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Figure 1: a) The head rotational velocity direction (θ ) and magnitude (ρ) are extracted during a VR session. b) Probability
density functions are extracted from eye-gaze distributions that correspond to the head rotational velocity and are converted
into a series of percentile-based contours (η). c) Our real-time model uses the three parameters (θ ,ρ,η) to provide a novel
representation of visual attention for VR collaboration or interaction.

ABSTRACT
Eye behavior has gained much interest in the VR research com-
munity as an interactive input and support for collaboration. Re-
searchers used head behavior and saliency to implement gaze in-
ference models when eye-tracking is missing. However, these solu-
tions are resource-demanding and thus unfit for untethered devices,
and their angle accuracy is around 7°, which can be a problem in
high-density informative areas. To address this issue, we propose
a lightweight deep learning model that generates the probability
density function of the gaze as a percentile contour. This solution
allows us to introduce a visual attention representation based on
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a region rather than a point. In this way, we manage the trade-off
between the ambiguity of a region and the error of a point. We
tested ourmodel in untethered devices with real-time performances;
we evaluated its accuracy, outperforming our identified baselines
(average fixation map and head direction).

CCS CONCEPTS
• Human-centered computing → Virtual reality; Collabora-
tive interaction; • Computing methodologies → Neural net-
works.
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1 INTRODUCTION AND RELATEDWORKS
In collaborative settings, gaze is seen as a vital cue for efficient
communication and collaboration and can be used to predict collab-
orators’ intention [Baron-Cohen et al. 1997], seek approval [Efran
1968], or understand the desire to communicate [Ho et al. 2015].
Gaze cues that show the current gaze position to collaborators are
usually visualized through a cursor [Jing et al. 2021; Kim et al. 2020;
Lee et al. 2017] or a ray [Bai et al. 2020; Jing et al. 2021; Li et al.
2019] in augmented and virtual reality (AR/VR) settings, and have
been extensively studied to improve collaboration and communica-
tion. These works, together with results in desktop settings, have
shown that gaze-based cues can be effective for establishing mutual
orientation [D’Angelo and Gergle 2016; Hindmarsh et al. 1998; Jing
et al. 2021; Li et al. 2016], enhancing the feeling of co-presence [Bai
et al. 2020; Gupta et al. 2016], and improving the awareness of col-
laborators’ attention and actions [Jing et al. 2021; Kuhn et al. 2009;
Lee et al. 2017; Newn et al. 2017].

In VR, it is also common to use the head orientation as an ap-
proximation of gaze, as eye tracking is not widely available in low-
cost HMDs (e.g., Oculus Quest), and is prone to errors [Holmqvist
et al. 2012]. As such, the head direction is commonly used as a
replacement or proxy for gaze-based cues in collaborative AR, or
VR [Atienza et al. 2016; Li et al. 2019]. Furthermore, due to the head’s
synergistic relationship with the eyes [Kollenberg et al. 2010; Pfeil
et al. 2018; Sidenmark and Gellersen 2019a], head movement is
a common feature in visual attention models that mimic gaze for
egocentric videos [Li et al. 2013; Matsuo et al. 2014; Nakashima et al.
2015; Yamada et al. 2011], or VR [Hu et al. 2020, 2019]. However,
head movements fail to approximate the fine-grained movements
performed by the eyes. This means that users have to perform more
head movement to align a head-based pointer with gaze during
interaction [Sidenmark and Gellersen 2019b], and that visual atten-
tion models are not able to achieve accurate gaze point prediction
based on head movements alone. Therefore, head-based collabora-
tion cues commonly apply large frustum- or cone-shaped cursors to
cover wider fields of view to ensure that the gaze position is within
the cue [Bai et al. 2020; Piumsomboon et al. 2017]. Meanwhile, gaze
prediction models based on head movement commonly include
visual saliency as a feature to increase model accuracy [Hu et al.
2020, 2019; Li et al. 2013; Matsuo et al. 2014; Nakashima et al. 2015;
Yamada et al. 2011]. However, while models can easily retrieve head
movements from the HMD sensors in real-time, visual saliency is a
resource-demanding process [Hu et al. 2020, 2019].

