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Abstract 

 

Language processing in humans has long been proposed to rely on sophisticated learning 

abilities including statistical learning. Endress and Johnson (E&J, 2021) recently presented a 

neural network model for statistical learning based on Hebbian learning principles. This 

model accounts for word segmentation tasks, one primary paradigm in statistical learning. 

In this discussion paper we review this model and compare it with the Hebbian model 

previously presented by Tovar and Westermann (T&W, 2017a; 2017b; 2018) that has 

accounted for serial reaction time tasks, cross-situational learning, and categorization 

paradigms, all relevant in the study of statistical learning. We discuss the similarities and 

differences between both models, and their key findings. From our analysis, we question 

the concept of “forgetting” in the model of E&J and their suggestion of considering 

forgetting as the critical ingredient for successful statistical learning. We instead suggest 

that a set of simple but well-balanced mechanisms including spreading activation, activation 

persistence, and synaptic weight decay, all based on biologically grounded principles, allow 

modeling statistical learning in Hebbian neural networks, as demonstrated in the T&W 

model which successfully covers learning of nonadjacent dependencies and accounts for 

differences between typical and atypical populations, both aspects that have not been fully 

demonstrated in the E&J model. We outline the main computational and theoretical 

differences between the E&J and T&W approaches, present new simulation results, and 

discuss implications for the development of a computational cognitive theory of statistical 

learning. 

Keywords: statistical learning, Hebbian learning, artificial neural networks, language 

processing, computational modeling. 

 

 

 

 



1. Introduction 

Human language processing has long been proposed to rely on sophisticated 

learning abilities such as statistical learning. In a recent paper, Endress and Johnson (2021) 

(E&J) presented a neural network model for statistical learning mainly focusing on 

modeling transitional probabilities during word segmentation tasks (Saffran et al., 1996), 

which is one main experimental paradigm in this field. Here we comment on the E&J 

article and argue that in previous studies Tovar and Westermann (T&W; Tovar & 

Westermann, 2017a; 2017b; Tovar, Westermann & Torres, 2018) have accounted for 

statistical learning phenomena with neural network models that operate in an analogous 

way to the E&J model. Particularly, T&W have simulated serial reaction time tasks (Tovar 

et al., 2018), another main paradigm of statistical learning (Hunt & Aslin, 2001; Nissen & 

Bullemer, 1987); cross-situational learning (Tovar & Westermann, 2017a); and learning of 

equivalence classes (Tovar & Westermann, 2017b), a paradigm which has long had a great 

impact in the study of language and symbolic behavior in the tradition of behavior analysis 

(Sidman, 1994). Through the modeling of these tasks, it is becoming clear that all of them 

present different sides of the same coin of statistical learning accounted for with the same 

learning principles. While both the E&J and T&W models support correlational (Hebbian) 

learning as a main force underlying statistical learning, below we identify key differences 

between both computational implementations that are crucial in the conceptualization of 

learning and forgetting in the models. Both models also differ in their recourse to 

biologically informed learning mechanisms, and in their ability to cover different 

experimental paradigms and to account for atypical populations. In the following, we 

compare both models and summarize their main findings and the key differences between 

them. In doing so, we aim to provide a framework for future computational developments 

in the field of statistical learning and to stress the importance of Hebbian learning as a 

domain general mechanism across different aspects of language development. 

2. The  E&J Model 



During word segmentation tasks, the main focus of E&J, a participant is presented 

with a stream of novel sounds that represent fluent speech from which discrete words can 

be extracted. The statistical learning account of word segmentation (Saffran et al., 1996) 

proposes that sensitivity to transitional probabilities between syllables in the continuous 

stream of sound is key to recognizing units (words), because within a word transitional 

probabilities between syllables are high but between words they are low. 

E&J suggested that an ability to succeed in this kind of statistical learning “follows 

naturally from a correlational learning mechanism such as Hebbian learning” (p. 2). They 

then provided a computational implementation of a generic neural network model that 

uses Hebbian learning to account for statistical learning. 

E&J argued that no previous computational models captured “the sophistication of 

statistical learning abilities in their entirety”. They cited a group of models that include 

connectionist, chunking, and information-theoretic models (Batchelder, 2002; Brent & 

Cartwright, 1996; Christiansen et al., 1998; Elman, 1990; Frank et al., 2010; Orbán et al., 

2008; Perruchet & Vinter, 1998; Thiessen, 2017). Their main critique of these models was 

their inability to extract transitional probabilities in statistical learning tasks. Nonetheless, 

E&J did not explain the criteria for including models in their review. Remarkably, while E&J 

accounted for transitional probabilities with associative Hebbian learning, they did not 

review previous work using Hebbian algorithms that capture correlational or statistical 

learning (Ganis & Schendan, 1992; McMurray et al., 2012). Critically, E&J overlooked two 

of our papers (Tovar et al., 2018; Tovar & Westermann, 2017b) in which we have 

presented Hebbian algorithms in artificial neural networks that have covered similar 

simulations to those described in their paper. 

