional
structure. First, we consider Hankel matrices and kernels; in the following two sections,
we examine the case of Toeplitz kernels.

7.1. Totally non-negative Hankel matrices. As noted in [9], the collection of TN
Hankel matrices constitutes a test set that is closed under addition, multiplication
by non-negative scalars, entrywise products, and pointwise limits. In particular, this
test set, in each fixed dimension, is a closed convex cone. As the functions 1 and x
preserve total non-negativity when applied entrywise, the same holds for any absolutely
monotonic function

∑∞
k=0 ckx

k, where the Maclaurin coefficient ck ≥ 0 for all k. It is
natural to ask if there are any other preservers. In [9], we show that, up to a possible
discontinuity at the origin, there are no others.

Theorem 7.1 ([9]). Given a function F : [0,∞) → R, the following are equivalent.
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(1) Applied entrywise, F [−] preserves TN for Hankel matrices of all sizes.
(2) Applied entrywise, F [−] preserves positivity for TN Hankel matrices of all sizes.
(3) F (x) =

∑∞
k=0 ckx

k on (0,∞) with ck ≥ 0 for all k, and 0 ≤ F (0) ≤ c0.

Theorem 7.1 thus completely resolves the problem of characterising entrywise TN
preservers on the set of Hankel matrices of all dimensions.

For the fixed-dimension context, we provide a brief summary of some recent progress.
The following result provides a necessary condition, analogous to a result of Horn [36]
for positivity preservers.

Theorem 7.2 ([9]). Suppose F : [0,∞) → R is such that F [−] preserves TN on the set
of d× d Hankel matrices. Then F is (d− 3)-times continuously differentiable, with F ,

F ′, . . . , F (d−3) non-negative on (0,∞), and F (d−3) is convex and non-decreasing. If,
instead, F is analytic, then the first d non-zero Maclaurin coefficients of F are positive.

Theorem 7.2 implies strong restrictions for the class of TN preservers of Hankel
matrices. For instance, if one restricts to power functions xα, the only such preservers
in dimension d correspond to α being a non-negative integer or greater than d−2. The
converse, that such functions preserve TN for d×d Hankel matrices, was shown in [20].
This is the same as the set of entrywise powers preserving positivity on d× d matrices,
as proved by FitzGerald and Horn [22].

We conclude by noting that there exist power series which preserve total non-
negativity on Hankel matrices of a fixed dimension and do not have all Maclaurin
coefficients non-negative. The question of which of these coefficients can be negative
was settled in [41]. Again, the characterization is the same as that for the class of
positivity preservers, and this coincidence is explained by the following result of Khare
and Tao.

Given k, d ∈ N, with k ≤ d and a constant ρ ∈ (0,∞], we let Pk
d ([0, ρ)) denote the

set of positive-semidefinite d× d matrices of rank at most k and with entries in [0, ρ).

Theorem 7.3 ([41, Proposition 9.7]). Suppose F : [0, ρ) → R is such that the entrywise
map F [−] preserves positivity on Pk

d ([0, ρ)), where k ≤ d and ρ ∈ (0,∞]. Then F [−]

preserves total non-negativity on the set of Hankel matrices in Pk
d ([0, ρ)).

7.2. Hankel totally non-negative and totally positive kernels on infinite do-
mains. We now consider the problem of classifying the preservers of TN and TP
Hankel kernels on X ×X, where X ⊆ R is infinite. A Hankel kernel has the form

X ×X → R; (x, y) 7→ f(x+ y)

for some function f : X + X → R, and so is automatically symmetric. Examples of
such kernels abound; for example, given positive scalars c1, . . . , cn and u1, . . . , un, the
kernel

R× R → R; (x, y) 7→
n∑

i=1

ciu
x+y
i

is Hankel and TN on R× R, as we will see below.
If X is an arbitrary subset of R, then minors drawn from X × X may not embed

in a larger Hankel matrix drawn from X × X, since the arguments may be linearly
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independent over Q. This issue is avoided by assuming that X is an interval and any
kernel under consideration is a continuous functions of its arguments.

Recall that the Schur or pointwise product of kernelsK andK ′ with common domain
X ×X is the kernel

K ·K ′ : X ×X → R; (x, y) 7→ K(x, y)K ′(x, y).

We equip the set of kernels on a given domain X ×X with the topology of pointwise
convergence. The following proposition summarizes some of the important properties
of Hankel kernels. In particular, under appropriate assumptions, the sets of TN and
TP kernels form convex cones that are closed under taking Schur products. See [20]
for analogous results in the matrix case.

Proposition 7.4. Suppose X ⊆ R is an interval.

(1) The space of TN continuous Hankel kernels on X ×X is a closed convex cone,
which is also closed under Schur products.

(2) Suppose X is an open interval and K : X × X → R is a continuous Hankel
kernel. The following are equivalent.
(a) K is TN.
(b) K is positive semidefinite.
(c) K is of the form

X ×X → R; (x, y) 7→
∫
R
e(x+y)u dσ(u) (7.1)

for some non-decreasing function σ.
Furthermore, K is TP if and only if the measure corresponding to σ has infinite
support.

(3) If X is an open interval, then the set of TP continuous Hankel kernels on X×X
is dense in the set of TN continuous Hankel kernels on X.

(4) If X is an open interval, then the set of TP continuous Hankel kernels on X×X
is a convex cone, which is closed under Schur products.

The second part of Proposition 7.4 solves a Hamburger-type inverse problem for
exponential moments of non-negative measures on R. The third provides a extension
of Whitney’s theorem for Hankel kernels.

The proof of Proposition 7.4 uses several preliminary results. We begin with a well-
known 1912 result of Fekete [21]. Recall that a minor is contiguous if it is formed from
consecutive rows and columns.

Proposition 7.5. Suppose m, n ∈ N and let A be an m × n matrix such that all its
contiguous minors are positive. Then A is TP.

From Proposition 7.5, we deduce the following corollary, which will be used below.
Given a matrix A, we denote by A(1) the matrix obtained from A by deleting its first
row and last column.

Corollary 7.6. A square Hankel matrix A is TP if and only if A and A(1) are positive
definite. A square Hankel matrix A is TN if and only if A and A(1) are positive
semidefinite.
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Proof. The forward implication is immediate in both cases. For the converse, first
suppose A and A(1) are positive definite. Note that any contiguous minor of A is
a principal minor of either A or A(1), and so is positive, hence the claim follows by
Proposition 7.5.

Finally, suppose A and A(1) are positive semidefinite. By the above observation, so
is every contiguous square submatrix of A. Now let the matrix B be Hankel, TP and
the same size as A; Example 2.4 provides the existence of such. Using the previous
observation again, every contiguous square submatrix of B is positive definite. Hence
for all ε > 0, every contiguous minor of A+εB is positive. It follows by Proposition 7.5
that A+ εB is TP, whence A is TN, as desired. □

The final preliminary result is as follows.

Lemma 7.7. Let K : X × X → (0,∞), where X ⊆ R is an interval. Each of the
following statements implies the next.

(1) K is TN.
(2) All principal submatrices drawn from K are TN.
(3) All principal submatrices drawn from K with arguments in arithmetic progres-

sion are TN.
(4) All principal submatrices drawn from K with arguments in arithmetic progres-

sion are positive semidefinite.

Conversely, (2) =⇒ (1) for all K, (3) =⇒ (2) if K is continuous, and (4) =⇒ (3)
if K is continuous and Hankel.

Proof. Clearly (1) =⇒ (2) =⇒ (3) =⇒ (4).
If (2) holds, then, given x, z ∈ Xn,↑ for some n ∈ N, the matrixK[x; z] is a submatrix

of K[x∪ z;x∪ z], where x∪ z is obtained by taking the union of x and z in increasing
order. Hence (1) holds.

Next, suppose (3) holds and K is continuous. Let x ∈ Xn,↑ for some n ∈ N; by
continuity, we may assume that each term xj ∈ x is rational. Choose a positive integer
N such that N(xj − x1) is an integer for all j, and let

y := (x1, x1 +N−1, x1 + 2N−1, . . . , xn).

By assumption, the matrix K[y;y] is TN, thus so is the submatrix K[x;x]. This shows
that (2) holds.

Finally, suppose (4) holds, and let a principal submatrix A be obtained by evaluating
K at an arithmetic progression in X, say x1 < · · · < xn. By assumption, A is positive
semidefinite; furthermore, so is the (n− 1)× (n− 1) matrix B obtained by evaluating
K at the arithmetic progression

x1 + x2
2

<
x2 + x3

2
< · · · < xn−1 + xn

2
.

But B = A(1), so (3) follows by Corollary 7.6. □

We now have the ingredients we require.

Proof of Proposition 7.4. Part (1) holds because property (4) of Lemma 7.7 is closed
under addition, dilation, pointwise limits, and Schur products.
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For part (2), note first that Lemma 7.7 gives the equivalence of (a) and (b). That
positive semidefiniteness is necessary and sufficient for K to have the form (7.1) is
a result of Bernstein [12] and Widder [67] which uses prior works of Hamburger and
Mercer; see also [2, Theorem 5.5.4].

If the measure µ corresponding to σ has finite support, so may be written as∑r
k=1 ckδuk

, and x, y ∈ Xn,↑, then the submatrix

K[x;y] =
r∑

k=1

ck(e
(xi+yj)uk)ni,j=1 =

r∑
k=1

ckzkw
T
k , (7.2)

where zk := (ex1uk , . . . , exnuk)T and wk := (ey1uk , . . . , eynuk)T . Thus, submatrices of K
have rank at most r, so K cannot be TP.

Finally, if µ has infinite support, then the basic composition formula of Pólya and
Szegő [40, p.17] gives that

detK[x;y] =

∫
Rm,↑

det(exp(xiuj))
n
i,j=1 det(exp(ujyk))

n
j,k=1 dσ(u1) · · · dσ(um)

for any x, y ∈ Xm,↑, and so K is TP. This observation completes the proof of part (2).
For part (3), note that if K is a TN continuous Hankel kernel as in (2), then the

continuous Hankel kernel

X ×X → R; (x, y) 7→ K(x, y) + ε

∫ 1

0
e(x+y)u du

is TP for all ε > 0, since the measure corresponding to the representative function σε
has infinite support.

For the final part, note first that TP kernels are closed under positive rescaling.
Furthermore, if the TP kernelsK ′ andK ′′ have representative functions σ′ and σ′′, then
the corresponding measures have infinite support, and therefore so does the measure
corresponding to σ′ + σ′′. It follows K ′ +K ′′ is TP.