Thiswork proposes a saliency-free deep-learning gaze-prediction
model for visual attention cues in collaborative environments using
only head movements for real-time use in low-cost HMDs (Fig-
ure 1a). We choose the multi-perceptron (MLP) neural network
(NN) because it is widely used in regression problems [Murtagh
1991]. Our MLP architecture is simple, with a small amount of fully
connected layers that learn the center and contours of probable fix-
ation locations from a set of generated eye-gaze probability density
functions (PDFs) (Figure 1b, Figure 2). These PDFs are pre-generated
starting from gaze data filtered by head movement velocity (i.e.,
direction θ and magnitude ρ) and using a novel method. Our model
does not aim to infer users’ exact gaze position but rather the con-
tour of probable gaze positions to address the accuracy limitation

of head movements and minimize the size of head-based cue visu-
alizations. Predicting the area of interest helps in a collaborative
context where dense information can lead to erroneous interpreta-
tion if only gaze location coordinates are indicated. The model does
not rely on visual saliency and can thus be used in a wide array
of environments and contexts. We envisage the model to be effec-
tively applied as an improved head pointer for interaction more in
line with the gaze position, as a gaze-based attention indicator in
co-located scenarios, or as a method to reconstruct gaze in offline
analysis without knowledge of the gaze position or visual saliency.

We trained and evaluated our proposed model with a dataset of
gaze and head data from 13 participants looking at 360 VR videos
[Agtzidis et al. 2019].We compared our novel PDF generator against
the PDF generated by an improved 2D Gaussian fitting approach.
To evaluate our deep-learning model, we compare it to a head-based
baseline, the average fixation map (AFM) calculated as proposed by
Radkowski [2015] and demonstrated to be a valid gaze prediction
method by Tavakoli et al. [2019] (Figure 2f). We found that our
novel PDF generator method outperform the Gaussian approach
within certain range of velocities ( θ =[-90 °,-45°],[45°, 80 °] and for
ρ=[1°/s, 6.5 °/s]) and that our deep-learning model better reflects
gaze during head movements than the head-baselines.

The contribution of this paper is three-fold. Firstly, we propose
a novel method to generate PDFs from gaze maps based on a con-
volution auto-encoder which performs better than the multivari-
ate Gaussian fitting (MGF) function according to specific head ro-
tational velocity directions (θ ) and magnitudes(ρ). Secondly, we
introduce a lightweight visual attention model based on a MLP
architecture tested on untethered devices. Thirdly, we evaluate our
model’s performance and comparison with the head-based model
as baselines (i.e., head direction and AFM). We show that our model
has better accuracy than the identified baseline.

2 MAIN CONCEPTS
Previous works focused on predicting the exact gaze location as a
2D point. This approach can be error-prone in collaborative settings
when the scene contains high-density areas of information since
even a few degrees of prediction error can point towards entirely
different pieces of information. To address this issue, we propose
to capture the shape of gaze distribution instead of the most in-
formative point. This approach exploits the trade-off between the
ambiguity of a region’s information and the error that a point can
introduce. Our model’s inputs consist of the head’s rotational vector
(θ , ρ) and contour percentile (η); the latter represents the trade-off
between point/region and error/ambiguity (Figures 1b, 2b and 2c).

