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Abstract

This article studies estimation of a stationary autocovariance structure in
the presence of an unknown number of mean shifts. Here, a Yule-Walker
moment estimator for the autoregressive parameters in a dependent time
series contaminated by mean shift changepoints is proposed and stud-
ied. The estimator is based on first order differences of the series and
is proven consistent and asymptotically normal when the number of
changepoints m and the series length N satisfy m/N → 0 as N → ∞.

Keywords: Autoregression, Differencing, Robustness, Rolling Windows,
Segmentation, Yule-Walker Estimates

1 Introduction

Time series dynamics often change due to external events or internal sys-
tematic fluctuations. One common structural change is the mean shift, and
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changepoint analyses allow the researcher to identify whether and when abrupt
changes in the mean of the series take place. Evolving from the original treatise
for a single location parameter shift in [1], the majority (but not all) of change-
point analyses check for shifts in the mean of the series. Since [1], considerable
changepoint work has been conducted, including recursive segmentation algo-
rithms such as binary segmentation and wild binary segmentation [2], dynamic
programming based approaches such as [3] and [4], moving sum (MOSUM) pro-
cedures [5, 6], and simultaneous multi-scale changepoint estimators (SMUCE)
[7]. Additional changepoint work includes applications in climatatology [8],
economics [9], and disease modelling [10].

Many changepoint techniques assume independent and identically dis-
tributed (IID) model errors; however, time series data are typically correlated
(e.g., daily temperatures, stock prices, and DNA sequences [11]). Changepoint
techniques tend to overestimate the number of changepoints should positive
autocorrelation be ignored [12]. In addition, some multiple changepoint mod-
els for time series allow all model parameters, including those governing the
correlation structure of the series, to change at each changepoint time. These
scenarios are easier to handle computationally as dynamic programming tech-
niques can quickly optimize penalized likelihood objective functions; see [4]
and [13]. In these cases, the objective function optimized is additive in its
segments (regimes). A more parsimonious model allows series means to shift
with each changepoint time, but keeps error autocovariances constant across
all regimes. These models do not lead to objective function additivity and fast
dynamic programming techniques cannot be directly applied (See [12]).

Remedies typically seek to incorporate the autocorrelation structure in the
changepoint analysis or to pre-whiten the series prior to any changepoint anal-
ysis. In either case, one needs to quantify the autocovariance structure and/or
long-run variance of the series. With a good estimate of the series’ autocovari-
ance structure, one-step-ahead prediction residuals can be computed — and
these residuals are always uncorrelated (independent up to estimation error for
Gaussian series). Indeed, a principle of [12, 14] is that good multiple change-
point detection routines can be devised by applying IID methods to the series’
one-step-ahead prediction residuals (also called pre-whitening). Perhaps owing
to this, considerable recent research has sought to find changepoints in depen-
dent time series. Among these, [15] estimate the long-run variance of the error
process via a difference-type variance estimator calculated from local means
from different blocks; this estimate is then used to modify SMUCE for depen-
dent data. The authors [6] propose a robust covariance estimation procedure
from M−estimation to modify a moving sum procedure. Other proposed long-
run variance (or time-average variance) estimators for mean shift problems
based on robust methods include [16], [17], and [18].

This paper studies autocovariance and long-run variance estimation in the
presence of mean shifts in more detail. We devise a method based on first
order differencing that outperforms robust and rolling window methods. The
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scenario is asymptotically quantified when the model errors obey a causal
autoregressive (AR) process.

The rest of this paper proceeds as follows. The next section narrates our
setup and discusses approaches to the problem. Section 3 then develops an
estimation technique based on lag one differences of the series. Section 4
proves consistency and asymptotic normality of these estimators and Section
5 assesses their performance in simulations. Section 6 applies the results to an
annual precipitation series and Section 7 concludes with brief comments.

2 Model and Estimation Approaches

Suppose that {Xt}Nt=1 is a time series having an unknown number of mean
shift changepoints, denoted by m, occurring at the unknown ordered times
1 < τ1 < τ2 < · · · < τm ≤ N . These m changepoints partition the series into
m + 1 distinct segments, each segment having its own mean. The model is
written as

Xt = κs(t) + εt. (1)

Here, s(t) denotes the series’ regime number at time t, which takes values in
{0, 1, . . . ,m}. Then κs(t) = µi is constant for all times in the ith regime:

κs(t) =


µ0, 1 ≤ t ≤ τ1,
µ1, τ1 + 1 ≤ t ≤ τ2,

...

µm, τm + 1 ≤ t ≤ N

.

We assume that {εt} is a stationary causal AR(p) time series that applies to
all regimes. The AR order p is assumed known for the moment; BIC penal-
ties will be examined later to select the order of the autoregression should it
be unknown. While more general ARMA(p, q) {εt} could be considered, we
work with AR(p) errors because this model class is dense in all stationary
short-memory series [19], and estimation, prediction, and forecasting are easily
conducted. Adding a moving-average component q ≥ 1 induces considerably
more work and is less commonly found in changepoint applications. The AR(p)
{εt} obeys

εt = φ1εt−1 + · · ·+ φpεt−p + Zt, t ∈ Z, (2)

where {Zt} is IID white noise with a zero mean, variance σ2, and a finite fourth
moment (this enables consistent estimation of the autoregressive parameters
φ1, . . . , φp).