3. Analysis of T&W and E&J Models 

3.1 Similarities 

Both the T&W and E&J models are implemented as neural networks composed of 

single layers of fully connected units (examples in Figures 1 and 2). Representation in both 

models is symbolic: each unit (or artificial neuron) represents one and only one item from 



the environment (e.g., syllables, words, visual objects). Thus, the presentation of the 

syllable “ba” followed by the syllable “by” activates Neuron A (representing ba), followed 

by activation of Neuron B (representing by). This sequential presentation produces 

coactivation of units AB for a moment, which triggers Hebbian learning (Hebb, 1949): 

Neurons that fire together wire together. Frequent baby presentations strengthen the 

connection weight between A and B (WAB), capturing a high transitional probability in 

baby and providing a simple neural model of statistical regularities. 

Strong WAB allows spreading activation from either A to B or from B to A in both 

models because both conceptualize connection weights as symmetrical, accounting for 

empirical evidence that participants respond with high accuracy to backwards BA 

dependencies after being exposed to AB training (Pelucchi et al., 2009; Sidman et al., 

1982). 

E&J analyzed the performance of their networks mainly from global unit activation 

patterns, whereas T&W mainly focused on connection weights. Since weights determine 

global activation, both models are also comparable in terms of how they were evaluated. 

3.2 Differences 

3.2.1 Hebbian learning. Hebb (1949) postulated one of the most influential neural 

theories of learning and memory; he hypothesized that synaptic efficacy increases from 

connected neurons firing together. His elegant and simple description has been formalized 

in numerous algorithms (Gerstner & Kistler, 2002). A multiplication of neuron activation 

states captures their firing correlations and drives changes in their connection weights W 

(Equations 1 and 2). A learning rate (𝛽) and other multiplicative parameters control the 

amount of changes of W at each time step. 

∆W!" = 	β	(act_A ∗ act_B)	                   Equation (1). Changes in W 
 

W!"($%&) =	W!"($) +	∆W!"	              Equation (2). Updating of W 
 

One problem with the above equations is that there are no limits for weight 

increases; coactivation of AB leads to strengthening WAB, which in turn propagates more 



activation between A and B in an endless loop, and this is not biologically realistic. 

Additionally, Hebb’s original ideas did not consider activation-dependent decays in Ws. 

Current models of Hebbian learning have modified the original rule in order to control 

activation and weight overgrowth, and it is at this point that the T&W and E&J 

implementations differ. 

The Hebbian algorithm in T&W implements both growth and decay in Ws as a 

function of the coactivation of units. This idea was motivated by neurophysiological long-

term potentiation (LTP) and long-term depression (LTD) of synaptic efficacy in brain 

networks (Bliss et al., 2007; Malenka & Bear, 2004). LTP and LTD are mathematically 

captured as a continuum of weight changes: if neuronal coactivation is strong and 

surpasses a threshold LTP occurs, but when neuronal activity falls below the threshold, 

LTD takes place (Bear, 1995; Bienenstock et al., 1982). 

To capture this LTP/LTD continuum T&W included a threshold parameter (θ) that 

switches between positive and negative (LTP/LTD) weight changes depending on the 

amount of neural coactivation. Importantly, increasing the threshold θ allowed T&W to 

simulate and predict patterns of statistical learning in Down syndrome (Tovar et al., 2018; 

Tovar & Westermann, 2017a) which has been associated with atypical synaptic plasticity 

with increased LTD and limited LTP (Andrade-Talavera et al., 2015; Rueda et al., 2012; 

Scott-McKean & Costa, 2011). Nonetheless, it should not be assumed that more LTP 

means more learning and more LTD means less learning or forgetting; instead, a balance 

between LTP and LTD is necessary to provide neural networks with the computational 

flexibility required for learning (Kemp & Manahan-Vaughan, 2007; Pinar et al., 2017). 

The T&W algorithm includes a second parameter, lambda (λ), for limiting change 

to weights that are already strong, a mechanism inspired by metaplasticity in biological 

networks (Abraham, 2008). λ depends on the difference between the current WAB and the 

current AB coactivation, tuning the amount and direction of weight changes, and it 

ensures that WAB tracks the statistical co-occurrence of A and B. With θ and λ, frequent 



exposure to AB items leads to strengthen WAB, while sparse exposure of AB keeps WAB 

low.  

In the T&W (2018) model, θ and λ are included through the following equations: 

if	(act_A ∗ act_B) > θ, λ = (X( ∗ X)) −W()	   
else		λ = −W()                                                    Equation (3) Computing λ in T&W 

 
∆W!" = 	β	λ	(act_A ∗ act_B)	              Equation (4). Hebbian learning in T&W 

 

On the other hand, the Hebbian algorithm in the E&J model is the generic one, as 

depicted in Equations 1 and 2, without modulation of overgrowing connections. E&J did 

include a weight decay term, but it was set to zero during all simulations, which means 

that no decay of weights was modeled. It is not clear therefore whether and how their 

model prevents excessive growth of connections. 