2.1 Visualization Dimensionality
PDFs are commonly visualized as a gradient to show the model’s
continuous probability output in space. Alternative visualizations
of PDFs consist of percentile-based contour lines, or a closed line
that divides the space into two regions, inside and outside, offering
a binary classification. These visualizations only partially capture
the PDF unless multiple lines are visualized (e.g., isohypse geolog-
ical altitude representations or isobars in meteorology maps). As
the model’s purpose is to visualize where a user’s visual attention



Real-time head-based deep-learning model for gaze probability regions in collaborative VR ETRA ’22, June 03–05, 2022, Seattle, WA

(a) Gaze distribution (θ = 10°, ρ = 7±2 °/s) (b) Gaussian iso-contours (c) Autoencoder iso-contours

(d) Contours and velocity direction (θ ) (e) Contours and velocity magnitude (ρ) (f) average fixation map

Figure 2: a) A distribution of eye gaze samples generated from the two parameters of head angular velocity direction θ =
10°and magnitude ρ = 7°/s b) The PDF extracted via the MGF (Section 2.3.2), and the percentile-based contours extracted from
the PDF. c) The PDF extracted via the Autoencoder (Section 2.3.1), and the percentile-based contours extracted from the PDF.
d) A depiction of how contours change depending on the value of head angular velocity direction (θ ) while the percentile ρ
is fixed. e) A depiction of how contours change depending on the value of head rotational velocity magnitude (ρ) while the
percentile parameter and θ are fixed. f) Average Fixation Map: we plot all the gaze data samples from the dataset [Agtzidis
et al. 2019], and we generate an AFM calculated as proposed by Radkowski [2015] from the AFM. We generate the contour
which represents 70% of the data. From this image is clear that the gaze distribution does not have a Gaussian shape.

is likely to be without occluding the virtual scene, a line type vi-
sualization is sufficient to convey the information and, unlike a
gradient type visualization, does not occlude the scene. Moreover, a
gradient in 2D space requires a bi-dimensional coordinate plus the
value associated with them, while a line requires a bi-dimensional
coordinate but no associated value.

2.2 Head Rotational Velocity Direction and
Magnitude

We parametrize head rotational velocity as magnitude (ρ) and the
angle with the z axes of the space (θ ) (Figure 1). We chose such pa-
rameterization to be more understandable to humans by decoupling
the velocity direction and magnitude parameters, unlike previous
research where direction and magnitude are hidden among two
Cartesian coordinates. This parameterization allows us to create a

simple analysis tool to navigate the dataset distributions and inform
our machine learning method.

2.3 Deep Learning Pipeline
We selected a dataset created by Agtzidis et al. [Agtzidis et al. 2019]
containing both eye- and head-tracking in a virtual environment.
They recruited 13 participants and played 15 360-panoramic videos
for each participant for a total of 195 video sessions. We randomly
split the sessionswith a ratio of 2/3 (130 videos, 936000 data samples)
for training and 1/3 (65 videos, 468000 data samples) for evaluation.
We generated a series of gaze distributions from the dataset by
filtering the data using different head rotational velocity directions
(θ ) and magnitudes (ρ). We then saved these distributions as gray-
scaled images with a size of 128x128. Because we noticed that the
gaze samples did not always have a Gaussian shape, we generated
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Figure 3: Our model’s three-stage training pipeline involves two deep learning models and a contour extraction phase to
process velocity angle and magnitude (θ ,ρ) to generate the contour that contains the requested probability of gaze area. The
contour encloses the visual interest area and includes the predicted gaze location. The first pipeline training stage consists of
an autoencoder reconstructing the 2D PDF from gaze location distribution samples, or an MGF approach. The second stage is
a multi-perceptron architecture that encodes contours from the angles and magnitudes of head-shift velocity.

PDFs with two different methods. Firstly, by using a trained au-
toencoder (Section 2.3.1) that captures the shape of the distribution
and secondly, by fitting a multivariate Gaussian distribution (Sec-
tion 2.3.2). Both models output gray-scaled images of the same size
(128x128). We extracted the center and percentiles contours from
each PDF paired with the different head angular velocity angles and
magnitudes. We then trained a contour encoder to learn the vari-
ous centers and contours from the PDFs grouped by head angular
velocity (θ , ρ) and the contours percentile (η, Figure 1b). We used
a shallow model, avoiding complex neural networks architectures
such as the ones proposed by Hu et al. [2020, 2019].