Finally, to see that K ′ · K ′′ is TP, note first that it is TN, so has a representative
function τ . We assume the measure ν corresponding to τ has finite support, say of
size r, and derive a contradiction. Suppose x ∈ Xr+1,↑ is an arithmetic progression,
and consider the principal submatrices M ′ = K ′[x;x] and M ′′ = K ′′[x;x]. Both
submatrices are TP by assumption, and Hankel by the choice of x. Hence so is M ′◦M ′′,
by Corollary 7.6 above and the Schur product theorem, so it must have rank r+1. But
this contradicts the fact that ν has support of size r, by (7.2) with K = K ′ ·K ′′. □

Having gained a better understanding of our test set, we proceed to classify its
preservers. As in the case of matrices of all sizes, the preservers of TN continuous
Hankel kernels are absolutely monotonic functions.

Theorem 7.8. Suppose X ⊆ R is an interval containing at least two points and let
F : [0,∞) → R. The following are equivalent.

(1) The map CF preserves TN for continuous Hankel kernels on X ×X.
(2) The map CF preserves positive semidefiniteness for TN continuous Hankel ker-

nels on X ×X.
(3) F (x) =

∑∞
k=0 ckx

k on (0,∞), with ck ≥ 0 for all k, and F (0) ≥ 0.
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The proof of this theorem uses the following observation about TN2 Hankel kernels
that vanish at a point. Recall that ∂X denotes the topological boundary of the set X;
in particular, if X ⊆ R is an interval, then ∂X is the set of endpoints.

Lemma 7.9. Suppose X ⊆ R is an interval and the kernel K : X × X → R is
Hankel and TN2. If K(x, y) = 0 for some point (x, y) ∈ X ×X, then K vanishes on
X ×X \ {(x0, x0) : x0 ∈ ∂X}. In particular, if K is also continuous, then K ≡ 0.

Proof. Suppose K is as in the statement of the lemma, and X has interior (a, b) where
−∞ ≤ a < b ≤ ∞. If K(x, y) = 0, then, since K is Hankel, K(d0, d0) = 0, where
d0 := (x + y)/2. By the Hankel property of K, it suffices to show K(d, d) = 0 for all
d ∈ X \ ∂X. Now let c ∈ (a, d0); the positivity of K[(c, d0); (c, d0)] gives that

0 ≤ K(c, d0)
2 ≤ K(c, c)K(d0, d0) = 0,

so K(c, d0) = 0 = K((c+ d0)/2, (c+ d0)/2).
If a = −∞, then this shows that K(d, d) = 0 for all d ∈ (a, d0). If, instead, a > −∞,

then this shows that K(d, d) = 0 for all d ∈ ((a+ d0)/2, d0).
We proceed inductively, assuming that d0 > a (otherwise there is nothing to prove).

Let
dn := (a+ 3dn−1)/4 ∈ ((a+ dn−1)/2, dn−1) (n ∈ N)

and note that K(dn, dn) = 0, so the previous working shows that K(d, d) = 0 for all
d ∈ ((a + dn)/2, d0). Since dn → a as n → ∞, we see that K(d, d) = 0 whenever
d ∈ (a, d0).

A similar argument shows that K(d, d) vanishes if d ∈ (d0, b). The extended result
when K is continuous is immediate. □

Proof of Theorem 7.8. That (1) =⇒ (2) is immediate. Next, we assume (3) and
show (1), so suppose the continuous Hankel kernel K : X×X → R is TN. If K is never
zero on X×X, then F ◦K is again TN, continuous, and Hankel, by Proposition 7.4(1).
OtherwiseK vanishes at a point, so Lemma 7.9 applies andK ≡ 0, but then F ◦0X×X =
F (0)1X×X is indeed TN, continuous, and Hankel.

Finally, to show (2) =⇒ (3), we appeal to the following result.

Theorem 7.10 ([9, Theorem 4.2 and Remark 4.3]). Fix u0 ∈ (0, 1) and suppose the
function F : (0,∞) → R is such that F [−] preserves positive semidefiniteness for 2× 2
matrices of the form(

a b
b b

)
and

(
c2 cd
cd d2

)
(a, b, c, d > 0, a > b)

as well as for the matrices (p+qui+j
0 )ni,j=0 for all p, q ≥ 0 with p+q > 0 and all n ∈ N.

Then F is smooth and F (k) ≥ 0 on (0,∞) for all k ≥ 0.

A function F satisfying the hypotheses of this theorem is therefore absolutely mono-
tonic on (0,∞), and so has a power-series representation there with non-negative
Maclaurin coefficients.

Now suppose (2) holds. When K = x1X×X , with x ≥ 0, then F ◦ K being TN
implies F (x) ≥ 0. To apply Theorem 7.10, fix n ∈ N and choose points x0, xn ∈ X
with x0 < xn. Let g : R → R be the linear function such that g(x0) = 0 and g(xn) = n,
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and let xi = g−1(i) for i = 1, . . . , n − 1. Let p, q ≥ 0 be such that p + q > 0.
By assumption, the map CF preserves positive semidefiniteness on the TN continuous
Hankel kernel

K : X ×X → R; (x, y) 7→ p+ qu
g(x)+g(y)
0 ,

which contains (p+ qui+j
0 )ni,j=0 as the principal submatrix K[(x0, . . . , xn); (x0, . . . , xn)].

Similarly, given positive a, b, c, and d, with a > b, the TN continuous Hankel kernels

K ′ : X ×X → R; (x, y) 7→ (2a− b)2

4a− 3b

(
b

2a− b

)g(x)+g(y)

+
b(a− b)

4a− 3b
2g(x)+g(y)

and

K ′′ : X ×X → R; (x, y) 7→ c2(d/c)g(x)+g(y)

have submatrices K ′[(x0, x1); (x0, x1)] and K ′′[(x0, x1); (x0, x1)] which appear in the
statement of Theorem 7.10. Thus F [−] preserves TN on these matrices, so the hy-
potheses of Theorem 7.10 are satisfied. It follows that F is as claimed. □

To conclude this part, we classify the preservers of TP Hankel kernels.

Theorem 7.11. Suppose X ⊆ R is an open interval and let F : (0,∞) → R. The
following are equivalent.

(1) The map CF preserves TP continuous Hankel kernels on X ×X.
(2) The map CF preserves positive definiteness for TP continuous Hankel kernels

on X ×X.
(3) F (x) =

∑∞
k=0 ckx

k on (0,∞), where ck ≥ 0 for all k, and F is non-constant.

Proof. Clearly (1) =⇒ (2). We now assume (3) and show (1). Suppose F is as specified
and let n0 ∈ N be such that cn0 > 0. If K : X × X → R is a TP continuous Hankel
kernel, then so is Kn0 , by Proposition 7.4(4). Let G(x) := F (x)− cn0x

n0 and note that
G ◦K is TN, by Theorem 7.8. Now Kn0 and G ◦K have integral representations as in
Proposition 7.4(2), with corresponding measures µ and ν, respectively. Furthermore,
the measure µ has infinite support, and therefore so does cn0µ+ ν. Thus F ◦K is TP.

Finally, suppose (2) holds. By Theorem 4.10, any TP symmetric 2 × 2 matrix
occurs as a submatrix of a continuous Hankel TP kernel on X × X. It follows from
Theorem 4.9 that F is continuous on (0,∞). But then, by the density assertion in
Proposition 7.4(3), the map CF preserves the set of TN continuous Hankel kernels on
X ×X. It now follows from Theorem 7.8 that F is a power series with non-negative
Maclaurin coefficients, and F cannot be constant as then it cannot preserve positive
definiteness. This shows (3). □

8. Pólya frequency functions and Toeplitz kernels

As the analysis in the previous sections shows, only small test sets of matrices and
kernels are required to assure the rigidity of TN and TP endomorphisms, that is, to ob-
tain Theorem 1.1. In this section, we explore another classical family of distinguished
kernels, those associated to Pólya frequency functions. Such kernels are of central
importance for time-frequency analysis and the theory of splines. The landmark con-
tributions of Schoenberg, starting with his first full article on the subject [58], are
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highly recommended to the uninitiated reader. See also the monographs of Karlin [40]
and Hirschman and Widder [35].

Definition 8.1. A Pólya frequency function is a function Λ : R → [0,∞) which is
Lebesgue integrable, non-zero at two or more points and such that the Toeplitz kernel

TΛ : R× R → R; (x, y) 7→ Λ(x− y)

is totally non-negative.

This is a Toeplitz counterpart of the Hankel kernels encountered in Section 7. Even
the condition that the kernel TΛ is TN2 is very restrictive. Indeed, this, measurability
and the non-vanishing condition imply that

Λ(x) = exp(−ϕ(x)) (x ∈ R), (8.1)

where the function ϕ is convex on an open interval, so continuous there, with possible
discontinuities at the boundary and infinite values outside: see [58, Definition 3 and
Lemma 1]. It also implies [58, Lemma 2] that Λ either decays exponentially at infinity,
and so is integrable, or is monotone.

Schoenberg proved [58, Corollary 2] that the only discontinuous Pólya frequency
functions are affine transforms x 7→ λ(ax+ b), where a, b ∈ R and a ̸= 0, of the map

λ : R → [0,∞); x 7→

{
0 (x < 0),

e−x (x ≥ 0),

except possibly at the origin. In fact, one can alter the function λ to obtain

λd : R → [0,∞); x 7→


0 (x < 0),

d (x = 0),

e−x (x > 0),

(8.2)

where d ∈ [0, 1], without affecting the total non-negativity property. This may be
proved directly in the same way as [35, Chapter IV, Lemma 7.1a]; see also [40, p.16].
The requirement (8.1) ensures that this is the only possible variation on λ.

This class of kernels was linked by Pólya and Schur [49] to earlier studies pursued by
Laguerre and devoted to coefficient operations which preserve polynomials with purely
real roots. More specifically, convolution with such kernels maps polynomials to poly-
nomials of the same degree and such a map possesses a series of striking root-location
and root-counting properties. It should be no surprise, then, that the Fourier–Laplace
transform of a Pólya frequency function is very special; see, for instance, [32]. The
main theorems of Schoenberg [58] are the culmination of half a century of discoveries
on this theme. To be precise, the bilateral Laplace transform B{Λ} of a Pólya frequency
function Λ, given by

B{Λ}(z) :=
∫
R
e−xzΛ(x) dx,

is an analytic function in the vertical strip {z ∈ C : α < ℜz < β}, where the bounds α
and β can have infinite values and are such that

α = lim
x→∞

log Λ(x)

x
< 0 and β = lim

x→−∞

log Λ(x)

x
> 0;
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see [58, Lemma 10]. The characteristic feature of the bilateral Laplace transform of a
Pólya frequency function is the structure of its reciprocal.

