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Abstract

Technical inefficiencies in stochastic frontier models can be thought of as non-negative pa-
rameters. Since, however, their number along with other parameters exceeds the sample size, an
adaptive LASSO estimator is a reasonable way to overcome the problem, especially in view of the
oracle properties of the estimator under broad conditions. It is shown that the adaptive LASSO
estimator can be thought of as the posterior mean of a usual stochastic frontier model with a
special prior that benchmarks inefficiencies on known quantities. We take these quantities from
DEA scores to obtain technical inefficiencies having oracle properties. The LASSO parameters can
be estimated routinely in the Bayesian context without the need for cross-validation. In an appli-
cation to a data set of large U.S. banks we find that adaptive LASSO outperforms significantly
traditional stochastic frontier models.
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1 Introduction

Despite recent advances in Stochastic Frontier Models (SFM) and Data Envelopment Analysis (DEA)

it is still true, at least for the most part, that SFMs make parametric assumptions and can handle noise

in data, whereas DEA does not make parametric assumptions at the cost of not allowing for noise.1

In this paper, we combine SFM and DEA via the Least Absolute Shrinkage and Selection operator

(LASSO, see Tibshirani, 1996). Specifically, we show how a SFM can exploit information from DEA

in the form of a LASSO prior, producing an estimator that has so-called “oracle properties”, see Fan

and Li (2001). With the number of regressors (say p) exceeding the number of observations (n) the

fact that LASSO has the oracle property is shown in Zou (2006). In this paper, we propose to combine

the SFM with the right LASSO penalty to produce an estimator which is the posterior mean in a

suitably defined likelihood function / posterior distribution. The contribution of this paper is that

we focus on SFA but we do not specify an ad hoc distribution for inefficiency. Instead, we rely on

arguments from the LASSO literature to produce this distribution by benchmarking also on the DEA

results. Although Tsionas (2003) used DEA scores to benchmark a half-normal distribution for SFA

here we follow a different path which is related directly to Zou (2006), Chernozhukov et al. (2019) and

Belloni et al. (2012) to convert a LASSO problem to an SFA model with the equivalent prior. The

prior is then benchmarked using the DEA scores while at the same time accounting for an important

shortcoming in SFA, viz. that inefficiencies are never zero.

Suppose the model is

yi = x′
iβ + vi + ui, i = 1, . . . , n, (1)

where xi ∈ Rk is a vector of regressors with coefficients β ∈ Rk,vi is a two-sided error term, yi

1In DEA, the contributions of Simar and Wilson (2007, 2011, 2019) and Simar and Zelenyuk (2020) have allowed
to take account of noise. In SFM, flexible functional forms have been proposed that make the parametric assumptions
considerably less stringent, e.g. Michaelides et al. (2010), Tsionas (2003, 2019), Tsionas and Izzeldin (2018), Tsionas
and Mallick (2019), Tsionas and Andrikopoulos (2020), Kumbhakar and Tsionas (2020). An early attempt to combine
DEA and SFM is described in Tsionas (2003) where information about DEA scores is incorporated into a parametrically
specified distribution of inefficiency.
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denotes the ithe observation on the dependent variable, and ui ≥ 0 represents technical inefficiency

(u = [u1, . . . , un]
′ ∈ Rn

+). Moreover, let Y denote the available data. viz. Y = [yi,xi, i = 1, . . . , n],

y = [y1, . . . , yn]
′ be the vector containing all observations on the dependent variable, and X = [x′

i, i =

1, ..., n] be the n× k matrix containing all observations on the explanatory variables.

We treat technical inefficiencies as potentially zero for some (potentially several firms) and, there-

fore, as parameters to be estimated. Since there as many inefficiencies as observations, often a distri-

butional assumption is made on the uis, for example exponential, half-normal, etc. Such assumptions

can often lead to misleading results as they impose structure on things for which very little is known.

Clearly, the number of unknown parameters which include β as well as technical inefficiencies (uis)

exceeds the sample size so, we are in the statistical paradigm of so-called “large p, small n”, where p

is the number of unknown parameters and n is the sample size. A natural solution to the problem is

to use a LASSO prior which is known for its good statistical properties. Although the LASSO is often

applied to β in this paper it is applied to the inefficiencies which constitute the main reason why the

number of parameters exceeds the sample size.

