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Abstract  
With the increasing demand of renewable energy, the installation of wind power 
capacity has been rising exponentially in the past decades. With growing size of 
modern variable speed wind turbines, the operation and maintenance (O&M) cost 
can be very high. In order to effectively reduce the O&M cost and maximise the 
reliability of wind turbines, the condition monitoring has been considered as a most 
viable solution.   

However, to improve the reliability of the condition monitoring system, large 
number of sensors are required and thus numerous data are produced. This can 
increase the complexity of the monitoring system and bring heavy burden to the 
computation process. Besides, limited researches has been conducted to study the 
relationships between alarms and faults.    

The thesis starts with overview of current condition monitoring technologies and 
systems. Then the monitoring data used in the research are explained, which include 
both supervisory control and data acquisition (SCADA) data and data produced from 
simulation models. A statistical tool based on Kullback-Leibler divergence (KLD) 
is proposed for feature extraction, considering normal and abnormal behaviour 
presented in the monitoring data. The proposed method is improved with kernel 
support vector machine (KSVM), thus capable of classifying the normal, alarm and 
fault condition of the operational wind turbines. Furthermore, an approach is 
proposed based on long short-term memory (LSTM) incorporating a KLD for fault 
detection and identification of representative faults. This method can effectively 
distinguish the alarms from the faults, from which the distinguished alarms can be 
considered as an early warning of the fault occurrence. The true positive rate of the 
proposed LSTM-KLD is 94% whereas the true negative rates for alarm and fault are 
96% and 90.9%, respectively. In the end, a wind turbine test rig is designed and 
developed, from which experimental data are obtained to validate the proposed fault 
detection algorithms and models.  

The contributions of the research mainly have three aspects. For fault classification, 
the kernel function is adapted by both principal component analysis (PCA) and 
support vector machine (SVM) in order to transfer the linearly inseparable problems 
into linearly separable problems. Besides, variable selection with kernel PCA is 
proposed for effective condition monitoring, which can reduce the computation load 
while retaining the most useful information in the monitoring data. For alarm 
detection, a statistical tool based on KLD is employed to discover the behaviours of 



specific components in different operation conditions. By incorporating LSTM with 
KLD, the fault can be localised by correlating the alarms in the data. With this hybrid 
method, the fault severity can be estimated based on the alarm signal since it can 
provide sufficient information as required to indicate early warning of the fault.  For 
experimental validation, a PMSG (permanent magnet synchronous generator) based 
wind turbine test rig is designed and constructed to emulate the operational 
behaviours of the turbine under various type of faults in order to collect sufficient 
experimental data to validate the proposed algorithms for fault detection and severity 
estimation.  
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Chapter 1. Introduction 

This chapter starts with a brief overview of the current state of wind energy. 

Then the importance of wind energy research especially in wind turbine condition 

monitoring is introduced. The motivation in research and development of fault 

detection and fault severity estimation techniques towards intelligent wind turbine 

condition monitoring is described. The aim and objectives for the research are 

also demonstrated. Furthermore, the novelty of this research is summarised, 

followed by the structure of the thesis at the end. 
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1.1 Current state of wind energy  
Currently, the traditional fossil fuels are dominating the global energy supply. The 

energy related carbon emissions have reached the highest level in history recently 

[1], which has resulted in the serious global environmental problems [2]. However, 

the demand of electrical energy consumption is still rapidly increasing. The use of 

renewable energy has become more imperative in order to reduce the carbon 

emissions. The United Nations General Assembly (UNGA) set up the Sustainable 

Development Goals (SDGs) in 2015 to provide an international cooperation 

framework in order to protect the planet environment and thus bring a sustainable 

future for the planet. In “Agenda 2030”, sustainable energy is the core to the success 

[3]. There are three key targets set to achieve the SDG, including to i) increase 

substantially the share of renewable energy in the global energy market, ii) ensure 

affordable, reliable and universal access to modern energy services, and iii) double 

the global rate of improvement in energy efficiency. This has been a focus of a 

number of renewable energy studies [4-10]. The European Union (EU) is taking an 

important role in global energy transition process.  It is estimated that in 2030, the 

savings due to use of renewable energy rather than the import of fossil fuels should reach 

EUR 58 billion [11]. Besides, by 2020, 10% energy consumption in transportation 

came from renewable energy [12]. In addition, in 2014, the European Council 

promised to reduce at least 40% of greenhouse gas emissions and increase 32% share 

of renewable energy in all energy resources as compared with 1990 by the year 2030 

[13]. The COP25 climate summit in Madrid in 2019 agreed the European Green 

Deal, by which the EU will reach climate-neutral economy by 2050 [14]. As a 

common type of renewable energy, wind power has been widely used and 

continually growing over the past decades. Fig. 1.1 shows the historic development 

of total wind energy installations. In the begging of the new millennium, the total 

wind energy installations were only 6.5 GW, including both onshore and offshore 

turbines. It can be observed from the Fig. 1.1 that the total installation has been 

rising exponentially over the past two decade. The total wind turbine (WT) 

installation in 2020 was 743GW with 93 GW newly installed capacity, as compared 

with 60.8 GW newly installed capacity in 2019 [15]. 
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Figure 1.1 Historic development of total WT installations (GW) [15] 

With the exponentially installed capacity of WTs, one of the most concerned 

problems is the levelised cost of energy (LCOE). The LCOE, also known as the 

levelised cost of electricity, is an economic index used to calculate the average total 

cost required to build and operate a power-generating system over its lifetime 

divided by the total power generated of the system over that lifetime [16]. The LCOE 

of an onshore wind farm can vary from $50/MWh to $60/MWh. However, it can 

increase from $700/MWh to $1,200/MWh under unfavourable wind conditions [17]. 

The LCOE for typical onshore and distributed WT installations was observed to be 

$37/MWh. The full range of single-variable sensitivity based on turbine distance for 

the onshore turbines is estimated to be $29–$78/MWh. The LCOE for the offshore 

turbines tend to be higher, which is estimated to be $85/MWh for fixed-bottom 

substructures and $132/MWh for floating substructures, with a single-variable 

sensitivity range of $63–$122/MWh for fixed bottom structure and $83–$174/MWh 

for floating structure, respectively [18].  

The O&M cost mainly involves the costs associated with operating and maintaining 

process such as insurance, regular maintenance, repairs, spare parts and 

administrations.  The annual O&M cost is on average 3% of the original cost of the 

turbines. For offshore wind farms, the O&M costs occupy 30% of the total income 

of the turbines over 20 years of their operating lifetime [19], [20]. Since WTs are 

usually installed in remote areas and moving further offshore, more efforts and costs 
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have been required to ensure their reliable operation. Therefore, it is important to 

detect the WT faults at an early stage, thus improve their reliability. In order to 

reduce the O&M cost and minimise the economic loss caused by downtime, 

appropriate condition monitoring techniques that are able to detect fault in the early 

stage before being developed into catastrophic ones would be crucial.  

1.2 Research motivations  
There are various types of signals that are be used for wind turbine condition 

monitoring (WTCM). The signals mainly include acoustic emission, torque, 

temperature, lubrication oil, vibration, strain and electrical powers. Monitoring data 

are usually acquired from the SCADA system for modern WTs [21]. In terms of the 

condition monitoring models, the data-driven model-based methods, as compared to 

physical-based models, are focusing on constructing the relationship between inputs 

and outputs of the system. It does not require building a mathematical model of the 

physical system [22]. Numerous statistical, machine learning (ML) and hybrid data-

driven approaches have been studied. In statistical approaches, the factors such as 

variance, kurtosis, skewness, mean value and root mean square (RMS) value are 

acquired from time-series data to monitor the rotor performance, blade surface 

roughness and gearbox failures of the WTs [20], [23-25]. Usually, the deviations of 

those statistical values are monitored during the operation. The statistical methods 

have been proven as a mature and flexible solution to implement; however, 

inaccurate decisions might be made because of their high sensitivity to noise since 

the noise tolerance of the statistical methods is lower. 

ML based methods such as artificial neural network (ANN) and SVM have been 

developed rapidly in the past decade. These human neurons-inspired methods have 

been widely applied in different WT subsystems such as gearbox, generator, and 

power transmission systems [26-28]. In [29], the author proposed a condition 

monitoring method based on fusion of spatial-temporal features of SCADA data by 

convolutional neural network (CNN) and gated recurrent unit (GRU) to predict the 

output for recognising the WT condition. Wang et al [30] developed a deep neural 

network (DNN) based framework to model lubricant pressure. Their results showed 

that the DNN model is more accurate when compared with k-nearest neighbour, 

Lasso, Ridge, SVM, and ANN. Hu et al. [31] proposed a deep belief network (DBN) 
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based prognostic model to improve the prediction accuracy and facilitate prognostic 

uncertainty for bearing degradation detection. In order to improve the accuracy and 

robustness of the condition monitoring methods, hybrid methods have also been 

developed. A hybrid statistical-ML method based on fast spectral kurtosis and multi-

branch CNN was proposed for identifying the complex fault in WT gearbox [32]. It 

has been proved that this method can diagnose the gearbox fault with over 97% 

accuracy. Pan et al. [33] combined DBN, self-organising map and particle filtering 

to evaluate the degradation process and predict the remaining useful life (RUL) of 

WT gearbox effectively. Several ML algorithms, such as CNN, recurrent neural 

network (RNN) and LSTM, can also be combined together to provide a more 

accurate condition monitoring method at the cost of model complexity [34, 35]. 

Efforts have also be made to develop condition monitoring methods for early fault 

detection. Bangalore et al. proposed an ANN based condition monitoring method 

that used SCADA data to produce the early fault warning on WT gearbox in order 

to arrange maintenance resources [36]. Wang et al. employed operational condition 

clustering and optimised DBN modelling for early fault detection of the main 

bearing [37]. However, most condition monitoring approaches have not yet utilised 

multiple variables being monitored, e.g., temperatures and pressures, from the same 

WT subsystem to improve the condition monitoring capability. Besides, only few 

researches have taken SCADA alarms into consideration. In addition to the 

operational and environmental parameters, a SCADA system includes a detailed 

record of alarm logs, revealing the malfunction of particular parameters of 

subsystems and components of the turbines. There are two types of alarm signals. 

The first type is usually triggered when certain measurement value of the 

components exceeds the pre-set threshold, which is considered as true alarms [38]. 

Another type is triggered when the system has experienced transient changes due to 

such as acute changes and disturbances of wind speed, and is thus considered as 

false alarms [39]. Due to inherent correlation between alarms and fault, it would be 

sensible to investigate if the WT alarm signals can be verified as an early warning 

for performance monitoring. By analysing the alarms and using time-sequence 

probability-based optimisation, the maintenance schedule can be well-organised and 

thus the WT reliability is improved [40]. Alarm signals can also be used to find the 

root cause of a fault or stoppage because the early warning raised by the alarms can 

be related to the fault occurrence [41]. Hence, alarm signals can be used to 
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crosscheck potential faults identified from the data against what was actually 

happening and thus can play a significant role in WTCM.  

1.3 Aims and objectives 

To address the issues mentioned above, intelligent WTCM technologies need to be 

developed. The aim of the research is to develop cost-effective, accurate, and robust 

condition monitoring technologies to improve the reliability of WTs. Therefore, the 

O&M costs can be reduced. The data used in the research contain three types, namely 

SCADA data, simulation dare and experimental data. The historical SCADA data 

are sampled at 10 mins/sample that show almost every detail of the operational WT 

condition. However, such a low sampling rate could only reflect the operation trend 

of mechanical components. The electrical signals are changing fast which cannot be 

captured instantaneously. Besides, the historical data do not contain electrical faults. 

Hence, simulation models will be built to simulate the dedicated electrical faults. As 

a key component of the turbine, the power conversion unit is playing a vital role to 

connect the turbine and the grid. Thus, a power conversion test rig will also be built 

to emulate those typical electrical faults including capacitor aging. To fulfil the 

research aim, the following objectives are listed: 

• Conduct critical literature reviews of current WT technologies, including the 

fundamental working principle, common failure modes, condition monitoring 

technologies, and maintenance strategies.  

• Model and simulate WT systems with different configurations under different 

operation scenarios such as normal condition and fault condition. 

• Understand the physical relationships among monitoring variables not only 

in the simulation data but also in the real measurement data.  

• Develop an appropriate methodology that can distinguish and separate the 

faults from the healthy conditions effectively. 

• Develop effective models to distinguish the normal, alarm, and fault 

conditions of the WTs whilst reducing the computation load by optimising 

the variable selection for dedicated condition monitoring. 

• Develop novel methods to estimate fault severity index that can measure the 

severity of abnormal conditions of the WT.  
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• Design and develop an operational WT power conversion test rig to further 

experimentally validate the proposed condition monitoring algorithms and 

models.  

1.4 Novelty of the research 

As described, the aim of the research is to design cost-effective, accurate, and robust 

intelligent WTCM technologies. The novelty of the research are summarised below: 

A statistical tool based on KLD is proposed for monitoring variable selection for 

fault classification. The divergence value can be used to indicate the differences 

between normal and abnormal behaviour of the monitoring data, which helps 

localise the fault. 

A kernel principal components analysis (KPCA) is further proposed for variable 

selection to classify operation conditions. The method can significantly reduce the 

computation load while maintaining the most information presented in the original 

datasets. Compared with the PCA, the KPCA with an adaptive kernel function can 

solve the non-linear problems. 

The proposed kernel function is extended to be used in SVM. The kernel support 

vector machine (KSVM) can project the original dataset into a higher dimension that 

is then divided with a hyperplane. This can transfer the linearly inseparable problems 

into linearly separable problems. 

A novel data-driven model-based condition monitoring method based on LSTM with 

KLD is developed. The proposed method is able to implement a condition 

monitoring that can analyse the WT operating conditions automatically and detect 

both alarms and faults simultaneously. 

LSTM is developed to capture relation features in temporal dependencies among 

monitoring data in an iterative manner, thus improving the prediction capability. The 

KLD value is used as fault indicator, which measures the severity of the fault by 

comparing the probability distributions between normal data and test data. By 

adopting a cost function based on normal value probability and alarm value 

probability of the calculated KLD values, the optimised thresholds are determined 

to distinguish the normal, alarm, and fault conditions. 
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1.5 Layout of the thesis 
The first chapter starts with description of the importance of wind power and 

research motivation. The research aim and related objectives are listed. Furthermore, 

the layout of the thesis is presented at end of this chapter. 

In the second chapter, the overview of WT technologies including structure, 

configuration and common failure modes is firstly presented. The state-of-the-art 

condition monitoring technologies are then reviewed, along with the WT 

maintenance strategies.  

In the third chapter, the monitoring data used in this research is interpreted, which 

is organised by two major sections. The first section discusses the SCADA data 

obtained from an operational wind farm. The second section explains the process 

required to develop simulation models of doubly-fed induction generator (DFIG) 

and PMSG based on MATLAB/ Simulink, respectively. The models are simulated 

under different operation conditions to generate sufficient data for model validation. 

In the fourth chapter, a method based on KLD and KSVM is proposed for fault 

feature selection. This method is developed to distinguish particular faults and 

extract the fault feature of different faults.  

In the fifth chapter, a cost-effective condition monitoring method that can 

distinguish the normal, alarm, and fault is proposed through a combination of 

variable selection based on KPCA and operation condition classification based on 

KSVM. The computation load reduction is also considered and assessed during the 

development of the models.  

In the sixth chapter, a novel data-driven model-based condition monitoring method 

based on LSTM with KLD is proposed. The proposed method aims to implement a 

WTCM that can analyse the WT operating conditions automatically and detect both 

alarms and faults simultaneously. The fault severity is also estimated by the 

proposed hybrid approach.  

In the seventh chapter, the details of the design and construction of WT test rig are 

presented, which is to emulate the operation of PMSG WT, focusing on its power 

conversion unit. The condition monitoring algorithms and models proposed in the 
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previous chapters are also validated by the experimental data acquired from this test 

rig.  

In the eight chapter, conclusions of the research are summarised, followed by 

contributions to the knowledge arising and achievements obtained from this PhD 

research. The limitations of the research and recommendations for the further 

improvement are also discussed.  
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Chapter 2. Overview of 
wind turbine condition 
monitoring technologies 

In this chapter, the state-of-the-art wind turbine condition monitoring 

system is reviewed. First of all, the background of current wind turbine 

technologies including different designs and configurations are introduced. Then 

the common failure modes of wind turbine subsystems are described, followed with 

the wind turbine reliability analysis. The modern wind turbine condition 

monitoring technologies are also reviewed with respect to conventional and more 

recent ML technologies. The statistical methods, signal processing methods and 

ML methods all are reviewed. Moreover, the maintenance strategies based on wind 

turbine fault diagnosis and prognosis are addressed. At the end of this chapter, the 

future challenges and improvements of wind turbine condition monitoring are 

discussed.  
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2.1 Overview of WT technologies 
Wind power is one of the most popular, sustainable, and renewable energy sources. 

Compared with conventional fossil-fuel energy sources, wind power has far less 

environmental impact. Wind energy provides mechanics through the blades of WTs 

to turn electric generators for producing electrical power.   

Human use of wind energy can be traced back thousands of years. The wind wheel 

of Hero of Alexandria is considered the first recorded instance of a wind-powered 

machine in history (10 AD–70 AD) [42]. In the medieval period, the first recorded 

use of wind power occurred in England in the 11th or 12th century [43]. A modern 

horizontal-axis wind turbine (HAWT) with a 100-kW generator on a 30-m tower 

connected to a local 6.3 kV distribution system was installed at the Soviet Union in 

1931 [44].  

Various modern WTs have been developed. There are two main types of WTs, which 

differ with regard to the direction of the main rotor shaft: vertical-axis wind turbines 

(VAWTs) and HAWTs. These are the two most commonly used designs. VAWTs 

can be divided into two main categories: Savonius and Darrieus, as shown in Figures 

2.1(a) and (b), respectively [45]. A Savonius turbine is composed of two or more 

semi-cylindrical buckets, which is the simplest design. Savonius turbines have lower 

efficiencies than that for the other designs [46]; hence, they can only be used in 

small scale applications. The second type of VAWT is the Darrieus turbine. Usually, 

three aerofoil-shaped blades are installed to generate a lift force for the main shaft 

rotation. The three common Darrieus turbines are shown in Figures 2.1(a)–(c): 

helical blades, Darrieus, and H-shaped blades, respectively [47]. Compared with 

Savonius turbines, Darrieus turbines have lower starting torques and higher 

efficiencies and rotation speeds.   

Another type of WT is the HAWT. There are two types of HAWT designs: the three-

bladed upwind HAWT and the two-bladed downwind HAWT. Upwind HAWTs are 

more popular than downwind HAWTs because their active yaw mechanism is not 

needed in the early development of wind power, and there is no risk of blades hitting 

the tower. Additionally, downwind turbines have the fatal problem that the 

turbulence induced by the tower causes periodic loads on the blades, leading to 

power fluctuation, which is also known as ‘tower shadow’ [48]. In contrast, the 
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blades and rotors of upwind turbines are placed along the wind direction. Hence, 

there is no need to consider the side effects of tower shadows. The mainstream 

design of a commercial HAWT typically comprises three blades. This is because 

further increasing the number of blades increases the wind resistance, reducing the 

power generation, leading to an efficiency lower than that of a three-bladed turbine. 

For turbines with two blades, gyroscopic precession occurs, leading to turbulence.   

 

Figure 2.1 Different types of VAWTs: (a) Savonius; (b) Darrieus; (c) H-shaped blades; 
(d) Helix [45] 

For power generation under a steady wind speed, HAWTs are better than VAWTs. 