Theorem 8.2 ([58, Theorems 1 and 2]). If Λ is a Pólya frequency function then the
map z 7→ 1/B{Λ}(z) is, up to an exponential factor, the restriction of an entire function
of genus zero or one, with purely real zeros.

Examples abound, and in general they are related to Hadamard factorizations of

elementary transcendental functions [32, 58, 40]. For instance, e−x2
, e−|x|, 1/ coshx

and e−x−e−x
are all Pólya frequency functions.

8.1. Preservers of Pólya frequency functions. In this subsection, we classify all
composition transforms Λ 7→ F ◦ Λ which leave invariant the class of Pólya frequency
functions. The Gaussian kernel stands out, as the sole generator via affine changes
of coordinates of a prominent family of test functions. We start by investigating this
particular situation.

An immediate inspection of such transforms applied to the TP kernels

cGκ : R× R → R; (x, y) 7→ c exp(−κ(x− y)2) (c > 0, κ > 0)

shows that we may expect a larger class of preservers than found in the rigid conclusions
contained in our general theorems. Indeed, all maps of the form c0x

α for positive c0 and
α preserve TP on these kernels. However, more exotic preservers exist in this setting.
As

Kα : R× R → R; (x, y) 7→ exp(−α|x− y|)
is also a Pólya frequency function for any α > 0, it follows that

F : (0,∞) → R; t 7→ exp(−
√
− logmax{t, 1})

is an admissible transformer of Gκ for all κ > 0. Such an analysis can be refined
to consider the TNp property, but we do not pursue this path here. For a recent
characterization of Pólya frequency functions of order at most 3, see [65].

As an initial step, we obtain the following proposition.

Proposition 8.3. Given a function F : (0,∞) → R, each of the following statements
implies the next.

(1) F (x) = c0x
α for some c0 > 0 and α > 0.

(2) F ◦ cGκ is totally positive on R× R for all c > 0 and κ > 0.
(3) F ◦ cG1 is TP3 on R× R for all c > 0.
(4) F is positive, increasing, and continuous on (0,∞).

If (3′) F ◦cG1 is TN3 on R×R for all c > 0, then (4′) F is non-negative, non-decreasing,
and continuous on (0,∞).

Proof. That (1) =⇒ (2) and (2) =⇒ (3) is immediate. We next assume (3) and

show (4). Given p, q > 0 with p < q, let x :=
√
log(q/p) and y := (0, x). Then the

2 × 2 matrix F [qG1[y;y]] has positive determinant and positive entries. This shows
that F must be positive and increasing on (0,∞). In particular, the function F has at
most countably many discontinuities.
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Now we set F±(x) := limy→x± F (y) for all x > 0. To complete the proof, we fix

p > 0 and show that F+(p) = F (p) = F−(p). To see this, choose q > p such that F is

continuous at q, and let x :=
√
log(q/p) as before. Let z := (0, y, x) and w := (0, x, z)

for y, z > 0 such that y < x < z, and consider the positive-definite matrices

Ay := F [qG1[z; z]] =

 F (q) F (qe−y2) F (p)

F (qe−y2) F (q) F (qe−(x−y)2)

F (p) F (qe−(x−y)2) F (q)


and Bz := F [qG1[w;w]] =

 F (q) F (p) F (qe−z2)

F (p) F (q) F (qe−(x−z)2)

F (qe−z2) F (qe−(x−z)2) F (q)

 .

Note that

lim
y→x−

F (qe−y2) = F−(p), lim
z→x+

F (qe−z2) = F+(p),

and F is continuous at q. Hence

lim
y→x−

detAy = −F (q)(F−(p)− F (p))2, lim
z→x−

detBz = −F (q)(F+(p)− F (p))2.

Since both limits are non-negative, and F (q) > 0 from the previous working, it follows
that F+(p) = F (p) = F−(p), as required. Hence (3) =⇒ (4).

To show (3′) =⇒ (4′), we may repeat the argument above, assuming without loss
of generality that F is non-constant, so that given p > 0, we may choose a continuity
point q > p with F (q) > 0. □

The next result shows that the square or higher integer powers do not preserve Pólya
frequency functions.

Lemma 8.4. There exists a Pólya frequency function M such that

(1) M is even, continuous and vanishes nowhere,
(2) M is increasing on (−∞, 0] and decreasing on [0,∞), and
(3) Mn : x 7→ M(x)n is not a Pólya frequency function for any integer n ≥ 2.

Proof. We claim that the Laplace-type function M(x) := 2e−|x|−e−2|x| has the desired
properties. More generally, we provide a one-parameter family of functions, each of
which is as required. Given a real number α > 0, let

Mα : R → (0,∞); x 7→ (α+ 1) exp(−α|x|)− α exp(−(α+ 1)|x|). (8.3)

It is readily verified that M = Mα has properties (1) and (2). Furthermore, a short
calculation shows that

B{M}(s) = 2α(α+ 1)(2α+ 1)

(s2 − α2)(s2 − (α+ 1)2)

on a neighborhood of 0. Hence 1/B{M}(s) is a polynomial function with non-zero real
roots and positive at the origin, and soM is a Pólya frequency function [58, Theorem 1].
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We now analyze the Laplace transform of the higher integer powers of M . A second
calculation reveals that

B{Mn}(s) = 2
n∑

k=0

(−1)k+1

(
n

k

)
αk(α+ 1)n−k(nα+ k)

s2 − (nα+ k)2
=

pn(s)

qn(s)
(n ∈ N),

where the polynomial qn(s) :=
∏n

k=0(s
2−(nα+k)2) has simple roots and degree 2n+2,

and the polynomial pn(s) has degree no more than 2n.
We claim that, if n > 1, then pn is non-constant and coprime to qn. This implies

that qn/pn is not an entire function, whence Mn is not a Pólya frequency function. To
see this claim, note that

pn(±(nα+ k)) = 2(−1)k+1

(
n

k

)
αk(α+ 1)n−k(nα+ k)

∏
j ̸=k

((nα+ k)2 − (nα+ j)2) ̸= 0

for k = 0, . . . , n, and so

pn(nα)

pn(nα+ n)
=

n−1∏
j=1

(2nα+ j)(α+ 1)

(2n(α+ 1)− j)α
.

When n > 1, each factor in the final product is greater than 1. This shows the claim,
and concludes the proof. □

We now use this result to obtain the very small class of maps that preserve all Pólya
frequency functions.

Theorem 8.5. Let F : [0,∞) → [0,∞). If F ◦ Λ is a Pólya frequency function for
every Pólya frequency function Λ, then F (x) = cx for some c > 0.

The converse is, of course, immediate.

Proof. As cG1 is a Pólya frequency function for all c > 0, Proposition 8.3 implies that
F is non-decreasing and continuous on (0,∞). Furthermore, since F ◦ λ is a Pólya
frequency function, the integrability condition gives that F (0) = 0.

Since F ◦ λ is non-zero at least at two points, there exists t0 > 0 with F (t0) > 0.
Thus F ◦ (t0λ) has a point of discontinuity, as it has distinct left and right limits at the
origin, and therefore

F (t0λ(x)) = c0e
−b0x for all x > 0,

where c0 and b0 are positive constants. Therefore

F (t) = c0t
b0 for all t ∈ [0, t0);

if t1 > t0, then, as F is non-decreasing, repeating this working shows the existence of
positive constants c1 and b1 such that

F (t) = c1t
b1 for all t ∈ [0, t1).

It is readily seen that b1 = b0 and c1 = c0, and therefore F (t) = c0t
b0 for all t ≥ 0.



TP KERNELS, PÓLYA FREQUENCY FUNCTIONS, AND THEIR TRANSFORMS 41

Next, since ϕ(x) = xλ(x) is also a Pólya frequency function [58, pp. 343], it follows
that xb0λ(b0x) is a Pólya frequency function. The bilateral Laplace transform of this
function is∫ ∞

0
e−xsxb0e−b0x dx =

∫ ∞

0
e−x(s+b0)xb0 dx =

Γ(b0 + 1)

(s+ b0)b0+1
(s > −b0).

The reciprocal (s + b0)
b0+1 admits an analytic continuation to an entire function, as

required by [58, Theorem 1], only for integer values of b0. Lemma 8.4 now gives the
result. □

To conclude, we provide a result that will be useful presently, as well as being notable
in its own right: the classification of preservers of TN Toeplitz kernels. The following
definition is a slight variation on [58, Definition 1] that is more convenient for our
purposes.

Definition 8.6. A function f : R → R is totally non-negative (or TN) if it is Lebesgue
measurable and the Toeplitz kernel

Tf : R× R → R; (x, y) 7→ f(x− y)

is TN.

Thus a Pólya frequency function is a TN function which is integrable and non-zero
at two or more points.

Theorem 8.7. Let F : [0,∞) → [0,∞) be non-zero. The following are equivalent.

(1) Given any TN function f that is non-zero at two or more points, the composition
F ◦ f is TN.

(2) Given any Pólya frequency function Λ, the composition F ◦ Λ is TN.
(3) The function F is of the form F (x) = c, F (x) = cx, F (x) = c1x>0 or F (x) =

c1x=0, for some c > 0.

Similarly, the function F preserves TN functions if and only if F (x) = c, F (x) = cx,
or F (x) = c1x>0, for some c > 0.

Proof. We recall first a result of Schoenberg [58, Lemma 4], that if f is a TN function
which is non-zero at two or more points and not of the form f(x) = exp(ax+ b), where
a, b ∈ R, then there exists γ ∈ R such that x 7→ eγxf(x) is a Pólya frequency function.
(See also [40, Chapter 7, Proposition 1.3].)

Clearly (1) =⇒ (2), and that (3) =⇒ (1) is immediate for constant or linear maps
of the form under consideration, so suppose F (x) = c1x=0 or F (x) = c1x>0 for some
c > 0. By (8.1), the zero set of a TN function that is non-zero at two or more points
can have one of the following forms:

∅, (−∞, a⟩, (∞, a⟩ ∪ ⟨b,∞), or ⟨b,∞) (a, b ∈ R, a < b),

where the angle bracket indicates the intervals may be either open or closed. However,
the third possibility is ruled out by the fact that Pólya frequency functions cannot have
compact support [58, Corollary 1].
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Thus F ◦ f is a non-negative constant or, up to positive scaling and translation of
the argument, one of the following functions:

1x≥0, 1x>0, 1x≤0, or 1x<0.

Since λ1 and λ0 are TN, so are the first two of these; the remaining two follow from
this, because a kernel K on R × R is TN if and only if the “order-reversed” kernel
K ′ : (x, y) 7→ K(−x,−y) is TN. Hence (3) =⇒ (1).