The adaptive LASSO has been used in the time-invariant case with panel data but this framework

it too restrictive (Jung, 2018, ch. 3). In this paper, we draw on the adaptive LASSO case (e.g. Zou,

2008) to draft a prior that benchmarks on DEA scores. The LASSO is supported by much theoretical

work. Donoho, Johnstone, Kerkyacharian, and Picard (1995) proved near-minimax optimality; see also

Donoho and Huo (2002), Donoho and Elad (2002), Donoho (2004), Donoho and Johnston (1994), and

Meinshausen and Bühlmann (2004). Therefore, based on statistical theory it is expected to provide

estimators with good asymptotic properties and, often, with very good finite sample properties. The

use of the LASSO to estimate inefficiency is a novel approach to uncovering this latent variable.

Specifically, if you look at table 2, even though the Normal-Exponential model is correctly specified

it still is outperformed by the adaptive LASSO. This is because the Jondrow et al. (1982; JLMS)
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estimator is inconsistent as an estimator for ui (but consistent as an estimator for E[ui|εi]). This is a

well known result but we would like to stress its importance here. There is recent work by Zeebari et

al. (2021) that discusses some issues with shrinkage and JLMS that offer some interesting connections

with the work here. Zeebari et al. (2021) notice that the standard SFM approach shrinks inefficiency

towards its mean or mode. This generates a distribution that is different from the distribution of the

unconditional inefficiency and, therefore, the accuracy of estimated inefficiency is negatively correlated

with the difference between inefficiency and its mean or mode. The type of shrinkage that LASSO

provides versus JLMS can be explained in this framework. One reason the LASSO performs well is

that the shrinkage is towards zero regardless of the values provided by the LASSO and it is towards

the mean regardless of the values provided by JLMS. In our simulations the value of the mean implies

that the shrinkage works in favor of LASSO initially, and a larger mean actually works more in favor

of JLMS. So, the LASSO is quite flexible and works well in this framework.

2 Models

Referring only to regression parameters β, the adaptive LASSO of Zou (2006) relies on the optimization

problem:

min
β∈Rk

n∑
i=1

(yi − x′
iβ)

2 + λn

k∑
j=1

ŵj |βj |, (2)

where ŵj = |β̂j |−γ (for some γ > 0), β̂ is a consistent estimator like least squares (LS), and λn is a

constant such that λn√
n
→ 0. Constants λn and γ are selected by cross-validation. Another method

relies on the same optimization problem but using

ŵj =

√√√√n−1

n∑
i=1

x2
i,j , (3)
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(e.g. Chenozhukov, Hansen, and Spindler, 2019), see also Belloni, Chernozhukov, and Hansen (2012).

Applying LASSO to β is often the case when the number of regressors is large. If this is not a concern,

but interest focuses instead on technical inefficiencies, the problem becomes

min
β∈Rk,u∈Rn

+

n∑
i=1

(yi − ui − x′
iβ)

2 + λn

n∑
i=1

ŵiui, (4)

where a typical choice would be to set ŵi = ũ−γ
i , given some “initial estimates” ũi. These initial

estimates are the DEA scores. This is based on the prior notion that inefficiencies are likely to be

“small” so we begin by giving the data the “benefit of the doubt” in the sense that we are willing to

assume a mostly efficient sector or set of decision-making-units.

In the following we define λn = λ√
n

This problem is equivalent to assuming (1) with the assumption

vi ∼ N (0, σ2
v) and p(ui) =

λ√
n
w̃ie

− λ√
n
w̃iui (λ > 0, ui, w̃i ≥ 0) which is an exponential distribution with

parameter λw̃i. However, some DEA benchmarks can be zero indicating full efficiency so we modify

the weights to

w̃i = (c+ ũi)
−γ

, (5)

for some c > 0. This constant can be used to “re-benchmark” the zero scores.

A flat prior can be specified, for example, as:

p(β, λ, σv, c, γ) ∝ λ−1σ−1
v e−c2/(2h̄). (6)

The prior is flat on all parameters except c for which we assume a half-normal distribution, viz.

c ∼ N+(0, h
2) where we set h̄ = 0.1 to take account of the notion that this parameter is likely to be

“small”.
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First, we omit the dependence on c and γ so, the augmented posterior distribution has density

p(β, σv, λ,u|Y ) ∝

σ
−(n+1)
v exp

{
− 1

2σ2

∑n
i=1 (yi − ui − x′

iβ)
2
}
λn−1

∑n
i=1 exp

{
− λ√

n
w̃iui

}
.