The E&J network also includes inhibitory connections which control the overall 

activation and consequently modulate learning in the neural network. All units in the  E&J 

model are fully connected with both excitatory and inhibitory connections. Excitatory 

connections undergo Hebbian learning, whereas inhibitory connections do not; instead, 

they all keep an arbitrary fixed weight that is determined by the modeler. E&J justified 

inhibitory connections “to keep the total activation in the network at a reasonable level” 

(p. 3). Nonetheless, they did not provide further details on the rationale of this 

implementation. 

3.2.2 Spreading activation and recall. Activation spreads through the network via 

the weighted connections between units. Both networks compute the activation of each 

unit after adding up activations from external stimuli and lateral activation propagated 

from other units. 

In the T&W model, spreading activation is conceptualized as a key component to 

recall important associations, akin to pattern completion (O’Reilly & Rudy, 2000). For 

example, after exposure to both AB and BC item-pairs, strong WAB and WBC weights result 

in spreading activation between the three-neuron assembly anytime the network is 



presented with either of these items (A, B or C). Through this mechanism learning of 

nonadjacent transitional probabilities (e.g., AC after AB and BC were presented) is 

mechanistically explained; in the above example, exposure to BC items also produces 

some level of activation in neuron A due to spreading activation from B to A, and this in 

turn produces coactivation of A and C, triggering Hebbian learning in WAC. In the T&W 

model, incoming spreading activation is a weighted sum of the inputs coming from the 

already active units in the network: 

if	net_input > 𝑥, in_act_A = &
&%*+,-./0_2.340

	                 

else				in_act_A = 0            Equation (5) Incoming spreading activation in T&W 
 

The equation uses a threshold x because otherwise zero values are also 

transformed into positive incoming activation. The value of x can vary, restricting 

spreading activation in the network as x increases. 

The E&J network also includes spreading activation. It is computed using the net 

input value as well, but for their simulations it was limited by an excitation coefficient 

parameter that multiplied the value of the net input times 0.7. Spreading activation in the 

E&J model exerts similar effects as in the T&W model, however E&J did not stress its role 

on statistical learning. Instead, they focused on forgetting, which they argued arises from 

activation decay. 

3.2.3 Activation decay and forgetting. Forgetting for E&J is decisive in their 

conceptualization of statistical learning. E&J argued that, critically, “the sophisticated 

properties of statistical learning follow naturally from the combination of two simple 

mechanisms, namely correlational learning and forgetting” (p. 3). 

Forgetting in the E&J model is implemented through unit activation decay. Let’s 

say that item A activates neuron A at time step 1. Then, at time step 2, when item B 

activates neuron B, some degree of A activation must remain in the network to allow 

coactivation of AB and Hebbian learning of WAB. For how long should A remain active? E&J 

ran parametric tests to determine the value of the exponential forgetting parameter: if 



forgetting was at its highest level (1 in the range 0-1), A was only active during one time 

step. If forgetting was zero, A remained active for the rest of the simulation. E&J found 

that intermediate forgetting values accounted better for learning transitional probabilities 

of both adjacent (AB) and nonadjacent (AC) dependencies. 

The T&W (2018) model also implements activation decay in simulations of 

sequence learning, but it controls neural activation decay in a three-step dynamic: full 

activation at step 1; 90% activation at step 2; and 0 activation from step 3 on. These 

decays apply only for the external source of activation. 

While activation decay is used in both models, only E&J conceptualized it as 

forgetting and as “the critical ingredient for successful learning” (p. 7). We disagree with 

E&J’s view of activation decay as forgetting and argue that this may be a misleading 

interpretation. Activation values from external stimuli in both artificial and biological 

networks are non-persistent but are constantly updated in response to changes in the 

environment (Huber & O’Reilly, 2003). Rather than forgetting, we suggest that activation 

decay simply models the remaining neural activation from immediately past events, which 

is of course key to trigger Hebbian learning between sequentially perceived items. 

Nonetheless, we argue that there is more besides activation decay to provide Hebbian 

networks with efficient power to extract statistical information from the environment; 

notably, spreading activation and weight decay must be both highlighted as additional key 

components in the algorithm. In the next sections we provide evidence for this argument 

while we provide a chronological overview of the main tasks and simulation results 

reported by T&W and E&J. We also present new simulation results with the T&W model 

that challenge E&J’s notion of activation decay as the key ingredient for Hebbian statistical 

learning. 