Next, suppose F satisfies (2); we wish to show that (3) holds. It follows from
Proposition 8.3 that F is non-negative, non-decreasing, and continuous on (0,∞). If F
has the form c1x=0 or c1x>0 for some c > 0, then we are done, so we assume otherwise.

If F is constant on (0,∞), then the only remaining possibility is that it is non-zero
there and also non-zero at 0. Thus, applying F to the Pólya frequency function λd,
where d ∈ [0, 1] is fixed for the remainder of the proof, we see that

0 ≤ det(F ◦ Tλd
)[(−1, 1); (0, 2)] =

∣∣∣∣F (0) F (0)
F (1) F (0)

∣∣∣∣ = F (0)(F (0)− F (1))

whereas

0 ≤ det(F ◦ Tλd
)[(0, 2); (−1, 1)] =

∣∣∣∣F (1) F (0)
F (1) F (1)

∣∣∣∣ = F (1)(F (1)− F (0)).

Hence F is a positive constant and (3) holds.
We may now suppose F is not constant on (0,∞). It follows by continuity that F is

positive and not constant on an open interval (r, s), where s > r > 0. Now there are
two cases to consider.

First, suppose F (0) < F (t0) for some t0 > 0 and fix t > max{s, t0}. By assumption,
there exists γt ∈ R such that

Λt(x) := eγtxF (tλd(x))

is a Pólya frequency function or of the form eax+b. As F (t) ≥ F (t0) > F (0), so Λt is
discontinuous at 0, and therefore it cannot have the latter form. Moreover, F (tλd(x))
is positive on an open sub-interval of (0,∞). It follows that Λt(x) = ptλdt(qtx) for
suitable constants pt, qt > 0 and dt ∈ [0, 1], so

F (0) = eγtptλdt(−qt) = 0 and F (te−x) = pte
−(γt+qt)x for all x > 0.

Since t can be taken to be arbitrarily large, a simple argument shows that F (y) = cyα

for all y > 0, where c > 0 and α > 0 because F is non-constant and non-decreasing on
(0,∞). Applying F to ϕ(x) = xλ(x) gives a Pólya frequency function, since xαe−αx is
positive and integrable on (0,∞). The proof of Theorem 8.5 now shows that α ∈ N.
Furthermore, if M is as in Lemma 8.4, then F (M) = cαMα is integrable and positive,
so a Pólya frequency function. Thus α = 1, as required.

The second and final case is when F (0) ≥ F (t) for all t > 0. Choose t ∈ (r, s) such
that F (0) > F (t) > 0 and F is positive and not constant on (r, t). As before, note that

Λ(x) := eγxF (tλd(x))

is a Pólya frequency function for some choice of γ; it cannot be of the form eax+b, since
Λ is discontinuous at 0. This discontinuity, and the positivity of Λ on some sub-interval
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of (0,∞), means that Λ(x) = pλd(qx) for some d ∈ [0, 1] and constants p, q > 0. Then

F (0) = F (tλd(−q)) = eγΛ(−1) = eγpλd(−q) = 0 < F (t) < F (0),

a contradiction.
This shows the first set of equivalences. We now turn to the final assertion, beginning

with the “only if” part. As (1) =⇒ (3), we see that F is from one of four families,
and it remains to rule out the function F (x) = c1x=0, where c > 0. This follows by
applying F to itself, as F is readily seen to be TN, but F ◦ F = c − F , which is not
even TN2.

Conversely, to show the “if” part, since (3) =⇒ (1), it suffices to verify that F ◦ f
is TN when F (x) = 1x>0 and f(x) = fa(x) = a1x=b for any a ≥ 0 and b ∈ R. In this
case, either F ◦ fa = f1, when a > 0, or F ◦ f0 = f0. This completes the proof. □

Remark 8.8. The preceding proof shows that a non-zero function F : [0,∞) → [0,∞)
belongs to the classes of functions in (3) if it preserves TN for the following restricted
set of test functions: (i) the Gaussian functions cG1(x) for all c > 0, (ii) the Pólya
frequency functions tλd(x) for one d ∈ [0, 1] and all t > 0, (iii) the Pólya frequency
function ϕ(x) = xλ(x), and (iv) the Pólya frequency function M from Lemma 8.4. If
F also preserves TN for a positive multiple of the function 1x=0, then F cannot have
this form itself.

8.2. Totally positive Pólya frequency functions. The rigidity of the above class
of endomorphisms carries over to other, related problems. We begin by showing the
same rigidity for the class of TP Pólya frequency functions, where we say that a Pólya
frequency function Λ is TP whenever the associated Toeplitz kernel TΛ has that prop-
erty. The precise description of conditions on the data x1 < x2 < · · · < xn and
y1 < y2 < · · · < yn to that ensure that

det(Λ(xi − yj))
n
i,j=1 > 0

are contained in Schoenberg’s third article [59]. As much as convolution with the
Gaussian kernel was essential in the previous sections, it is also very useful in this new
framework.

For any γ > 0, let

gγ : R → R; x 7→ 1

2
√
πγ

exp(−x2/4γ)

be the normalized Gaussian function, so that
∫
R gγ(t) dt = 1, and let Λ be an arbitrary

Pólya frequency function. As the class of Pólya frequency functions is closed under
convolution [58, Lemma 5], the convolution gγ ∗ Λ is also a Pólya frequency function,
with bilateral Laplace transform equal to the product of the transforms of gγ and Λ.
In view of [59, Theorem 1], the kernel

R× R → R; (x, y) 7→ (gγ ∗ Λ)(x− y)

is TP.
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A Pólya frequency function Λ is bounded and has left and right limits everywhere,
so, for any x0 ∈ R,

lim
γ→0+

(gγ ∗ Λ)(x0) =
∫
R
g1(t)Λ(x0 − t

√
γ) dt =

1

2

(
lim

y→x+
0

Λ(y) + lim
y→x−

0

Λ(y)

)
.

We say that a Pólya frequency function is regular if it is equal to the arithmetic mean
of its left and right limits at every point.

Putting together these observations, we obtain the following result.

Proposition 8.9. Let Λ be a regular Pólya frequency function. There exists a sequence
of TP Pólya frequency functions (Λn)n≥1 such that limn→∞ Λn(x) = Λ(x) for every
x ∈ R.

As an application, we complement Theorems 8.5 and 8.7 above, by considering TP
kernels. We say that a kernel K on R×R is measurable if K is a Lebesgue-measurable
function.

Theorem 8.10. Given a function F : (0,∞) → (0,∞), the following are equivalent.

(1) F ◦K is a TP Toeplitz kernel on R× R whenever K is.
(2) F ◦K is a TP measurable Toeplitz kernel on R× R whenever K is.
(3) F ◦ Λ is a TP Pólya frequency function whenever Λ is.
(4) F ◦ Λ is a TP Pólya frequency function whenever Λ is a regular TP Pólya

frequency function.
(5) F (x) = cx, where c > 0.

Proof. It is clear that (1), (2) and (3) both imply (4) and are implied by (5). Thus it
remains to show (4) =⇒ (5).

Let F satisfy (4). Then F is positive, increasing, and continuous on (0,∞), by

Proposition 8.3, so F extends to a continuous, increasing function F̃ : [0,∞) → [0,∞).
Now suppose Λ is one of the regular Pólya frequency functions listed in Remark 8.8,

and note that this includes λ1/2. By Proposition 8.9, there exists a sequence (Λn)n≥1

of TP Pólya frequency functions such that Λn → Λ pointwise. Hence F ◦Λn gives rise

to a TP kernel for each n ≥ 1, and so F̃ ◦ Λ is TN. By Remark 8.8, the restriction F

of F̃ is constant or linear, and the former is impossible. This completes the proof. □

9. Pólya frequency sequences

We continue our study of total non-negativity preservers with an exploration of the
class of Pólya frequency sequences. A Pólya frequency sequence is a bi-infinite sequence
of real numbers a = (an)n∈Z such that the Toeplitz kernel

Ta : Z× Z → R; (i, j) 7→ ai−j

is TN. Recall in this context the groundbreaking body of work by Aissen, Edrei, Schoen-
berg, and Whitney (see [1] and the monograph by Karlin [40]). These sequences are
characterized in terms of negative real-rootedness of the associated generating polyno-
mial when most terms an are zero, or a product expansion when all negatively indexed
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terms an vanish. More recently, Pólya frequency sequences have found numerous ap-
plications in combinatorics, owing to their connections to log concavity. See the works
of Brenti [15, 16] and subsequent papers.

Pólya frequency sequences turn out to be as rigid as Pólya frequency functions are,
as far as their endomorphisms are concerned, with their preservers being dilations or
constants. In order to demonstrate this fact, we first introduce Toeplitz kernels on a
more general class of domains than R× R.

Definition 9.1. We say that a pair of subsets X ⊆ R and Y ⊆ R is admissible if,
for each integer n ≥ 2, the sets contain n-step arithmetic progressions x ∈ Xn,↑ and
y ∈ Y n,↑ that are equi-spaced, so that their terms have the same increments:

xj+1 − xj = yj+1 − yj = x2 − x1 for all j ∈ [n− 1].

We let

X − Y := {x− y : x ∈ X, y ∈ Y }
and say that a kernelK : X×Y → R is Toeplitz if there exists a function f : X−Y → R
such that K(x, y) = f(x− y) for all x ∈ X and y ∈ Y .

The following theorem is a variant on Theorem 8.7 for this new setting.

Theorem 9.2. Suppose X and Y are a pair of admissible sets. If F : [0,∞) → [0,∞)
is non-zero and preserves the TN Toeplitz kernels on X × Y , then either F (x) = c,
F (x) = cx, or F (x) = c1x>0, for some c > 0.

The converse to this theorem does not necessarily hold for a given admissible pair.
For example, if X = Y = R, then Theorem 8.7 shows the converse, at least for the
case of measurable kernels, but for X = Y = Z we will see below that c1x>0 is not a
preserver of Pólya frequency sequences.

Proof. For ease of exposition, we split the proof into several steps.
Step 1: The function F is non-decreasing on (0,∞). Fix equi-spaced arithmetic

progressions x ∈ X2,↑ and y ∈ Y 2,↑, so that x2 − x1 = y2 − y1. Let p and q be positive
real numbers, with p < q, and consider the kernel

K : X × Y → R; (x, y) 7→ qG1

(√
log(q/p)

(x− x1)− (y − y1)

x2 − x1

)
.

This is a Toeplitz kernel which is TP since Gaussian kernels are, so F ◦ K is TN by
assumption. Thus

0 ≤ det(F ◦K)[(x1, x2); (y1, y2)] =

∣∣∣∣F (q) F (p)
F (p) F (q)

∣∣∣∣ = F (q)2 − F (p)2.