(7)

The posterior conditional distribution of β is

β|σv, λ, u, Y ∼ Nk (b,V ) , (8)

where b = (X ′X)−1X ′(y − u), V = σ2
v(X

′X)−1. The posterior conditional distribution of σ2
v is

(y−u−Xβ)′(y−u−Xβ)
σ2
v

|β, λ,u, Y ∼ χ2
n, (9)

see also Tsionas (2003).

The posterior conditional distribution of λ is:

λ|β, σv, u, Y ∼ G

(
n, 1√

n

n∑
i=1

w̃iui

)
, (10)

where G denotes the gamma distribution. Finally, the posterior conditional distribution of each ui is

given by

ui|β, σv, λ, Y ∼ N+

(
− 1

2

(
ei − λ√

n
σ2
vw̃i

)
, σ2

v

)
, i = 1, . . . , n, (11)

where ei = yi − x′
iβ, and N+ denotes the truncated normal distribution in R+.

If we have to treat c and γ as unknown parameters, their posterior conditional distributions are as

follows. For c we have

p(c|β, u, σv, λ, Y ) ∝ exp

{
− λ√

n

n∑
i=1

ui(c+ ũi)
−γ − c2

2h̄

}
, c > 0, (12)
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The posterior conditional distribution of γ is

p(γ|β,u, σv, λ, c, Y ) ∝ exp

{
− λ√

n

n∑
i=1

W−γ
i ui

}
, γ > 0, (13)

where Wi = c + ui. Although (12) and (13) are not in known families, both are log-concave and,

therefore, highly efficient specialized algorithms can be used to provide random drawings (e.g. Gilks

and Wild, 1992).

Cycling through the various posterior conditional distributions produces a sample from the distri-

bution whose density is proportional to (7), a procedure known as Gibbs sampling, see Gelfand and

Smith (1990).

3 Monte Carlo experiment

To validate the new techniques we consider a Monte Carlo experiment with five regressors in xi

generated as standard uniform, coefficients β all equal to 0.25, and measurement error vi
iid∼ N (0, σ2

v).

We generate inefficiencies from a data generating process (DGP) which does not correspond to half-

normal or exponential models but rather it is

ri = Φ(z′
iγ)

ui = − log ri, i = 1, . . . , n,

(14)

where zi is an n×m vector containing standard uniform random variates, γ is an associated parameter

vector whose elements are generated from standard normal distributions, ri denotes efficiency, viz.

ri = e−ui , and Φ(·) denotes the standard normal distribution function. This DGP corresponds to the

efficiency modeling of Paul and Shankar (2018), further developed in Tsionas and Mamatzakis (2019).

By construction, efficiency is in the interval (0,1). Typical efficiency distributions resulting from this
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Figure 1: Typical efficiency distributions
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(b) n=1000

Notes: Presented are typical efficiency distributions from the DGP in (14) for n = 100 in panel (a) and n = 1000 in panel (b).

DGP are presented in Figure 1, for n = 100 in panel (a) and n = 1000 in panel (b). Clearly, many

different shapes are allowed by this DGP. The average standard deviations of technical inefficiency are

0.56 and 0.46 in the two cases, respectively. Therefore we use three values for σv; viz. 0.1, 0.25 and

0.5 for low, moderate and excessive noise.

The Monte Carlo experiments are replicated 10,000 times and the results are presented in Table 1

where we report mean absolute errors (MAE) between true and estimated inefficiency for the normal-

half-normal (NHN) model, the normal-exponential (NEX) model, DEA, and adaptive LASSO.