4. What the Models Account for 

4.1 Categorization in equivalence classes (T&W) 

T&W (2017a) studied symbolic categorization through the simulation of 

equivalence class formation, a traditional categorization paradigm in behavior analysis 



(Sidman, 1994). One main finding in this field is that humans can derive relations between 

non directly trained items. This is usually done with conditional discrimination training, 

where participants are reinforced after selecting the correct comparison stimulus (e.g., B1, 

when B2, B3, and Bn are also present) in the presence of the related sample (e.g., A1). For 

example, after being trained on A1B1 and B1C1 conditional discriminations (e.g., A1 being 

a picture of a dog, B1 the written word “dog” and C1 the written word “chien” which 

means dog in French) participants go through a test phase of symmetry relations B1A1 

and C1B1 (e.g., B1A1 requires selecting the picture of a dog [A1] from a pool of pictures 

when the word “dog” [B1] is presented as the sample stimulus), and transitive A1C1 

relations (here, linking the dog picture with the word “chien” after seeing the picture 

paired with the word “dog”, and the word “dog” paired with “chien”), which notably non-

human animals fail to acquire. T&W (2017a) accounted for the trained (AB, BC), and 

derived symmetry (BA, CB) and transitive (AC) relations based on direct exposure to item-

pairs and spreading activation in their network. 

Notably, associative strengths between trained, symmetry and transitive relations 

in T&W (2017a) are equivalent to transitional probabilities between adjacent, backwards 

and nonadjacent dependencies in E&J (2021), respectively, as we will review later. T&W 

showed that associative strength between derived relations is an inverse function of 

adjacency between items, simulating data from human participants (Spencer & Chase, 

1996). 

T&W (2017a) also simulated performance from populations with intellectual 

disabilities by unbalancing LTP/LTD in the weight adjustments of their model, and showed 

that associative learning of transitive (i.e., nonadjacent) items was comparably more 

impaired than learning of adjacent items, a learning pattern in line with empirical results 

(Devany et al., 1986). 

4.2 Cross-situational learning of word-object mappings (T&W) 

Tovar and Westermann (2017a) also evaluated their version of the Hebbian 

algorithm during acquisition of word-object mappings in simulations of cross-situational 



learning. For these tasks a word label is presented concurrently with different visual 

objects, including the correct visual match and other competitors. The visual competitors 

vary across training trials. Correct mappings between word labels and visual objects 

emerge from sensitivity to the auditory and visual statistical regularities across trials 

(Smith & Yu, 2008). T&W simulated this task in a neural network architecture originally 

proposed by McMurray and colleagues (2012) which was modified to include the T&W 

Hebbian algorithm. After training, the network was tested, using spreading activation, for 

lexical production (through correct activations of the auditory units when the 

corresponding visual items were presented) and lexical comprehension (through correct 

activations of visual units when the corresponding auditory items were presented). T&W 

analyzed whether it was possible to account for the empirical evidence of relatively 

preserved comprehension with impaired production in the lexical development of Down 

syndrome (Næss et al., 2011), and showed that unbalancing LTP/LTD in the algorithm 

explained this atypical pattern of lexical development. 

4.3 Serial reaction time (T&W) 

In a subsequent paper, T&W (2018) simulated a serial reaction time task (SRT; Fig. 

1a). In this study their model successfully predicted the performance of typical children 

and children with Down syndrome. The model and the participants were exposed to two 

streams of visual stimuli, one stream consisting of the fixed sequence A1-A2 followed by a 

Target (AT trials), and the second stream consisting of the fixed sequence B1-B2-B3 

followed by the Target (BT trials). Participants were instructed to respond as fast as 

possible to the target. In SRTs, sequence learning is confirmed if response times get faster 

for trials presenting fixed sequences compared with trials where A and B items are 

randomly ordered in the sequence (e.g., random: B2TA1B3A2B1T). The model predicted a 

critical difference between typical and atypical populations that was confirmed in a 

complementary empirical study with children: the typical group learned under a variety of 

familiarization schedules, while the with Down syndrome group only learned when the 

familiarization schedule did not interleave AT and BT trials; otherwise, their performance 

was impaired and described as a case of learning interference arising from two competing 



predictors (A and B) of the target (T). This study showed that, due to the reported LTP/LTD 

imbalance, competing predictors produce atypically stronger competition and disrupt 

learning in the model of Down syndrome. 

 

Fig. 1. (a) A schematic representation of the serial reaction time task used in Tovar 

et al., (2018). (b) Architecture of the Hebbian neural network used in this study. (c) Mean 

reaction times after 5 runs of the TD model (green circles) and the model of Down 

syndrome (orange squares) as reported in the original study. The U shape depicted by the 

TD model reveals learning of the fixed sequences, while the plane curve of the DS model 

reveals no learning of the fixed sequences. 1b and 1c are adapted from the original 

publication in Cognition, Vol 171, Tovar, Westermann & Torres, From altered synaptic 

plasticity to atypical learning: A computational model of Down syndrome. Copyright 

(2018), with permission from Elsevier. 