As p and q are arbitrary, the claim follows. Furthermore, the function F has at most
countably many discontinuities, so is Borel measurable, and the left-limit and right-
limit functions

F+ : (0,∞) → [0,∞); x 7→ lim
y→x+

F (y) and F− : (0,∞) → [0,∞); x 7→ lim
y→x−

F (y)

are well defined.
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Step 2: The function F is continuous on (0,∞). We will show that, for any p > 0,
F+(p) = F (p) = F−(p). This is trivial if F ≡ 0 on (0,∞), so we assume otherwise.
Fix a point q > p where F is continuous and F (q) > 0, choose an integer n ≥ 3, and let
x ∈ Xn,↑ and y ∈ Y n,↑ be equi-spaced arithmetic progressions. As before, the kernel

K : X × Y → R; (x, y) 7→ qG1

(√
log(q/p)

(x− x1)− (y − y1)

(x2 − x1)(n− 2)

)
is Toeplitz and TP. Furthermore, a straightforward computation shows that

K(xi, yj) = q(p/q)(i−j)2/(n−2)2 for all i, j ∈ [n].

Since F ◦K is TN, we have that

0 ≤ lim
n→∞

det(F ◦K)[(x1, xn−2, xn−1); (y1, yn−2, yn−1)] →

∣∣∣∣∣∣
F (q) F−(p) F (p)
F−(p) F (q) F (q)
F (p) F (q) F (q)

∣∣∣∣∣∣
= −F (q)(F (p)− F−(p))2,

and so F (p) = F−(p). Similarly,

0 ≤ lim
n→∞

det(F ◦K)[(x1, xn−1, xn); (y1, yn−1, yn)] = −F (q)(F (p)− F+(p))2.

This establishes the second claim.
Step 3: The function F belongs to one of the four families of functions in Theorem 8.7.

Suppose not, and note that Remark 8.8 gives a Pólya frequency function Λ such that
F ◦Λ is not TN. As F is Borel measurable, the function F ◦Λ is Lebesgue measurable
and therefore F ◦ TΛ is not TN; furthermore, Λ is continuous except possibly at the
origin, and is either positive everywhere, or zero on (−∞, 0) and positive on (0,∞). It
follows that F ◦ Λ is continuous except possibly at the origin. By Lemma 7.7, there
exists z ∈ Rn,↑, where n ≥ 2, such that the principal submatrix (F ◦ TΛ)[z; z] has at
least one minor which is negative. As F ◦Λ is continuous except at possibly the origin,
we may assume that z = (z1, . . . , zn) ∈ Qn,↑.

Choose N ∈ N sufficiently large so that Nzi is an integer for every i ∈ [n], and let
m = N(zn−z1)+1. Let x ∈ Xm,↑ and y ∈ Y m,↑ be equi-spaced arithmetic progressions,
and let

K : X × Y → R; (x, y) 7→ Λ

(
(x− x1)− (y − y1)

(x2 − x1)N

)
.

This Toeplitz kernel is TN, since Λ is, and therefore so is F ◦K. However, the submatrix

(F ◦K)[(1, . . . ,m); (1, . . . ,m)] = (F (Λ((i− j)/N)))i,j=1,...,m

contains (F ◦ TΛ)[z; z], and this is the desired contradiction.
Step 4: The function F cannot have the form c1x=0, where c > 0. To see this, fix

equi-spaced sequences x ∈ X2,↑ and y ∈ Y 2,↑, and let

K : X × Y → R : (x, y) 7→

{
1 if x− y = x1 − y1,

0 otherwise.
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Then K is Toeplitz and TN, since each row of any submatrix of K contains 1 at most
once, and similarly for each column. However, c1x=0 ◦K = c(1−K) and

det(1−K)[(x1, x2); (y1, y2)] =

∣∣∣∣0 1
1 0

∣∣∣∣ = −1. □

As a consequence, we now classify the preservers of Pólya frequency sequences.

Corollary 9.3. Let F : [0,∞) → [0,∞) be non-constant. The sequence F ◦ a is a
Pólya frequency sequence for every Pólya frequency sequence a if and only if F (x) = cx
for some c > 0.

Proof. One implication is immediate. For the other, an application of Theorem 9.2
with X = Y = Z means we need only show that F is continuous at the origin to obtain
the desired result.

Define sequences b = (bm)m∈Z and c = (cm)m∈Z by setting

bm =

{
1 if m = 0,

0 otherwise
and cm =


1 if m = 0 or 2,

2 if m = 1,

0 otherwise.

These are Pólya frequency sequences, by [1, Theorem 6], since the only zeros of their
polynomial generating functions 1 and 1 + 2z + z2 are negative. Hence

lim
t→0+

det(F ◦ tTb)[(1, 3, 4); (1, 2, 3)] =

∣∣∣∣∣∣
F+(0) F (0) F (0)
F (0) F (0) F+(0)
F (0) F (0) F (0)

∣∣∣∣∣∣ = −F (0)(F+(0)− F (0))2

is non-negative, as is

lim
t→0+

det(F ◦ tTc)[(2, 3, 4); (1, 2, 3)] = −F+(0)(F+(0)− F (0))2.

Now either F (0) = F+(0) = 0, in which case we are done, or at least one of F (0) and
F+(0) is positive, in which case they are equal. □

Remark 9.4. The test families of Pólya frequency functions used to classify the pre-
servers of TN functions listed in Remark 8.8 can be used to obtain test sets of Pólya
frequency sequences. To see this, suppose Λ is a Pólya frequency function that is
continuous except possibly at the origin, and let F : [0,∞) → [0,∞) be continuous.
Then F ◦ Λ is TN if and only if F ◦ Λ(N) is TN for every Pólya frequency sequence
Λ(N) := (Λ(n/N))n∈Z, where N ∈ N. One implication is immediate, and the converse
follows using similar reasoning to Lemma 7.7 and Step 3 in the proof of Theorem 9.2.
In particular, for any integer n ≥ 2, there exists some N ∈ N such that Mn

(N) is not a

Pólya frequency sequence, where M is as in Lemma 8.4.

We now turn to classifying TP preservers for Pólya frequency sequences. The next
result is a version of Theorem 8.10 in the same setting as that of Theorem 9.2.

Theorem 9.5. Let X and Y be a pair of admissible sets and let F : (0,∞) → (0,∞).
The following are equivalent.

(1) The composition operator CF preserves total positivity for all Toeplitz kernels
on X × Y .
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(2) F (x) = cx for some c > 0.

As an immediate consequence, we have the following result.

Corollary 9.6. The preservers of total positivity for Pólya frequency sequences are
precisely the dilations F (x) = cx, where c > 0.

Proof of Theorem 9.5. That (2) =⇒ (1) is immediate. For the converse, suppose
(1) holds and note that F must be positive, increasing, and continuous on (0,∞); the
argument is essentially that of Step 1 in the proof of Theorem 9.2.

Next, we extend F to a continuous, increasing function F̃ : [0,∞) → [0,∞) and
suppose for contradiction that F is not a dilation. Then, by Remark 8.8, there exists
a regular Pólya frequency function Λ that is continuous except perhaps at the origin

and such that F̃ ◦ Λ is not TN.
By Lemma 7.7, there exists z ∈ Rn,↑, where n ≥ 2, such that A = (F̃ ◦ TΛ)[z; z] is

not TN, that is, A has at least one negative minor. By continuity, we may assume that
z = (z1, . . . , zn) ∈ Qn,↑.

By Proposition 8.9, there exists a sequence (Λk)k≥1 of TP Pólya frequency functions
such that Λk → Λ pointwise as k → ∞. Since A depends on the value of Λ only at the

finite set of values {zi− zj : i, j ∈ [n]}, there exists k ∈ N such that A′ = (F̃ ◦TΛk
)[z; z]

has a negative minor.
We now follow the last part of Step 3 in the proof of Theorem 9.2. Let N ∈ N be

sufficiently large so that Nzi ∈ Z for all i ∈ [n], let m = N(zn − z1) + 1 and choose
x ∈ Xm,↑ and y ∈ Y m,↑ to define the kernel

Λ′ : X × Y → R; (x, y) 7→ Λk

(
(x− x1)− (y − y1)

(x2 − x1)N

)
.

Then Λ′ is TP, since Λk is and therefore so is F ◦Λ′. However, A′ occurs as a submatrix
of F ◦ Λ′ and this is the desired contradiction. □

The final theorem in this section classifies the powers that preserve symmetric
Toeplitz matrices.

Theorem 9.7. The only power functions preserving TN symmetric Toeplitz matrices
are F (x) = 1 and F (x) = x.

As a first step in the proof of this theorem, we obtain the following result.

Proposition 9.8. Let A := (cos((i − j)θ))ni,j=1, where n ≥ 2 and the angle θ is such

that 0 < θ < π/(2n − 2). Then A◦α is positive semidefinite if and only if α ∈ N0 or
α ∈ [n− 2,∞).

Proof. We appeal to a result of Jain [38, Theorem 1.1], which states that, for distinct
positive real numbers x1, . . . , xn, the entrywise αth power of X := (1 + xixj)

n
i,j=1 is

positive semidefinite if and only if α ∈ N0 or α ∈ [n − 2,∞). Now let xj := tan(jθ),
and let D be the diagonal n× n matrix with (j, j) entry cos(jθ). Then X◦α is positive
semidefinite if and only if DαX◦αDα = (DXD)◦α is, but DXD = A. □

Proof of Theorem 9.7. We begin with the observation that the cosine Toeplitz kernel

K : (−π/4, π/4)× (−π/4, π/4) → R; (x, y) 7→ cos(x− y)
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is TN. Note first that this kernel has rank 2, by the cosine identity for differences:

given x, y ∈ (−π/4, π/4)n,↑ for some n ∈ N, we have that

K[x;y] = cxc
T
y + sxs

T
y ,

where

cx := (cosx1, . . . , cosxn)
T and sx := (sinx1, . . . , sinxn)

T ,

and similarly for cy and sy. Thus, every minor of size at least 3×3 vanishes. If (x1, x2),

(y1, y2) ∈ (−π/4, π/4)2,↑, then a direct computation shows that∣∣∣∣cos(x1 − y1) cos(x1 − y2)
cos(x2 − y1) cos(x2 − y2)

∣∣∣∣ = sin(x2 − x1) sin(y2 − y1) > 0,

and that cos(x− y) ≥ 0 whenever |x| < π/4 and |y| < π/4 is immediate.
Given this observation, we proceed to eliminate possibilities for α. The test matrix(

2 1
1 2

)
shows that α cannot be negative. Next, suppose α is positive and not an integer, and
let n be an integer greater than α+2. If A is the n×n matrix of Proposition 9.8, with
θ = π/2n, then A is TN, since it occurs as a submatrix of K, but A◦α is not positive
semidefinite, so not TN.