From the Monte Carlo results, it turns out that (i) MAEs are roughly the same for normal-half-

normal and the normal-exponential models, (ii) DEA becomes more inaccurate as noise levels increase

and is, generally, more prone to estimation bias compared to the SFA models which is, of course,

expected, and (iii) the adaptive LASSO has the smallest MAE compared to the other three methods

although its performance deteriorates as the noise levels increase. The bias of adaptive LASSO for a
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Table 1: Monte Carlo results: Mean Absolute Errors

n = 100 n = 250 n = 500 n = 1000
σv = 0.1 NHN 0.071 0.068 0.057 0.050

NEX 0.067 0.061 0.054 0.048
DEA 0.085 0.072 0.065 0.058

Adaptive LASSO 0.073 0.067 0.055 0.044

σv = 0.25 NHN 0.107 0.115 0.099 0.096
NEX 0.103 0.114 0.110 0.094
DEA 0.154 0.149 0.135 0.120

Adaptive LASSO 0.094 0.085 0.081 0.077

σv = 0.50 NHN 0.180 0.170 0.168 0.158
NEX 0.181 0.170 0.169 0.160
DEA 0.187 0.172 0.168 0.155

Adaptive LASSO 0.114 0.103 0.098 0.088

Notes: Reported are mean absolute errors (MAE) between true and estimated inefficiency for the normal-half-normal (NHN)
model, the normal-exponential (NEX) model, DEA, and adaptive LASSO.
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given sample size is quite acceptable as, for example, when m = 1000 its MAE is 0.044, 0.077, and

0.088 as σv increases from 0.1 and 0.25 to 0.5, respectively. For the same sample size, the other three

methods deliver MAEs close to 0.05, 0.10 and 0.16 for the different values of σv, respectively. n this

sense, the adaptive LASSO performs well in a DGP that does not favor any particular model on prior

grounds.

Another interesting finding is that the adaptive LASSO model provides estimates that are, evi-

dently, different from DEA despite the fact that it anchors on DEA scores. Scores from SFA are quite

close but their rank correlations with DEA become lower as σv increases. The reason is that the adap-

tive LASSO model anchors on DEA scores but this prior is revised by the data and the final results

depend not only on the prior but the data as well –the extent of noise more precisely. The prior is also

quite flexible as (i) it depends on two parameters (c and γ) and it adapts to the data through posterior

inference, (ii) it is itself a data-based prior (or an empirical Bayes prior) that anchors on DEA scores.

A typical example from Monte Carlo simulations is reported in Figure 2, with σv = 0.25 (so that noise

is moderate), and n = 1000 where, indeed, the results from the adaptive LASSO are closer to the true

inefficiency distribution as opposed to normal-half-normal, normal-exponential, and DEA.

Regarding rank correlations, we present them graphically in Figure 3 in the interest of not over-

crowding Table 1. Rank correlations (medians across Monte Carlo simulations in Table 1) between

Adaptive LASSO and DEA (reported in panel (a)) are generally high and increase with the sample

size when σv = 0.1 but this is reversed for higher values of σv and , in fact, correlations decrease

with the sample size. Rank correlations between DEA and SFM are reported in panel (b). We choose

the normal-half-normal model as the normal-exponential model provided similar results. These rank

correlations are generally high when σv = 0.1 but decrease rapidly with the sample size as σv increases

to 0.25 and 0.50.
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Figure 2: Typical example from Monte Carlo simulations

Notes: Presented is a typical example from Monte Carlo simulations with σv = 0.25 (so that noise is moderate), and n = 1000.
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Figure 3: Rank correlations from Monte Carlo experiment
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(a) Adaptive LASSO and DEA
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Notes: Rank correlations between Adaptive LASSO and DEA are reported in panel (a). Rank correlations between DEA and
SFM are presented in panel (b). For SFM, we choose the normal-half-normal model as the normal-exponential model provided
similar results. Rank correlations are medians across all Monte Carlo simulations in Table 1.

4 Empirical application

We have an unbalanced panel with 2,397 bank-year observations for 285 large U.S. commercial banks

operating in 2001-2010, whose total assets were more than one billion dollars (in 2005 U.S. dollars) in

the first three years of observation. We use the data for 2009 to focus on the effects of the financial

crisis. The data come from Call Reports available from the Federal Reserve Bank of Chicago and they

have been used in Malikov et al. (2016). For detailed description of the data construction, see Section

5 of their paper.

Inputs and outputs are as follows: y1 Consumer Loans, y2 Real Estate Loans, y3 Commercial &

Industrial Loans, y4 Securities, y5 Off-Balance Sheet Activities Income, x1 Labor, number of full-time

employees, x2 Physical Capital (Fixed Assets), x3 Purchased Funds, x4 Interest-Bearing Transaction

Accounts, x5 Non-Transaction Accounts.