2.3.1 PDF from Autoencoder. The dataset’s eye gaze distribution
does not have the Gaussian shape as shown in Figure 2f where a
diamond shape is visible from the AFM. Therefore the autoencoder
aims to provide an alternative approach to the standard Gaussian
model. We developed the autoencoder with Keras/Tensorflow 2.7.0,
and has a standard autoencoder architecture and is trained with
a list of multivariate distributions such as Gaussian, Poisson, and
Skewed Gaussian. We generate a training set with the distributions’
PDFs as labels and data generated by applying uniform noises
to PDFs. This method achieves a visually similar distribution to
the real-world gaze-tracking data. We call this variant the PDF

autoencoder, and accepts generated gray-scaled 128x128 images as
input. The output of the PDF autoencoder is the PDF given the
heatmap of the gaze distributions obtained after filtering the data
with the direction and amplitude of the head rotational velocity.

2.3.2 PDF fromMultivariate Gaussian Fitting (MGF). Previouswork
used Gaussian fitting to describe a distribution of gaze locations
Nakashima et al. [2015]; Yamada et al. [2011]. However, their im-
plementations split the X and Y components of the distribution,
losing their correlation and removing the Gaussian shape’s tilting
orientation. Instead, our proposed MGF is implemented so that the
Gaussian shape can fit with a tilt value and better follow the distri-
bution shape. We used Scipy 1.7.2 to calculate MGF. This training
set and the PDF autoencoder set are created starting with the same
samples using random θ and ρ.

2.3.3 Contour extraction. The PDF images generated by the auto-
encoder and the MGF are processed to extract contours. Every
percentile-based contour is associated with the two parameters
of head velocity (θ ,ρ) and the percentile value (η). The three pa-
rameters (θ ,ρ,η) represent the training set for the next stage of the
pipeline (Figure 3). The prediction stage does not require the autoen-
coder, and such knowledge is embedded directly into the next model
(Contour encoder section 2.3.4). After generating the resulting PDF
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Figure 4: A) Percentage of data samples in the dataset for each head angular direction. B) X and Y Standard deviation of the
eye-gaze samples’ distribution for each head angular direction. C) Percentage of data present in the dataset for each head
velocity magnitude (degrees/s). D) X and Y Standard deviation of the eye-gaze samples’ distribution for each value of head
velocity magnitude (degrees/s).

images from the autoencoder and the MGF, we perform a contour
extraction based on the percentiles (η.1,η.2,η.3,η.4,η.5,η.7,η.8,η.9,η1)
of the samples of the gaze distributions. Contour extraction is per-
formed via a python script and the library "shapely". After a geomet-
ric downsample, each contour is reduced to a sequence of 20 points
with two coordinates. We also include the center of the contour as
an additional dataset point to represent the estimated gaze location.
After grouping numerical input data and such contours, we obtain
the training dataset that is the input for the final training phase.

2.3.4 Contour Encoder. The second part of the training pipeline
consisted of the Contour Encoder, which is used when predict-
ing the contour and the gaze location. We visualize the PDF as
an iso-contour adopting a lower dimensionality than a PDF gradi-
ent. Therefore, our neural network does not need 2D convolution
(Section 2.1). Moreover, we choose not to use Recurrence Neural
Networks (RNN) for two reasons. First, the resource consumption
due to recurrence may not fulfill our real-time performance require-
ment. Second, the training of RNN can be affected by a vanishing
gradient fostered by a high number of eye-fixations with a head
rotational velocity of zero of the dataset (see the histogram in Fig-
ure 4). We want to keep the Neural Network (NN) architecture as
simple as possible to achieve fast inference and portability to mobile
headsets; therefore, we select MLP architecture. We design this NN
as a simple fully connected model with four layers of 2048 hidden
units. We train the model with the contours generated from the PDF
autoencoder and MGF for comparison. The contour encoder inputs
consist of three parameters (θ ,ρ,η) and an output of 42 parameters:
20 2D points for the contour and one 2D point for the gaze.