The final case is if F (x) = xk for some integer k ≥ 2. Let M be the even function
of Lemma 8.4, and let z ∈ Rn,↑ be such that B := TMk [z; z] has a negative minor.
By continuity, we may assume that z = (z1, . . . , zn) ∈ Qn,↑. We may also translate
each coordinates by −z1, since this leaves B unchanged, thus z1 = 0 < zn. Choose
N ∈ N such that ziN ∈ Z for every i ∈ [n], and consider the symmetric Toeplitz

matrix C := (M((i− j)/N))znNi,j=0. This is TN, since it occurs as a submatrix of M , and

therefore so is F [C] = C◦k, but this matrix contains B as a principal submatrix, and
so has a negative minor. This contradiction completes the proof. □

We conclude with two observations. First, the above classifications of preservers of
Pólya frequency functions and sequences, including Lemma 8.4, sit in marked contrast
to [65, Theorem 3]. There, Weinberger shows that the set PF3 of functions defined
analogously to Pólya frequency functions, but with the TN condition replaced by TN3,
is closed under taking any real power greater than or equal to 1.

Second, a result in the parallel paradigm of the holomorphic functional calculus,
not the Schur–Hadamard calculus considered here, can be found in [40, pp. 451–452].
There, it is proved that a smooth function preserves TN matrices via the functional
calculus if and only if it is a non-negative integer power. A close look at the proof
reveals that the same conclusion can be deduced by using the smaller test set of TN
upper-triangular Toeplitz matrices. This stands in contrast to the results of the next
section.

10. One-sided Pólya frequency functions and sequences

As a final variation on the Pólya-frequency theme, we turn to the class of one-sided
Pólya frequency sequences, where the terms vanish for negative indices. As discussed
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at the start of the previous section, Pólya frequency sequences, including the one-sided
variant, are well studied, with a representation theorem [1] and applications in analysis,
combinatorics, and other areas.

We prove here that the only preservers of this class are homotheties and Heaviside
functions. In the spirit of the previous results, we begin by showing the analogous
result for Pólya frequency functions and TN functions, akin to Theorem 8.7.

We say that a function f : R → R is one sided if there exists x0 ∈ R such that either
f(x) = 0 for all x < x0, or f(x) = 0 for all x > x0.

Theorem 10.1. Let F : [0,∞) → [0,∞).

(1) The function F ◦ Λ is a one-sided Pólya frequency function whenever Λ is, if
and only if F (x) = cx for some c > 0.

(2) The function F ◦ f is a one-sided TN function that is non-zero at two or more
points whenever f is, if and only if F (x) = cx, F (x) = c1x>0, or F (x) = c1x=0,
for some c > 0.

(3) Suppose F is non-zero. Then F ◦ f is a one-sided TN function whenever f is,
if and only if F (x) = cx or F (x) = c1x>0, for some c > 0.

The proof uses the following one-sided variant of Lemma 8.4.

Lemma 10.2. Let a1, a2, and a3 be positive real numbers, with a1 < a2 < a3, such
that the set {a1, a2, a3} is linearly independent over the rational numbers, and let the
non-zero real numbers c1, c2, and c3 be such that

c1 > 0, c1 + c2 + c3 = 0, and a1c1 + a2c2 + a3c3 = 0. (10.1)

Then

N : R → R; x 7→

{
c1e

−a1x + c2e
−a2x + c3e

−a3x if x ≥ 0,

0 if x < 0

is a continuous Pólya frequency function such that Nn : x 7→ N(x)n is not a Pólya
frequency function for any integer n ≥ 2.

The function N of Lemma 10.2 is, up to scaling, a member of the class of one-sided
Pólya frequency functions which we call Hirschman–Widder densities. These were stud-
ied by Hirschman and Widder in their 1949 paper [34], and their 1955 monograph [35]
contains a detailed analysis of such exponential polynomials and their Laplace trans-
forms.

The work of Hirschman and Widder is closely intertwined with that of Schoenberg.
In 1947, Schoenberg [56] announced the notion of a Pólya frequency function. In their
1949 work, Hirschman and Widder studied these maps and their order of smoothness,
via their Laplace transforms. This was followed by Schoenberg’s first full paper on
Pólya frequency functions [58] in 1951.

In a forthcoming piece of work [10], we show that Hirschman–Widder densities sat-
isfy the conclusions of Lemma 10.2 generically, as long as they involve at least three
distinct exponential terms: their higher integer powers are not TN, and so are not Pólya
frequency functions. Indeed, a stronger result is established, with powers replaced by
non-homethetic polynomial functions.
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Proof of Lemma 10.2. Throughout this proof, sums and products are taken over non-
negative integers satisfying the given conditions. For any n ∈ N, let

Fn(s) := B{Nn}(s) =
∑

i+j+k=n

(
n

i, j, k

)
ci1c

j
2c

k
3

s+ ia1 + ja2 + ka3
=

pn(s)

qn(s)

be the bilateral Laplace transform of N , where the monic polynomial

qn(s) :=
∏

i+j+k=n

(s+ ia1 + ja2 + ka3)

has degree (n+ 1)(n+ 2)/2 and

pn(s) :=
∑

i+j+k=n

(
n

i, j, k

)
ci1c

j
2c

k
3

∏
i′+j′+k′=n

(i′,j′,k′ )̸=(i,j,k)

(s+ i′a1 + j′a2 + k′a3)

has degree no more than n(n+ 3)/2. In fact, the leading coefficient of pn(s) is∑
i+j+k=n

(
n

i, j, k

)
ci1c

j
2c

k
3 = (c1 + c2 + c3)

n = 0,

whereas the next-highest-order coefficient of pn(s) is∑
i+j+k=n

(
n

i, j, k

)
ci1c

j
2c

k
3

(( ∑
i′+j′+k′=n

i′a1 + j′a2 + k′a3
)
− ia1 − ja2 − ka3

)
=

1

6
n(n+ 1)(n+ 2)(a1 + a2 + a3)(c1 + c2 + c3)

n

− n(c1 + c2 + c3)
n−1(a1c1 + a2c2 + a3c3)

= 0,

since ∑
i′+j′+k′=n

i′ =
1

6
n(n+ 1)(n+ 2)

and ∑
i+j+k=n

(
n

i, j, k

)
ixiyjzk = x

∂

∂x
(x+ y + z)n = nx(x+ y + z)n−1.

The constraints (10.1), together with the ordering of a1, a2, and a3, imply that

c2 < 0, c1 + c2 < 0 and p1 ≡
c1c2(a1 − a2)

2

c1 + c2
> 0,

whence 1/F1(s) = q1(s)/p1(s) is a polynomial with real roots −a1, −a2 and −a3.
Furthermore, as

1

F1(0)
=

q1(0)

p1(0)
=

a1a2a3(c1 + c2)

c1c2(a1 − a2)2
> 0,

it follows that N is a Pólya frequency function, by [58, Theorem 1].
For the second part, we will show that 1/Fn(s) = qn(s)/pn(s) is the restriction of a

rational function with simple poles whenever n ≥ 2, and so it cannot be the restriction
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of an entire function; it then follows from [58, Theorem 1] that Nn is not a Pólya
frequency function for such n.

Note first that none of the roots of qn(s) are roots of pn(s), since if i, j and k are
non-negative integers such that i+ j + k = n, then

pn(−ia1−ja2−ka3) =

(
n

i, j, k

)
ci1c

j
2c

k
3

∏
i′+j′+k′=n

(i′,j′,k′ )̸=(i,j,k)

(
(i′−i)a1+(j′−j)a2+(k′−k)a3

)
̸= 0.

We will now show that pn(s) is non constant, which establishes that 1/Fn(s) is as
claimed. We have that

γn :=
pn(−na3)

pn(−na1)
=
(c3
c1

)nna1 − na3
na3 − na1

∏
i+j+k=n
i,k ̸=n

ia1 + ja2 + ka3 − na3
ia1 + ja2 + ka3 − na1

= −
(c3
c1

)n ∏
i+j+k=n
i,k ̸=n

(a1 − a3)i+ (a2 − a3)j

(a2 − a1)j + (a3 − a1)k

= (−1)n+1
(c1 + c2

c1

)n ∏
i+j+k=n
i,k ̸=n

c1j − c2i

(c1 + c2)j + c2i
,

where the last step uses the fact that the placeholder variables i and k are symmetric
in the product for the denominator. Since∏

i+j+k=n
i,k ̸=n

c1j − c2i

(c1 + c2)j + c2i
= (−1)n−1

( c1
c1 + c2

)n ∏
2≤i+j≤n

c1j − c2i

(c1 + c2)j + c2i
,

it follows that

γn+1

γn
=

∏
i+j=n+1

i,j≥1

c1j − c2i

(c1 + c2)j + c2i
= (−1)n

n∏
j=1

n+ 1− (α+ 1)j

n+ 1 + αj
,

where

α =
c1
c2

=
−(a3 − a2)

a3 − a1
∈ (−1, 0).

If j = 1, . . . , n, then

n+ 1− (α+ 1)j

n+ 1 + αj
< 1 ⇐⇒ n+ 1− (α+ 1)j < n+ 1 + αj ⇐⇒ 0 < 2α+ 1,

and

0 < 2α+ 1 =
a3 − a1 − 2a3 + 2a2

a3 − a1
⇐⇒ a3 − a2 < a2 − a1,

whereas

n+ 1− (α+ 1)j

n+ 1 + αj
> 1 ⇐⇒ 0 > 2α+ 1 ⇐⇒ a3 − a2 > a2 − a1.
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Since equality is impossible, by linear independence, it follows that either |γn+1/γn| < 1
for all n ∈ N or |γn+1/γn| > 1 for all n ∈ N; in each case, since γ1 = 1, the polynomial pn
is non-constant for all n ≥ 2. This completes the proof. □

With the preliminary result established, we can now obtain the promised characti-
zations.

Proof of Theorem 10.1. Let F : [0,∞) → [0,∞). We show first that, if G = F ◦ tλd is a
TN2 function for all t > 0 and all d ∈ (0, 1), in that detTG[x;y] ≥ 0 for all x, y ∈ R2,↑,
then F is non-decreasing on (0,∞). This follows because, if t > 0, ε > 0, and d = e−2ε,
then

0 ≤ det(F ◦ teεTλd
)[(ε, 2ε); (0, ε)] =

∣∣∣∣ F (t) F (te−ε)
F (te−ε) F (t)

∣∣∣∣ .
Next, letting t1 := sup{t > 0 : F (t) = 0} ∪ {0} ∈ [0,∞], we see that F vanishes on
(0, t1) and is positive on (t1,∞).