Under the condition of a steady and high-speed wind stream, HAWTs can generate 

significantly more energy than VAWTs [49]. Compared with HAWTs, VAWTs are 

more difficult to start and stop and have lower efficiencies. This dissertation focuses 

on the condition monitoring of HAWTs, as they are the most commonly used WTs.  

The structure and subsystems of the HAWT are illustrated in Figure 2.2 [50]. The 

turbine tower is designed to capture high-speed winds and to avoid turbulent air 

layers close to the ground. The rotor and nacelle of the HAWT are elevated and 

installed on top of the tower. To optimise the balance between energy and cost, the 

height of the tower is typically between two and three times the length of the blades. 

Depending on the installation area, the foundation beneath the tower can be either 

solid (for onshore WTs) or floating (for offshore WTs). 
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Figure 2.2 Typical HAWT structure and subsystems [50] 

A typical rotor system of an HAWT usually has three blades connected to a 

horizontal shaft. The blades are designed as aerofoils instead of being completely 

flat to satisfy the aerodynamic requirements. A pitch system is used to control the 

pitch angle when the HAWT faces the wind. The blades receive an uplifting force 

from the wind, and a driving torque is generated, causing rotation. The diameters of 

typical modern HAWTs are between 40 and 90 m.  
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The nacelle is directly connected to the rotor. The gearbox, generator, shaft, bearing, 

brake, and controller are installed inside the nacelle house. The low-speed shaft is 

connected to the rotor and gearbox. It rotates at approximately 10–20 revolutions 

per minute (rpm), typically transferring mechanical power to the gearbox [51]. The 

gearbox consists of a set of gears that increase the output speed of the shaft to 

approximately 1500 rpm at a frequency of 50 Hz (depending on the requirement of 

the local grid) [51]. The high-speed shaft connects the gearbox and the generator. 

The output speed of the shaft is vital if it is directly connected to a generator. This 

is because the frequency of the alternating current (AC) produced is directly related 

to the rotation speed. The generator converts mechanical power into electrical 

power.  

On the opposite side of the rotor, an external anemometer is installed on the nacelle, 

which is responsible for measuring the wind speed and wind direction. According to 

the received data, the controller determines the turbine behaviour. In commercial 

WTs, a programmable logic controller (PLC) is embedded in the anemometer to 

determine the direction of the WT for maximising energy harvesting. The turbine 

can also be shut down to prevent overspeeding.  

The yaw system is located at the top of the tower and connected to the nacelle. The 

turbine is rotated to ensure that the blades face the incoming wind.  

For all types of HAWTs, variable-speed WTs have more advantages than fixed-

speed WTs, e.g. lower component stresses, higher energy yields, and fewer grid 

connection power peaks. To maximise the power production, the WTs operate in 

two primary regimes: below rated wind speed and above rated wind speed. When 

the wind speed is below the rated wind speed, the turbine operates at a variable rotor 

speed to capture the maximum amount of wind energy. The rotor speed is controlled 

by changing the generator torque. The blade pitch angle is kept constant. When the 

wind speed is above the rated wind speed, the generator torque is kept constant, and 

the blade pitch angle varies depending on the wind speed. Thus, a constant power 

output is maintained [51].  

The aforementioned basic structures are similar to those of the modern WT design. 

However, there are differences in the electrical configurations of WT drivetrains. 

Figure 2.3 shows the four main drivetrain configurations currently used in industry. 
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Figure 2.3 Main electrical configurations for the current WT drivetrains [52] 

The type A configuration is used for fixed- or dual-speed and stall-regulated WTs. 

A geared-drive low-voltage squirrel-cage induction generator (SCIG) is installed. 

This generator is connected to a medium-voltage grid via a transformer. The 

synchronisation inrush current can be reduced via power-factor correction and a soft 

starter. This type of drivetrain configuration has a simple structure, a low initial cost, 

and high reliability. However, sudden and substantial changes in the wind speed 

require higher mechanical robustness. Additionally, a robust network is needed 

because of the fluctuations in the electrical output.   

In contrast to type A, the type B and C configurations are used for variable-speed 

turbines. Type B is for fixed- or dual-speed, stall-regulated, or variable-speed, 

controlled-stall-regulated WTs. A geared-drive low-voltage wound rotor induction 

generator (WRIG) with a variable rotor resistance is connected via a transformer 

directly to the medium-voltage grid. Power-factor correction and a soft starter are 

used to reduce the synchronisation inrush current. 
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As shown in Figure 2.3, types C and D use a four-quadrant converter instead of a 

soft starter connected to a medium-voltage grid through a transformer. For type C, 

a geared-drive low-voltage WRIG is used. The rotor is connected to the converter, 

and the stator is connected to the transformer. This connection is called the DFIG 

and is one of the commonly used for industry WTs [52].  

The type D configuration is designed for variable-speed variable-pitch WTs with a 

direct-drive PMSG or SCIG, where the stator is connected to the converter and also 

connected to the medium-voltage grid via a transformer.    

In addition to the aforementioned commonly used WT drivetrain configurations, 

new designs have been researched, as shown in Figure 2.4. They offer potential 

reliability benefits for both electrical and hydraulic options. 

Types C’ and C’’ are derivatives of type C. Type C’ uses a low-voltage brushless 

doubly fed induction generator (BDFIG) instead of a DFIG. The BDFIG feeds 

through the tow stator windings with different pairs of poles to avoid direct coupling. 

However, it also provides a lower-speed generator. Thus, two-stage gearboxes can 

be adopted instead of the three-stage gearboxes. Similar to type C’, type C’’ removes 

the brush gear and slip rings. A WRIG with a self-driven three-phase AC brushless 

exciter is adopted to replace the DFIG.  

Type D’ is based on type D but uses a single- or two-stage gearbox with a low-speed 

generator and a fully rated converter. Additionally, the brush gear and slip rings are 

removed in this configuration. It has higher gearbox reliability and better power quality 

than type D. 

 



Chapter 2. Overview of wind turbine condition monitoring technologies 

Yueqi Wu – January 2022   17 

 

Figure 2.4 Main electrical configurations for innovative WTs [52] 

Type E is a hydraulic arrangement based on the conventional geared drivetrain; 

however, a limited-speed range hydraulic torque converter is used to drive a 

medium-voltage wound rotor synchronous generator. Synchronous generation at a 

medium voltage is used to replace the converter and transformer, which reduces 

maintenance costs.  

Type E’ is an advanced hydraulic solution based on Type E. Digital drive technology 

(DDT) from Artemis Innovative Power is adopted to drive a low-speed pump. The 



Advanced data-driven modelling approaches to alarm-related fault detection and condition monitoring of 
wind turbines 

18  Yueqi Wu – January 2022 

low-speed hydraulic pump then provides a high-pressure hydraulic fluid to the high-

speed hydraulic motor. The advantage of this design is that the gearbox, converter, 

and transformer are eliminated. However, it has not yet been implemented in 

industry. 

2.2 Common failure modes of WT subsystems 
To capture the maximum amount of wind energy and minimise environmental side 

effects, both onshore and offshore WTs are installed in remote areas. However, this 

has harsh drawbacks, such as unstable wind profiles and low temperatures, which 

present challenges when failures occur. In addition to the unpredictable 

environmental conditions, the development of WTs size tends to be larger and 

heavier, which increases the failure rate. Figures 2.5 and 2.6 show the failure rate 

and downtime, respectively, for critical subassemblies and components of WTs; the 

data were collated from 18 publicly available databases (including >18000 WTs, 

corresponding to >90000 turbine years). Here, the inner and outer circles correspond 

to onshore and offshore turbines, respectively [53].  

 

Figure 2.5 Critical subassemblies in terms of failure rate 

As shown in Figure 2.5, the critical subassemblies of onshore WTs are as follows 

(top five failure rates, in descending order): electrical, control system, blades and 

hub, pitch, and generator. These subassemblies are also critical for offshore turbines; 

however, the order of criticality is slightly different.  
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Figure 2.6 Critical components in term of downtime 

The rotor blades of WTs convert wind energy into mechanical energy. Because of 

the complexity of the environment and the fluctuating stress, the blades suffer a high 

failure rate. The most common failure modes of blades are fracture, fatigue, freezing, 

sensor failure, cracking, and wear. It is difficult to repair and maintain the blades 

because of their high installation locations. Thus, it is important to study the failure 

modes of the blades and improve their reliability.  

Owing to the complex structure of the gearbox, the failure of any key component 

can lead to high maintenance costs and a long repair time (particularly for offshore 

WTs), as shown in Figure 2.6. Fatigue is the most common failure mode [54]. The 

remaining failure modes are insufficient lubrication, fracture, wear, and bearing 

failure. The strong and unbalanced axial forces on the bolts can lead to the failure 

of the bolts that connect the front box, ring, and middle box.  

The generator converts mechanical power into electrical power through the rotation 

of a high-speed shaft connected to the gearbox. The three most common failure 

modes are bearing failure, magnetic-wedge loss, and contamination.  
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Table 2.1 Summary of failure modes of components [55] 

Objects Functions Failure modes Causes 

Blades Capture wind 

Fracture, edge 
crack, stuck, 
motor failure, 
pitch bearing 

failure 

Fatigue loads underestimated; 
extreme loads; environmental 

effects; imbalance 

Main shaft Transmit high torque Fracture 

Fatigue loads underestimated; 
operation of generator under 

off-design conditions; 
material properties below 

specs 
Yaw 

system 
Enable the nacelle to 
rotate on the tower 

Increased bearing 
friction 

Cracked roller; galled surface; 
lack of lubrication 

High-speed 
shaft 

Stop and hold the shaft 
during shutdown and 

operation 

Low or high brake 
torque Environment effects 

Gearbox Transmit torque with 
speed increase 

Internal gear tooth 
failure 

Fatigue loads underestimated; 
exceeding design load; 

improper materials; loss of 
lubricating oil 

Hub 
assembly 

Transmit torque from 
blades 

Structure failure, 
bolt failure 

Excessive design loads; 
excessive preload; stress 

corrosion 

Oil seals 
Retain oil in main 

bearing housing; exclude 
foreign matter 

Cut or wear in lip Installation damage; wear 

Filters 

Extract all particulate 
contaminants from 

hydraulic fluid and hold 
them 

Case leakage Damage to case or seals 

Generator Generate electrical 
power 

Overheating, 
fault, jammed 

bearing, bearing 
seizure, overspeed 

Overload; no excitation; 
environmental effects; 
misalignment; fatigue; 

mechanical failure; loss of 
drivetrain control 

Blades Capture wind 

Fracture, edge 
crack, stuck, 
motor failure, 
pitch bearing 

failure 

Fatigue loads underestimated; 
extreme loads; environmental 

effects; imbalance 

As part of the drivetrain, the main shaft and high-speed shaft contribute to the 

drivetrain failure. The most common failure modes of the two shafts are fractures 

and low or high brake torques [56]. The fatigue of the components and high torque 

can devastate the bearing, leading to failure of the shafts.  

Besides the mechanical failures occurring on the critical subassemblies, the failures 

that occur on the electrical components cannot be ignored. Power electronics failure 

is the major failure mode of electrical components. Sudden strong electrical pulses 

can be fatal to power electronics and lead to converter failures. Numerous failure 
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modes of the main subassemblies have been explained and details regarding the 

failure modes of the critical components are presented in Table 2.1 [55].  

2.3 Monitoring WTs 

Several systems have been developed for monitoring the conditions of modern WTs. 

The monitoring systems can be categorised as condition monitoring systems 

(CMSs), SCADA systems, and structural health monitoring (SHM) systems. The 

CMS provides the highest resolution among the three types of monitoring systems. 

It also allows monitoring of high-risk subassemblies of the WT for diagnosis and 

prognosis of faults. The blade monitoring system was designed as a part of the CMS 

to detect early defects in blades. The SCADA system provides a low-resolution 

system that allows WTs to supervise operating conditions. In addition, alarms are 

generated from the WTs. The SHM system was designed to monitor key items of the 

WT structure by providing low-resolution signals. 

2.3.1 Condition monitoring systems 

The CMS monitors the conditions of the machinery parameters. By analysing the 

significant changes in the target parameter, developing faults can be discovered. 

This is also a major process in predictive maintenance. By adopting CMS, major 

faults that shorten the useful life of a WT can be addressed in advance. CMSs have 

been widely used in auxiliary systems, rotating equipment, and other machinery, 

such as pumps, electric motors, compressors, and internal combustion engines. In 

addition, non-destructive testing and fit-for-service evaluation methods used for 

steam boilers and heat exchangers are adopted [57].  

The CMS was first applied in the WT industry in the 1900s. It was initially 

developed from reputable condition monitoring original equipment manufacturers, 

such as National Instruments, Bently Nevada, Bruel, and Kajaer. Initially, the 

systems were mostly based on previous rotating machine vibration condition 

monitoring experience [58]. However, the mechanism of modern WTs is not the 

same as that of conventional rotating machines. It has been proven that CMSs are 

successful in onshore WTs when used by experienced operators. Currently, CMSs 

are installed in most new WTs (≥1.5 MW) and have been fitted to almost all offshore 

turbines. A typical wind farm CMS is shown in Figure 2.7. 
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Figure 2.7 Wind farm condition monitoring system 

The four main techniques used for the WT CMS are vibration, oil debris, strain, and 

electrical analyses. Vibration analysis is first used to monitor the main bearing, the 

gearbox, and the generator. To use vibration analysis, a set of low-frequency 

accelerometers is installed on the main bearings, while higher-frequency 

accelerometers are installed on the gearbox and generator. In some cases, 

proximeters are installed on the generator for more accurate measurements. Because 

of the rapid change in the drivetrain torque, the vibration periods and amplitudes 

change with time. When a fault occurs, the vibration signals contain a high impulsive 

content. It is recommended to use a wavelet transform to analyse the vibration 

signals [59]. However, this can be computationally expensive. The use of the Fourier 

transform to analyse a period of limited, predefined speed and power range vibration 

signals has become mainstream in industry.  

Owing to the basic properties of lubrication oil, it is added to gear pairs and bearings. 

The oil has three main functions: cooling the gearbox, lubrication for the rolling 

element bearings, and lubrication for the meshing gears. However, it is inevitable 

for gears and bearings to produce ferrous and non-ferrous debris, because they are 

all wearing components. Lubricating oil is pumped from the gearbox sump. It then 

passes through the cooler and the in-line filter. Finally, it reaches the top of the 

gearbox and is sprayed using numerous nozzles. Consequently, the oil stream gains 
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heat and debris from all parts of the gearbox. This is attractive for condition 

monitoring because it has affects the entire gearbox. The analysis results of oil debris 

detection can provide a warning of upcoming failure, providing time for inspection 

and maintenance.  

Strain-gauge measurement is used for blade pitch control at the beginning because 

of the process of independently pitching the three blades of the turbine. This control 

method reduces the torque and lateral force loads on the WT. Thus, the useful life 

of the WT is prolonged. In addition, the independent blade root bending moment can 

be measured by adopting circular fibre optics incorporating fibre Bragg grating 

strain gauges [60]. The measurement can also be used for the CMS.  

The electrical signals also need to be mentioned as a type of CMS signals. The 

voltage, current, and power signals used for generator speed control and excitation 

have also been used for condition monitoring and their coupled drivetrain for many 

years [61]. One difficulty in analysing these signals is that rich harmonic electrical 

information is mixed with the required signals. One method uses fast Fourier 

transform (FFT) spectral cursors for vibration interpretation to facilitate electrical 

interpretation [62]. 

2.3.2 Supervisory control and data acquisition 

In addition to processing with condition monitoring signals, the SCADA system is 

extensively used in condition monitoring. The SCADA system was designed for the 

oil, gas, and process industries for accurate measurement of the statuses of pumps, 

valves, and storage vessels. It has been applied in many areas and has evolved into 

an industrial control system and further into a distributed control system. The UK 

power industry has been using the SCADA system for modern power station control 

for over 36 years (since 1985) [52].   

The SCADA system includes both input/output (I/O) signals and alarms. A SCADA 

system usually takes samples at 10-min intervals, which has lower sampling rate 

than those for the CMS. The system samples valuable monitoring variables such as 

the wind speed, power output, lubrication oil temperature, and pressure. The 

maximum, mean, minimum, and standard deviation are recorded for these variables. 

Most SCADA data are output as they flow through the WT to the control room. The 
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rest of the SCADA data are input as they are fed from the control room to the WT to 

manipulate the behaviour of the WT. 

Most SCADA signals and alarms are generated from inside the WT controller, and 

an industrial PLC is commonly used to ensure that the WT operates normally and 

stops action in an emergency event. 

One of the advantages of the SCADA system is that it can provide a universal view 

of the entire turbine and generate alarms in the case of fatal damage. However, the 

low data sampling rate limits the analysis accuracy since the transient changes are 

ignored. The SCADA system is a low-cost monitoring system that integrates 

measurement, information, and communication technologies. Details regarding the 

system are presented in Chapter 3. 

2.3.3 Structural health monitoring 

As the size of WTs increases and a large amount of WTs are installed in remote 

areas for richer wind sources, the demand for SHM is increasing. SHM has become 

a useful method because of its ability to enhance operational management and 

optimise maintenance activities [63]. It aims to reduce unwanted downtime and 

prevent unnecessary replacements, thereby increasing availability. Because SHM 

allows monitoring of the structural integrity, improvements can be made, such as the 

selection of lighter blades. Thus, the performance was enhanced, and the 

conservative margins of safety were reduced [64]. In this section, common SHM 

techniques are introduced. 

Acoustic emission (AE) is an effective technique for detecting microscale failures. 

Failures, such as crushing, excessive deformation, debonding, cracking, impacts, 

and delamination, can cause transient changes and release elastic energy at specific 

points. An AE signal is defined by its amplitude and energy [65]. The energy 

released at the failure points can be captured by AE signals. The cracks in the blade 

can be located, and fatigue tests can be monitored [66]. The sound produced by the 

stress-released waves and energy dissipation can be measured by piezoelectric 

sensors [67]. 
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The thermal imaging method aims to detect anomalies beneath the material surface 

using the subsurface temperature gradients. Changes in thermal diffusivity can be 

detected according to irregularities in material damage [68]. According to the 

thermal excitation methods, thermal imaging methods can be classified as active or 

passive. Passive thermal imaging methods are not commonly used, because they 

measure materials at temperatures outside the range for typical environments. The 

active methods use an external stimulus and measure the material temperature.  

Ultrasound is widely used for the detection of the inner structures of solid objects 

[69]. In this technique, ultrasonic waves are affected by the tested materials. The 

method can detect cracks within the millimetre range.  

Since damage to turbine structures can be catastrophic, fatigue and modal-property 

monitoring is one of the most important SHM techniques. Accelerometers are 

installed to analyse the dynamic response of the structure. The changes in the 

damping coefficient, resonance frequency, and modal curvatures can be detected 

according to the changes in different physical properties, such as the reductions in 

the stiffness and mass [70].  

2.4 Existing condition monitoring techniques 
WTCM systems consist of a combination of sensors and signal processing 

equipment [52]. Condition monitoring techniques include statistical analysis, signal 

processing, and ML techniques. These techniques are used to monitor the statuses 

of major WT subsystems, such as blades, gearboxes, generators, and nacelles. The 

monitoring process can be online or offline. Online monitoring provides real-time 

data that reflect the instantaneous feedback of the operation conditions. Offline 

monitoring involves the collection of data at regular time intervals using different 

data-acquisition systems [53]. With appropriate condition monitoring techniques, 

maintenance actions can be planned in time to prevent further damage to the turbine 

while the components are still operational. Thus, the downtime, maintenance, and 

operational costs are reduced [54]. As mentioned previously, both the condition 

monitoring and SCADA systems can be used to monitor the condition of WTs. In 

this subsection, modern WTCM technologies are reviewed and summarised 

according to the different condition monitoring methods and WT subassemblies. 
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2.4.1 Conventional methods 

Statistical measures such as the root mean square error (RMS) and peak–peak 

amplitude are used for fault detection. Jinhyuk et al. used vibration signals collected 

from strain gauges on a gearbox and generator to detect faults by calculating the 

RMS value [71]. The change in the signal amplitude can be detected as a short fault 

by setting an appropriate threshold [72]. Other statistical parameters, such as the 

standard deviation and kurtosis, are also used for WTCM [73, 74]. However, these 

condition monitoring methods cannot process real-time data. In addition, these 

techniques focus on a single feature of the variables; thus, extra time is needed to 

process different types of data. 