4.4 Word segmentation (E&J) 



E&J simulated a generic word segmentation task to later analyze transitional 

probabilities between items in a variety of conditions (i.e., forward, backward, and 

nonadjacent transitional probabilities). In E&J (2021) a total of 9 items (A, B, C… I) were 

presented to the model. Triplets were always presented sequentially together (e.g., A-B-C; 

G-H-I) which led to a strengthening of the connections between, for example, A and B, and 

B and C. This part of the process accounted for increases in transitional probabilities of the 

adjacent dependencies AB and BC, and thus the segmentation of words (triplets such as 

ABC) from the continuous stream of items. From this simulation E&J also accounted for 

learning of backward transitional probabilities (e.g., CBA after familiarization with ABC) 

comparable to empirical reports of sensitivity to these dependencies (Pelucchi et al., 

2009). Learning of backward dependencies in E&J’s model (2021) is analogous to the 

learning of symmetry relations reported in T&W (2017b). 

4.5 Nonadjacent transitional probabilities (E&J) 

E&J also reported learning of transitional probabilities between nonadjacent 

dependencies (e.g., between A and C, using the test-item AXC, after familiarization with 

ABC). These transitional probabilities were extracted during familiarization by the 

remaining activation of A (due to prior presentation of sequence AB) when sequence BC 

was presented in the next step. As detailed before, this happens when the network 

operates with intermediate forgetting. Equally to the description of derived relations in 

T&W (2017a), E&J reported that final connection weights between adjacent dependencies 

(e.g., AB) were stronger than weights between nonadjacent dependencies (e.g., AC). 

5. Revisiting Word Segmentation and Nonadjacent Transitional Probabilities in the T&W 

Model 

For this discussion paper we ran two additional simulations with the T&W model (a 

Matlab implementation of this model is available in 

https://github.com/DCLunam/HebbianLearning ). Below we first describe the simulation 

of a word segmentation task that has not been covered in the T&W model before. We 

aimed to demonstrate the ability of the T&W model to account for empirical results with 



this classic paradigm that was the focus of E&J (2021). We then discuss how the learning 

of nonadjacent dependencies reported in both models has not addressed an empirically 

relevant task that we cover here for the first time with the T&W model and argue on a 

weakness of E&J’s approach to simulate this task.  

5.1 Word segmentation in T&W 

We simulated the word segmentation task used in the classic study of Saffran and 

colleagues (1996). The authors presented 8-month-old infants with a continuous stream 

of auditory syllables comprising a total of four 3-syllable nonsense words (Fig 2a): tupiro, 

golabu, bidaku, padoti, repeated in random order (e.g., bidakupadotigolatubidaku…). 

After familiarization, infants were presented with 4 test items; two words: tupiro and 

golabu, and two nonwords: dapiku and tilado. Nonwords had the same syllables used in 

familiarization but not in the order they appeared as words. During the novelty preference 

tests, infants showed significant discrimination between words and nonwords, revealing 

sensitivity to the statistical structure of the continuous stream of syllables. 

We simulated this task in a T&W neural network composed of 12 units fully 

connected. Each unit stood for one of the 12 syllables that composed the four 3-syllable 

words. Syllables were presented sequentially to the network, each syllable at each time 

step, with no pauses or markers between words. Familiarization consisted of continuous 

presentation of 180 words in random order, as in the original study. After familiarization, 

we analyzed connection weights between units that composed the test words: tupiro and 

golabu, and the nonwords: dapiku and tilado. The model was run 24 times in the same 

task, and it successfully simulated the main empirical result, as captured in stronger 

connection weights between syllables in test words (M = 0.64, SD = 0.04) compared with 

nonwords (M = 0.33, SD = 0.04, Fig. 2c). The weights in the model also revealed learning 

between nonadjacent word syllables (M = 0.52, SD = 0.04) and this was weaker than 

learning between adjacent word syllables (M = 0.70, SD 0.04 Fig. 2c). This pattern of 

results shows that the T&W model succeeds at simulating this classic word segmentation 

task and shows comparable results to those reported in the simulations of E&J (2021). 



 

 

Fig. 2. (a) A schematic representation of the word segmentation task used in 

Saffran et al., (1996). (b) A (simplified) T&W Hebbian neural network trained with this 

task, thicker connections between processing units represent stronger syllable 

associations or higher transitional probabilities. Only some neurons are shown. (c left) 

Boxplots of the weight values between syllables in test words and nonwords. (c right) 

Boxplots of the weight values computed across all adjacent and nonadjacent word 

syllables. 

5.2 Learning of nonadjacent dependencies in T&W 

Both models have already reported learning of nonadjacent dependencies (E&J, 

2021; T&W, 2017a) when these are related through a highly frequent intermediate item 

(e.g., intermediate B during ABC). Nonetheless, several empirical studies have focused on 

the learning of nonadjacent elements when the intermediate element is unrelated during 

familiarization (e.g., AXC; Gómez, 2002; Newport & Aslin, 2004; Wang et al., 2019; Wilson 

et al., 2020). Interestingly, many of these studies have shown negative or mixed results, 



revealing difficulties of participants to learn the distant dependencies. For example, 

Newport and colleagues (2004) described strong selectivity in the ability to learn 

nonadjacent regularities depending on the stimulus materials; human adults were poor 

learners of nonadjacent syllables but they did learn nonadjacent dependencies between 

consonants, and between vowels (Newport & Aslin, 2004). This pattern was not consistent 

across species: tamarin monkeys were good learners of nonadjacent dependencies 

between syllables, and between vowels, but not between consonants (Newport et al., 

2004). A study by Gómez (2002) using word-like units in an artificial language, showed 

that learnability of nonadjacent words benefits when the adjacent dependencies become 

less relevant and more unpredictable. 