The next section develops a difference based moment estimation proce-
dure for the mean shift setting. Under this scenario, first-order differences of
the series will have a non-zero mean only at the changepoint times. At this
point, it might seem prudent to apply ARMA estimation methods that are
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robust to outliers to the differenced series. Indeed, many previous authors have
considered outlier-robust estimators for ARMA models. For examples, the M -
estimators of [20] are shown to be consistent and tractable and the bounded
influence propagation (BIP) τ -estimators in [21] merit mention. However, these
estimators require the ARMA series to be causal and invertible. In our appli-
cation, the differenced series has a unit root in its MA component and is
hence not invertible. Perhaps worse, future simulations demonstrate that BIP
τ -estimators do not perform well in our setting.

3 Moment Estimates based on Differencing

This section derives a system of linear equations that relate the autocorrela-
tions of the differenced series to the AR(p) coefficients. First-order differencing
a series eliminates any piecewise constant mean except at times where shifts
occur. Authors have previously used differencing to estimate global parameters
in the changepoint literature. For example, [22] discuss a class of difference-
based estimators for autocovariances in nonparametric changepoint segment
regression when the errors are from a stationary m-dependent process. The
paper [2] uses differencing to get an estimate of Var(Xt), although IID errors
are assumed in this work. The estimator in (16) below comes from [18] and
is also based on differencing. This said, there seems to be no previous liter-
ature using differencing to estimate AR(p) parameters in a setting corrupted
by mean shifts. As an aside, differencing also detrends a time series; the esti-
mators below perform well if a time series has both changepoints and a linear
trend.

Let {Xt} be a stationary series satisfying the causal AR(p) difference
equation

Xt = µ+

p∑
j=1

φj(Xt−j − µ) + Zt, (3)

with {Zt} a zero mean IID sequence with a finite fourth moment. Since Xt may
be causally expressed in terms of Zt, Zt−1, . . ., the autoregressive coefficients
are uniquely determined by the pth order recursion

γX(h) = φ1γX(h− 1) + · · ·+ φpγX(h− p), h = 1, 2, . . . (4)

and its boundary conditions [19]. Here, γX(h) = Cov(Xt, Xt−h) and we use
the analogous notation ρX(h) = Corr(Xt, Xt−h). Consider the sequence of first
differences defined by dt = Xt −Xt−1. Then {dt} is stationary with

γd(h) := Cov(dt, dt+h) = 2γX(h)− γX(h− 1)− γX(h+ 1), (5)

and

ρd(h) := Corr(dt, dt+h) =
2ρX(h)− ρX(h− 1)− ρX(h+ 1)

2[1− ρX(1)]
. (6)
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One can also show that {dt} satisfies an ARMA(p, 1) difference equation with
a first-order moving average parameter of −1. We now show that φ1, . . . , φp
can be recovered from the autocorrelation function of the differences.

Let P (A‖B) denote the best linear predictor (BLP) of a random variable A
from linear combinations of elements in the set B. We assume that B includes
a constant term to allow for cases with a nonzero mean. It is well known
that for a stationary causal ARMA process, the linear representation of the
best linear prediction of future series values from past series values is unique
[19]. Equations determining the autoregressive coefficients can be derived by
equating two different expressions for the BLP.

Executing on the above, (3) gives

P (dp+1‖1; Xj , 1 ≤ j ≤ p) = P (Xp+1‖1; Xj , 1 ≤ j ≤ p)−Xp

= κµ+ (φ1 − 1)Xp +

p∑
j=2

φjXp+1−j ,

where κ = 1 −
∑p

j=1 φj (κ 6= 0 by causality). Substituting Xp−j = Xp −∑p−2
j=0 dp−j for j = 1, . . . , p− 1 into the last line above yields

P (dp+1‖1; Xj , 1 ≤ j ≤ p) = κ(µ−Xp)−
p−2∑
j=0

dp−j

p∑
i=2+j

φi.

To express the BLP in terms of d = (dp, . . . , d1)T only, use the prediction
equations to obtain

P (Xp‖1; d) = µ+ Cov(Xp,d)Γ−1d d,

where Γd is the p× p covariance matrix of d, which is known to be invertible
for a causal stationary ARMA {dt} (see Proposition 5.1 in [19]). Combining
the above gives

P (dp+1‖1; d) = −κvpd1 +

p−1∑
j=1

(
dp+1−j − κvj −

p∑
i=j+1

φi

)
, (7)

with (v1, v2, . . . , vp) = Cov(Xp,d)Γ−1d .
The coefficients vT = (v1, . . . , vp) can be written in terms of the correlation

function of the differences in (6):

vT = γd(0)−1Cov(Xp,d)(Γd/γd(0))−1

= cR−1d ,
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where Rd is the p× p autocorrelation matrix of d and

cT = γd(0)−1Cov(Xp,d) =

(
1/2, 1/2 + ρd(1), . . . , 1/2 +

p−1∑
k=1

ρd(k)

)
(8)

can be extracted from (5) and the relation

γX(h)− γX(h+ 1) =
γd(0)

2
+

h−1∑
k=1

γd(k).