For WTCM, trend analysis involves the collection of data from various sensors and 

the prediction of their trends. It is often incorporated with other algorithms, such as 

co-integration residual analysis, semi-Markov models, and maximum likelihood 

[75-77]. The applications of trend analysis include monitoring the bearing of the 

turbine and extracting feature patterns from the generator.  

Time-domain analysis includes all monitoring methods based on time-domain 

signals. It is used to examine physical and transient changes over time. Statistical 

methods and trend analysis are mostly based on time-domain analysis because 

statistical values, such as the mean, maximum, minimum, and kurtosis, are extracted 

from the data for a period of time. Variations in the time-domain signal are easy to 

observe and are typically used for vibration analysis [78], oil analysis [79], and AE 

analysis [80]. Cepstrum analysis is a time-domain analysis approach; the cepstrum 

is defined as ‘the inverse Fourier transform of the logarithmic power spectrum’ [81]. 

A novel local cepstrum method was proposed for reducing the background noise and 

non-harmonic components in the vibration signal and power spectrum. Thus, the 

effectiveness of fault detection can be improved [82]. Another time-domain analysis 

method is time-synchronous averaging, which is also called time-domain averaging. 

Time-synchronous averaging aims to increase the signal-to-noise ratio by averaging 

a set of replicate measurements. This method can be used to identify the vibration 

sources of a WT gearbox [83]. 

By transferring time-domain data to the frequency domain, various frequency-

domain analysis methods can be applied. The relationship between pre-twist blades 
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and cracked blades was investigated using the FFT to analyse the natural frequencies 

of the turbine blades [84]. The wavelet transform can also be adopted for feature 

extraction in WTCM. An enhanced empirical wavelet transform was obtained by 

developing a feasible and efficient spectrum-segmentation method to extract 

gearbox fault features [85]. Compared with time-domain analysis, the main 

advantage of frequency-domain analysis is its ability to identify and isolate target 

frequencies.  

Time-frequency-domain analysis is a signal-processing method that allows the 

simultaneous observation of signals in the time and frequency domains. Compared 

with one-dimensional time/frequency signals, time–frequency-domain analysis can 

use the two-dimensional signal for WTCM to achieve a higher accuracy. The 

limitation of frequency-domain analysis is that the Fourier transform assumes an 

infinite length of periodic signals. Besides, localising the time domain from the 

frequency domain is impossible. In contrast, Time–frequency-domain analysis can 

locate the time domain from the frequency domain, and time–frequency-domain 

analysis methods, including the wavelet transform, short-time Fourier transform, 

and Hilbert–Huang transform, are commonly used in this area [85-87].  

2.4.2 Machine learning techniques 

Owing to the increasing number of sensors and increasing complexity of data 

structures, ML techniques have attracted attention in the past decade. Conventional 

WTCM systems either focus on a single parameter or offline data, and they have 

difficulties dealing with massive heterogeneous data. ML techniques are designed 

to solve heterogeneous massive data problems, such as variable selection, dimension 

reduction, feature extraction, and online processing. ML algorithms are commonly 

used for data-driven condition monitoring and do not require any prior knowledge 

of the turbine [22]. 

Owing to the large amount of data and untraceable data sources, the raw data may 

contain considerable noise. Incorrect data may lead to misjudgements during 

condition monitoring. Cleaning is necessary before processing the data. A kernel-

based local outlier factor (KLOF) was proposed for data cleaning. The data were 

divided into several segments. Then, the features extracted from these segments, 

such as the mean, maximum, and peak-to-peak values, were used to evaluate the 
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degree of each segment by adopting the KLOF. A proper threshold was set to 

distinguish incorrect data from correct data. The results indicated that the proposed 

method could effectively identify incorrect data and abnormal segments [88]. 

Another method based on the minimisation of dissimilarity-and-uncertainty-based 

energy was proposed for data cleaning [89]. It transforms scattered data into a digital 

image on a grey scale. Then, the optimum threshold is determined according to 

intensity-based class uncertainty and shape dissimilarity. Subsequently, the 

abnormal data are marked by applying an imaging threshold.   

Dimension reduction techniques are widely used to reduce the complexity of the 

original dataset and thus reduce the computational load while processing a large 

amount of data. PCA is able to extract principal components (PCs) from different 

variables. They are often used for dimension reduction and feature extraction. By 

applying PCA to a massive dataset, the computational load can be significantly 

reduced. Wang et al. proposed a PCA based method for selecting certain variables 

among all variables related to the target fault. The proposed method reduced the 

dimensions of two different datasets to 51.7% (15 out of 29 variables) for the 

simulation data and 45.4% (35 out of 77 variables) for SCADA data. The average 

correlation and information entropy after dimension reduction were 99.81%, 0.0082, 

and 81.32%, respectively, for the simulation data and 99%, 0.162, and 88.88%, 

respectively, for the SCADA data. It has been proven that this method can detect 

faults efficiently and accurately, while reducing the set of variables [90]. Other ML 

techniques, such as k-means clustering, auto-encoders, and deep belief networks, 

have also proven to be capable of dimension reduction and feature extraction [88-

93].  

ML techniques specialise in dealing with heterogeneous massive data in condition 

monitoring, particularly in reducing the computational load. There is still a problem 

with condition monitoring: online processing. In the context of streaming/online 

data, most of ML algorithms may not capable for solving those data, because they 

are trained using training set based on historical data [94]. In this scenario, 

incremental learning was considered to prevent the re-training of the previous 

model. An incremental learning method based on support vector regression and the 

Karush–Kuhn–Tucker conditions was developed [95]. The dimensions of the 

training dataset change if a new sample is introduced. The weights are updated 
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automatically without retraining the data. Therefore, online monitoring can be 

achieved without building a new model for training. In addition to the incoming 

data-side problems, data uploading-side problems are considered. To solve these 

problems, a hierarchical extreme learning machine embedded with a cloud-

computing platform is proposed to reduce the quantity of data uploaded [96]. Results 

indicated that the uploaded data volume was reduced to 12.5% of the original data 

size before compression, and the data transmission security was also improved, 

because the parameters of the model and original input data were compressed in the 

first hidden layer. Thus, the data transmission efficiency and security were 

improved. 

In the past decades, researchers have developed various fault-detection algorithms 

for WTCM. Algorithms developed in recent years usually combine multiple basic 

algorithms or extend existence algorithms. In this subsection, state-of-the-art 

modern WTCM algorithms are reviewed. 

2.4.3 Applications of condition monitoring techniques to WTs 

Rotor hub and blade 

The rotor of the WT consists of a hub and a blade. Errors in the blade pitch angle or 

rotor mass imbalance can cause rotor asymmetry [97]. The impact of wind on the 

blades and material aging can result in fatigue. Long-term fatigue can lead to 

delamination of a blade’s glass or carbon fibre-reinforced plastic structure, reducing 

the stiffness of the blade. It also causes cracks on the blade surface or the internal 

structure.  

Fatigue, cracking, and stiffness reduction result from structural changes in the blade 

material. Hence, AE sensors installed on the blade can detect these failures. Zhou et 

al. introduced a blind deconvolution separation (BDS) approach for the detection of 

WT blade fatigue cracks [98]. Simple values were extracted to compensate for 

conventional AE measures. To estimate the fatigue crack conditions, BDS 

algorithms were used to analyse the frequency components. Although the BDS 

method can enhance the separation quality of specific frequency components, the 

noise spectra of different wind farms are not the same. Hence, the parameters must 

be modified when applied to different WT systems. 
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Xu et al. identified the WT blade damage mode using wavelet packet decomposition 

(WPD) [66]. A 59.5-m-long composite blade under a fatigue load was used to verify 

the proposed method. The raw AE waveform was obtained after wave attenuation 

calibration and sensor array arrangement. WPD was used to capture the features—

particularly the information contained in the original AE signals. A clustering 

analysis based on the extracted features was performed to identify the damage mode 

and detect a singular signal. 

The aforementioned WTCM approaches were applied to WT blades in previous 

studies. However, if the defects develop to certain levels and lead to vibration on 

the blades, vibration signal-based WTCM can be adopted. In addition, vibration on 

the main shaft can result in abnormal behaviours of the rotor, such as rotor 

asymmetry. Hence, electrical signal-based WTCM methods are also considered.  

Awadallah et al. proposed a WTCM method based on a special kriging analysis to 

detect faults in WT blades [99]. Cracks and defects in the blades cause spectral shifts 

in the resonant peaks. According to this phenomenon, a special kriging model was 

proposed. FFT was employed to extract the spectral information of the vibration. 

The spectral information was compared between healthy and cracked structures to 

produce the kriging model. It was verified that the kriging model could identify 

microcrack locations with an accuracy of 95%. 

The magnitudes of particular fault signature components generated by WT faults 

based on current signals have been widely used for detecting early WT 

abnormalities. However, owing to the constant change in the generator speed, the 

current signals vary with time, which causes the fault signature components to be 

close to the supply frequency and its harmonics. To address this problem, Ibrahim 

et al. used electrical signals to detect rotor asymmetry faults [100]. First, analytical 

expressions defining the rotor electrical asymmetry fault signature in the DFIG 

stator current were used to ensure that the fault signature components could be 

recalculated over time. Then, the adaptive extended Kalman filter tracker was used 

to extract the instantaneous fault signature, which is based on the machine speed 

signals and estimated error covariance. In each time step, the calculated fault 

signature components from the current signals were processed using an extended 

Kalman filter to predict the future states of the fault signature components. Thus, 
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continuously updating the future state makes real-time monitoring possible. This 

method was compared with the continuous wavelet transform and iterative localised 

discrete Fourier transform and proved to be superior with regard to both 

computational efficiency and accuracy of fault diagnosis. 

With the improvement of computing elements, ML algorithms have been 

increasingly applied to the condition monitoring of WT rotor hubs and blades. Reddy 

et al. proposed a convolutional neural network (CNN)-based image analysis method 

for the detection of WT blade cracks [101]. They used drone-captured images to 

train the CNN model to identify the fault and fault-free conditions of blades. First, 

a drone was used to capture images of the WT blades. Manual annotations were then 

added to distinguish between binary classification data and multiple classification 

data. These two types of data were later trained via a CNN. The trained model was 

saved and used in the sliding window for damage detection in binary classification 

and multiple classification models. In the last step, the trained model is deployed 

using a flask micro framework. Compared with other WTCM methods, the use of 

drones reduces the safety risk of manual inspections. Moreover, the CNN can reach 

accuracies of 94.94% in binary fault classification and 91% in multiple fault 

classification. In addition to the CNN, other ML methods, such as long short-term 

memory (LSTM), deep neural networks (DNNs), and support vector machines, are 

used for WT blade condition monitoring [102-104].  

Generator  

As described previously in Section 2.2, the failure modes of a generator can be 

classified into two categories: electrical and mechanical faults. The electrical faults 

of the generator mainly include the open/short circuit of the stator phase winding 

and a broken rotor bar. Mechanical faults primarily involve failed bearings, 

unbalanced rotors, misaligned rotors, and bowed rotors. These faults result in 

changes in the vibration signals, torque, temperature, and current signals [105]. The 

contributions of the components in induction machines to the failure rates are as 

follows: bearing, 40%; stator, 38%; rotor, 10%; others, 12% [106, 107].  

The difficulty of vibration analysis of generator bearings is the extraction of fault 

features from nonstationary and noisy raw signals. To solve this problem, time-

domain analysis, frequency-domain analysis, and time–frequency-domain analysis 
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are widely adopted. Chen et al. proposed a method based on an empirical wavelet 

transform for diagnosing faults in a WT generator bearing [108]. First, the abnormal 

vibration data were extracted from the WT drivetrain. Then, the wavelet spatial 

neighbouring coefficient was used for denoising with a data-driven threshold. 

Subsequently, an empirical wavelet transform was deployed to extract the fault 

features. Finally, a diagnosis decision based on the fault features was made.  

In addition to the wavelet transform, stochastic resonance (SR)-based methods have 

been proposed for denoising. The first step of the SR methods is to shift the original 

signal to the target frequency with the carrier signal. Then, parameter tuning 

methods, such as discrete wavelet transform and quantum particle swarm 

optimisation, are used to detect weak fault signals [109, 110]. Li et al. proposed a 

method based on coupled bistable systems for improving the SR filtering 

performance [111]. It was effective for suppressing low- and high-frequency 

interferences.  

In addition to the aforementioned methods, empirical mode decomposition, Hilbert 

transform, variational mode decomposition, and integral extension local mean 

decomposition have proven to be capable of denoising raw signals and localising 

faults [112-114]. 

When a fault occurs in the generator bearing, the fluctuation in the WT shaft can 

result in a stator current at the bearing defect frequencies. Hence, a fault in the WT 

generator can be detected from the electrical signals. Shahriar et al. acquired the 

current signal from a generator to estimate the bearing rotation speed and resampled 

the nonstationary current signals. Subsequently, the fault type can be determined in 

the sequence according to the resampled signals [115]. 

Apart from the conventional methods, ML methods have attracted increasing 

attention in the past decade. Ziani et al. [116] compared an ANN and a genetic 

algorithm (GA) for the detection of the early stage of bearing degradation through 

vibration analysis. Both the normal and defective vibration signals were processed 

for feature extraction. One normal and four different fault class levels were set for 

the ANN classifier. The GA was used for feature selection, and the trace criterion 

from linear discriminant analysis was used as the evaluation function. The ANN was 

used to train a subset of the experimental data for the known machine conditions. 
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The remainder of the dataset was used for testing. Unala et al. [117] developed a 

fault-estimation method based on an ANN that aimed to extract features for bearing 

faults. In this method, a GA is used to optimise the model. Ma et al. [118] combined 

kernel independent component analysis (KICA) and the least-squares support vector 

machine (LS-SVM) to classify bearing faults. The KICA was used to map the 

vibration signal, and the LS-SVM was used for feature vector classification.  

In addition to ML algorithms, deep-learning algorithms have been adopted. Shao et 

al. [93] improved a convolutional deep belief network (CDBN) with compressed 

sensing (CS) for feature learning and fault diagnosis of generator bearings. First, CS 

was employed to reduce the vibration dataset for increasing the analysis efficiency. 

Then, Gaussian visible units were used to enhance the feature-learning ability of the 

CDBN model for the compressed data. Finally, the exponential moving average 

technique was adopted to improve the generalisation performance. Experimental 

results indicated the effectiveness of the proposed method. Sun et al. [92] proposed 

a method in which a DNN is used for feature extraction and classification. A stacked 

sparse auto-encoder-based deep neural network was designed with an unsupervised 

learning procedure followed by a supervised fine-tuning process. Their methods are 

more effective than the conventional method for handling large amounts of data. 

Gearbox 

According to Figure 2.6, the gearbox has the longest downtime among all 

subassemblies in both onshore and offshore turbines owing to the complexity of its 

structure. Both condition monitoring and SCADA data were used to develop the 

WTCM methods.  

Vibration analysis is also an effective method for monitoring the WT gearbox 

conditions. However, the noise in the vibration signal makes fault diagnosis 

difficult. Researchers have conducted a series of studies in recent years to solve 

these problems. Feng and Liang proposed the iterative atomic decomposition 

thresholding (IADT) method for extracting the true constituent components of 

complex signals [119]. Thus, the background noise interference is suppressed. This 

method was designed for planetary gearboxes under constant running conditions. In 

the IADT method, the Fourier dictionary is used to match harmonic waves in the 

frequency domain and localise the gear fault characteristic frequency. Numerically 
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simulated, laboratory (experimental), and onsite collected signals have proven that 

the proposed method can localise faults accurately in the WT gearbox. Feng also 

proposed a time–frequency-domain analysis method based on the Vold–Kalman 

filter and higher-order energy separation for WT planetary gearbox fault diagnosis 

under non-stationary conditions [120]. Owing to the high adaptability of local signal 

changes, higher-order energy separation is used to estimate the transient frequency. 

The Vold–Kalman filter is used to decompose an arbitrarily complex signal into 

mono-components.  

He et al. proposed a novel order-tracking method based on a discrete spectrum 

correction technique for WT gearbox vibration analysis [121]. The shaft rotating 

speed is identified from the vibration signal with the amplitudes of the gear meshing 

components using the proposed method. Additionally, the inherent shaft 

misalignment in the fixed-shaft gear is revealed.  

Li et al. proposed a method for the detection of gear cracks in a WT gearbox through 

a supervised order-tracking bounded component analysis of vibration signals [122]. 

In the proposed method, order tracking is incorporated into a bounded component 

analysis framework to eliminate the noise and disturbance in the signal. An 

autoregressive model was built to supervise the reconstruction of the crack-vibration 

source signature. Owing to the dependence tolerance ability of the BCA framework, 

the supervised order tracking bounded component analysis can recognise the 

interfering vibration sources that are dependent on or correlated with the crack. 

Thus, the vital information that related to the fault that can be preserved in the 

reconstructed signal.  

Kong et al. used spectral kurtosis and time wavelet energy spectra to extract the fault 

features of a WT gearbox planetary gear [123]. First, the spectral kurtosis and 

kurtogram of the vibration signals were calculated. The computed kurtosis and 

kurtogram were used to optimise the filtering parameters for the following bandpass 

filter. The optimal frequency band with the highest spectral kurtosis was applied to 

extrude periodic transient impulses. In the final step, the Morlet wavelet was 

selected as the mother wavelet to implement the time-wavelet energy spectrum 

analysis. Hence, the fault features of the gearbox planetary gear were extracted.  
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In addition to fault feature extraction methods and denoising methods, multi-fault 

detection methods have been studied. A complex wavelet transform-based method 

was proposed by Teng et al. for WT gearbox multi-fault detection and failure 

analysis [124]. Distinct harmonics representing the gearbox broken teeth were 

detected via the Hilbert transform and narrow-band filtering. The cepstrum method 

was employed to distinguish the different frequency components. A multiscale 

enveloping spectrogram provided by a complex wavelet transform was used to 

demodulate and decompose the signals. By analysing multi-scale enveloping 

spectrograms at different scales, weak fault features can be discovered from 

intensive energies spectrums.  

With the development of ML techniques in recent years, many neural network-

based, fuzzy logic-based, and information fusion-based WT gearbox condition 

monitoring methods have been proposed. A light gradient boosting machine 

(LightGBM)-based method was proposed for analysing SCADA data and selecting 

the features of gearbox faults [125]. First, the maximum information coefficient is 

utilised to analyse the correlation of the WT SCADA data for selecting the fault 

features. Subsequently, a performance evaluation criterion is used to improve the 

LightGBM. A confusion matrix was used to evaluate the performance of the 

proposed method. The proposed method was confirmed to have a lower false-alarm 

rate than previous by employing a three-year SCADA dataset from a wind farm 

located in Southern China. 

Owing to the characteristics of LSTM, it lacks the ability to handle discrimination 

tasks. To solve this problem, Yin et al. used LSTM incorporating cosine loss to 

diagnose WT gearbox faults [126]. By adopting cosine loss, the loss can be 

converted from the Euclidean space to the angular space. Thus, the effect of the 

signal strength can be eliminated, and the diagnostic accuracy can be improved. 