2.3.5 VR-NN model implementation. We use TensorflowLite to
port the model to an untethered VR headset by converting it to
an Android-compatible version that can be loaded and executed
via the Unity framework. In addition, we improve model stability
when velocity is close to zero by linearly combining the contour
estimation of the neural network and the AFM via Formula 1.Where
V is the head angular velocity, Vthres is a velocity threshold over
which no linear combination is performed. We use Vthres=0.05
upon visual estimation. t is the parameter with a range from 0.0
to 1.0. The AFM contour is displayed when t = 0.0, while the pure

neural network contour is chosen when t = 1.0.

ContourV <Vthres = (1− t) ∗ContourAFM + t ∗ContourNeural (1)

3 RESULTS ANALYSIS
3.1 Data Exploration
We look at the overall dataset distribution of head angular velocity
magnitude and direction to contextualize the evaluation of our
autoencoder and Gaussian models,. The histogram of data samples
to velocity magnitude shows that most of the data concentrate at
low-velocity magnitude where the head is stationary (Figure 4C).
Furthermore, the data also indicates that gaze samples relative to
the head movement directions are most prevalent in horizontal
directions (Figure 4A). The Standard deviation (STD) of the eye-
gaze distributions measures show the significant sample spread.
By measuring STD on the data filtered by head angular velocity
direction and magnitude, we can sense how the PDF and contours
change size and shape depending on head rotational velocity. When
looking at STD changes in relation to the head direction (Figure 4B)
we see that the X STD reaches the maximum when the head is
rotating towards the left (θ = 90 °) or right (θ = -90 °) side while
the Y STD reach the maximum when the head rotation is upward
(θ = 0 °) or downward (θ = 180 or -180 °). Such results show a
correlation of STD with the head rotation direction. When the head
rotational direction is upward/downward, the eyes STD increases
in the upward/downward axes (Y STD) and diminishes for the
left/right (X STD). Likewise, when the head rotational direction
is left/right, the eyes STD grows in the X and diminishes for the
Y. Such change in STD is confirmed by the shape of the contours
generated by the models (Figure 2d). The contours’ size changes
on the X and Y accordingly to X STD and Y STD. Furthermore, the
STD increases as head velocity magnitude increases. Such result
is consistent with the size of contours which increases with the
increments in head velocity magnitude (ρ) as shown in Figure 2e.

3.2 Performance
We tested our model’s temporal performance on two untethered
devices. We measured an average inference time on Oculus Quest of
8 ms, while for Oculus Quest 2 of 3 ms. Such results are compatible
with the Oculus refresh rate showing that our model operates in
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Figure 5: Results of the Autoencoder, Gaussian, and head direction baseline. A) RMSE of the predicted center relative to the
distributions of eye-gaze samples for each head direction B) Percentage of data captured by the model contours for each head
rotation direction C) RMSE of the models relative to Head Angular Velocity (degrees/s) D) The percentage of the data captured
by the models’ 70th percentile contours relative to the head’s angular velocity magnitude (degrees/s).

real-time. To evaluate our model, we compared it to our identified
baselines: the head direction and the average fixation map. We used
two different metrics: firstly, the Root Mean Squared Error (RMSE)
to identify how erroneous is the predicted center compared to the
eye-gaze distributions. Secondly, we used the percentage of the
data samples contained in the contours (in unit scale).

3.2.1 RMSE. We measured the performance of the models related
to inferred gaze position by calculating RMSE between the inferred
gaze and the real gaze (Figure 5A and Figure 5C). Comparing the
models RMSE results we see that the autoencoder model performs
better than the Gaussian for θ =[-90°, 90°] (Figure 5A), and for
ρ=[0°/s, 6°/s] (Figure 5C). Both models perform consistently bet-
ter than the baseline (i.e., head direction). Both models, as well as
the baseline, tend to reach the lowest accuracy when downward
head movements are performed (Figure 5A). Such a result is consis-
tent with previous studies which describe how the eyes contribute
more than the head during downward gaze shifts [Sidenmark and
Gellersen 2019b]; because the eyes contribute more (when needed),
the accuracy of both models and the baseline reduces during down-
ward movements. We also can see that the model’s minimum accu-
racy corresponds to the left/right head direction. Our models are
consequently most efficient during left and right head movements.
Such results agree with previous work from Hu et al. [2019] which
explores the Pearson’s Correlation Coefficient (PCC) of X and Y
components of head rotational velocity and highlights that the X
component correlates with the gaze locationmore than the Y. Model
performance to the head velocity magnitude (ρ) (Figure 5C) show
that when ρ is close to zero both models’ accuracy are equivalent to
the baseline. On the other hand, the models perform significantly
better than the baseline across most of the range of ρ.