A second representation of the BLP is given by the prediction equations:

P (dp+1‖1; d) =

p∑
j=1

ujdp+1−j , (9)

where the predicting coefficients are (u1, u2, . . . , up) = Corr(dp+1,d)R−1d .
Here, up is the lag p partial autocorrelation of {dt}. Equating the coefficient
of d1 in (7) and (9) yields −κvp = up. If vp 6= 0, which we tacitly assume to
avoid trifling work, we can set κ = −up/vp. Equating the coefficients on the
right hand sides of (7) and (9), and solving for φ produces an expression of
the autoregressive coefficients in terms of the autocorrelations of {dt}:

φk = (uk − uk−1)− up
vp

(vk − vk−1), k = 1, . . . , p, (10)

where v0 = 1 and u0 = −1. If {Xt} satisfies (3), then φ1, . . . , φp satisfy (10).
Now let {dt} be a stationary sequence with vp 6= 0 and suppose that φT =
(φ1, . . . , φp) satisfies (10):

φ = AR−1d

(
Corr(dp+1,d)− up

vp
c

)
+

(
1 +

up
vp
, 0, . . . , 0

)T
,

with

A =


1 0 0 · · · 0 0
−1 1 0 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 1 0
0 0 0 · · · −1 1

 .
Since up is the partial correlation of {dt} at lag p,

up = (0, 0, . . . , 1)R−1d ρd,
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with ρTd = (ρd(1), . . . , ρd(h)). Substituting this into the above linear equation
for φ and simplifying gives

φ = Mρd + (1, 0, . . . , 0)T , (11)

where
M = AR−1d

(
I− c∗(0, 0, . . . , 1)R−1d

)
,

with c∗ =
(
−1/2, 1/2 + ρd(1), . . . , 1/2 +

∑p−1
k=1 ρd(k)

)T
. Note that each ele-

ment in M is a function of ρd(1), . . . , ρd(p).
The p = 1 case will shed light on the above calculations. Here, (10) and

(6) give

φ1 = 1 + 2ρd(1) =
ρX(1)− ρX(2)

1− ρX(1)
,

which exceeds unity whenever ρX(2) < 2ρX(1)−1, which can happen for some
AR(p) models. However, if {Xt} follows

Xt = φXt−1 + Zt, t = 0,±1,±2, . . . ,

and |φ| < 1,
ρX(1)− ρX(2)

1− ρX(1)
=
φ− φ2

1− φ
= φ.

In general, if φ is from a causal AR(p) model satisfying (4), then (11)
provides a one-to-one transformation between ρd(1), . . . , ρd(p) and φ. However,
if {Xt} does not follow a causal AR(p) recursion, there is no guarantee that φ
satisfying (10) corresponds to a causal AR(p) model. In practice, this presents
no issue since it is easy to check to see if a fitted AR(p) model is causal. If
our fitted model is not causal, this is an indication that {Xt} is inadequately
described by an AR(p) series. In this case, we simply change p and refit until
causality is achieved.

Given observations X1, . . . , XN , we estimate the lag h sample autocorrela-
tion of the differences from

ρ̂d(h) =
γ̂d(h)

γ̂d(0)
=

∑N−h
t=1 (dt − d̄)(dt+h − d̄)∑N

t=1(dt − d̄)2
, h ≥ 0.

Here, d̄ = (N − 1)−1
∑N−1

t=1 dt is the sample mean. The AR(p) model will be
fit using (10) with γd(h) replaced by the sample version γ̂d(h):

û = R̂−1d ρ̂d and v̂ = R̂−1d ĉ, (12)

where ĉ is obtained from (8) by replacing all elements with their estimates.
To ensure that the estimated vp is not zero, one simply checks this in

practice. It is also recommended to check to see if the fitted AR(p) model is
causal.
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Summarizing, our proposed algorithm for fitting an AR(p) model using
differences is

1. Compute û and v̂. If v̂p = 0, reduce the AR order to p− 1 and refit.

2. Use (10) with u = û and v = v̂ to find φ̂, and check to see that the estimates
correspond to a causal model. If the solution is non-causal, change p and
refit.

The above algorithm produces a φ̂ for a causal AR(p) process satisfying
(11):

φ̂ = M̂ρ̂d + (1, 0, . . . , 0)T , (13)

where each element in M̂ corresponds to an element of M with ρd(h) replaced
by ρ̂d(h) for each h. For any stationary sequence of first differences {dt}, each
element of M̂ converges almost surely to its theoretical value. In particular, as
N →∞, M̂→M in the almost sure sense.

We end this section by estimating σ2. There are several moment equations
that can be used to estimate σ2. For example, multiplying both sides of the
ARMA(p, 1) difference equation,

dt = φ1dt−1 + · · ·+ φpdt−p + zt − zt−1,

by dt, taking expectations, and solving for σ2 yields,

σ2 = γd(0)

(
1−

∑p
k=1 φkρd(k)

2− φ1

)
.