Subsequently, the energy sequence features and wavelet energy entropy of the 

vibration signals were used to evaluate the Cos-LSTM network.  

In addition to the application of CMS, various combined methods have been 

proposed. Hu et al. developed a method that uses the time-domain sequence 

approximate entropy (ApEn) adaptive strategy incorporating a wavelet packet 

transform filter and a cross-validated particle swarm optimised kernel extreme 

learning machine to improve the accuracy of WT gearbox fault diagnosis [127]. 
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Chang et al. proposed a concurrent convolutional neural network for adaptive 

learning to resolve the decline in the discrimination accuracy [128].  

In addition to ML algorithms, fuzzy logic-based methods have been employed to 

diagnose gearbox faults. Qu et al. used non-singleton fuzzy logic and expanded the 

linguistic terms to detect gearbox faults [129]. By generating fuzzy inputs, a non-

singleton fuzzy inference system can be constructed for WT gearbox fault detection. 

The expanded terms and rules can provide information that can help detect faults in 

the early stages. The result is defuzzified and defined as a fault factor, which is used 

as an indicator to measure the fault severities.  

Power converter 

Since the 1980s, the penetration of power electronics in WTs has continuously 

increased. First, only thyristor-based soft starters were used to interconnect WTs. 

Soon thereafter, they were bypassed, and the generator was connected directly to the 

grid [130]. In the 1990s, rotor resistance control with a diode bridge and a power 

electronic switch was primarily used. Eventually, the back-to-back configuration 

emerged. In the best-seller range of 1.5–3 MW WTs, the use of two two-level voltage 

source converters in a back-to-back configuration is the most widely adopted 

solution [131]. However, the power electronics converter is a subassembly with one 

of the highest failure rates. In addition to downtime-related revenue loss, the failure 

of the converter can cause substantial secondary damage.  

Qiu et al. proposed a method that can accurately detect and locate a WT insulated 

gate bipolar transistor fault in circuit arms [132]. A wind speed-based normalised 

current trajectory method was proposed for handling the uncertainty due to the 

stochastic wind speed. The proposed method used a wind speed-based normalised 

current trajectory method to detect the open circuit fault of the generator side 

converter. The phase current’s park vectors are firstly normalised. Then the current 

vectors are used for fault diagnosis by comparing different wind conditions such as 

step wind and turbulent wind.  By comparing the fault current vector pattern to the 

fault-free pattern, the fault can be discovered and localised. 

Jlassi et al. developed a multi-fault detection method for back-to-back PMSG drives 

[133]. The proposed method is based on a Luenberger observer with an adaptive 
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threshold to improve the reliability of the diagnosis results. First, the current form 

factors (CFFs) of the measured current and observed current are calculated, where 

the CFF equals the phase RMS value divided by the phase average value. When an 

open-circuit fault occurs, the CFF values exhibit different behaviours. Thus, the CFF 

is useful for diagnostic purposes. A Luenberger observer is then used to estimate the 

three-phase generator and grid current. Subsequently, two adaptive thresholds are 

calculated for the generator-side converter and grid-side converter, which should be 

higher than the CFF value under healthy operating conditions, because the 

thresholds must have strong immunity against current and speed transients. Finally, 

the residuals between the adaptive thresholds and CFF values are calculated. Using 

this method, open-circuit faults on different phases and different sides (generator 

side and grid side) can be detected and localised. 

The method proposed by Zhao is based on the phase current of the converter [134]. 

This method was developed based on the absolute normalised Park’s vector 

approach and can be used for multi-open-circuit switch fault detection. In addition 

to phase current monitoring, methods based on the emitter voltage, humidity, 

junction temperature, and thermal coupling have been developed for monitoring the 

condition of power-conversion units [135-137].  

In addition to conventional condition monitoring methods for power-conversion 

units, AI-based WTCM methods have been developed. Zhang et al. proposed a 

method based on a backpropagation neural network (BPNN) for detecting WT power 

converter faults [138]. First, the grid-side converter three-phase bridge leg voltages 

under the fault-free operating condition and different fault operating conditions are 

acquired. Then, the acquired voltage signals are decomposed and reconstructed 

using a wavelet transform. Third, the divergence of the reconstructed wavelet signals 

is amplified to obtain the feature. Finally, the processed signals are used as inputs 

of the BPNN to produce a decision and classification. This method can classify 

single and double open-circuit faults.  

Xiao et al. developed a deep-learning method for WT converter fault detection [139]. 

First, the fault indicator variables extracted from the WT SCADA system are 

selected. Radar charts are then generated from the fault indicator variables. A CNN 

model was used to extract features from radar charts. The ResNet50 backbone 

network was combined with an attention octave convolution structure to overcome 
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the issue of information asymmetry caused by the asymmetry of the sampling 

method. In addition, the damage to the original features in the high- and low-

frequency domains was resolved. The proposed method achieved a fault-detection 

accuracy of 98.0%, confirming its effectiveness. 

Xue et al. used LSTM to diagnose multiple open-circuit faults in a WT power-

conversion unit [140]. Before the LSTM network was constructed, the raw current 

and voltage signals were normalised, and a fault dataset was created. The training 

set was processed using LSTM, and a loss function was produced. Finally, the 

trained network was compared with the test set to detect faults. Compared with the 

LS-SVM, BPNN, and RNN, the LSTM-based method had the highest accuracy and 

robustness, with a short time delay. 

In the Section 2.4, various conventional and machine learning-based condition-

monitoring techniques are reviewed with regards to their capabilities. The condition 

monitoring methods for WT components are divided into two categories: intrusive 

(including vibration analysis, oil debris, and shock pulses) and non-intrusive 

(including ultrasonic testing, visual inspection, AE, thermography, and power signal 

analysis). The key subsystems of the WT include the nacelle, rotor, gearbox, 

generator, bearing, and blades. Table 2.2 presents the WTCM methods and their 

applicable areas.  

Table 2.2 Condition monitoring techniques for WTs 

2.5 WT maintenance strategies 

2.5.1 Reliability of WT systems 

The reliability of WT systems is a significant factor in wind energy projects. The 

reliability of a WT system can significantly affect a project’s revenue stream by 

influencing the operation and maintenance costs and downtime. For evaluating the 

  Nacelle Rotor Gearbox  Generator Bearing Blades 

In
tru

siv
e Vibration Analysis ✓ ✓ ✓ ✓ ✓ ✓ 

Oil debris   ✓ ✓ ✓  

Shock Pulse     ✓  

N
on

-in
tru

siv
e  Ultrasonic testing      ✓ 

Acoustic emission   ✓  ✓ ✓ 
Thermography   ✓ ✓  ✓ 
Power signals  ✓ ✓ ✓   
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reliability of the WT system, a mathematical description of the relationships between 

the various reliability functions is presented below [141, 142]. We consider N0 

identical WT components to be tested. 

𝑁!(𝑡) = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑠𝑢𝑟𝑣𝑖𝑣𝑖𝑛𝑔	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡                            (2-1) 

𝑁"(𝑡) = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑓𝑎𝑖𝑙𝑒𝑑	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡                              (2-2) 

Therefore, 

𝑁!(𝑡) + 𝑁!(𝑡) = 𝑁#                                            (2-3) 

At any time t, the survivor or reliability function R(t) is given as 

𝑅(𝑡) = $!(&)
$"

                                                  (2-4) 

The unreliability function Q(t) is given as 

𝑄(𝑡) = $#(&)

$"
                                                 (2-5) 

where  𝑅(𝑡) = 1 − 𝑄(𝑡). 

The failure density function f(t) is given as 

𝑓(𝑡) = (
$"
()$#(&)

)&
)                                           (2-6) 

The failure intensity function fa(t) is given as follows: 

𝑓𝑎(𝑡) = (
$!(&)

()$#(&)
)&

)                                          (2-7) 

𝑓𝑎(𝑡) = (
*(&)

()*(&)
)&

)                                           (2-8) 

The failure density function normalised by the number of survivors is shown in 

Figure 2.8.  
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Figure 2.8 Failure density function with respect to time, indicating the reliability R(t) 
and Q(t) 

For any reparable machinery, the intensity function indicating the reliability varies 

throughout the life (‘bathtub curve’), as shown in Figure 2.9, where β is a 

dimensionless parameter determining the shape of the curve. 

 

Figure 2.9 Bathtub curve 

The bathtub curve is derived from the power law process (PLP), which is a special 

case of the Poisson process with a failure intensity function: 

𝑓𝑎(𝜏) = 𝜌𝛽𝑡+,(                                             (2-9) 
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where ρ is a scale parameter with unit year-1. For β < 1 or β > 1, the bathtub curve 

exhibits an upward or downward trend. When β = 1, the intensity function of the 

PLP is ρ. This can be observed at the bottom of the bathtub curve, which is called 

the intrinsic failure phase. fa represents the average failure rate.  

To enhance the reliability of the WT system, actions can be planned or performed at 

different time periods, including the design, commissioning, and maintenance 

stages.  

2.5.2 Maintenance strategies 

The conventional maintenance theory is either corrective or scheduled. The 

corrective maintenance is performed when the fault is detected of the WT’s 

components, which can be caused by many reasons, such as components fatigue, 

unreliability design and environmental operational factors. The corrective 

maintenance is implemented during an inspection of a WT or when the turbine shuts 

down due to a fault. The unscheduled downtime of WT will happen due to the 

maintenance being scheduled after the faults. Thus, the O&M cost of corrective is 

the highest among all maintenance strategies. The scheduled maintenance is also 

known as the time-based maintenance strategy was carried out by repairing at fixed 

time intervals which is usually recommended by the supplier. The fatigue 

components can be replaced before failure [143]. The processes of the two 

maintenance strategies are shown in Figure 2.10.  

 

Figure 2.10 Processes of corrective and scheduled maintenance 

The scheduled maintenance strategy is also known as periodic-based maintenance. 

It is based on failure time analyses [144]. The failure rate as shown in Figure 2.9 is 

estimated based on failure time data or used-based data.  

Following failure
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Figure 2.9 also shows the three-phase of the failure rate in the WT life span. In the 

early stage of a WT, the failures tend to be the combination of inadequate quality 

and incorrect installation and maintenance. After the early useful stage, the failure 

rate will be reduced to a minimum as the faults are often caused by the unreliably 

inherent in the design.  By the end of useful age, the failure rate will rise because of 

the fatigue of the components.  

Scheduled maintenance strategy can indeed reduce un-scheduled downtime. 

However, setting maintenance tasks more frequently than usual would increase the 

O&M cost since the replaced components have not reached their full useful life.  

Thus, the condition-based predictive maintenance strategy is taken into 

consideration to mitigate major component failures. This strategy includes a whole 

set of data acquisition, data processing and data analysis system in order to produce 

optimal maintenance actions [145]. The maintenance tasks can be scheduled in 

advance of faults [146]. By adapting the condition-based preventive maintenance 

strategy, un-scheduled time and extra maintenance tasks are prevented. Hence, the 

O&M cost is reduced. 

2.5.3 Condition-based predictive maintenance  

The condition-based predictive maintenance has drawn more attention in recent 

years because of the widely use of ML algorithms in condition monitoring. 

Compared with corrective maintenance and scheduled maintenance, the condition-

based predictive maintenance has the lowest O&M cost. Based on the Energy 

Roadmap 2050, the European electricity would be supplied by wind energy from 

31.6% to 48.7% [147]. Owing to the large energy market, it is necessary to reduce 

the O&M cost. The location of the offshore wind farms is usually deployed in remote 

areas for richer wind resources, which caused more difficulties in maintenance 

[148]. Therefore, offshore wind farms are constantly under cost optimisation 

pressure. Hence, it is vital for operating companies to carry out suitable predictive 

maintenance strategies in order to increase the useful lifetime for WTs [149]. Using 

technologies such as real-time processing, storage and analytic queries in the WTCM 

would carry out a more reliable predictive maintenance strategy to the energy 

markets. The time-series data acquired from the WTs are multi-dimensional that 
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need a precise modelling method to predict faults [150]. The condition-based 

predictive maintenance is able to gather necessary information from CMS to analyse 

the status of the components in order to prevent major failures from happening [151]. 

Condition-based maintenance strategies minimise the O&M cost and increase WTs 

reliability, while the monitoring devices require extra costs. Many condition 

monitoring techniques are applied to monitor and inspect the components in a WT 

[152].  

.  

Figure 2.11 Typical decision framework of CCEB and FCPB 

The maintenance decision can be classified into two: diagnosis and prognosis. The 

main aim of diagnosis is to provide early warning signals to the user when the turbine 

has abnormal behaviours, while the prognosis is to provide further information that 

the turbine might fail. Compared with the diagnostic process, the prognostic process 

is superior because it can prevent failures in advance thus saving the O&M costs. 

Maintenance decision making via condition-based predictive maintenance is 

implemented by two methods: current condition evaluation-based (CCEB) and 
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future condition prediction-based (FCPB) [153]. The major difference between the 

two decision-making methods is that CCEB more focuses on the current state while 

FCPB focuses on the future state. The decision framework of those two methods is 

shown in Figure 2.11. Both of the decision methods highly rely on the condition 

monitoring systems. Maintenance activities will be scheduled as long as the data 

exceed a certain threshold. 

2.5.4 Condition-based predictive maintenance applications 

The state-of-arts condition monitoring methods have been introduced in the previous 

chapters. Various types of fault diagnosis methods are implemented via condition 

monitoring methods. Another type of condition-based predictive maintenance 

application is focusing on the process of prognoses and remaining useful life (RUL) 

estimation. Cheng et al. has proposed a fault prognosis and RUL prediction method 

for WT gearbox [154]. In the proposed method, the adaptive neuro-fuzzy inference 

system is used to learn the state transition function of the fault feature. Then the 

particle filtering algorithm can predict the RUL of the gearbox via the learned state 

transition function. The effectiveness of this method has been approved by their run-

to-failure test. Another case study also showed that a power purchase agreement 

managed wind farm, the estimation of WT RUL enables predictive maintenance for 

wind, thus avoiding corrective maintenance that reduces the cost and downtime 

[155]. Zhang et al. has proposed a fatigue prediction model of the blade to reproduce 

the fatigue damage evolution in composite blades subjected to aerodynamic loadings 

by cyclical winds. Then the lifetime probability of fatigue failure of the blades was 

carried out by stochastic deterioration modelling. At last, a cost-benefit model was 

built to optimise the maintenance cost [156]. To estimate the RUL of a system, the 

Prognostics and Health Management (PHM) techniques can be adapted. A turbine 

with a PHM system is used with a stochastic jump-diffusion model to model the 

random evolution of the deterioration process as well as production output. The 

Monte-Carlo simulation is used to find the optimal maintenance data as well as the 

lowest maintenance cost [156]. Not only is the mechanical part of WT used to 

estimate their RUL, but the RUL estimation of the electrical system is also 

necessary. The Gaussian Process regression technique has proposed the estimate the 

RUL for degraded power insulated gate bipolar transistors (IGBTs). This method is 
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also compatible with real device accelerated ageing database set under thermal 

overstress utilising a DC at the gate [157].   

As the literature shows that both diagnostic and prognostic/ RUL estimation 

strategies provide valuable information for condition-based preventive maintenance. 

On the other hand, scheduling optimization has also been presented by some 

researchers. Garcia et al. proposed a maintenance system called Intelligent System 

for Predictive Maintenance (SIMAP) for the WT gearbox. It showed that the SIMAP 

can adapt the maintenance calendar according to its needs and operating time [158]. 

Zhong et al. proposed a maintenance scheduling optimization model as a 2-phase 

solution framework integrating the operational law of fuzzy arithmetic and the non-

dominated sorting genetic algorithm. The schedules are derived from the trade-offs 

between the maximum reliability and minimum cost [159]. Except for the condition 

monitoring methods for WT components, the labour cost and production loss being 

used as objective functions are also taken into consideration for maintenance 

scheduling decision. By analysing historical weather data and producing a statistical 

model for weather description, the maintenance problem is formulated compactly as 

a mixed-integer linear programming model. Compared with the periodic preventive 

maintenance plan, the expected labour cost and production loss are reduced by 

approximately 30% and 20%, respectively [160]. Other parameters such as 

maintenance vessel allocation, electrical price and dynamic safe access pre-

requisites for WT and crane are also playing a role in maintenance scheduling 

optimization [161, 162].   

In condition-based predictive maintenance, the main idea of decision making is to 

perform the fault prediction of the components. The faults can be detected if they 

exceed predetermined limits. Then the maintenance action is decided by an 

appropriate maintenance scheme. CCEB and FCPB are the two main condition-

based predictive maintenance strategies. However, both strategies have their 

shortcomings in real industrial practice. As a matter of fact, when implementing 

CCEB, it may not have enough time for maintenance planning if the condition shows 

the components has already reached the fault limit. FCPB can indeed solve this 

problem since it predicts the future condition of the components. However, the 

reliability of short-term predictions is higher than that of long-term ones. When 

dealing with long-term prediction problems, FCPB might not precise enough. To 
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produce a reliable maintenance decision, either CCEB or FCPB needs to be chosen 

carefully for optimal decision.  

The increasing number of sensors have improved the measurement accuracy, in the 

meantime, the redundancy increased, which brought increasing system cost and 

complexity. The sensor failures and misreporting jeopardise the risk of system 

reliability. An unnecessary maintenance plan can be scheduled for this. Employing 

low-resolution SCADA data with high-resolution condition monitoring data is 

considered as a solution to improve system accuracy. However, it is a challenge to 

distinguish whether a fault is true or false. Besides, the complexity of the data 

brought problems to collecting and analysing. New condition monitoring methods 

such as ML based methods are studied in recent years to improve the robustness and 

accuracy of the system.  

Lacking detail in the existing data collection system is another shortcoming for 

condition-based predictive maintenance. The reliability, availability, 

maintainability, and safety (RAMS) databases are carried out to provide more 

detailed information. These databases provide information on maintenance 

planning, scheduling optimisation and life-cycle cost minimisation [163].  

The last limitation to condition-based predictive maintenance is the data reliability. 

The data can be lost, noised and hacked during the transmission process. In order to 

improve the accuracy and reliability of the condition monitoring system, data 

cleaning and data encryption were also taken into consideration.  

Table 2.3 Difference between three maintenance strategies 

 Corrective 
maintenance 

Scheduled 
maintenance 

Condition-
based 

predictive 
maintenance 

Initial cost Low Medium High 
Operating cost High Medium Low 
Unplanned maintenance High Low Medium 
Downtime High Medium Low 
Level of automation Low Medium High 

Compared with corrective maintenance and scheduled maintenance, condition-based 

predictive maintenance can schedule time for maintenance based on reliability 

requirements. The differences among the three maintenance strategies are shown in 
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Table 2.2. The total maintenance cost is evaluated for arranging maintenance 

actions. By adopting proper condition monitoring methods, the failed components 

would be replaced. The components which tend to have faults would be also replaced 

to prevent further damage to the turbine. Thus, the downtime of the turbine is 

reduced and the O&M cost is minimised. 

2.6 Summary 
This chapter reviewed the state-of-art condition monitoring technologies of WT. The 

common failure modes of major sub-assemblies are also discussed. The reliability 

of the WT system and modern condition-based maintenance strategies are also 

covered. This chapter is focusing on the WTCM methods. Those methods have been 

discussed in terms of conventional approaches and machine-learning approaches. 