For this simulation we modeled the influential study of Gómez (2002). In 

Experiment 1 she used three-item auditory word sequences (e.g., AXD: pel-wadim-rud). 

Strings from Language 1 took the form AXD, BXE, and CXF, and those in Language 2 were 

AXE, BXF, and CXD. Both languages had the same adjacent dependencies and were only 

distinguishable by their nonadjacent dependencies. In each language the first word 

predicted the final word (e.g., pel predicts rud). The  A, B, C, D, E, and F elements were 

constant, while variability was manipulated by drawing X from a pool of either 2, 6, 12 or 

24 words, depending on the experimental condition (Fig. 3a). During familiarization, 

participants were exposed to one of the 2 languages. Short pauses (250 ms) were used 

between words, and longer pauses (750 ms) between three-word sequences to make 

words and sequences distinguishable from each other. The three-word sequences were 

randomly ordered and the number of X elements varied between conditions (In Condition 

1: 2, e.g., AXD trials were pel-wadim-rud, and pel-kicey-rud; Condition 2: 6; Condition 3: 

12; and Condition 4: 24). The total number of familiarization trials in all conditions was 

432 irrespective of variability in the X elements. 

 

 



 

Fig. 3. (a) A schematic representation of the grammar task used to analyze learning 

of nonadjacent dependencies in (Gómez, 2002). (b left) Mean connection weights for legal 

and illegal test sequences across the four experimental conditions. (b right) Mean 

connection weights for nonadjacent words of legal and illegal sequences, and for adjacent 

words across the four experimental conditions. Error bars show the standard deviations 

across 100 runs of the model. 

During tests, all participants were presented with strings used in Condition 1 (with 

only 2 X elements) of both L1 and L2 and were asked to discriminate whether the test 

sequence was legal or not according to the language they had previously heard. In this 

way tests evaluated discrimination of the two languages based only on their nonadjacent 

regularities. Participants’ performance improved from Condition 1 to 4, as a function of 

increasing the number of intervening X elements during familiarization, and this suggested 

that higher variability of the adjacent (X) elements facilitates learnability of the 

nonadjacent (e.g., A_D) dependencies. 



We simulated this experiment with the T&W model using 30 units fully connected. 

Each unit represented one of the 30 words required for the A, B, C, D, E, F and 24 X 

elements. Three-word sequences from L1 were presented to the model by activating each 

unit at each time step and with one-time-step pauses between sentences to allow 

distinguishing between words and sentences as in the empirical study. We modeled the 

four experimental conditions through 432 familiarization trials as in the original study. 

To evaluate the model’s performance, we obtained the mean weights across the 

three-word sequences of legal (L1) and illegal (L2) tests in each condition. These values are 

shown in Figure 3b, and they capture the same tendency reported by Gómez (2002), 

because increasing the number of X elements resulted in higher discriminability between 

legal and illegal sequences in the model. We quantified discriminability through delta 

values as the difference of mean weights for legal sequences minus mean weights for 

illegal word sequences within each experimental condition. Higher values indicate better 

discriminability of legal from illegal sequences. Delta values increased through conditions 

as: Condition 1 M = 0.015, SD = 0.029, Condition 2 M = 0.105, SD = 0.038, Condition 3 M = 

0.132, SD = 0.029, and Condition 4 M = 0.144, SD = 0.024. 

We additionally analyzed the weights for each type of word-pairs: adjacent 

elements (e.g., pel-wadim), legal nonadjacent elements (e.g., pel-rud), and illegal 

nonadjacent elements (e.g., pel-jic); these values show that while the learning of adjacent 

elements becomes less relevant, the legal nonadjacent elements are strengthened, and 

this provides the key to discriminate between legal and illegal sequences (Figure 3b). 

To model the study of Gómez (2002) we used a low LTD/LTP threshold (θ) value. In 

previous studies, T&W (2017a; 2018) used θ values between .65 and .7 to model typical 

performance, in this simulation we set θ to 0.6 because using higher values resulted in no 

learning and no differences between the four experimental conditions (neurophysiological 

theories and evidence support that θ is not fixed but it moves from the previous and 

incoming stimulation regularities; Bear, 1995; Bienenstock et al., 1982). This is interesting 

because in a network with spreading activation, lowering θ limits weight decay and favors 



learning from spreading activation, and consequently of nonadjacent regularities, as T&W 

have reported before (2017a). However, the present simulation shows that this processing 

restriction (θ) interacts with the external regularities so that only in determined scenarios 

the learning of nonadjacent dependencies gets favored. This result in turn captures the 

selectivities in the learning of nonadjacent words in artificial grammars empirically 

reported by Gómez (2002). 