A moment based estimator of the variance is hence

σ̂2 = γ̂d(0)

(
1−

∑p
k=1 φ̂kρ̂d(k)

2− φ̂1

)
. (14)

In the next section, we show that σ̂2 is a
√
N -consistent estimator of σ2.

4 Asymptotic Normality

This section shows that if m = m(N) grows slowly enough in N , the estimators
in the last section will be consistent and asymptotically normal. If the number
of changepoints m is small relative to N , then the mean shifts should have
a negligible impact on the estimated autocovariance of the differences, since
Xt−Xt−1 = dt−dt−1 except at the changepoint times τ1, . . . , τm. In particular,
to obtain asymptotic normality, we assume that as N →∞, for some finite B,

• [A.1] max0≤k≤m(N) | µk+1 − µk |≤ B.

• [A.2] m(N) = o(
√
N).

Condition A.1 imposes existence of some bound on the mean shift sizes and
Condition A.2 regulates the number of changepoints that can occur.
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We begin with asymptotic normality of the autocorrelations for first-order
differences in the general ARMA(p, q) case, which may be of distinct interest.
The asymptotic normality of the AR(p) estimators is a corollary to Theorem 1.

Theorem 1 If {Xt}Nt=1 obeys (1) with {εt} satisfying (2) where {Zt} is IID white
noise having a finite fourth moment, then for each fixed positive integer k, as N →∞,

√
N

 ρ̂d(1)− ρd(1)
...

ρ̂d(k)− ρd(k)

 D−−→ Nk(0,BWBT ).

Here, the elements in the (k+1)×(k+1) dimensional W are from Bartlett’s formula
for the asymptotic covariance matrix of (ρ̂ε(1), . . . , ρ̂ε(k + 1))T , (see Chapter 8 of
[19]) and B is k × (k + 1) dimensional with form

B =
1

2(1− ρX(1))


2 −1 0 0 · · · 0 0 0
−1 2 −1 0 · · · 0 0 0
0 −1 2 −1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · −1 2 −1

 .

Proof. We first show that the changepoints have negligible impact on esti-
mated autocorrelations in the limit. To do this, write dt = Xt − Xt−1 =
(εt− εt−1) + δt, with δt = (µk −µk−1)I[t=τk+1], and IA the indicator of the set
A. Letting

γ̃d(h) =

∑N−h
t=2 (εt − εt−1)(εt+h − εt+h−1)

N
,

then

√
N | γ̂d(h)− γ̃d(h) | ≤ m√

N

[
m−1

∑
t∈T

δt(εt+h − εt+h−1 + εt−h − εt−h−1 + δt)

]
,

where T = {τ1, . . . , τm} denote all changepoint times. The term on the right
hand side converges to zero if N−1/2m→ 0 as N →∞ (this is Condition A.2)
and the sum is bounded in probability (this is guaranteed by Conditions A.1,
A.2, and the properties of {εt}). We see that the asymptotic distribution of
γ̂d(h) is the same as that of γ̃d(h).

It is easy to see that

√
N [γ̃d(h)− (2γ̂ε(h)− γ̂ε(h− 1)− γ̂ε(h+ 1))] = oP (1), (15)

where oP (1) denotes a term that converges to zero in probability as N →∞.
Using the above and γ̂d(0)/γε(0) → 2(1 − ρε(1)) in the almost sure sense, we
have

√
N (ρ̂d(h)− ρd(h)) =

√
N

2(1− ρε(1))
(−1, 2,−1)

T

γ̂ε(h− 1)− γε(h− 1)
γ̂ε(h)− γε(h)

γ̂ε(h+ 1)− γε(h+ 1)

+op(1)
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for each h = 1, . . . , k. Hence,

√
N(ρ̂d − ρd) = B

√
N(ρ̂ε − ρε) + op(1).

Theorem 1 now follows from classic results for asymptotic normality for
sample autocorrelations of ARMA processes (see Chapter 8 of [19]).

Corollary 2 Suppose that {Xt} follows (1) with {εt} satisfying (2) with {Zt} IID
white noise having a finite fourth moment. For the estimator in (11), as N →∞,

√
N


φ̂1 − φ1

...

φ̂p − φp

 D−−→ Np(0,Σ),

Here, Σ = MBW(MB)T.

Proof of Corollary 2. Since {dt} is stationary and ergodic, the elements of
M̂ converge to those in M in the almost sure sense; specifically, (15) gives

√
N
(
φ̂− φ

)
= M

√
N (ρ̂d − ρd) + oP (1).

The conclusion of Corollary 2 now follows.
Theorem 1 and Corollary 2 imply that ρ̂d and φ̂ are both consistent esti-

mators, so that σ̂2 given by (14) is a consistent estimator of the white noise
variance.

5 A Simulation Study

A simulation study with AR(p) errors is now conducted. Our Yule-Walker
moment estimator based on first-order differencing is now compared to several
estimators, including the robust AR(1) estimator of [18], the BIP τ -estimators
of [21], and the rolling window methods employed in [23].