3.2.2 Percentage of data captured. We also measure the perfor-
mance of the contours in capturing the eye-gaze samples. To do
this analysis we use the 70% percentile contour (Figure 5B and Fig-
ure 5D). We use this metric to compare the models to each other and
with our baseline, the AFM (Figure 2f). Results highlight how both
models perform better than the AFM and how the best performance
corresponds to the left/right direction, likewise for the MSE of the
center. Comparison with the AFM also shows that when head rota-
tional velocity is close to zero, the AFM performs equally well as the

models (Figure 5D) likewise for the MSE center baseline. However,
when the head is moving, results show significantly better perfor-
mance for both models when compared to the baseline. We exploit
this AFM characteristic to stabilize our model output when zero
velocity magnitude happens. We compare the models percentage
of data captured and we see how the autoencoder model performs
better than the Gaussian for θ =[-90°,-45°],[45°, 80°](Figure 5B), and
for ρ=[1 °/s, 6.5 °/s] (Figure 5D). Therefore, we can say that our
approach to generate PDF based on autoencoder better captures
the shape of gaze distribution in relevant ranges like the left/right
head movements.

4 CONCLUSION AND FUTUREWORKS
During collaboration, visual attention cues can help clarify the
shared visual context, allowing participants to see each other’s
focus. Mutual awareness of visual attention simplifies communi-
cation by reducing the necessity of verbally explicit references or
hand-pointing gestures to identify/negotiate the current direction
of the collaborative effort. This paper presented a lightweight deep
learning model that can predict the PDF of gaze in VR based on head
motion. The model is based on a novel method to generate PDFs.
Our model facilitates interaction in collaborative VR by explicitly
depicting the collaborator’s likely area of visual focus in real-time.
We developed and compared two models for inferring gaze and its
PDF as a percentile contour. Results of RMSE of the predicted eye
gaze show that both models perform better than the AFM baseline,
and when compared to each other, they have similar results in
terms of accuracy. The equal performance of both models shows
that the Autoencoder can be effectively used as an alternative to
the standard Gaussian 2D approach.

Furthermore, we demonstrated that our multi-perception model
can be used in real-time applications on untethered devices. Our
model and source code are available for the research and VR devel-
opers communities via GitHub1. Our implementation achieves a
real-time performance on a low-cost Oculus Quest with an infer-
ence time of 7ms, demonstrating that our approach can be used to
replace head orientation as an approximation of gaze in collabora-
tive VR applications.

1https://github.com/Collaborative-Immersive-Visual-
Toolkit/VR_Iso_Gaze_Contours
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Moreover, the same technique could be used in post-process
analysis scenarios as a fast method to estimate gaze from 3 DoF
head data. In addition, this paper introduces a novel type of coor-
dinates for head rotational speed with the characteristics of being
human-readable and that can be used to analyze gaze distributions
in function of the head rotational velocity. Further work could be
carried out to compare our model with the AFM baseline via psy-
chophysical experimentation and extend the model with different
dataset types. For interactive applications, the model could be tested
in a pointing task [Teather and Stuerzlinger 2011]. The same com-
parison but with the models’ contours instead could be carried out
for collaborative applications performing mixed methods studies
such as [Piumsomboon et al. 2019; Prilla 2019] comprehensive of
quantitative and qualitative measures.
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