Various methods have been discussed based on either in analysing perspective or in 

sub-assemblies perspective. With the development of ML algorithms technologies, 

ML based methods are also emphasised. However, those methods were mostly 

focused on single fault and without sensor fusion. Besides, the use of alarm signals 

was also omitted. It is necessary to develop a WTCM system that can diagnose the 

fault with a global view of the turbine. Additionally, the alarm signals can also be 

used wisely for early fault warnings. 
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Chapter 3. Wind turbine 
data interpretation 

This chapter presents interpretations of the data used in the research. The 

first part describes the SCADA data collected from an operational wind farm. The 

SCADA system is introduced first; then the data used for condition monitoring 

purpose are explained. The second part describes the simulation models of DFIG 

and PMSG WTs, respectively. It begins with system descriptions and simulation 

model constrictions based on MATLAB/ Simulink, where both healthy conditions 

and faulty conditions are simulated. In faulty condition simulations, three-phase 

short circuit fault and capacitor breakdown are simulated. The results give a 

comprehensive understanding of transient changes when the WT experiences 

different faults. Further analysis of the simulated data will be shown in the next 

chapters.   
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3.1 SCADA data exploration 

3.1.1 Introduction to SCADA systems 

In modern industrial and manufacturing processes, long-distance equipment and 

systems are necessary for public and private utilities, security, and mining 

industries. The communication distance can range from a few meters to thousands 

of kilometres, and telemetry is required for this communication. SCADA involves a 

combination of data acquisition and telemetry. The required information is collected 

and transferred via SCADA. This information is then displayed on screens for 

further analysis, and SCADA systems convey the required actions back to the 

process [164]. 

In the early days of data acquisition, relay logic was widely adopted for industrial 

control. With the development of electronic devices and CPUs, digital electronics 

have been incorporated into relay-logic equipment. Currently, programmable logic 

controllers (PLCs) are the most commonly used control systems in industries. The 

figure below shows a diagram of PLCs and distributed control systems (DCSs). 

 

Figure 3.1 Computer to PLC or DCS with a fieldbus and sensor 

For PLC- and DCS-based SCADA systems, the computer can record and store a very 

large amount of data, and the data can be viewed anywhere based on user 

Sensor PLC or DCS

A fieldbus
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requirements. However, to do this, users are required to have multiple complex 

operating skills. In addition, the resulting large amount of wires are difficult to deal 

with.  

With the development of SCADA systems, smaller and smarter devices have become 

increasingly popular. Intelligent electronic devices (IEDs) are connected via a 

fieldbus to the computer. A typical IED combines an analogue input sensor, an 

analogue output, the memory, the control, and a communication system in a single 

device [165]. However, there remain problems with IED-based SCADA systems, 

such as the need for more sophisticated systems, more expensive sensors, and a 

greater reliance on communication systems. 

For a typical modern SCADA system, there are five essential hierarchies in 

hardware: field-level instrumentation and control devices, marshalling terminals and 

remote terminal units (RTUs), communication systems, master stations, and data-

processing department computer systems. Meanwhile, there are two types of 

SCADA software: proprietary and open software, and corporations develop their 

own software to communicate with their own hardware. SCADA software must 

include features such as a user interface, alarms, scalability, database, fault 

tolerance, client distributed processing, networking, access to data, RTU interfaces, 

trends, and graphical display [164].  

Figure 3.2 shows a typical SCADA system used to control infrastructure for utilities 

such as gas, oil, or wind industries. It usually consists of a control centre and a 

number of field sites. These field sites may be located in distributed areas and 

connected to the control centre by different communication technologies, such as 

wide area networks (WANs), radio, cellular networks, or satellites [166]. PLCs and 

RTUs are installed on the on-site machines to communicate with the control centre. 

The control centre consists of a human–machine interface (HMI), server or master 

terminal unit, and a database management system (historian). The HMI interacts 

with the operator. The information is then transferred between the field sites, and 

data is sent to the field devices. The data can then be sent to the historian for 

archiving purposes.  
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Figure 3.2 Simplified logical view of a typical SCADA architecture 

3.1.2 Success of SCADA systems in WTs 

SCADA systems have been widely used in industries for accurate fault detection, 

diagnosis, and prognosis [167]. For instance, with appropriate algorithms, failures 

such as compressor bleed band failure, fuel supply system faults, and turbine 

degradation can be automatically detected in turbine engines. Because SCADA data 

can provide continuous-time measurements, the overall turbine performance can be 

exploited. The isolation of individual component fault schemes is carried out with 

performance monitoring. The WT converts wind kinetic energy into useful electrical 

energy. As the WT components deteriorate, the electrical energy conversion 

efficiency decreases. This performance degradation indicates the presence of 

potential problems in the turbine, such as generator winding faults, drivetrain 

misalignment, pitch control system degradation, or even blade aerodynamic 

degradation.  

Figure 3.3 shows the functional elements of performance monitoring. First, the 

performance parameter is computed based on sensor measurements. This parameter 

can be raw data, pre-processed data with calibration from prior knowledge, or 

residuals based on the WT model. Anomaly detection can be implemented using 

single or multiple performance parameters. Furthermore, the SCADA data are also 
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involved in trending prediction wherein parameters or fault indicators are trended, 

and failure time is predicted.  

 

Figure 3.3 SCADA data based monitoring system 

3.1.3 Description of SCADA data used in the research 

The SCADA data used in the research were acquired from an operational wind farm 

with 26 turbines. Unlike high-frequency condition monitoring data, SCADA data 

have a low sampling rate, usually at 10 min/sample, to reduce data storage while 

still maintaining vital information about the operation and performance of the WTs 

[52]. The monitoring variables for each turbine consisted of 128 readings from 

various physical and electrical signals.  

Based on the components, the monitoring variables can be classified as the 

generator, nacelle, yaw, wind, pitch, gearbox, rotor, hydraulic system, main bearing, 

and electrical system. Monitoring variables such as pressure, temperature, vibration, 

speed, angle, and electrical signals were collected from the system and sent to the 

user. The digital constant is sent back to control the turbine. In addition to the 128 

monitoring variables, 480 types of alarms and 480 types of events were recorded for 

further diagnosis. The cut-in wind speed, rated speed, and cut-out speed for the 26 

turbines were 3.5 m/s, 14 m/s, and 25 m/s, respectively. The rated power output was 

2,500 kW. Figure 3.4 shows a typical power curve of the turbine. Owing to the shape 

of the power curve, it is also called an ‘S curve’. The turbine started to rotate at a 

wind speed of 3.5 m/s. When the wind speed was 14 m/s, the turbine reached its 
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rated output power of 2,500 kW. Finally, to prevent any damage to the turbine, it 

was stopped at a wind speed of 25 m/s. 

 

Figure 3.4 WT power curve 

As described in the previous subsection, an anomaly can be detected by monitoring 

the turbine performance. The output power is an indicator that clearly demonstrates 

the performance of the turbine. Figure 3.5 shows the output power measurements 

obtained during both the healthy and faulty conditions of the two turbines with 

faults.  

 

Figure 3.5 Active power measurements of two faulty turbines (Upper: WT1, Lower: 
WT2) 

The upper figure shows the output power within one year of the turbine operation 

with a gearbox bearing fault, and the lower figure shows the output power within 
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one year of the turbine operation with a generator winding fault. As can be observed 

from the figure, the active power changes constantly for most of the time. However, 

during the faulty time period, the active power is reduced to 1,500 kW to avoid 

further damage, which can be observed in the red circles in Fig 3.5. The faulty time 

periods are circled in red for both turbines.  

As an example, Figure 3.6 shows the behaviours of the six monitoring variables 

under both normal and faulty conditions. These six monitoring variables are related 

to the WT gearbox: gearbox bearing temperature 1 at the main speed shaft bearing 

connected to the rotor, gearbox oil pressure, gearbox oil heat exchanger output 

temperature, gearbox oil sump temperature, gearbox oil pressure behind the pump, 

and gearbox bearing temperature 2 at the high-speed shaft connected to the 

generator. In the figure, the normal operation time is labelled with a blue line, and 

the faulty time is labelled with red crosses. As can be observed from the figure, the 

temperatures tended to be higher than the normal time, and the pressures tended to 

be lower than the normal time.  

 

Figure 3.6 Example of gearbox subsystem monitoring variables 
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Among the 26 turbines, two have an obvious performance anomaly that is easy to 

observe. The research was primarily based on historical SCADA data. Fault 

diagnosis models have mostly been developed based on faulty turbines in 

operational wind farms. The details of the turbines and the fault diagnosis methods 

are introduced in the following sections.  

3.2 Modelling of WT simulation 
The main aim of building a WT simulation model is to simulate the different 

operating conditions of WTs and acquire relevant data. Compared with existing 

SCADA data, the simulated data have a higher sampling rate, which provides a 

deeper understanding of the dynamic behaviour of WTs. In addition, the simulation 

model can simulate different types of faults that SCADA data do not have. Two 

types of WTs are commonly used: PMSG based variable-speed WTs and DFIG-

based variable-speed WTs. Owing to the PMSG power conversion unit test rig being 

built in practice, for which the details can be found in Chapter 7, in the simulation 

process, the focus is on the DFIG-based WT. 

3.2.1 DFIG WT model  

The DFIG is a type of induction generator, which allows the generator to run slightly 

higher or lower than the natural synchronous speed. Owing to sudden changes in the 

wind speed, it is considered useful for large variable-speed WTs. The speed of the 

synchronous generator is locked in synchronous speed with the frequency of 

the grid with which they are connected, which resists acceleration when a gust of 

wind hits the turbine. This causes damage to the mechanical systems; thus, an 

asynchronous generator was used to prevent this problem. As a result, the stress on 

the mechanical components was lower, and the power from the wind gust could also 

be converted to electrical power.  

In this DFIG simulation model, a WRIG was adopted. Figure 3.7 shows the structure 

and key components of the wound-rotor induction generator. The wound-rotor 

induction generator is a type of asynchronous generator in which the rotor windings 

are connected to an external resistance via slip rings to adjust the speed/torque of 

the generator. Compared with the squirrel-cage generator, the wound-rotor induction 

generator has more winding turns, which results in a higher induced voltage and a 
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lower current. While the stator of the generator is connected to the grid directly, the 

rotor is connected to the grid via a power converter. Figure 3.8 shows the equivalent 

circuit of the wound-rotor induction generator. If the generator speed exceeds a 

threshold, the converter converts the excess energy to the grid, whereas the stator 

feeds a constant 60 Hz to the grid directly in this study. When the rotor is running 

under speed, the converter transfers power from the grid to the rotor.  

 

Figure 3.7 Structure of WRIG [168] 

 

Figure 3.8 Equivalent circuit of WRIG 

For the purpose of simulation, only the interface between the WT generator electrical 

controller and the network was provided in the generator model; user settable and 

control functions were not included. Additionally, mechanical state-related variables 

were not included. Compared to conventional generator models, the electrical/flux 

state variables are simplified as algebraic equivalents. The generator model is thus 

considered an algebraic, controlled current source that produces active and reactive 

power in the network.  

3.2.1.1 Fundamentals 

The DFIG is a popular alternative solution for variable-speed WTs. Unlike PMSGs, 

DFIGs use wound-rotor induction machines. The stator winding of the DFIG is 

connected directly to the grid, while the rotor is connected to the AC-DC-AC 
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converter. Compared with PMSG, the manufacturing and assembling costs can be 

high because of the complicated structure and enormous size of the generator. 

However, the DFIG does not require permanent magnets, which reduce the 

manufacturing and assembling cost. Besides, the AC-DC-AC converter of the DFIG 

only requires approximately 30% of the nominal generated power [169].  

A DFIG-based WT was simulated to produce the dynamic behaviour of the system. 

Figure 3.9 demonstrates the structure of the simulation model, which was designed 

based on the dynamic modelling of the GE 1.5 and 3.6 MW WT generators [170]. 

To construct a fully functional WT model, models of the generator, electrical 

control, turbine, wind power, and power converter control were constructed.  

 

Figure 3.9 Overall structure of DFIG simulation 

Besides the WT modelling, the load flow analysis is also simulated. The generator 

is connected to a 575 V PV bus which is connected to the power system through a 

step-up transformer. The bus on the generator terminal side is connected to the 

collector system bus via a rated transformer. The generator has rated power of 1.5 

MW with reactive power capability of each individual machine is 0.9 pf under-

excited and 0.95 pf over excited. The supervisory control is also applied to regulate 

collector bus voltage to a specific level.  
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3.2.1.2 Generator model 

3.2.1.3 WT electrical controller model 

The electrical controller model delivers active and reactive power to the system 

based on the inputs from the turbine model (Pord) and supervisory voltage-ampere 

reactive (VAR) controller (Qord). Qord can also be obtained from a dynamic voltage-

ampere reactive (DVAR) function. The overall controller model consists of three 

control functions: wind VAR emulation, open-loop control logic, and an electrical 

controller. Figure 3.10 shows the overall structure of the electrical controller model. 

 

Figure 3.10 Overall electrical controller model 

The wind VAR emulation is a simplified equivalent of the supervisory VAR 

controller that is used for the entire turbine. It can also be considered as a closed-

loop controller. The bus voltages were monitored and compared with the reference 

voltage, which is the initial voltage of the regulated bus. The regulator can be 

modified by compensating for the impedance, which can be omitted or selected by 

the user. The regulator then produces a reactive power modulation to achieve power 

factor control. The initial power factor was set based on the initial conditions. 

However, as the reactive power output changes, it becomes necessary to maintain a 

specific power factor. The reactive power order was then transmitted to the open-

loop control for further processing.  

As shown in Fig. 3.10, the open-loop control logic block in the model is aimed at 

improving system performance when system events trigger large voltage deviations, 

and it is usually disabled when the terminal voltage is within the normal range. 

Open-loop control forces the reactive power to be determined at pre-specified levels 
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while maintaining the voltage deviations. Similar to other open-loop controllers of 

this type, hunting is prevented by hysteresis. When the voltage threshold is exceeded 

and the open-loop reactive power command is issued, the threshold voltage is 

levelled up by a certain amount. The reactive power command (Qcmd) is further 

processed in an electrical controller alongside the generator active power (Pgen), 

generator reactive power (Qgen), and terminal voltage (Vterm) from the WT model.  

The electrical controller is designed as a simplified model of the excitation system 

to produce the voltage and current commands Eq’’cmd and Ipcmd, respectively, by 

monitoring the generator reactive power Qgen and terminal voltage Vterm. Qgen is 

regulated by the voltage command Eq’’cmd, which is computed by the integral of the 

error between Qgen and Qcmd. The power order Pord from the WT model is used to 

compute the current command Ipcmd. 

3.2.1.4 WT model 

The WT model was used to simulate the very complicated electromechanical system 

in a simple manner. All related mechanical dynamics and relevant control strategies 

were simulated in the WT model. The rotor speed was obtained by determining the 

electrical power from the generator model and the mechanical power from the wind 

power model. A two-mass rotor model was adopted to transfer the shaft torque from 

the turbine torque, as shown in Figure 3.11. All shaft parameters are referred to high-

speed shaft (generator shaft). The wind turbine torque and generator speed are used 

as inputs to produce the transmitted torque and speed of the shaft.  

 

Figure 3.11 Two-mass rotor model 

The equations regarding the dynamics of the employed two mass rotor model are given 
as below: 
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where the Tm and Te are the mechanical and electromagnetic torques. Jt and Jg are 

the inertia constants of the wind turbine and generator rotor. K is the shaft stiffness. 

𝜃 represents the rotating angle. D is the shaft damping coefficient. 𝜔&, 𝜔0 and 𝜔/ 

are the turbine shaft, rotor, and electrical base speed, respectively. 

Practical WT control aims to maximise power delivery over a range of wind 

conditions. When the input wind power exceeds the power rating of the turbine, the 

mechanical power (Pmech) is reduced to the equipment rating by pitch control. When 

the input wind power is lower than the rated power, the blades are fixed to maximise 

the mechanical power, and torque control is employed by enforcing the turbine 

operating speed as the specified speed reference. The pitch compensation block 

compares the current pitch status with reference angle to produce pitch angle 

compensation. A block diagram of the control strategy is shown in Figure 3.12. 

 

Figure 3.12 Turbine control strategy model 

The electrical control system receives a power order from the turbine control model 

and then requests the converter to deliver power to the grid. Electric power is 

delivered to the grid and is used to determine the rotor speed set point. In dynamic 

control, blade pitch control and electric power order are combined into two different 

operating mechanisms. The turbine speed is primarily controlled by the electric 
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power order of the specified speed reference. The rotor speed is primarily 

determined by pitch control when the power levels are above the rated level. 

The reference speed is normally 1.2 pu. However, it is reduced when the power level 

is below 75%. The reference angular speed for power below 0.75 pu is regulated by 

the following equation: 

𝜔31" = −0. 0.67𝑃4 + 1.42𝑃 + 0.51                               (3-4) 

Because the machine speed is allowed to change around the reference speed, the 

inertia of the machine is considered a buffer to the mechanical power variation.  

3.2.1.5 Wind power model 

The wind power produced by the WT’s mechanical power extracts energy from the 

wind using the following equation: 

𝑃.156 =
7
4
𝐴3𝑣89𝐶:(𝜆, 𝜃)                                         (3-5) 

where Pmech is the mechanical power generated, ρ is the air density in kg/m3, Ar is 

the rotor blade surface area, vw is the wind speed in m/s, and Cp is the power 

coefficient, which is a function related to the ratio λ of the rotor blade tip speed to 

the wind speed (vtip/vw) and the blade pitch angle θ. The calculation of λ is as follows: 

𝜆 = 𝐾/(𝜔/𝑣8)                                              (3-6) 

where the ω is the generator rotor speed and Kb is a fixed constant.  

The Cp curve of the designed turbine simulation model can be described as the 

following mathematical representation: 

𝐶:(𝜃, 𝜆) = ∑ ∑ 𝛼;,=𝜃;𝜆=>
=?#

>
;?#                                (3-7) 

where αi,j is pre-defined coefficients that use for wind power Cp curve.   

3.2.1.6 WT power converter control model 

A schematic of the DFIG WT power converter is shown in Figure 3.13. Unlike 

PMSGs, power converters are installed on the rotor side instead of handling the full 

power rating of the generator, which typically accounts for 30% of the rated power 
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of the generator. In this model, the mechanical torque Tm is used to produce electric 

power. 

 

Figure 3.13 Schematic of the DFIG WT power converter 

A rotor-side converter controller is used to excite the rotor to achieve active and 

reactive power control. A block diagram of the rotor-sider converter is shown in 

Figure 3.14. 

 

Figure 3.14 Rotor side converter control 

Stator voltages and currents were first passed through the phase-locked loops to 

track their frequency and phase. Then, the three-phase stator voltages and currents 

are transformed in the direct-quadrature zero (dq0) axis to simplify calculations in 

the electrical system. Subsequently, the modulation index and phase were calculated 

to produce the correct pulse-width modulation (PWM) signals to rectify the rotor-

side voltages.  
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Figure 3.15 Grid side converter control 

Figure 3.15 shows a schematic of the grid-side converter controller. The grid-side 

converter control enables the power electronics to perform the function of the 

inverter. Space vector pulse width modulation (SVPWM) technology incorporating 

dq0 transformation was adopted to produce PWM control signals to the IGBTs.  

3.2.2 PMSG WT model  

 

Figure 3.16 Schematic of two-pole three-phase PMSG [171] 

A PMSG WT simulation model was built based on the DFIG WT simulation model. 

A major modification was the generator structure, while other control system models 

remained the same. A PMSG is a type of synchronous generator that uses a 

permanent magnet instead of a coil to provide an excitation field.  