The paper [18] studies the AR(1) case and proposes an estimator that is
robust to mean shifts:

φ̂ :=

(
median
1≤t≤N−2

| Xt+2 −Xt |
)2

(
median
1≤t≤N−1

| Xt+1 −Xt |
)2 − 1. (16)

It is not clear how to extend this work to cases where p > 1.
The rolling window methods of [23] estimate autocorrelations via window-

based methods as follows. For a window length w, with w ≤ N , a moving
window scheme generates N − w + 1 subsegments, the ith subsegment con-
taining the data at times i, . . . , i + w − 1. Each subsegment is treated as a
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stationary series (even though some may contain mean shifts and are thus
truly nonstationary) and the time series parameters are estimated in subseg-
ment i from the data in this subsegment only. The final estimates are taken
as medians of the estimates over all subsegments. The hope is that most win-
dows will be “changepoint free”, and medians over all subsegments will not
be heavily influenced by the few windows containing changepoints. Of course,
such a scheme may not use all data efficiently in estimation. Moreover, [23]
demonstrates that the success of this procedure depends heavily on the choice
of w. As we show below, these robust autocovariance estimation methods do
not perform particularly well for this problem.

In each simulation, the series length is N = 1, 000 and m is ran-
domly generated from the discrete uniform distribution Uniform{0, 1, . . . , 10},
which roughly corresponds to the changepoint frequency in our data exam-
ple in the next section. All changepoint times are generated randomly within
{2, 3, . . . , N} with equal probability — we do not impose any minimal spacing
between successive changepoint times. The segment means µi are randomly
generated from a Uniform(−1.5, 1.5) distribution. Ten thousand independent
runs are conducted for all cases.

We first consider AR(1) errors, simulating φ randomly from the
Uniform(−0.95, 0.95) distribution and {Zt} as Gaussian white noise with a
unit variance. Our Yule-Walker difference estimator in (12) is denoted by Diff

in future figures. This estimator will be compared to a variety of alternative
approaches. The robust AR(1) estimator in (16) is denoted by AR1seg. Aver-
aged rolling window estimators, using different window lengths, are denoted
by their lengths: N, N/2, N/5, N/10, N/20, and N/50. We also compare to the
general ARMA robust estimator of [21] applied to the differenced data, which
is denoted by BIP. Here, we fit a general ARMA(1,1) model for the errors,
which does not take into account that the MA(1) parameter should be -1. This
extra flexibility should make the BIP method appear better than it truly is.
Finally, we include an estimator based on our approach but with the outly-
ing observations in {dt} first removed, which we denote by Outlier. Since our
method is “corrupted” by non-zero means at the changepoint times, remov-
ing outliers (which are likely to occur at the changepoint observations) should
improve our approach. For outlier detection, we use a simple nonparametric
Tukey fence and acknowledge that other detection schemes could be used.

Our simulation results are summarized in Figure 1. The obvious winner is
the Yule-Walker estimator based on first-order differencing. Indeed, this esti-
mator is unbiased and has the smallest variance. The AR1seg estimator is
unbiased; however, it has a larger variability than the Yule-Walker difference
estimators. The performance of the rolling window estimators depends on the
choice of the window length, but appears to be inferior to the difference based
estimator, even with the optimal window size selected (which is likely some-
where between N/20 and N/50 in this simulation). It is hard to decide the
optimal window length in practice and smaller window lengths considerably
increase computation time. While the general BIP robust estimator appears
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unbiased, it has a much larger variance than all other estimators. Indeed,
this estimator seems to be the worst of all. Our outlier removal approach
has a slightly positive bias and slightly larger variance, likely induced by the
tendency to remove true observations as outliers.

−1

0

1

2

AR1seg Diff N N/2 N/5 N/10 N/20 N/50 BIP Outlier
Estimators

φ̂
−

φ

Fig. 1 Box plots of estimates of the AR(1) parameter φ. Our differenced based method
appears to be unbiased and has the smallest variability; the BIP robust method has the
largest variability of all methods.

We now move to AR(2) errors. In each AR(2) simulation, the AR coef-
ficients were uniformly generated from the triangular region guaranteeing
model causality: φ1 + φ2 < 1, φ2 − φ1 < 1, and |φ2| < 1. In these sim-
ulations, the changepoint total is fixed at m = 9 and all segments have
equal lengths. All mean shifts alternate in sign with an absolute magnitude
of 2.0, the first shift moving the series upwards. The series length varies with
N ∈ {1000, 2000, 5000, 10000, 20000}. Since p > 1, the AR1seg estimator is
not applicable. The rolling-window estimator and general BIP robust estima-
tor were dropped from consideration due to their poor AR(1) performance and
computational time requirements. The simulation results show that estimator
bias and variance decreases as the length of the series increases, reinforcing
the consistency results in the last section.

Moving to AR(4) simulations, to meet model causality requirements, the
AR(4) characteristic polynomial is factored into its four roots, denoted by
1/r1, 1/r2, 1/r3, and 1/r4. That is,

φ(z) = (1− r1z)(1− r2z)(1− r3z)(1− r4z).
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Fig. 2 Box plots of AR(2) coefficient estimates. Variability and bias decrease as the series
length increases.