On the other hand, the approach of E&J has stressed the role of activation decay 

(i.e., forgetting) to account for learning of nonadjacent dependencies. We hypothesized 

that under E&J’s assumptions, adjusting the persistence of neuronal activation through 

the decay parameter would result in either always learning the nonadjacent regularities 

and legal sequences (i.e., because A remains active by the time D is presented) or always 

failing in its learning (i.e., because A and D are not coactive at any time), irrespective to 

experimental conditions, which differs from the empirical evidence. We tested these 

hypotheses through additional simulations of the study by Gómez (2022) using a Hebbian 

neural network implementing the equations presented by E&J (2021). We evaluated the 

network performance with three forgetting values in the decay parameter (0, 0.5, and 1; 

corresponding to no forgetting, intermediate, and complete forgetting, respectively). We 

focused on simulations of the experimental conditions 1 and 4 only, because the main 

differences in learning the word sequences were reported between these conditions 

(Gómez, 2022).  

We ran two sets of simulations1. For the first one we set excitation and inhibition 

coefficients to 0, to suppress in this way spreading activation in the model. This forced the 

weight updates in the network to result only from the interaction of correlation learning 

and activation decay (forgetting). For the second set, we set the excitation and inhibition 

 
1 These simulations were run with 100 networks and 432 trials for each condition. Remaining neural 
activations were removed between trials (sequences) to make sequences distinguishable from each other as 
in the original study of Gómez (2002). Since there was no weight decay implemented in these simulations, 
connection weights increased without upper limits, therefore we normalized connection weights in the 
range [0 1] after finishing simulations of each condition to compute means and standard deviations in a 
comparable range across conditions. 



coefficients to 0.7 and 0.4, respectively, which are the typical values used by Endress and 

Johnson (2021). 

We evaluated discriminability (i.e., delta values) between legal and illegal 

sequences. Table 1 summarizes the results of these simulations, and it shows that 

maintaining any neural activation values in the network, through setting forgetting to 0 or 

0.5, resulted in high discriminability of legal from illegal sequences in both conditions 1 

and 4, but removing all activation values after each word presentation, through setting 

the forgetting parameter to 1, resulted in zero discriminability between legal and illegal 

sequences in both conditions 1 and 4. Critically, in the absence of spreading activation (set 

1), this model fails to capture differences between conditions 1 and 4. Nonetheless, 

differences between conditions 1 and 4 did appear when spreading activation operated in 

the network (set 2) along with zero and intermediate forgetting values. 

Table 1 

Discriminability of legal and illegal sequences in simulations of experimental conditions 1 

and 4 from the study of Gómez (2002). 

Neural Network Parameters Delta Values  

 Fo
rg

et
tin

g  

Sp
re

ad
in

g 
Ac

tiv
at

io
n 

(S
A)

 Experimental 
Condition 1 

Experimental 
Condition 4 

Differences 
Between 

Conditions 1 and 4 

  
 Mean (S.D.) 

n = 100 
Mean (S.D.) 

n = 100 
T test 

p values 

Network with 
E&J's equations 

(Set 1) 

0 
without 

SA 

0.325 (0.003) 0.325 (0.003) 0.454 
0.5 0.304 (0.010) 0.304 (0.009) 0.775 
1 -0.001 (0.054) 0.001 (0.043) 0.750 

Network with 
E&J's equations 

(Set 2) 

0 
with SA 

0.023 (0.001) 0.325 (0.003) < 0.0001 * 
0.5 0.197 (0.012) 0.234 (0.030) < 0.0001 * 
1 0.004 (0.048) -0.003 (0.045) 0.247 

T&W Model**     0.015 (0.029) 0.144 (0.024) < 0.0001 * 
 



Note: Single asterisks * indicate significant differences in delta values between conditions 

1 and 4, these simulations capture the empirical results from Gómez (2002). **Data from 

the last row is taken from the simulations run with the T&W model described in the main 

text. 

These simulations show that forgetting (implemented through activation 

decay/persistence) cannot be considered the only key ingredient besides correlation 

learning to account for complex performance in statistical learning. From the present 

results it becomes clear that the role of additional components, such as spreading 

activation and weight decay, should also be regarded as critical to extend the scope of 

Hebbian algorithms in statistical learning. 

6. Discussion  

The models by T&W and E&J have demonstrated Hebbian learning as a promising 

mechanism for statistical learning. The parameter variations in these Hebbian networks 

are useful to test interactive effects of cognitive processes related to memory, retention, 

processing speed, and learning disabilities; all of these being important to explain 

individual and group differences in statistical learning (Arciuli, 2017). 