Figure 3.16 shows the basic structure of the PMSG [171]. When the WT starts to 

operate, the mechanical force drives the generator shaft to create a rotating magnetic 

field in the rotor poles with an angular speed ωr. An EMF is induced in each stator 

coil when the magnetic flux cuts the individual stator coil. The three-phase stator 

and rotors A-B-C and A’-B’-C’ are electrically 120° apart.  
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Mathematical modelling of PMSGs has been discussed in many studies. The Park 

transformation also known as dq0 transformation is vital for modelling, and the 

details can be found in the literature [172].  

 

Figure 3.17 Schematic of PMSG power electronic converter topology 

Figure 3.17 shows the simulation schematic of the PMSG and its power converter. 

A power converter is also required for a variable-speed PMSG. Similar to the DFIG, 

it consists of three major components: a generator-side converter, a DC-link 

capacitor, and a grid-side converter. The generator-side converter converts the 

variable AC power output from the generator to DC power and extracts the 

maximum power, which depends on the generator speed. A DC-link capacitor is 

used for power storage and transfers energy to the grid-side converter. The grid-side 

converter is then converted into a three-phase AC that can satisfy grid requirements. 

Conventionally, a diode rectifier is used as a generator-side converter, and a thyristor 

inverter is used as a grid-side converter. In this simulation, IGBTs are used to 

perform both generator-side and grid-side conversions because of the increasing size 

of WTs and thus satisfy the high-reliability requirements of power switching 

components. The other settings of the PMSG based WT simulation remain similar 

to those of the DFIG-based WT simulation, which will not be described here again.  

3.2.3 WT simulation model performance 

The previous subsection describes the simulation model based on 

MATLAB/Simulink. The model was built using an industrial turbine with a 

graphical interface to facilitate the study of transient behaviours of complex 

electrical networks. The designed model can simulate healthy operation conditions 

and various types of faults, such as three-phase short circuits and capacitor bank 
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breakdown. In this subsection, the performance of the DFIG-based WT and PMSG 

based WT models is presented. 

Both turbines have a rated power of 1.5 MW at a rated wind speed of 12 m/s with 

cut-in and cut-out speeds of 3.5 m/s and 25 m/s, respectively. Dynamic pitch and 

torque controls were employed, and the pitch angle was set to 0° when the simulation 

was initiated. The generator produced a peak-to-peak voltage of 575 V at 60 Hz. The 

nominal voltage of the DC link was 1,200 V. 

 

Figure 3.18 WT simulation of electrical network connection  

A simple distributed model was used to simulate the electrical network, as shown in 

Figure 3.18. The simulated WT had a phase-ground voltage of 575 V at 60 Hz. The 

output of the WT was connected to a 1.75 MVA 575 V/25 kV transformer. A 30 km 

transmission line was connected between the WT power output and an electrical 

network to simulate transmission loss.   

3.2.3.1 Healthy condition simulation 

First, the DFIG WT was simulated. As an example, Figure 3.19 shows the simulation 

results for some of the outputs. From top to bottom, it includes the input wind speed, 

pitch angle of the blade, torque of the turbine, generator speed, voltage of the DC 

link, current of the DC link, active and reactive power of the turbine, RMS voltages 

at two different locations, and RMS currents at two different locations. A constant 
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wind speed of 15 m/s was used as the input. The first 15 s shows the WT start-up 

behaviours.  

 

Figure 3.19 Simulation results of the fault-free DFIG WT under a constant wind speed 

It can be observed from the figure that the system took approximately 3 s to reach 

the steady state. At the beginning of the simulation, the DC link had a pre-charged 

voltage of 1,175 V. Hence, pre-charging was not required. Then, it increased to 

1,300 V when the simulation began, and it fell back to 1,175 V when the system 

reached a steady state. The system took approximately 4 s to reach a steady state and 

deliver constant power. In the steady state, the pitch angle was 9°, and the torque 

was 34 Nm. The output active and reactive powers in the steady state are 

approximately 1.5 MW and 0 MVar, respectively. The RMS voltages and currents 
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at the 575 V bus and 120 kV bus are approximately 340 V, 15 kV, 1.5 kA, and 34 

A, respectively.  

 

Figure 3.20 Simulation results of the fault-free PMSG WT under constant wind speed 

Similar to the DFIG WT simulation, a complete PMSG WT model was built and 

tested for its performance. As an example, Figure 3.20 shows the simulation results 

of the PMSG WT under fault-free conditions with a constant wind speed of 15 m/s. 

Similar to the DFIG WT, the results include the input wind speed, pitch angle of the 

blade, torque of the turbine, generator speed, voltage of the DC link, current of the 

DC link, active and reactive power of the turbine, and RMS voltages and currents at 

two different locations. The first 15 s show the WT start-up behaviours.  
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Compared with the DFIG, it can be observed from the figure that the system took 

more than 4 s to stabilise. The DC-link voltage stabilised at 1,300 V at a steady state. 

In the steady state, the pitch angle was 27°, and the torque was approximately 37 

Nm. In addition, the generator torque took longer to reach the steady state, as can be 

observed from the figure. The output active and reactive powers in the steady state 

are approximately 1.5 MW and 0 MVAr, respectively. The RMS voltages and 

currents at the 575 V and 120 kV buses are approximately 330 V, 15 kV, 1.5 kA, 

and 33 A, respectively.  

3.2.3.2 Faulty condition simulation 

Because the PMSG model was built based on the DFIG model, the performance of 

the monitoring variables was similar. Hence, only the DFIG faulty condition 

simulation is described in this subsection. Besides, the experimental power 

conversion test rig described in Chapter 7 was built based on the PMSG. The details 

of the PMSG based power conversion unit simulation are presented in Chapter 7. 

The previous section discussed the fault-free condition of the DFIG WT, and the 

faulty conditions were simulated. To improve the simulation performance, the input 

signal wind speed was simulated using historical SCADA data. In this section, the 

generation of a three-phase short-circuit fault at the grid-side converter between 10 

s and 13 s is also described. Figure 3.21 presents the simulation results of the faulty 

DFIG WT under a constant wind speed.  

It can be observed from the figure that a three-phase short-circuit fault is triggered, 

and the DC voltage has a sharp pulse in a very short time period. During the faulty 

period, the active power, reactive power, and voltage at the 575 V bus dropped to 

zero. The currents at both buses reached very high levels during the faulty period. 

Unlike electrical parameters that exhibit transient changes, mechanical components 

such as the pitch angle, torque, and generator speed require a longer time to return 

to the steady state.   
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Figure 3.21 Simulation results of the DFIG WT three-phase short circuit fault 

In addition to the three-phase short-circuit fault, capacitor breakdown was also 

simulated. For modern megawatt WTs, power converters play an important role. DC-

link capacitors are considered to be the weakest components in power converters 

[171]. The constant high ripple current flowing in the DC-link capacitor can result 

in the degradation of the electrolyte material, especially at high operating 

temperatures. In addition, the useful life of the DC-link capacitor depends on its 

operating current and voltage. Once the DC-link capacitor is broken down, the DC 

voltage is derated. Hence, DC-link capacitor failure can result in unreliable wind 

power generation.  
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Figure 3.22 Simulation results of the DFIG WT capacitor breakdown fault 

The simulation was run for 20 s, and the fault was injected for 10 s. The results are 

shown in Figure 3.22. The data before starting up (t < 5 s) are neglected, and the 

figure only shows the time period between 5 s and 20 s. As can be observed from 

the figure, electrical parameters such as the DC link voltage, active power, and 575 

V bus voltage dropped to zero immediately when the fault was triggered. The DC 

current and 575 V bus current increased after the fault occurred.  

3.3 Summary 
In this chapter, historical data collected from an operational wind farm and 

modelling of the DFIG and PMSG variable-speed WTs were discussed. The 
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historical SCADA data could only provide existing faults which are mainly 

mechanical faults and cannot show the transient changes by electrical faults. The 

simulation models can be used to simulate electrical faults which complement the 

information that cannot be provided by historical SCADA data. The models were 

built and simulated based on MATLAB/Simulink to determine the dynamic changes 

under both healthy and faulty conditions. Compared with SCADA data, high-

frequency sampling rate data provided more information on transient changes in the 

system. Two types of faults were simulated, and sufficient information was provided 

for further analysis. More results will be presented in the following chapters, 

combined with real historical data collected from operational wind farms, for the 

validation of the proposed algorithms 
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Chapter 4. Kullback-
Leibler divergence based 
wind turbine fault feature 
extraction 

In this chapter, a multivariate statistical technique combined with a ML 

algorithm is proposed to provide a fault classification and feature extraction 

approach for the WTs. As the probability density distributions (PDDs) of the 

monitoring variables can illustrate the inner correlations among variables, the 

dominant factors causing the failure are figured out, with the comparison of PDD 

of the variables under the healthy and unhealthy scenarios. Then the selected 

variables are used for fault feature extraction by using kernel support vector 

machine. The presented algorithms are implemented and assessed based on the 

SCADA data acquired from an operational wind farm. The results show the 

features relating specifically to the faults are extracted to be able to identify and 

analyse different faults for the WTs.  
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4.1 Introduction 
The chapter addresses the problem of fault feature extraction and selection of 

monitoring variables by employing KLD and KSVM. In this paper, different faults 

are discussed and classified. The highly correlated variables with regards to the WT 

failures are extracted. In section 4.2, the basic knowledge of KLD and SVM with 

radical basis function kernel are introduced first. The SCADA data and the 

modelling procedures are introduced in Section 4.3. It also includes the analysis of 

the PDD of each variable under different operation scenarios. Then the PDD 

differences between the healthy turbine and faulty turbine for the same variables are 

analysed by KLD. At last, the proposed model is also validated by the simulated 

data. Larger KLD values indicate the variable has a larger difference between the 

healthy and faulty conditions. By setting an appropriate threshold for the KLD value, 

the variables, which have larger chances to trigger a specific fault are selected. The 

fault features are also extracted based on the KLD selected variables.   

4.2 Methodologies 
4.2.1 Kullback-Leibler divergence 

The KLD, also called Shannon entropy, is a probability measurement from 

information theory perspective. It is used to compare the one probability distribution 

against with another one [173]. To evaluate the discrimination between two PDDs, 

p(x) and g(x), of a random variable x, the Kullback-Leibler information 𝐼(𝑝 ∥ 𝑔) is 

calculated: 

𝐼(𝑝 ∥ 𝑔) = ∫𝑝(𝑥)𝑙𝑜𝑔 :(@)
0(@)

𝑑𝑥                                         (4-1) 

The divergence of the two distributions is a symmetric version of the information: 

𝐾𝐿𝐷(𝑝, 𝑔) = 𝐼(𝑝 ∥ 𝑔) + 𝐼(𝑝 ∥ 𝑓)                                    (4-2) 

It is only produced when ∑ 𝑝@ = ∑ 𝑔@ = 1 and the two distributions share the same 

support set. When the two distributions are same, the KLD of the two distributions 

is 0. When the difference between the two distributions increases, the calculated 

value of KLD also increases. In other words, the bigger the KLD value, the larger 

the difference between two distributions that can be found.  
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4.2.2 Kernel support vector machine 

The SVM is a ML algorithm that is developed from the statistical learning with a 

better performance than many other methods, such as decision trees, discriminant 

analysis and nearest neighbour. It is a supervised learning method that has been 

widely applied in regression and classification [174, 175]. 

It is assumed that there are two classes for separation, which are denoted as {-1, 1}. 

For a given training data set	𝑇(𝑥, 𝑦) 

	𝑇(𝑥, 𝑦), (𝑥(, 𝑦(), (𝑥4, 𝑦4), … , (𝑥A, 𝑦A),	 

		𝑥A ∈ 𝑅A, 		𝑦A ∈ {−1,1}.                                          (4-3)  

where 𝑥 are the training vectors and 𝑦 are the indicator vectors indicating the class 

of 𝑥, respectively. In this case, {-1, 1} indicates the turbine under faulty and healthy 

condition, respectively. The hyperplane created by SVM is used to separate the two 

different classes that is specified by its weight w and the bias b [175]. The 

hyperplane can be described as 

																(𝑤, 𝑥) + 𝑏 = 0							𝑤 ∈ 𝑅A, 𝑏 ∈ 𝑅                                   (4-4) 

It yields a corresponding decision function: 

𝑓(𝑥) = 𝑠𝑔𝑛((𝑤, 𝑥) + 𝑏)                                        (4-5) 

The sign of 𝑓(𝑥) depends on the side of the hyperplane where the sample lies. An 

optimal hyperplane is the one that maximises the distance between the hyperplane 

and the nearest points to the hyperplane of both classes. The points of having the 

minimal distances to the hyperplane are called support vectors. The distance 

between the support vectors is called margin. In order to obtain the hyperplane, the 

weight and bias of support vectors should satisfy the equation|(𝑤, 𝑥) + 𝑏| = 1. The 

optimal hyperplane with maximal margin 𝜏(𝑤)	can thus be formulated as follows 

min
8∈*&,/∈*

𝜏(𝑤) = (
4
‖𝑤‖4                                         (4-6) 

subject to   
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   𝑦;d(𝑤, 𝑥) + 𝑏e ≥ 1				∀𝑖 = 1,… , 𝑛                                  (4-7) 

The decision function 𝑓(𝑥;) yields +1 for 𝑦; ∈ {1} while -1 for 𝑦; ∈ {−1} when the 

constraint (4-7) is satisfied. Furthermore, the Lagrange multipliers 𝛼; are introduced 

to adapt the Karush Kuhn Tucker conditions in order to optimise the w and b [176]. 

𝑚𝑎𝑥C∈*& 		𝐿(𝛼) = ∑ 𝛼;A
;?( − (

4
∑ 𝛼;𝛼=𝑦;𝑦=(𝑥; , 𝑥=)A
;,=?(                  (4-8) 

subject to 

  𝛼; ≥ 0				∀𝑖 = 1,… , 𝑛                                             (4-9)     

and  

∑ 𝛼;A
;?( 𝑦; = 0                                               (4-10)     

The optimal parameters 𝑤∗ and 𝑏∗ can be written as 

𝑤∗ = ∑ 𝛼;𝑦;𝑥;A
;?(                                             (4-11) 

𝑏∗ = − (
4
(𝑤∗, 𝑥E + 𝑥/)                                         (4-12) 

where	𝑥E ∈ {1} and 𝑥/ ∈ {−1} indicate the support vectors from two classes. Then 

the decision function from (4-5) can be written as 

𝑓(𝑥) = 𝑠𝑔𝑛((𝑤∗, 𝑥) + 𝑏∗)                                      (4-13) 

By adapting the optimal parameters 𝑤∗ and 𝑏∗ from (4-11, 4-12), the (4-13) in the 

feature space can be updated as 

𝑓(𝑥) = 𝑠𝑔𝑛 hd𝑤 ∙ 𝜙(𝑥)e + 𝑏k 

= ∑ 𝑦;𝛼;𝜙(𝑥)𝜙(𝑥;) + 𝑏∗A
;?(                                (4-14) 

The above equations are only suitable for linear separation problem. In general, most 

of the cases are linear non-separable. In order to solve the linear non-separable 

problem, the kernel function is introduced for improving the computation efficiency. 

In this specific condition, the Radical Basis Function (RBF) or Gaussian kernel is 

used.  



Advanced data-driven modelling approaches to alarm-related fault detection and condition monitoring of 
wind turbines 

76  Yueqi Wu – January 2022 

The dot product (𝑥, 𝑥;) can be substituted by the kernel 

𝑘(𝑥, 𝑥;) = (𝜙(𝑥) ∙ 𝜙(𝑥;))                                      (4-15) 

where 𝜙(𝑥) and 𝜙(𝑥;) are the mapping of 𝑥,	𝑥; in hyper dimension. By adapting a 

RBF kernel, the kernel function can be written as 

𝐾(𝑥, 𝑥; 	) = 𝑒(
'()')*(

+

+,+
) = 𝑒(,F‖@,@*‖+)                           (4-16) 

where Λ is the width of the kernel, which controls the smoothness of the decision 

boundary in the feature space and 𝛾 = − (
4H+

. 

Thus, the decision function 𝑓(𝑥) for an unknown input x in the feature space can be 

extended to 

𝑓(𝑥) = 𝑠𝑔𝑛 hd𝑤 ∙ 𝜙(𝑥)e + 𝑏k 

= ∑ 𝑦;𝛼;𝑒(,F‖@,@*‖
+) + 𝑏∗A

;?( 							                        (4-17) 

In the regression cases, the SVM classification function from (4-13) can be 

expressed as follows to predict the value h(x)  

  ℎ(𝑥) = (𝑤∗, 𝑥) + 𝑏∗                                               (4-18) 

By adapting RBF kernel to the regression function (4-18) in feature space, the 

prediction value can be extended to 

𝑓(𝑥) = (𝑤∗, 𝑥) + 𝑏∗ 

= ∑ 𝛼;𝑒(,F‖@,@*‖
+) + 𝑏∗A

;?( 																																										(4-19) 

 

4.2.3 Feature extraction model 

The data used in this paper are from an operational wind farm in one-year duration 

consisting of 26 turbines with each turbine having 128 monitoring variables, 

including temperatures, active power and various speeds.  The SCADA system 

applied in this particular wind farm sampled signals at 10-mins intervals to cover a 
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range of physical and electrical variables and digital control signals. However, the 

digital signals cannot reveal the working condition of the WT; it is thus necessary 

to eliminate those variables before further processing [22].  

 

 

Figure 4.1 Time series data of (a) wind speed; (b) active power of a fault-free turbine; 
(c) active power of a turbine with gearbox bearing fault; (d) active power of a turbine 

with generator winding fault 

Figure 4.1 shows wind speed and the output active power of the turbines working in 

different conditions over one year. Figure 4.1(a) shows the wind speed data 

measured on both healthy and faulty turbine. Figure 4.1 (b-d) show the active power 

outputs over one year for the fault-free turbine and turbines with gearbox bearing 

fault and generator winding fault, respectively. The occurrence of the faults are 
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labelled in red boxes. Compared with the turbine having a gearbox fault, the turbine 

with a generator fault clearly has a shorter faulty time duration. In order to prevent 

overheating to the critical components and further damage the whole turbine, the 

turbines were operated with power output being reduced to half.  

 

Figure 4.2 Fault classification and feature extraction 

Figure 4.2 illustrates the procedures of variable selection and fault feature 

extraction. In order to obtain the PDD ideally, the data samples should be selected 

as much as possible. In the fault classification and feature extraction procedures, 

50000 samples measured over one year are selected. Two turbines are selected for 

modelling: one has a gearbox fault while another has a generator winding fault. The 

faulty data can be selected based on time sequential information. First, the PDDs of 

all the monitoring variables are calculated with the data under healthy and faulty 
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conditions. Then the two types of PDD are compared by calculating the KLD values 

between them. By sorting the KLD values of the monitoring variables in descending 

order, the monitoring variables related specifically to the fault can be discovered. 

Finally, the features associated with the gearbox bearing fault and generator winding 

fault are extracted by the KSVM.  

4.3 Model validation 
4.3.1 Variable selection using KLD of SCADA data 

As mentioned above, the digital constants and control signals are removed in the 

data pre-processing, totally 78 variables are then retained for further analysis. The 

KLD values are calculated based on same variable under healthy and faulty 

conditions. By sorting the KLD values in descending order and eliminate the 

variables that are infinite or cannot be computed, the KLD values of 22 variables 

related to the gearbox fault are given in Table 4.1. 