Causality implies that all ri should lie inside the complex unit circle. To meet
this, r1 and r2 will be randomly generated from the Uniform(−0.9, 0.9) dis-
tribution, and r3 is a randomly generated complex number with modulus
|r3| < 0.9. The root r4 is taken as the complex conjugate of r3. This mixes
real and complex roots in the AR(4) characteristic polynomial. All other sim-
ulation settings are identical to those in the AR(2) case. Figure 3 shows our
results, which exhibit the same pattern as the AR(2) case, with decreasing
bias and variance as N increases.

Our next simulation returns to the AR(1) setting and conducts a sensitivity
analysis to mean shift sizes. Here, estimator accuracy is more greatly influenced
by the magnitude of the mean shifts than changepoint locations. We take all
mean shifts to have the same size ∆ and introduce the signal-to-noise ratio
(SNR), defined as the absolute mean shift magnitude over the marginal series
standard deviation of Xt:

SNR =
| ∆ |√
σ2

1−φ2

. (17)

For simplicity, σ2 is set to unity. The number of changepoints is fixed at m = 9
and their locations are randomly generated over {2, . . . , N} with N = 1, 000.
In each run, the true φ is simulated from the Uniform(−0.95, 0.95) distribution.
The nine mean shifts alternate signs, with |∆| varied in [0,5]. Boxplots of the

difference between the estimated φ̂ and the true φ are presented in Figure 4.
The horizontal line in Figure 4 marks zero bias in φ̂; the solid curve depicts

the average differences between φ̂ and φ. Obviously, the larger the mean shift
magnitude, the more our estimator degrades. This said, in practice, larger
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Fig. 3 Box plots of AR(4) coefficient estimates. Again, estimator variabilities and biases
decrease with increasing sample size.

mean shift sizes can usually be identified as outliers in the differenced series
[24, 25] or can easily be identified in the original series, despite the AR con-
tamination. As such, the essential challenge lies with estimating the AR(p)
parameters in the presence of smaller mean shifts.

Two more simulations are included. Our first simulation shows how AR(p)
processes can approximate MA(q) errors in changepoint problems. The spec-
ifications of the series and changepoints are the same as the first AR(1) case
of this section, but the model errors obey the MA(1) model

εt = Zt + θZt−1,

with θ = 0.5. The plot in Figure 5 shows the autocorrelation function of our
fitted AR(10) process from one simulation run only. Notice that the fitted
AR(10) autocovariance is essentially zero at most lags that exceed unity, indi-
cating the overall quality of the AR(10) approximation (an MA(1) model is
characterized by an autocovariance that is non-zero only at lag 1).

Our final simulation considers order selection of p for AR errors by adding
the Bayesian Information Criterion (BIC) penalty (p+ 1) ln(N) to minus two
times the log likelihood of the model. The mean shifts in {Xt} “contaminate”
the likelihood for {Xt} away from a likelihood for an AR series with a fixed
(constant) mean. Our remedy here is to demean {Xt} before estimating p.
While other methods of order estimation are possible, this procedure worked
the best amongst several that were experimented with. More specifically, the
AR(p) coefficients are first estimated via {dt} for each candidate AR order
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Fig. 4 An AR(1) mean shift size sensitivity plot. The larger the mean shifts are, the more
the estimates of φ degrade.
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Fig. 5 Autocorrelations of the AR(10) process used to approximate our MA(1) errors. The
dashed lines demarcate 95% pointwise confidence thresholds for white noise.

p ∈ {1, 2, . . . , pmax}, where pmax is some preset maximum AR order to consider.
Then, one-step-ahead prediction residuals were computed and the changepoint
configuration was estimated by some changepoint technique. The pruned exact
liner time (PELT) algorithm of [4] was used here. The estimated changepoint
configuration is then used to demean {Xt}. The likelihood and BIC scores are
then calculated from the demeaned series for each order p and the order with
the smallest penalized likelihood BIC score is selected.

BIC(p) = −2 log(σ̂2) + (p+ 1) log(N) (18)

In our simulation, N = 1, 000, nine equally-spaced mean shifts of size 2.5
corrupt the series, and the errors are generated from a causal AR(4) process
with coefficients φ = (0.3,−0.3,−0.2,−0.1). The estimated AR order for 1, 000
simulations is plotted in the Figure 6 histogram. While BIC selects p = 4 the
majority of the time, it is also prone to overestimation, selecting the order 5
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in more than 20% of the runs. AR order overestimation by BIC is classically
appreciated in even changepoint-free settings [19].

0

200

400

600

3 4 5 6 7
Estimated AR order

Fig. 6 Estimated AR orders via a Bayesian information criterion penalty. The mode of the
histogram is correct at four, but some overestimation of p is also present.