Associative (Hebbian or correlation) learning has long been suggested to be a key 

component of statistical learning (Conway, 2020; Frost et al., 2015; Pacton & Perruchet, 

2008; Perruchet & Vinter, 1998). Remarkably, while it has been difficult to extend verbal 

theories (and other models) of correlation learning to account for complex phenomena 

such as the learning of nonadjacent and backwards dependencies, the T&W and E&J 

models provide formal means to cover these data just by slight adaptations of the general 

correlation learning theory. Notably, however, the present analysis shows that the 

conceptualization of these computational adaptations seems to be in opposing directions. 

From our analysis, there are two key differences between the T&W and E&J 

models. One concerns associative weight changes: in T&W associative weight changes are 

either positive (LTP) or negative (LTD), they depend on detected and recalled items' co-

occurrences, and mechanisms underlying weight changes are biologically motivated. In 



contrast, in the E&J model positive weight changes seem to be controlled in part by fixed 

inhibition, which we argue is a less biologically plausible implementation, and the E&J 

model does not include negative associative changes. Negative weight changes in the 

T&W model are a fundamental component for statistical learning because they emerge 

when environmental regularities become less relevant than they have been before. It is 

through the balance of strengthening and weakening (LTP/LTD) of weights that the neural 

network creates an efficient statistical model of the external regularities. Additionally, the 

effectiveness of spreading activation depends on a suitable LTP/LTD balance. Disturbance 

of this balance in the T&W model predicted atypical statistical learning, and this prediction 

was confirmed in Down syndrome (Tovar et al., 2018), a population in which the LTP/LTD 

imbalance exists (Rueda et al., 2012). The implementation of positive and negative weight 

changes in the T&W Hebbian algorithm provides a direct link between altered neural 

processing and atypical statistical learning. 

The second difference between the models concerns activation decay: while both 

networks include activation decay, only E&J have conceptualized it as forgetting and the 

key ingredient for statistical learning. We argue that the concept of forgetting is 

misleading because activation decay merely represents typical accommodation of the 

network to the changing environment. Consequently, there is no need to postulate a high-

level interpretation of this mechanism such as forgetting. In line with previous models 

(Huber & O’Reilly, 2003), we suggest the persistence of the neural response or the 

remaining neural activation as preferable interpretations of the processes captured by 

activation decay. 

Finally, within the Hebbian theory there are relevant mechanisms that provide 

neural networks with efficient power to extract statistical regularities, and these 

mechanisms cannot be circumscribed to activation decay. In line with the original Hebbian 

theory, efficient statistical learning across domains (e.g., categorization, cross-situational 

learning, word segmentation) merely requires the concurrent or sequential neural 

activations through perceived items. The reviewed models have highlighted at least two 

mechanisms that explain how adjacent and distant items can produce concurrent neural 



activations: spreading activation and activation persistence (through activation decay 

parameters). We highlight the balance between spreading activation, activation decay, 

and synaptic weight decay, because too much or not enough of them disrupt statistical 

learning in Hebbian networks (Tovar et al., 2017a; 2017b; 2018). All of these components 

must exist and interact within a suitable balance to allow the networks to become 

efficient statistical learning models. 

7. Future Directions 

Future computational research should test the scope and limitations of Hebbian 

learning. This point is important considering theories that suggest the need for multiple 

cognitive processes to account for complex statistical learning (Arciuli, 2017; Batterink 

et al., 2015; Thiessen & Erickson, 2013). Two recent papers have stressed the importance 

of such perspectives; one comparative study evaluating humans and other primates that 

suggests that the human-only abilities during complex statistical learning may rely on 

verbal recoding strategies besides associative learning (Rey et al., 2019); and a paper by 

Conway (2020) that puts forward a neurocognitive theory of statistical learning. This 

theory postulates two sets of learning principles: the first is data-driven and automatic, 

based on general cortical plasticity (where Hebbian learning is well placed), and the 

second set is goal-directed and attention-based, composed by a modulatory executive 

system that allows learning and generalization of complex global patterns, including cross-

modal dependencies. Notably, Conway (2020) has suggested that learning of nonadjacent 

dependencies requires the second system. However, the T&W Hebbian network reviewed 

here has shown that this learning can be accounted for by principles from the first system 

only. 

Both the T&W and E&J neural networks show that learning of challenging 

statistical regularities, such as backwards and nonadjacent dependencies, emerges in 

networks with balanced learning parameters, but in line with the hypothesis of verbal 

mediation (Rey et al., 2019) and the second learning system proposed by Conway (2020), 

empirical evidence has shown that acquiring backwards and nonadjacent regularities 



appears as a more complex process that does not occur as systematically as the learning 

of forward instances (Chartier & Rey, 2020; Wilson et al., 2020). Testing the reviewed 

models in more challenging learning scenarios is necessary to identify whether and what 

additional computations are required, besides associative Hebbian learning, for a 

comprehensive neurocomputational theory of statistical learning. 
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