Table 4.1 KLD values of gearbox bearing fault variables 

Variable Nacelle 
temperature Wind direction Nacelle position Pitch converter 

temperature 2 
KLD 15.89 14.95 14.51 7.47 

Variable Hydraulic fluid 
temperature Pitch angle 2 Pitch Converter 

Temperature 1 
Pitch Converter 
Temperature 3 

KLD 6.49 5.52 4.87 4.68 

Variable 
Power 

Switchboard 
Temperature 

Gearbox Oil 
Pressure 

Behind Pump 

Temperature of 
generator cooling 

water return 

Temperature of 
gearbox oil heat 

exchanger 
output 

KLD 4.68 2.44 1.69 1.14 

Variable Hygrometer 2 
temperature 

Generator 
speed 

Generator speed (to-
default) 

Wind speed 
right-hand 

KLD 1.11 0.86 0.7 0.51 

Variable Wind speed Wind speed 
left-hand 

Minimum pitch 
angle 

Oscillation 
signal Z 

KLD 0.51 0.5 0.39 0.19 

Variable Maximum pitch 
speed 

Temperature of 
Cooling water 

return 
  

KLD 0.16 0.16   

All 22 KLD values show the differences between healthy condition and faulty 

condition. The larger value indicates larger difference. It can be observed from the 

Table I that some variables are related to the environmental condition, such as wind 

speed and direction. The environmental related variables can be ignored in the 

variable selection because they do not have a direct impact on the fault. By 
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eliminating these variables, pitch system, gearbox and generator related variables 

are retained.  

 

Figure 4.3 PDDs between healthy and faulty conditions of (a) gearbox oil heat 
exchanger temperature and (b) gearbox oil pressure behind pump 

Figure 4.3 shows examples of the PDDs of the gearbox oil exchanger temperature 

and gearbox oil pressure behind pump under healthy and faulty conditions. It can be 

observed from the top plot of Figure 4.3 that when the turbine is under the healthy 

condition, the PDD of gearbox oil exchanger is similar to Gaussian distribution with 

an average temperature around 55 °C. In addition, the gearbox oil pressure behind 

pump also indicates the abnormal behaviour of this turbine. Consequently, the 

pressure tended to be higher when fault occurred, compared with the healthy 

condition.  

Table 4.2 show KLD values of the selected variables related to generator winding 

fault. There are 21 variables are selected for this specific fault. It can be observed 

from the table that the pitch system, gearbox and generator related variables are 

selected.  
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Table 4.2 KLD values of generator winding fault variables 

Variable Temperature of 
cooling water return 

Wind speed left-
hand Wind speed Pitch converter 

temperature 2 
KLD 37.89 11.73 11.7 11.62 

Variable Wind speed right-
hand 

Hygrometer 2 
temperature 

Gearbox oil 
pressure Behind 

Pump 

Pitch converter 
temperature 1 

KLD 11.25 10.26 8.26 5.5 

Variable 
Temperature of 

generator cooling 
water return 

Oscillation 
signal Z 

Hydraulic fluid 
temperature 

Nacelle 
temperature 

KLD 3.7 2.92 1.81 1.43 

Variable 
Temperature  of 
gearbox oil heat 
exchanger output 

Pitch angle 1 Minimum pitch 
angle Pitch angle 3 

KLD 1.06 0.45 0.45 0.37 

Variable Pitch angle average 
1-3 Generator speed Generator speed 

(to-default) Pitch angle 2 

KLD 0.33 0.28 0.28 0.26 

Variable Generator 
temperature 

  
 

KLD 0.2   
 

 

Figure 4.4 PDDs between healthy and faulty conditions of (a) generator cooling water 
return temperature and (b) generator winding temperature 

Figure 4.4 shows two variables’ PDDs of the turbine with generator winding fault. 

For this specific fault, both the temperatures of generator cooling water and 
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generator winding tended to shift towards higher temperature zone compared with 

the normal condition.  This clearly indicates the abnormal behaviour of generator 

when fault appears.  

4.3.2 Feature extraction using KSVM of SCADA data 

It can be concluded from the both Table 4.1 and 4.2 that the pitch system, generator 

system and gearbox system tended to be the three most abnormal systems of the 

turbines when faults occur. The variables are chosen from gearbox, generator and 

pitch systems to separate the fault and normal conditions.  

The relationship between generator speed and wind speed can be hard to discover, 

which is shown at top plot of Figure 4.5. In order to extract the real behaviour of the 

generator speed against the wind speed, the KSVM is applied as a regression model 

to find the relationship between generator speed and wind speed. A threshold is also 

added to help the data selection for this regression model. The bottom plot of Figure 

4.5 shows the comparison between original generator speed curve and filtered 

generator speed curve, where the yellow curve indicates the filtered generator speed 

curve. The relationship between generator speed and wind speed can be revealed 

clearly now by adapting KSVM regression.   

Then the KSVM is applied to divide the normal and fault data into two groups. 

Figure 4.6 shows the extracted feature of the gearbox bearing fault. The blue dots 

indicate the normal feature and the red crosses indicate the gearbox bearing fault, 

which is separated by the yellow plane. It can be observed from the figure in order 

to prevent dramatic damages to the turbine, the power output is reduced to half. This 

is due to the fact that the changing of pitch angle controls the output power. Any 

points within the yellow plane are considered as the abnormal date related to the 

fault. The plane created by KSVM is used to extract the fault feature can be 

described as (𝑥 − 1136.12)4 + (𝑦 − 2319.04)4 + (𝑧 + 1916.93)4 − 9300391.69 <

0. When the equation is above zero, it can be considered as healthy condition. When 

the gearbox bearing fault occurs, the inequality is satisfied.  
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Figure 4.5 Original generator speed curve vs. filtered generator speed curve of the 
gearbox bearing fault turbine 

 

Figure 4.6 Gearbox bearing fault feature extraction 

Figure 4.7 shows the generator speed curve against wind speed for the turbine with 

generator winding fault. In order to extract the key information, same method has 

been applied. As the bottom plot of Figure 4.7 shows, the feature is revealed by 

KSVM.  
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Figure 4.7 Original generator speed curve vs. filtered generator speed curve of the 
generator winding fault turbine 

 

Figure 4.8 Generator winding fault feature extraction 

Based on the active power, generator cooling water temperature and pitch converter 

temperature, the generator winding fault feature can be extracted as shown in Figure 

4.8. The plane which is used to extract the fault feature is also created by KSVM. It 

is described as the inequality 	(𝑥 − 1251.33)4 + (𝑦 + 5895.003)4 + (𝑧 −

6673.873)4 − 79617582.07 < 0. When the inequality is established, the generator 

winding fault can be found. It can be observed from the figure that when the fault 
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appears, the pitch converter temperature tends to be higher while the generator 

temperature is still in a low temperature zone.  

4.3.3 Variable selection using KLD of simulation data 

To verify the capability of the proposed model, the DFIG simulation model was 

tested with two different faults at variable wind speeds. First, the three-phase short-

circuit fault was simulated, as shown in Figure 4.9. From top to bottom, it includes 

the input wind speed, pitch angle of the blade, torque of the turbine, generator speed, 

voltage of the DC link, current of the DC link, active and reactive power of the 

turbine, RMS voltages of two different locations, and RMS currents of the 575 V 

and 25 kV buses. The simulation was run for 20 s and the fault was injected at 13 s 

and ended at 16 s. The data before starting up (t < 5 s) are neglected, and the figure 

only shows the time period between 5 s and 20 s. It can be observed from the figure 

that the monitoring variables varied with different wind speeds. Owing to the control 

strategy, the torque and pitch angle were changed constantly to maintain the 

maximum power output. When a fault is injected, the active power output decreases 

to zero. The current also drops to zero because the three-phase current output is 

short-circuited with the ground. The DC voltage and current exhibited a sharp 

impulse when the fault was first injected. 

Because the wind speed is the input of the system and active/reactive power are the 

outputs of the system, these three variables are neglected in the variable selection. 

Similar to the SCADA data, the KLD values were calculated based on the same 

variables under healthy and faulty conditions. The KLD values of the nine variables 

related to the three-phase short-circuit fault are listed in Table 4.3. 

Table 4.3 KLD values of three-phase short circuit fault variables 

Variable Pitch degree Torque Generator speed Vdc 
KLD 25.39 20.16 2.15 43.54 

Variable Idc 575V bus voltage 25kV bus voltage 575V bus current 
KLD 39.42 5.68 1.32 2.51 

Variable 25kV bus current    

KLD 78.32    
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Figure 4.9 Simulated DFIG WT three-phase short-circuit fault under variable wind 
speed 

All nine KLD values showed differences between healthy and faulty conditions. A 

larger value indicates a larger difference. As shown in Table 4.3, the KLD values 

for the pitch degree, torque, generator speed, Vdc, Idc, 575 V and 25 kV bus voltages, 

575 V and 25 kV bus currents are retained for comparison. The 25 kV bus current 

and Vdc have the largest KLD values, indicating that these variables have the highest 

correlation with the fault. Consequently, these two variables were selected for 

feature extraction.  

In addition to the three-phase short-circuit fault, a capacitor breakdown fault was 

also simulated for model validation. The simulation results are shown in Figure 4.10. 
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The fault was injected within 13 s. The DC-link voltage drops to zero because the 

capacitor has already experienced breakdown. The other electrical variables also 

change abruptly when a fault occurs. Physical variables such as the pitch angle, 

torque, and generator have more turbulence after the fault is triggered. 

The KLD values for the nine variables are listed in Table 4.4. Among all the 

variables, the 25 kV bus voltage and turbine torque have the largest KLD values, 

which indicate the highest differences between the normal and faulty conditions. 

Thus, these two variables were selected for further feature extraction.  

 

Figure 4.10 Simulated DFIG WT capacitor breakdown fault under variable wind speeds 
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Table 4.4 KLD values of capacitor breakdown fault variables 

Variable Pitch degree Torque Generator speed Vdc 
KLD 12.71 25.36 0.22 20.19 

Variable Idc 575V bus voltage 25kV bus voltage 575V bus current 
KLD 5.88 3.41 55.24 17.38 

Variable 25kV bus current    

KLD 2.12    

 
4.3.4 Feature extraction using KSVM of simulation data 

To understand the relationship between the DC-link voltage and 25 kV bus current 

and to extract the fault feature, KSVM was applied. It was then applied to classify 

the normal and fault data into two groups. Figure 4.1 shows the extracted features 

of the three-phase short-circuit fault. The blue dots indicate the normal feature and 

the red crosses indicate the three-phase short-circuit fault, which is separated by the 

yellow division plane. 

 

Figure 4.11 Three-phase short circuit fault feature extraction 

It can be observed from the figure that when the turbine operates under normal 

conditions, Vdc and the active power remain constant. When a fault occurs, the 

relationship between the active power, Vdc, and current changes. Any points within 
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the yellow plane were considered abnormal data related to the fault. The plane 

created by KSVM is used to extract the fault feature and can be described 

as(𝑥 − 441.22)4 + (𝑦 − 1.15)4 + (𝑧 + 0.03)4 − 10.02 < 0. When the value is above 

zero, it can be considered as a healthy condition. When a three-phase short-circuit 

fault occurs, the inequality is satisfied.  

 

Figure 4.12 Capacitor breakdown fault feature extraction 

KSVM is also applied to extract the feature of the capacitor breakdown fault, as 

shown in Figure 4.12. Similar to the previous case, the blue dots indicate the normal 

feature and the red crosses indicate the capacitor breakdown fault, which is separated 

by the yellow division plane. Any data points within the division plane are 

considered faults. The division plane used to extract the fault feature can be 

described as (𝑥 − 14168.84)4 + (𝑦 − 29.99)4 + (𝑧 + 1.01)4 − 130.11 < 0 . When 

this inequality is satisfied, a capacitor breakdown fault can be observed. The figure 

shows that when a fault occurs, the torque tends to be lower, and thus, the power 

output is reduced.  
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4.4 Summary 
This chapter presents a novel fault diagnosis and detection method based on a 

multivariate statistical technique combined with the ML algorithm based on KSVM. 

The turbines with a gearbox bearing fault and a generator winding fault are tested 

by using the proposed model. The results can be concluded that the fault can be 

localised via calculating the KLD values between healthy and faulty conditions. The 

amplitudes of KLD values indicates the contributions brought by the variables to the 

fault. By selecting the most significant variables for classification model training, it 

reduces computation load and improve efficiency. The fault feature separation plane 

can extract the gearbox bearing fault the generator winding fault accurately. 

Further work will focus on applying the fault feature model to the turbines with other 

faults based on deep learning algorithms. Other multivariate statistical techniques 

such as Wasserstein metric will be considered and incorporated for fault diagnosis. 

 

  



Chapter 5. Alarm-related wind turbine fault detection based on kernel support vector machines 

Yueqi Wu – January 2022   91 

Chapter 5. Alarm-related 
wind turbine fault 
detection based on kernel 
support vector machines 

This chapter proposes a data driven model based fault detection method for 

WT systems, in which the detection process is based on the alarm signals and 

modelling by KPCA and KSVM. The deployment of large-scale WT systems 

requires better-scheduled maintenance schemes to ensure the systems are under 

normal, safe and cost-effective working condition. To improve the performance of 

WT CMS and reduce the O&M cost, and offer an efficient approach to achieve this 

goal, a model based data driven fault detection method based on KPCA and KSVM 

is developed. This method is validated with real historical SCADA data from an 

operational wind farm.   
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5.1 Introduction 
This chapter presents research results of a model-based data- driven WT fault 

detection method, which creates a relationship to identify the false alarms and true 

alarms related to the faults. The model is performed using the KSVM incorporating 

the KPCA based on the historical SCADA data. The alarm of WT system can be 

triggered when key component signals exceed the pre-defined threshold limits 

usually due to design defects, changing of WT running states and components 

malfunction [40]. Since the alarms could reveal the working conditions of the 

turbine’s components, it can be regarded as a significant index to indicate an early 

warning of the vital faults. Firstly, the computation load can be reduced by choosing 

specific PCs. Secondly, the chosen PCs are used to build normal-abnormal 

classification model. Finally, a classification model based on the extracted abnormal 

data is built to classify the alarms and faults. 

5.2 Methodologies 

5.2.1 Principal components analysis  

The PCA transforms a set of correlated variables into a set of linearly uncorrelated 

variables, which are the PCs of the original dataset. It has been widely used to 

visualize relatedness and genetic distance between variables. The process can be 

achieved by calculating the eigenvalues of the covariance matrix or singular values 

of non-orthogonal matrix condition [7, 8]. PCA has shown its strong capability in 

dimension reduction and been verified by researches in different fields [177]. By 

selecting first few PCs, the major information can be maintained and the dimension 

of the original dataset is then dramatically reduced. Hence, this technique has been 

widely applied in feature extraction and incorporated with various ML algorithms 

such ANN to monitor and predict the performance of WTs [178]. To obtain the PCs 

from a dataset X with n-by-p dimensions, where p is the number of the variables and 

n is the number of the samples of each variable, Eigen-analysis for the covariance 

matrix M of original dataset X needs to be performed. First, the dataset X need to be 

standardised: 

𝑧= =
@-,@.III

H)-
												(𝑗 = 1,2, … , 𝑝)                                    (5-1) 
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where 𝑥Jv is the mean value of 𝑥= , 𝜎@-  is the standard deviation of 𝑥=  and 𝒁 =

[𝑧(, . . , 	𝑧:]  is denoted as the standardised dataset with n-by-p dimensions. The 

covariance matrix M of Z is defined as: 

𝑀;,= = 𝑐𝑜𝑣d𝑍; , 𝑍=e = 𝐸�(𝑍; − 𝜇;)d𝑍= − 𝜇=e� 

																					= 𝐸�𝑍;𝑍=� − 𝜇;𝜇=                                          (5-2) 

where 𝜇; = 𝐸(𝑍;) is the mean value of  i th row of Z. The PCs can be derived from 

the covariance matrix by using Singular Value Decomposition (SVD). The singular 

values of the matrix M can be calculated by 

𝑀 = 𝑈𝑆𝑊K                                                     (5-3) 

where S is an n-by-p rectangular matrix contains the i-th singular values of M. U is 

an n-by-n matrix called the left singular vectors consists of the n largest eigenvalues 

of 𝑀𝑀K and 𝑊K is a p-by-p matrix called right singular vectors associated with the 

orthonormalised eigenvectors  of 𝑀K𝑀  [179]. By sorting the singular values in 

descending order and finding their corresponding singular vectors in the same order, 

the i-th principal component can be obtained by following equation: 

𝑌; = 𝑈;(𝑧( + 𝑈;4𝑧4 +⋯+ 𝑈;:𝑧:							(𝑖 = 1,2, … , 𝑝)              (5-4) 

The singular values of 𝑀 are the variances of their corresponding PCs. Hence, the 

magnitudes of each singular value represent the weighted information contained in 

the original dataset. To select the number of PCs, the accumulated variance 

contributions from each principal component need to be calculated. The variance 

contribution 𝑎; of i-th principal component’ variance 𝑠; is defined as: 

𝑎; =
!*

∑ !*
/
*01

                                                         (5-5) 

To obtain the information from the original dataset, the selection of k PCs should be 

as large as possible (k<p). However, the number of PCs must be compromised in 

order to achieve the dimension reduction. In our study, the accumulated variance 

contribution is selected no smaller than 85%. 
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5.2.2 Kernel function in PCA and SVM 

The SVM could only solve linear separable problems. Hence, to solve a larger 

dataset with a linear inseparable problem, kernel function is introduced. By using 

kernel, the linear operations of PCA are performed in a reproducing kernel Hilbert 

space. Therefore, the linear inseparable problem can be solved by using kernel 

function projecting to a higher dimension. 

KPCA is an extension version of the PCA using the kernel function to perform the 

originally linear operations in a reproducing kernel Hilbert space. As introduced 

above, the calculation of PCA can be transferred into the Eigen-analysis. By 

mapping the original data points in the feature space using the RBF kernel. It is 

defined as:  

𝐾(𝑍) = 𝐾(𝑍, 𝑍K) = 𝑒M(,NO,O2N
+
)                             (5-16) 

where the	𝑍 is the original input dataset and 𝑍K is its transpose [180].  |𝑍 −	𝑍K|4 is 

considered as the squared Euclidean distance between them. The Λ is the width of 

the kernel, which cannot be predicted precisely and has to be constrained by the 

model or defined by the user [181].   

By replacing the original dataset with the kernel, the covariance matrix of Equation 

(5-2) can be rewritten as 

𝐶 = (
A
∑ (𝐾(𝑧;) − 𝐾)(𝐾(𝑧;) − 𝐾)KA
;?(                             (5-17) 

𝐾 = (
A
	∑ 𝐾(𝑧;)A

;?(                                          (5-18) 

Then, following the same procedures as described from Equations (5-3)-(5-4), the 

singular values and vectors, the kernelised PCs can be obtained.   

5.2.3 KPCA and KSVM based classification model 

The SCADA data used in this paper were acquired from an operational wind farm 

which consists of 26 turbines over a period of 12 months. To test and validate the 

proposed classification model, it is necessary to use historical data from an 

operational wind farm. Unlike the high-frequency condition monitoring data, 
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SCADA data have a low sampling rate usually at 10 minutes/sample in order to 

reduce data storage amount while still maintaining the vital information about the 

operation and performance of the WTs [52]. The monitoring variables for each 

turbine consist of 128 readings among various types of physical and electrical 

signals, such as temperatures, pressures, power outputs and control signals. Pre-

processing to the data is essential for further analysis due to the occasions that the 

turbines are in inactive during the periods of low and high speeds. Besides, the 

digital and constant data need to be removed to prevent inferences to the processing 

[22, 182]. 

As the examples, Figures 1-3 show the wind power curve of three different turbines. 

For WTs, the S-curve refers to the relationship between the output power and wind 

speed [183]. The output power would often be reduced when the fault occurs in order 

to prevent the fault being developed into the detrimental one. The dashed box 

indicates the fault area. As can be observed from the figures, the turbine with 

generator winding fault has a shorter time period of fault exposure compared to the 

turbine with gearbox bearing fault.  