6 Applications

6.1 Changepoints in AR(p) Series

As previously discussed, most changepoint techniques mistakenly flag change-
points when underlying positive dependence is ignored. For example, [26]
argues that shifts identified in the London house price series of [27] may be
more attributable to the positive correlations in the series than to actual
mean shifts. CUSUM based techniques are known to degrade with positive
correlation [12]. To remedy this, authors recommend detecting changepoints
from estimated versions of the one-step-ahead prediction residuals of the series
[14, 28]. This requires estimation of the autocovariance structure of the series
in the presence of the unknown changepoints. As such, a major application of
our methods serves to decorrelate (pre-whiten) series without any prior knowl-
edge of the changepoint configuration of the series. IID-based changepoint
techniques, applied to the estimated one-step-ahead prediction residuals, can
then be used to estimate any mean shifts in the series. The Yule-Walker dif-
ference estimator proposed here is extensively used in [12] to do just this. In
addition, our difference estimator supplies a long-run variance estimate needed
in the changepoint methods in [5], [17], and [29].

Table 1 demonstrates the improved performance of two popular multiple
changepoint methods, wild binary segmentation (WBS) [2] and PELT [4]. In
each run, an AR(1) series of length N = 500 is simulated with φ fixed within
{0.25, 0.50, 0.75}, and σ2 = 1. The series has either no changepoints or three
equally spaced changepoints; all mean shift sizes are the same, are denoted
by ∆, and are chosen to induce the constant signal-to-noise requirement of
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SNR = 2 in (17). All simulations are aggregated from 1, 000 independent runs.
In Table 1, m̂ and SEm̂ denote the average and standard error of the estimated
number of changepoints when WBS and PELT are directly applied to the
series. The quantities m̂d and SEm̂d denote the average and standard error
of the estimated number of changepoints from the one-step-ahead prediction
residuals after fitting an AR(1) series to the differences by our methods.

φ = 0.25

# of Changepoints
WBS PELT

m̂/(SEm̂) m̂d/(SEm̂d ) m̂/(SEm̂) m̂d/(SEm̂d )
Zero 3.85/(2.43) 0.17/(0.54) 0.02/(0.17) 0.00/(0.02)

Three 5.46/(2.01) 3.03/(0.18) 3.07/(0.34) 3.00/(0.03)
φ = 0.5

# of Changepoints
WBS PELT

m̂/(SEm̂) m̂d/(SEm̂d ) m̂/(SEm̂) m̂d/(SEm̂d )
Zero 16.03/(3.92) 0.24/(0.70) 1.36/(1.62) 0.00/(0.04)

Three 16.90/(3.81) 3.09/(0.40) 4.28/(1.43) 2.95/(0.37)
φ = 0.75

# of Changepoints WBS PELT

m̂/(SEm̂) m̂d/(SEm̂d ) m̂/(SEm̂) m̂d/(SEm̂d )
Zero 30.77/(3.98) 0.40/(0.96) 12.65/(3.31) 0.01/(0.13)

Three 31.45/(3.86) 2.48/(1.38) 14.33/(3.25) 1.59/(1.44)

Table 1 Results for AR(1) series with three and no changepoints. The thresholding
constant used in WBS is C = 1.3. Estimation of the changepoint number drastically
improves when autocorrelation is taken into account.

It is apparent that IID based WBS and PELT methods overestimate the
number of changepoints in a dependent series when positive correlation is
ignored; PELT appears to be more resistant to dependence issues than WBS.
In contrast, with the help of the proposed Yule-Walker difference estimator and
decorrelation techniques, both WBS and PELT become much more accurate.

6.2 New Bedford Precipitation

Annual precipitations from New Bedford and Boston, Massachusetts are
studies in [30]. The data are available from https://w2.weather.gov/climate/
xmacis.php?wfo=box. The ratio of these series (New Bedford to Boston) is
displayed in Figure 7, along with a fitted mean of a model that allows for
both multiple changepoints and AR errors. Three documented changepoints,
occurring at the years 1886, 1917, and 1967 are indicated. After adjusting for
four regime means, Figure 8 shows the sample ACF plot of the precipitation
ratio series, suggesting that the series is correlated. The Bayesian Informa-
tion Criterion estimates p = 1 as the AR order. Although this order does not
seem to adequately describe all non-zero autocorrelations, we use it anyway to
illustrate our points.

The AR(1) parameter estimates fluctuate wildly over distinct methods.
Specifically, our difference Yule-Walker estimator and BIP τ -estimators pro-
duce antipodal estimates as can be seen in Table 2. Our estimate agrees

the National Oceanic and Atmospheric Administration (NOAA)
the National Oceanic and Atmospheric Administration (NOAA)
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Fig. 7 New Bedford to Boston annual precipitation ratios with three identified change-
points.
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Fig. 8 Sample autocorrelations of the demeaned precipitation ratio series with 95%
pointwise confidence bands for zero correlation.

closely with an estimate computed by assuming the three changepoint times
are known, but the level of autocorrelation is significantly less than that esti-
mated in a Yule-Walker scheme that ignores all three changepoint times. The
results show that one needs to be careful in changepoint problems with corre-
lated data — mean shifts and correlation can inject similar features into time
series.
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Methods Estimate φ̂

Yule Walker Estimator (ignoring changepoints) 0.547

BIP τ -estimator 0.990

Yule Walker Estimator (known changepoint times) 0.273

AR1seg −0.268

Difference Yule-Walker Estimator 0.255

Table 2 AR(1) φ estimates for the precipitation ratio series. The individual estimates
highly depend on the method.