We now show that F is continuous on (t1,∞). If t1 = ∞, then this is immediate.
Otherwise, we first show that F is multiplicatively mid-concave on (t1,∞). Given any
q > p > t1, choose t > q and let a and b be such that q = te−a and p = te−b. Then, for
any d ∈ (0, 1),

0 ≤ det(F ◦ tTλd
)[((b+ a)/2, b); (0, (b− a)/2)] = F (

√
pq)2 − F (p)F (q).

The continuity of F on (t1,∞) now follows by [52, Theorem 71.C]. We can now establish
each of the three assertations of the theorem.

(1). Every homothety preserves the class of one-sided Pólya frequency functions.
Conversely, since F ◦ λ is a Pólya frequency function, it is integrable, so F (0) = 0, and
has unbounded support, so t1 = 0: if t1 > 0 then F (e−x) will vanish for all sufficiently
large x. We now follow the relevant parts of the proof of Theorem 8.5. By considering
F ◦ pλ for any p > 0, we obtain the existence of positive constants b0 and c0 such that
F (t) = c0t

b0 for all t ∈ (0, p); since p is arbitrary, this identity must hold everywhere
on (0,∞). Moreover, the exponent b0 must be an integer, by [58, Theorem 1] and the
form of the bilateral Laplace transform of F ◦ϕ, where ϕ(x) = xλ(x). That this integer
equals 1 now follows from Lemma 10.2.

(2). That the given functions are preservers follows from the proof that (3) =⇒ (1)
in Theorem 8.7. Conversely, let t1 be as above and note that F (t1x>0) ≡ 0 whenever
t ∈ (0, t1). Hence t1 = 0 and we may now follow the proof that (2) =⇒ (3) in
Theorem 8.7, replacing the use of Lemma 8.4 with Lemma 10.2.

(3). As 1x=0 is now in our test set, the function F (x) = c1x=0 is no longer a
preserver of total non-negativity; the other functions in the preceding part do preserve
a1x=b for any a ≥ 0 and b ∈ R. For the converse, if t1 = 0, then the working for
(2) and the previous observation gives the result. Otherwise, if t1 > 0 and F (0) ̸= 0,
then F (t1x=0) = F (0)(1− 1x=0) is not TN whenever t ∈ (0, t1). It remains to consider
the case F (0) = 0 and t1 ∈ (0,∞), but then F ◦ 2t1λ would be a TN function which
is non-zero at two or more points and has compact support, an impossibility. This
completes the proof. □

With Theorem 10.1 to hand, we show a similar result for the preservers of one-sided
Pólya frequency sequences, but in slightly greater generality. See Definition 9.1 for the
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definition of an admissible pair; we say that a Toeplitz kernel Tf : X × Y → R is one
sided if the associated function f : X − Y → R is, that is, there exists x− y ∈ X − Y
such that f vanishes on {z ∈ X − Y : z < x− y} or on {z ∈ X − Y : z > x− y}.

Theorem 10.3. Let X and Y be a pair of admissible sets such that X−Y does not have
a maximum or minimum element. If F : [0,∞) → [0,∞) is non-zero and preserves the
one-sided TN Toeplitz kernels on X × Y , then F (x) = cx or F (x) = c1x>0 for some
c > 0.

Proof. We suppose that F is non-zero and preserves one-sided TN Toeplitz kernels on
X × Y and proceed in a number of steps.

Step 1: F (0) = 0 and F is non-decreasing. Since F ̸≡ 0 on [0,∞), there exists t > 0
such that F (t) ̸= F (0). For any x− y ∈ X − Y , the one-sided function

Λ0(z) = t1z=x−y

is a Pólya frequency function, so the kernel

(F ◦ TΛ0)(z) = F (0) + (F (t)− F (0))1z=x−y

is one-sided. As F equals the constant F (0) on X −Y , except at x− y, and X −Y has
no extremal element, it follows that F (0) = 0. In particular, the operator CF preserves
one-sided kernels, and henceforth we focus on preserving TN.

We next show that F is non-decreasing, by following the proof of Theorem 10.1.
From the previous working, we have that F (0) = 0 ≤ F (t) for all t > 0. Next, given
any t > 0 and ε > 0, we see that F (t) ≥ F (te−ε), by considering det(F ◦ TΛ1)[x;y],
where the arithmetic progressions x = (x1, x2) ∈ X2,↑ and y = (y1, y2) ∈ Y 2,↑ are
equi-spaced, and Λ1 is the one-sided TN function

Λ1(z) := teελe−2ε

(
ε
z − x1 + y2
x2 − x1

)
.

This shows the monotonicity of F , and so the existence of t1 ∈ [0,∞] such that F
vanishes on (0, t1) and is positive on (t1,∞).

Step 2: F is continuous on (t1,∞). It suffices to show that F is multiplicatively
mid-concave on (t1,∞), by [52, Theorem 71.C]. Given p, q ∈ (t1,∞) with p < q, choose
any t > q and note that

0 < a := log(t/q) < b := log(t/p).

With equi-spaced arithmetic progressions x ∈ X2,↑ and y ∈ Y 2,↑ as in the previous
step, and any d ∈ [0, 1], we consider the one-sided TN function

Λ2(z) := tλd

(
a+

z − x1 + y2
2(x2 − x1)

(b− a)
)
.

The determinant

det(F ◦ TΛ2)[x;y] =

∣∣∣∣F (te−(a+b)/2) F (te−a)

F (te−b) F (te−(a+b)/2)

∣∣∣∣ = F (
√
pq)2 − F (p)F (q)

is non-negative, as required. Hence F is continuous on (t1,∞).
Step 3: t1 = 0. We suppose otherwise, and show first that F (t1) = 0. For this,

it suffices to prove that F+(t1) := limt→t+1
F (t) = 0. We fix equi-spaced arithmetic
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progressions x = (x1, x2, x3) ∈ X3,↑ and y = (y1, y2, y3) ∈ Y 3,↑. For arbitrary ε > 0,
consider the one-sided TN function

Λ3,ε(z) := t1e
5ελ1

(
2ε

z − x1 + y2
x2 − x1

)
.

A straightforward computation, using the fact that F (t) = 0 for all t < t1, gives that

(F ◦ TΛ3,ε)[x;y] =

F (t1e
3ε) F (t1e

5ε) 0
F (t1e

ε) F (t1e
3ε) F (t1e

5ε)
0 F (t1e

ε) F (t1e
3ε)

 .

As this matrix is TN by assumption, we have that

0 ≤ lim
ε→0+

det(F ◦ TΛ3,ε)[x;y] = −F+(t1)
3.

Thus F+(t1) = 0.
We now fix t2 > t1. Given any k ∈ N, we choose equi-spaced arithmetic progressions

x = (x1, . . . , xk+2) ∈ Xk+2,↑ and y = (y1, . . . , yk+2) ∈ Y k+2,↑, let

δ = δ(k) :=
1

k
log(t2/t1) > 0,

and consider the one-sided TN function

Λ4,k(z) := t1e
(2k+1)δλe−δ

(
δ
z − x1 + yk+1

x2 − x1

)
.

As F (0) = 0 = F (t1), it follows that

(F ◦ TΛ4,k
)[(x1, x2, xk+2); (y1, yk+1, yk+2)] =

F (t2e
δ) F (t22/t1) 0

F (t2) F (t22/t1) F (t22/t1)
0 F (t2) F (t2e

δ)

 .

Since this matrix is TN, and F is positive on (t1,∞), taking determinants gives that

2F (t2) ≤ F (t2e
δ).

Letting k → ∞ yields 0 < 2F (t2) ≤ F (t2), as F is continuous at t2. Thus F (t2) ≤ 0, a
contradiction since t2 > t1.

Step 4: F has the form claimed. The previous steps give that F is continuous,
positive, and non-decreasing on (0,∞). We first assume that F does not have the
form c1x>0 for any c > 0, so that F is non-constant on (0,∞). If F ◦ f is a TN
function whenever f has the form tλd for t > 0 and d ∈ [0, 1], ϕ(x) = xλ(x) or N as
in Lemma 10.2, then working as in the proof of Theorem 8.7 shows that F (x) = cx
for some c > 0. Hence we assume otherwise: suppose G := F ◦ f is not TN for one
of these functions. Then, by Lemma 7.7, there exists z ∈ Rn,↑, where n ≥ 2, such
that A := TG[z; z] is not TN. Since G is continuous except possibly at the origin, we
may assume that z ∈ Qn,↑. Taking N ∈ N such that Nzi is an integer for all i ∈ [n],
we set m = N(zn − z1) + 1, choose equi-spaced arthimetic progressions x ∈ Xm,↑ and
y ∈ Y m,↑, and let

Λ5 : X × Y → R; (x, y) 7→ G
((x− x1)− (y − y1)

(x1 − y1)N

)
.
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Then Λ5 = F ◦ Tf |X×Y is TN, since Tf is a one-sided TN Toeplitz kernel on X × Y ,
but Λ5 contains A as a principal submatrix. This contradiction completes the proof. □

We conclude with the case of Pólya frequency sequences, where X = Y = Z. Note
that a shift of origin (an)n∈Z 7→ (an+k)n∈Z preserves the TN property for any k ∈ Z, as
does the reflection (an)n∈Z 7→ (a−n)n∈Z, so we may consider only one-sided sequences
that vanish for negative indices.

Corollary 10.4. Let F : [0,∞) → [0,∞). Then F preserves the set of one-sided Pólya
frequency sequences if and only if F (x) = cx for some c ≥ 0.

Proof. One implication is immediate. For the converse, by Theorem 10.3, we have
that F (x) = cx or F (x) = c1x>0; to rule out the latter possibility, we show that F is
continuous at the origin. Given the one-sided Pólya frequency sequence a such that
a0 = a2 = 1, a1 = 2, and an = 0 otherwise, we note that

Cε := det(F ◦ εTa)[(0, 1, 2); (−1, 0, 1)] =

∣∣∣∣∣∣
F (2ε) F (ε) 0
F (ε) F (2ε) F (ε)
0 F (ε) F (2ε)

∣∣∣∣∣∣ ≥ 0

for any ε > 0. Hence
0 ≤ lim

ε→0+
Cε = lim

ε→0+
−F (ε)3,

which gives continuity at the origin as claimed. □

We conclude with a corollary on lower-triangular matrices, in the spirit of the final
observation in the previous section.

Corollary 10.5. Let F : [0,∞) → [0,∞). Then F preserves the set of TN lower-
triangular Toeplitz matrices if and only if F (x) = cx for some c ≥ 0.