We estimate a translog cost function with five input prices, five outputs, and we include a time

trend to capture the effects of technical change. We benchmark on the score from input-oriented DEA
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Figure 4: Marginal posterior densities
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Notes: Reported are marginal posterior densities of λ in panel (a), c in panel (b), and γ in panel (c).

with variable returns to scale (Banker et al., 1984).

In Figure 3 we report marginal posterior densities of the key LASSO parameters λ (panel (a)), c

(panel (b)), and γ (panel (c)). Parameter λ ranges from 0.45 to 0.82, c ranges from 0.006 to 0.023 and

γ from 1.23 to 1.36 and they seem to be asymmetric, thus making asymptotic-based normal inferences

somewhat misleading.

Posterior moments are reported in Table 2. From Table 2, the posterior means (posterior standard

deviations) of λ, c, γ are respectively 0.621 (0.047), 0.015 (0.002), and 1.291 (0.017). Therefore, from

(5), modified weights are, approximately, w̃i = (0.015 + ũi)
−1.291 where ũi are the DEA scores. The

weights are critical in both (4) and (7).
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In Figure 4 we report sample densities of efficiency estimates from a half-normal SFM, an expo-

nential SFM, scores from DEA as well as from the novel adaptive LASSO approach.

Efficiency estimates from SFM using either the exponential or half-normal distributions are very

different compared to DEA scores. This can be seen from panel (a) of Figure 4. In panel (b) we provide

a comparison with three other popular functional forms, the normalized Quadratic (Diewert and, Wales,

1987), the Symmetric Generalized McFadden (SGM, Diewert and, Wales, 1987 and Kumbhakar, 1994),

the Generalized Leontief (GL, Diewert and, Wales, 1987) and the flexible Fourier form due to Gallant

(1984). For the Fourier flexible form we follow the implementation in Feng and Serletis (2008).

Therefore, our results are robust to alternative cost functions.2 The adaptive LASSO model seems

to be anchoring more on DEA but its estimates are quite different, the rank correlation coefficient

being, approximately, 0.65. Scores from SFMs are quite close but their rank correlations with DEA

are below 0.50. The adaptive LASSO prior is essentially an empirical Bayes estimator that utilizes the

data by benchmarking on DEA so, it is expected to perform better than SFM models. To find whether

this is true more generally, a Monte Carlo experiment is now included in the revised version. However,

it is worth mentioning that as σv → 0 we do expect SFM and DEA to provide similar results. When

this is not the case, DEA that does not account for noise will not deliver scores similar to the SFM

estimates. These results hold more generally as we saw in the Monte Carlo experiments.

In Figure 5, we present sample distributions of posterior mean estimates for technical change,

efficiency change, and productivity growth. The models have quite different implications for technical

change (panel (a)), efficiency change (panel (b)) and productivity growth (estimated as the sum of the

other two, in panel (c)). DEA and adaptive LASSO estimates are quite close to zero ranging between

±1%, whereas estimates for the SFMs are two to three times larger in magnitude.

An interesting feature of the Bayesian approach is that we can compute marginal likelihoods and
2We use 150,000 iterations of the Gibbs sampler omitting the first 50,000 to mitigate possible start up effects. Con-

vergence and performance of MCMC are monitored using the standard Geweke (1992) diagnostics.
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Figure 5: Efficiency scores / estimates
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Notes: Reported in panel (a) are sample distributions of efficiency scores DEA, a nonrmal-half-normal SFM, a normal-exponential
model, and the adaptive LASSO model. In panel (b) we provide a comparison with three other popular functional forms, the
normalized Quadratic (Diewert and, Wales, 1987), the Symmetric Generalized McFadden (SGM, Diewert and Wales, 1987;
Kumbhakar, 1994), the Generalized Leontief (GL, Diewert and, Wales, 1987) and the flexible Fourier form due to Gallant
(1984).
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Figure 6: Quantities of interest
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Notes: Reported are sample distributions of technical change (TC, panel (a)), efficiency change (EC) in panel (b) and productivity
growth (PG=TC+EC) in panel (c), from DEA, the normal-half-normal SFM, the normal-exponential SFM and the adaptive
LASSO model.
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Bayes factors quite easily. Before proceeding, we should mention that marginal likelihoods and Bayes

factors are standard tools in model comparison from the Bayesian viewpoint. From the practical

perspective, we think it necessary to provide verbatim the following recent result from Fong and

Holmes (2020). “In Bayesian statistics, the marginal likelihood, also known as the evidence, is used to

evaluate model fit as it quantifies the joint probability of the data under the prior. In contrast, non-

Bayesian models are typically compared using cross-validation on held-out data, either through k-fold

partitioning or leave-p-out subsampling. We show that the marginal likelihood is formally equivalent

to exhaustive leave-p-out crossvalidation averaged over all values of p and all held-out test sets when

using the log posterior predictive probability as the scoring rule” (Fong and Holmes, 2020, p. 489).