7 Conclusions

Differencing methods can effectively be used to estimate the autocovariance
structure of an AR(p) series corrupted by mean shift changepoints. Our
Yule-Walker estimator for autoregressive models is easy to implement, com-
putationally fast, consistent, and asymptotically normal. While the proposed
estimator is adversely impacted by large mean shifts, large shifts appear as
large outliers in the differenced series and can be removed. When change-
points are present, the difference methods developed here significantly improve
changepoint techniques developed for IID errors. The techniques are also appli-
cable if the series has a linear trend (constant across all regimes) with intercept
shifts.

Acknowledgments. Rebeca Killick gratefully acknowledges funding from
Grants EP-R01860X-1, EP-T014105-1, NE-T012307-1, and NE-T006102-1.
Robert Lund and Xueheng Shi acknowledge support from grant NSF DMS
2113592. Comments from two referees and the Associate Editor greatly
improved this manuscript.

References

[1] Page, E.S.: Continuous inspection schemes. Biometrika 41(1-2), 100–115
(1954)

[2] Fryzlewicz, P.: Wild binary segmentation for multiple change-point
detection. The Annals of Statistics 42(6), 2243–2281 (2014)

[3] Jackson, B., Scargle, J.D., Barnes, D., Arabhi, S., Alt, A., Gioumousis,
P., Gwin, E., Sangtrakulcharoen, P., Tan, L., Tsai, T.T.: An algorithm
for optimal partitioning of data on an interval. IEEE Signal Processing
Letters 12(2), 105–108 (2005)

[4] Killick, R., Fearnhead, P., Eckley, I.A.: Optimal detection of changepoints
with a linear computational cost. Journal of the American Statistical
Association 107(500), 1590–1598 (2012)



Springer Nature 2021 LATEX template

20 Autocovariance Estimation in the Presence of Changepoints

[5] Eichinger, B., Kirch, C.: A MOSUM procedure for the estimation of
multiple random change points. Bernoulli 24(1), 526–564 (2018)

[6] Chen, L., Wang, W., Wu, W.B.: Inference of breakpoints in high-
dimensional time series. Journal of the American Statistical Association
(just-accepted), 1–33 (2021)

[7] Frick, K., Munk, A., Sieling, H.: Multiscale change point inference. Journal
of the Royal Statistical Society: Series B (Statistical Methodology) 76(3),
495–580 (2014)

[8] Hewaarachchi, A.P., Li, Y., Lund, R., Rennie, J.: Homogenization of daily
temperature data. Journal of Climate 30(3), 985–999 (2017)

[9] Norwood, B., Killick, R.: Long memory and changepoint models: A
spectral classification procedure. Statistics & Computing 28(2), 291–302
(2018)

[10] Hall, C.B., Lipton, R.B., Sliwinski, M., Stewart, W.F.: A change
point model for estimating the onset of cognitive decline in preclinical
alzheimer’s disease. Statistics in Medicine 19(11-12), 1555–1566 (2000)

[11] Chakravarthy, N., Spanias, A., Iasemidis, L.D., Tsakalis, K.: Autoregres-
sive modeling and feature analysis of DNA sequences. EURASIP Journal
on Advances in Signal Processing 2004(1), 1–16 (2004)

[12] Shi, X., Gallagher, C., Lund, R., Killick, R.: A comparison of single
and multiple changepoint techniques for time series data. Computational
Statistics and Data Analysis 170 (2022). https://doi.org/10.1016/j.csda.
2022.107433.

[13] Maidstone, R., Hocking, T., Rigaill, G., Fearnhead, P.: On optimal mul-
tiple changepoint algorithms for large data. Statistics and Computing
27(2), 519–533 (2017)

[14] Robbins, M., Gallagher, C., Lund, R., Aue, A.: Mean shift testing in
correlated data. Journal of Time Series Analysis 32(5), 498–511 (2011)

[15] Dette, H., Eckle, T., Vetter, M.: Multiscale change point detection for
dependent data. Scandinavian Journal of Statistics 47(4), 1243–1274
(2020)

[16] Chan, K.W.: Mean-structure and autocorrelation consistent covariance
matrix estimation. Journal of Business & Economic Statistics 40(1), 201–
215 (2022). https://doi.org/10.1080/07350015.2020.1796397

[17] Romano, G., Rigaill, G., Runge, V., Fearnhead, P.: Detecting abrupt

https://doi.org/10.1016/j.csda.2022.107433.
https://doi.org/10.1016/j.csda.2022.107433.
https://doi.org/10.1080/07350015.2020.1796397


Springer Nature 2021 LATEX template

Autocovariance Estimation in the Presence of Changepoints 21

changes in the presence of local fluctuations and autocorrelated noise.
Journal of the American Statistical Association (To appear) (2021)
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