Proof. One implication is immediate. For the converse, suppose F (0) = 0 but F is not
of the form F (x) = cx for any c ≥ 0. By Corollary 10.4, there exists a one-sided Pólya
frequency sequence a = (an)n∈Z such that F ◦ a is not a one-sided Pólya frequency
sequence, so there exist x = (x1, . . . , xn) ∈ Zn,↑ and y = (y1, . . . , yn) ∈ Zn,↑, where
n ∈ N, such that A := (F ◦ Ta)[x;y] has negative determinant. Let m := min{x1, y1},
M := max{xn, yn}, and let z := (m, . . . ,M). Then the Toeplitz matrices Ta[z; z]
and (F ◦ Ta)[z; z] are lower triangular, since an = 0 whenever n < 0, but the latter
contains A as a submatrix, so cannot be TN. This contradiction gives the result. □

The observation prior to Corollary 10.4 means that the previous result applies equally
to upper-triangular matrices.

11. Total-positivity preservers. II: General domains

It is time to return to our original problem, of classifying the preservers of TP kernels
on X ×Y for totally ordered sets X and Y . So far, we have resolved this when at least
one of X and Y is finite. The picture is completed by the following result.

Theorem 11.1. Suppose X and Y are infinite totally ordered sets such that there
exists a TP kernel on X × Y . A function F : (0,∞) → (0,∞) preserves the set of TP
kernels on X × Y if and only F (x) = cx for some c > 0.
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Proof. Without loss of generality, we assume X and Y are infinite subsets of R, by
Lemma 4.5. Next, we establish a stronger version of the chain property used to prove
Proposition 3.2, that is, the existence of an order-preserving bijection φX : X → X ′,
where X ′ ⊆ R contains an arithmetic progression of length 2n and increment 4−n for
each integer n ≥ 2. To show this, let (an)n≥1 be an increasing sequence of positive real
numbers, containing an arithmetic progression of length 2n and increment 4−n for each
integer n ≥ 2, and converging to 1. Such a sequence can be constructed, by taking
each arithmetic progression of the form j4−n, where j ∈ [2n], and concatenating these,
at each stage adding the last term of the existing sequence to each term of the next
progression:

1

4
,

2

4
,

2

4
+

1

16
, . . . ,

2

4
+

4

16
,

2

4
+

4

16
+

1

64
, . . . ,

2

4
+

4

16
+

8

64
, . . . .

As observed in Section 3, the set X has either an infinite ascending chain or an infinite
descending chain. Without loss of generality, we assume the former; the argument for a
descending chain is similar. If X is unbounded above, let (xn)n≥1 ⊆ X be an increasing
sequence such that xn → ∞. For all n ∈ N, let φX(xn) = an and extend φX piecewise
linearly on {x ∈ X : xn < x < xn+1}. This provides an order-preserving embedding of
{x ∈ X : x ≥ x1} into (0, 1) containing the desired arithmetic progressions. If, instead,
X is bounded above, with supX = m, let (xn)n≥1 ⊆ X be any increasing sequence
in X, and let x ∈ R be its limit. Set φX(xn) = an, φX(x) = 1, and φX(m) = 2 if
m ̸= x, and extend φX piecewise linearly between these points. Then φX is again an
order-preserving embedding of {x ∈ X : x ≥ x1} into (0, 2] and containing the desired
arithmetic progressions. A similar argument can be used to extend φX to the whole
of X by mapping {x ∈ X : x < x1} into [−2, 0). This gives φX as claimed.

To complete the proof, let φX : X → X ′ and φY : Y → Y ′ be order-preserving
bijections as constructed above, and note that X ′ and Y ′ are an admissible pair in the
sense of Definition 9.1. Thus, if F preserves TP for kernels on X × Y but is not a
dilation, Theorem 9.5 gives a TP Toeplitz kernel K ′ on X ′ × Y ′ → R such that F ◦K ′

is not TP. However, the kernel

K : X × Y → R; (x, y) 7→ K ′(φX(x), φY (y))

is TP, since K ′ is, and therefore so is F ◦K, by the assumption on F . As any submatrix
of F ◦K ′ occurs as a submatrix of F ◦K, we have a contradiction. As dilations clearly
preserve TP, the proof is complete. □

For our final result, we consider the symmetric version of the previous theorem.

Theorem 11.2. Suppose X is an infinite totally ordered set such that there exists a
symmetric TP kernel on X × X. A function F : (0,∞) → (0,∞) preserves TP for
symmetric kernels on X ×X if and only if F (x) = cx for some c > 0.

Proof. In the usual fashion, we first identity X with a subset of R using Lemma 4.5.
Proposition 4.7 now implies that any such preserver must be of the form F (x) = cxα

for positive constants c and α.
The construction in the proof of Theorem 11.1 gives an order-preserving bijection

φ : X → X ′, where X ′ ⊆ R contains arithmetic progressions of arbitrary length. This
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bijection provides a correspondence between TP symmetric kernels on X×X and those
on X ′ ×X ′, so we may assume, without loss of generality, that X contains arithmetic
progressions of arbitrary length.

Given u0 ∈ [0, 1), p, q ≥ 0 such that p+ q > 0 and ε > 0, note first that the Hankel
kernel

K : R× R → R; (x, y) 7→ p+ qux+y
0 + ε

∫ 1

0
e(x+y)u du,

is TP, by Proposition 7.4. Let x = (x1, . . . , xn) ∈ Xn,↑ be an arithmetic progression,
where n ≥ 2, and note that the kernel

K ′ : X ×X → R; (x, y) 7→ K

(
x− x1
x2 − x1

,
y − x1
x2 − x1

)
is symmetric and TP, hence so is

(F ◦K ′)[x;x] = (F ◦K)[(0, 1, . . . , n− 1); (0, 1, . . . , n− 1)].

By the continuity of F , the matrix

lim
ε→0+

(F ◦K)[(0, 1, . . . , n− 1); (0, 1, . . . , n− 1)] = (F (p+ qui+j
0 ))n−1

i,j=0

is positive semidefinite. As n can be arbitrarily large, it follows from [9, Theorem 4.1]
that F is the restriction of an entire function

∑∞
k=0 ckx

k with ck ≥ 0 for all k. Since
F (x) = cxα, it must be that α is a positive integer.

To conclude, we suppose for contradiction that α ≥ 2 and let M be a Pólya frequency
function as in Lemma 8.4. Then M is non-vanishing and, by Lemma 7.7, there exists
z ∈ Rn,↑ such that (F ◦ TM )[z; z] has a negative minor; by continuity, we may assume
that z ∈ Qn,↑. Working as in the final two paragraphs of the proof of Theorem 9.5,
with X = Y and x = y, now gives the result. □

12. Concluding remarks: Minimal test families

In the first part of this section, we identify a few directions for future exploration.
The second part contains an enumeration of minimal test criteria to demonstrate the
rigidity of preservers.

12.1. Open questions. By specializing the families of maps that the post-composition
transform leaves invariant, we may obtain a plethora of classification questions. Some
of these questions, which appear artificial at first sight, might gain weight due to future
applications. Here, we simply touch the surface.

Question 12.1. Which functions preserve the class of one-sided Pólya frequency se-
quences with finitely many non-zero terms, or those generated by evaluating a polyno-
mial?

This question has more positive answers than just the homotheties. For example,
the power maps xn are preservers of both sub-classes of one-sided Pólya frequency
sequences for all n ∈ N, by results of Maló [47] and Wagner [64], respectively.

Question 12.2. Are the totally positive Pólya frequency sequences dense in the set of
all Pólya frequency sequences?
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Question 12.3. Given a TN kernel K : X × Y → R, where X and Y are infinite
subsets of R, can K be approximated by a sequence of TP kernels, at least at points
of continuity?

For the latter question, recall that Section 6 contains such an approximation by TPp

kernels, for every p ∈ N.
While positive solutions to the preceding questions could help provide alternate

proofs of the classifications of the classes of TP preservers in these settings, we have
already achieved these classifications via different methods.

12.2. Minimal testing families. Many of the proofs above isolate some minimal
classes of kernels against which putative TN or TP preservers must be tested. For the
reader interested solely in the dimension-free setting of Theorem 1.1, we end with some
toolkit observations.

If a function F : [0,∞) → R preserves TN for (a) all TN 2 × 2 matrices, (b) the
3× 3 matrix C from (3.5), and (c) the two-parameter family of 4× 4 matrices N(ε, x)
defined above (3.7), then F is either constant or linear. Specifically, as the proof of
Theorem 3.3 shows, preserving TN for the 2 × 2 test set implies that F is either a
non-negative constant or F (x) = cxα for some c > 0 and α ≥ 0. Using the matrix C,
we see that α ≥ 1. Finally, using the test set {N(ε, x) : ε ∈ (0, 1), x > 0}, we obtain
α = 1.

As noted in Remark 8.8, a non-zero function F : [0,∞) → [0,∞) preserves Pólya
frequency functions if and only if the transforms by F of tλ(x) and xλ(x) are TN for
all t > 0, as are the transforms of Gaussians cG1 for all c > 0, as well as that of a single
function M as in Lemma 8.4.

We also note that Theorem 1.1 for TN preservers was proved by different means, in
the context of Hankel positivity preservers, in [9, Section 5]. By comparison, the proof
given here has clear benefits, including completing the classification in every fixed size
and isolating a small set of matrices on which the preservation of the TN property can
be tested. Our present approach also leads to the classification of preservers of total
positivity for matrices of a prescribed size, as well as classifications of the preservers
when restricted to symmetric matrices.

List of symbols. For the convenience of the reader, we list some of the symbols used
in this paper.

• N and N0 = N ∪ {0} denote the sets of positive integers and non-negative
integers, respectively.

• For any n ∈ N, [n] denotes the set {1, . . . , n}.
• Given a totally ordered set X and n ∈ N, the set Xn,↑ comprises all increasing
n-tuples (x1, . . . , xn) in X, so that x1 < · · · < xn.

• Let X and Y be totally ordered sets and suppose K : X×Y → R. Given tuples
x ∈ Xm,↑ and y ∈ Y n,↑, K[x;y] denotes the m × n matrix with (i, j) entry
K(xi, yj).
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• For totally ordered sets X and Y ,

FTN
X,Y := {F : [0,∞) → R | if K : X × Y → R is totally non-negative, so is F ◦K}
and

FTP
X,Y := {F : (0,∞) → R | if K : X × Y → R is totally positive, so is F ◦K}.

• Given p ∈ N, TNp and TPp are the sets of matrices or kernels whose submatrices
of order d × d have non-negative or positive determinants, respectively, for all
d ∈ [p].

• Given a set X and a domain I ⊆ R,

F psd
X (I) := {f : I → R | if K : X ×X → I is positive semidefinite, so is f ◦K}

and

F pd
X (I) := {f : I → R | if K : X ×X → I is positive definite, so is f ◦K}.
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