This result is quite strong even for convinced Bayesians and shows that the marginal likelihood criterion

and, therefore Bayes factors as well, has quite important properties related to exhaustive subsampling.

For a model with parameters θ ∈ Θ, data Y , likelihood function L(θ;Y ) and prior p(θ), the

marginal likelihood is M(Y ) =
∫
Θ
L(θ;Y )p(θ)dθ and can be estimated using the method of Chib

(1995). For any two models the Bayes factor (or posterior odds ratio when the prior odds are 1:1) is

BF1:2 = M1(Y )
M2(Y ) . The Bayes factors are reported in the lower panel of Table 2.

Relative to the SFM with exponentially distributed one-sided error term, the half-normal specifica-

tion has a Bayes factor of 1.817 (indicating that it is slightly better but not significantly so) whereas the

adaptive LASSO model has a Bayes factor of 35.42, approximately, which is quite significant (roughly

Bayes factors in excess of 10 are considered as indicating considerable support in the light of the data,

e.g. Kass and Raftery, 1995).

To make sure the comparison is fair, we omit at random B blocks of banks (viz. all temporal

observations for a given bank) at a time, where B is itself randomly chosen between 1 and 10. We

repeat this exercise 1,000 times, re-computing Bayes factors in each instance and we report the results

in Figure 6.
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Figure 7: Sample distribution of Bayes factors
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Notes: Reported is the sample distribution of Bayes factors of adaptive LASSO against the normal-exponential SFM. The
procedure is as follows. We omit at random B blocks of banks (viz. all temporal observations for a given bank) at a time, where
B is itself randomly chosen between 1 and 10. We repeat this exercise 1,000 times, re-computing Bayes factors in each instance.
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Table 2: Posterior moments and Bayes factors

Parameter / Model
posterior moments
λ 0.621

(0.047)

c 0.015
(0.002)

γ 1.291
(0.017)

Bayes factors

Exponential 1.000
Half-Normal 1.817

adaptive LASSO 35.420

Notes: Reported are posterior means (with posterior standard deviations in parentheses) for parameters λ, c, γ (upper panel)
as well as Bayes factors of the normal-half-normal and the adaptive LASSO relative to the normal-exponential model.

From Figure 6, it turns out that a Bayes factor of 35 is somewhat lower than the median 41.2

obtained by using this “bootstrap” procedure. In fact, the distribution of Bayes factors is bimodal

with the two modes near 40 and 70. Of course, the results are still in favor of the adaptive LASSO

model.

Concluding remarks

In this paper we propose a Bayesian alternative to estimating a adaptive LASSO model which is a way

of combining SFM and DEA. SFM accounts for noise in the data but makes parametric assumptions

whereas most DEA models do not make parametric assumptions but allowing for noise is problematic.

One way to combine the methods, is to use an adaptive LASSO model which is shown to be equivalent to

a SFM with a special prior on technical efficiencies. This allows the routine use of standard Bayesian
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methods organized around Gibbs sampling as well as formal model comparison based on marginal

likelihoods and Bayes factors. An application to large U.S. banks shows that adaptive LASSO delivers

results that are between those from DEA and SFMs and that the different models have substantively

different implications in terms of technical change, efficiency change, and productivity growth. The

reason is that (i) the adaptive LASSO uses a two-parameter prior that adapts well to the data through

posterior inference, and (ii) that it is, essentially, an empirical Bayes prior that uses the data in the

form of DEA scores but at the same time accounts for noise or measurement error in the data. Monte

Carlo evidence further suggests that this conclusion holds more generally and, in fact, the adaptive

LASSO performs very well for moderately sized samples as well as for low to high variance values of

the two-sided error term.
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