 

Figure 5.1 Power curve of the fault-free turbine 
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Figure 5.2 Power curve of the turbine with generator winding fault 

 

Figure 5.3 Power curve of the turbine with gearbox bearing fault 

To detect the faulty condition of the WT, a two-stage classification method is 

proposed, as illustrated in Figure 5.4. By checking time-series data, the original 

dataset includes data under the normal working condition and those alarm data. The 

alarm data also contain the fault data related to the alarms triggered during the fault 

period. Then abnormal data are further classified into the true positive signals, 

indicating the occurrence of a real fault, and false positive signals, which can be 

considered as a warning.  
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Figure 5.4 Overall modelling procedures 

Three normal data selection methods are used in our study. The first one is to choose 

first 5000 samples in the original dataset, which is referred as to the method 1. The 

second method is to choose 2500 samples before and after the fault respectively, 

which is referred as to the method 2. The last method is to choose 5000 samples 

randomly among the normal data, which is referred as to the method 3. The fault 

detection method is then applied to both faulty turbines, as shown in Figures 5.2 and 

5.3. The results given in the next section are based on the turbine with a gearbox 

bearing fault with the normal data being selected using method 3.  

5.3 Model validation 

5.3.1 Monitoring variable selection of SCADA data 

After pre-processing the original data by removing those control and DC signals, 

there are 78 variables in total remaining for further data dimension reduction. All 

the data samples relating to the fault are selected and processed with KPCA. To 

select the appropriate PCs, the variance contribution of each principal component 

needs to be calculated, as given in Table 5.1. 16 PCs are therefore selected in order 

to meet the requirement of achieving 85% accumulated variance contribution. 
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Table 5.1 Variance contribution of the principal components 

PCs 1 2 3 4 5 6 
Contribution% 6.59 6.56 6.34 6.34 6.17 5.64 

PCs 7 8 9 10 11 12 
Contribution% 5.64 5.53 5.49 5.47 5.13 4.42 

PCs 13 14 15 16 … 78 
Contribution% 4.41 4.4 3.72 3.68 … 0.000975 

5.3.2 Normal-abnormal condition classification using SCADA data 

The selected PCs will be further processed by KSVM. Since KSVM is a supervised 

learning algorithm, the dataset needs to be divided into two groups, the data under 

normal conditions and the data under abnormal condition (formed by false alarms 

and true alarms related to the fault). Since it is impossible to plot 16 dimensional 

graph form the selected 16 PCs, all the results will be plotted in 2D space in relation 

to wind speed and active power.  

 

Figure 5.5 Power curve of normal-abnormal data 

Figure 5.5 gives an example of the data needing to be processed for normal-abnormal 

classification, where the blue dots represent the normal data and red crosses 

represent the abnormal data.  

As mentioned above, to process the data using KSVM algorithm, the linear 

inseparable data in a lower dimension can be projected into a higher dimension and 

thus differentiated by a hyperplane. As an example, Figure 5.6 shows the working 

principle of the KSVM, where the blue dots represent the normal data and red dots 
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represent the abnormal data. The support vectors are labelled by green circles while 

the fitted hyperplane is demonstrated in gradient colour. The function of the fitted 

hyperplane is expressed as 

𝑧 = 51.68 + 1.382𝑥 − 41.55𝑦 − 4.574𝑥4 + 28.84𝑥𝑦 + 17.82y4         (5-16)                                                                                 

where x, y are the wind speed and active power respectively. The coefficient of 

determination 𝑟4 is used to evaluate the accuracy of the fitting and the value of this 

fitted plane is 0.8605.  

 

Figure 5.6 Normal-abnormal data classification using KSVM in the hyper dimension 

During this process, 70% of the data were used as the training set and 30% of the 

data were used for the validation. The validation result is displayed in Figure 5.7 

and 5.8. In Figure 5.7, the normal data classified as normal are shown in blue dots 

while the normal data classified as alarm are shown in blue crosses; the alarm data 

classified as alarm are shown in red dots and alarm data classified as normal data 

are shown in red crosses. Figure 5.8 shows the confusion map of the normal-alarm 

classification result, which is used to evaluate the performance of the algorithm. The 

white areas show rates of both normal and alarm data were predicted correctly and 

the yellow areas show the misclassified data. As can be observed from the figure, 

the predicted normal data has reached 99.9% true and alarm data has reached 90.9% 

true, leading to a total accuracy of 99.4%. 
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Figure 5.7 Normal-abnormal classification result 
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Abnormal 9.1% 90.9% 
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Figure 5.8 Confusion map of normal-abnormal classification result 

5.3.3 Alarm-fault classification using SCADA data 

After the procedure of normal-alarm classification, the alarm-fault classification is 

then processed. The fault data contained in abnormal data was selected in another 

group and model with other non-fault alarms.  

Figure. 5.9 shows the alarm-fault classification in the relationship between wind 

speed and active power. The blue dots represent alarm signals and red dots represent 

for fault signals. The support vectors are labelled in the green circle and the 

classification hyperplane is fitted as 

𝑧 = 68.2 + 14.47𝑥 − 16.24𝑦 + 6.274𝑥4 + 8.044𝑥𝑦 − 8.719y4          (5-17) 

where x, y are the wind speed and active power. The 𝑟4 of the fitted plane is 0.7639.  
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Figure 5.9 Alarm-fault classification using KSVM in hyper dimension 

 

Figure 5.10 Alarm-fault classification result 

Figure 5.10 and 5.11 give the validation result of the alarm-fault classification 

model. The accuracy of alarm-fault classification model is also evaluated by the 

confusion map. It can be seen from the figure that it reached 100.0% accuracy on 

alarm signal classification and 95.4% accuracy on fault signal classification. The 

total accuracy on alarm-fault classification has reached 99.3%. 
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Figure 5.11 Confusion map of alarm-fault classification result 

5.3.4 SCADA based classification comparison with other methods 

Table 5.2 Classification results for the faulty turbines based on three different data 
selection methods 

 
Normal-
abnormal 

classification 

Normal-
abnormal 

classification 
Gearbox bearing fault 
turbine with method 1 0.997 0.963 

Gearbox bearing fault 
turbine with method 2 0.998 0.986 

Generator winding fault 
turbine with method 1 0.969 0.931 

Generator winding fault 
turbine with method 2 0.973 0.762 

Generator winding fault 
turbine with  method 3 0.936 0.857 

In order to examine the robustness of the proposed methods, more turbines are tested 

with different SCADA data selection methods. It can be observed from the Table 

5.2 that the performances of the turbine with generator winding fault are not as good 

as the turbine with gearbox bearing fault. This might be due to the insufficient 

samples acquired from alarm and fault signals. It can be believed that if the amount 

of abnormal data increases, the classification model accuracy can be improved 

further. 

5.3.5 Monitoring variable selection of simulation data 

As described in chapter 3, two types of faults were simulated. A three-phase short-

circuit fault was generated first. 
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Figure 5.12 Simulated DFIG WT three-phase short circuit fault 

Figure 5.12 shows the simulation results for the DFIG WT three-phase short-circuit 

fault. From top to bottom, it presents the input wind speed, pitch angle of the blade, 

torque of the turbine, generator speed, voltage of the DC link, current of the DC link, 

active and reactive power of the turbine, RMS voltages at two different locations, 

and RMS currents at two different locations. The simulation was run for 20 s. The 

fault was injected at 7 s and ended at 10 s. The data of WT starting up period (t < 5 

s) were neglected, and the figure only shows the time period between 5 and 20 s. 

After the original data were acquired and the power output was removed, 10 variables 

remained for further data dimension reduction. All data samples related to the fault 

were selected and processed using KPCA. To select the appropriate PCs, the 
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variance contributions of the PCs were calculated and sorted in descending order, as 

shown in Table 5.3. Therefore, 16 PCs were selected to satisfy the requirement of 

an accumulated variance contribution of 85%. 

Table 5.3 Variance contribution of the PCs for a three-phase short-circuit fault 

PCs 1 2 3 4 5 
Contribution% 70.35 29.61 0.02 0.02 0.0011 

PCs 6 7 8 9 10 
Contribution% 0.000441 0.00000713 1.26E-07 3.48E-46 0 

As indicated by the table, the first two PCs already satisfy the requirement of 

variance contribution in this circumstance; they are the 25-kV bus voltage and 575-

V bus current. Hence, the KSVM modelling is based on these two monitoring 

variables.  

A capacitor breakdown fault was generated to test the accuracy of the proposed 

model. Figure 5.13 shows the simulation results for the DFIG WT capacitor 

breakdown fault.  

Similar to the three-phase short-circuit fault simulation, the capacitor breakdown 

fault was simulated for 20 s, and the fault was injected at 7 s. The figure shows only 

the time period between 5 and 20 s. Similarly, 10 variables and their variance 

contributions are presented in Table 5.4. As shown, the first two PCs already satisfy 

the requirement of variance contribution, with an accumulated contribution of >85%. 

Because the PCs were obtained from the same system, the order of the calculated 

PCs was similar to that reported previously. The 25-kV bus voltage and 575-V bus 

current were selected for further classification modelling. 
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Figure 5.13 Simulated DFIG WT capacitor breakdown fault 

Table 5.4 Variance contributions of the PCs for the capacitor breakdown fault 

PCs 1 2 3 4 5 
Contribution% 77.72 20.09 0.1338 0.0521 3.11E-05 

PCs 6 7 8 9 10 
Contribution% 4.66E-06 1.58E-07 7.77E-10 2.11E-11 0 
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5.3.6 Normal-fault condition classification using simulation data 

 

Figure 5.14 Classification results for the DFIG WT three-phase short-circuit fault 

Because the simulation model cannot provide alarm signals, the classification model 

was only tested in normal-fault condition classification. Figures 5.14 and 5.15 show 

the classification results for the DFIG WT three-phase short-circuit fault and 

capacitor breakdown fault. Instead using hyper dimension to demonstrate results, 

time-series data are used in this chapter to show the capability of KSVM in solving 

time-series data. Because of the limitation of the computer, only limited data can be 

simulated. The data in the time period are indicated by the red crosses. As indicated 

by the figures, faulty time periods were distinguished.  
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Figure 5.15 Classification results for the DFIG WT capacitor breakdown fault 

To further study the accuracy of the proposed classification model, a confusion 

matrix was created. Figure 5.16 presents the validation results for the three-phase 

short-circuit fault. As shown, the fault classification accuracy reached 100.0%. 

However, approximately 0.2% of the normal data were misclassified as abnormal 

data. The overall accuracy of three-phase short-circuit fault classification was 

99.9%. Figure 5.17 shows the validation results for the three-phase short-circuit 

fault. Similar to the three-phase short-circuit fault classification, the capacitor 

breakdown fault classification accuracy reached 100%. The normal classification 

accuracy was slightly lower (99.3%). The total accuracy of capacitor breakdown 

fault classification was 99.7%. 
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Figure 5.16 Confusion map of three-phase short circuit fault classification results 
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Figure 5.17 Confusion map of capacitor breakdown fault classification results 

5.4 Summary 

With these alarm signals being identified, the fault can be warned at an early stage, 

which leaves sufficient time for maintenance scheduling. According to the results, 

it can be concluded that the accumulated variance of the PCs can be regarded as the 

most significant factor by selecting PCs of the monitoring variables. Compared with 

other ML algorithms, the SVM has its strength on solving the two-group 

classification problem. Compared with the decision tree and discriminant analysis 

algorithms, the SVM demonstrates more accurate results. In terms of sample data 

selection, the turbine, which has large amount of abnormal data, shows a better 

classification performance, indicating the influence of the sample selection. The 

KPCA can reduce the dimension in an acceptable range while the KSVM 

demonstrates excellent results for the two-stage classification. Further work will be 

focused on examination of the proposed approach incorporating with deep learning 

algorithms and verification of the results with more data from both simulations and 

physical test rig.  
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Chapter 6. A hybrid 
LSTM-KLD approach to 
condition monitoring of 
operational wind turbines 

This chapter presents a novel ML model-based data-driven approach to 

accurately evaluate the performance of the turbines and diagnose the faults. The 

approach is based on LSTM incorporating a statistical tool named KLD. The 

hybrid LSTM-KLD method has been applied to two faulty WTs with gearbox 

bearing fault and generator winding fault respectively for fault detection and 

identification. The proposed method is then compared with three other well-

established machine-learning algorithms to investigate its superiority. The results 

show that the proposed method can produce a more effective detection with 

accuracy reaching 94% and 92% for the turbines, respectively. Furthermore, the 

proposed method can effectively distinguish the alarms from the faults, from which 

the distinguished alarms can be considered as an early warning of the fault 

occurrence. 
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6.1 Introduction 
In this chapter, a novel condition monitoring approach is presented based on a deep 

learning algorithm incorporating a statistic tool to estimate the operating condition 

of WTs. Multiple monitoring variables that contribute to the specific subsystems are 

taken into consideration to improve the reliability of fault diagnosis. Besides, the 

alarms are also fully used as significant evidence to support diagnostic results. 

Specifically, the LSTM is adopted to achieve the behaviour prediction of the key 

subsystems and then the KLD is employed to detect the fault by comparing 

probability distributions of the variables over the time. In the end, the monitoring 

data can be classified as normal, fault, true alarm and false alarm while the severity 

of the fault is also evaluated. 

6.2 Methodologies 
The LSTM algorithm was first proposed in 1995 by Sepp Hochreiter and Jurgen 

Schmidhuber [184]. It is a type of deep learning algorithm whose structure is 

implemented based on RNN. Unlike other regression based ML algorithms, the cell 

memory of LSTM can preserve the hidden state through time, while, in the 

meantime, adding new information. The KLD used in this paper is also called 

relative entropy, which has been applied as a measure of data representativeness. 

The KLD is a statistical tool developed to measure difference between two 

probability density distributions. It has been widely used in neuroscience and ML 

due to its ability in characterising relative entropy in information systems [173]. 

6.2.1 Long-short term memory 

As mentioned, LSTM is developed based on RNN in order to solve the vanishing 

gradient problem. The feedback loops are embedded in every recurrent layer of the 

RNN, and thus the information can be preserved. However, with the increasing 

feedback loops in RNN, the gradient of the loss function decays exponentially with 

time. Compared to RNN, the LSTM has four interacting layers (cell state, forget 

gate, input gate and output gate) inside a LSTM cell [185], where, except for the 

standard units of RNN, a set of cell states and gates are added to control which 

memory should be stored. With this structure, the gradient decent problem of RNN 
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is solved and “long-term memory” is achieved. The overall structure of the LSTM 

is illustrated in Figure 6.1. 

 

Figure 6.1 Schematic diagram of the LSTM structure 

At time step t, the LSTM cell has an input vector [ht-1, Xt]. The new cell state, denoted 

by Ct, and the new output, denoted by ht, inherit information from former states (Ct-1 and 

ht-1) and are transmitted to the next cell at time step t+1. The output ht of the cell is 

determined by the current input Xt  and the previous outputs ht-1, ht-2, while the cell state 

Ct can preserve information to flow forward without any losses. The gates in a LSTM cell 

include a forget gate (f), an input gate (i), and an output gate (O). The forget gate 

determines what information will be added (or forgot) to the cell state Ct-1 when new input 

enters the network. The input gate decides what new information from the input will be 

updated into the cell state. The output gate decides what information updated in the cell 

state is sent to the network as input for next time step t+1, as represented by ht.  

Mathematically, the output ft of the forget gate is given by  

𝑓& = σ(𝑊"	⨀[ℎ&,(, 𝑋&] + 𝑏")                                                      (6-1) 

where σ is the sigmoid activation function; Wf  and bf  are the weight and bias of the forget 

gate, respectively, and the operator ⨀ denotes element-wise multiplication. The output of 

the sigmoid function is a value between 0 and 1, with 0 representing to forget this value 

and 1 representing to preserve this value. 

Two activation functions are then used to decide which information to be stored in the 

cell. The sigmoid function σ at the input gate is used to decide which information to 
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update while the hyperbolic tangent (tanh) function is used to decide what new 

information to add to the cell state denoted by 𝐶�&.  

𝑖& = 𝜎(𝑊;⨀[ℎ&,(, 𝑋&] + 𝑏;)                                              (6-2) 

𝐶�& = 𝑡𝑎𝑛ℎ	(𝑊Q⨀[ℎ&,(, 𝑋&] + 𝑏Q)	                                       (6-3) 

where 𝑖&	is the output of the input gate; Wi and bi are the weight and bias of the input gate 

whereas WC and bC are the weight and bias of the tanh function, respectively. 

This leads to the cell state Ct from Ct-1 by computing the function below.  

𝐶& = 𝐶&,(𝑓& + 𝑖&𝐶�& = 𝐶&,(𝑓& + 𝑡𝑎𝑛ℎ	(𝑊Q⨀[ℎ&,(, 𝑋&] + 𝑏Q)𝑖&           (6-4) 

Then the LSTM cell is to compute the output 𝑂&	of the output gate by computing the 

following function. 

𝑂& = 𝜎(𝑊R⨀[ℎ&,(, 𝑋&] + 𝑏R)                                        (6-5) 

where WO and bO are the weight and bias of the output gate, respectively. The sigmoid 

function σ in Equation (6-5) is used to decide which part of the cell state should be 

outputted.  

The last step is to compute the output ht of the cell, as described below. 

ℎ& = 𝑂&tanh	(𝐶&)                                                 (6-6) 

where the tanh function is used to fit the output value in the range between 0 and 1. 

The vanishing gradient problem in LSTM is solved by back-propagation. The gradient is 

calculated through back propagation along time using the chain rule. With all gradients 

calculated according to the corresponding error term (loss function), the weights 

associated with input gate, output gate, and forget gate are updated. More details about 

the back-propagation process of the LSTM can be refereed in the literature [186]. 

Compared to other ML algorithms such as CNN and DBN, one of the significant 

advantages of LSTM is that it can link the previous information to the current state. 

LSTM is a time related RNN, suitable for processing and predicting important events 

with relatively long time intervals and delays in time series. Many researches have 
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employed LSTM and proved that it has advantages in solving time-series data 

especially for predicting performance of the rotating machinery components [187-

189]. Hence, LSTM is chosen as the data modelling method in our study. 

6.2.2 Hybrid method incorporating LSTM and KLD 

To implement the proposed model, four steps are required following pre-processing 

of the raw data, as illustrated in Figure 6.2. First, wind speed and active power output 

are selected as the model inputs, while temperature and pressure variables, which 

reflect the operation condition of the subsystem as a whole, are selected as the target 

output. The LSTM model is then built based on those variables. To train the LSTM 

model, the size of training dataset is vital, which is trade-off between the prediction 

performance and computation time. Small datasets can ease computation complexity 

but likely overfit the training data, resulting in poor performance. Larger datasets 

can help better learn model parameters but the dataset may be over-representative 

of the problem along with high computation demand. In our study, ten days’ data 

(1440 points per variable considering ten-minute interval of SCADA measurements) 

are used to train the model. The data are then predicted on a daily basis, i.e., by 

sliding window with 24 hours, continuously for 30 days to ensure the modelling 

accuracy. It was found that increasing the training dataset size does not have 

significant improvement on the performance in our study. The probability density 

distributions of prediction data and original data are then calculated respectively. 

The third step is to evaluate the discrimination between the prediction and the real 

data in terms of their KLD values. Note that daily data are considered to calculate 

the probability density distribution. The prediction values are considered as the 

condition at which the turbine supposes to operate while the measurement data 

represent the real operation condition of the turbine. Their difference can be 

evaluated by KLD and a larger KLD value represents a worse condition of the 

turbine. Finally, the normal, alarm and fault conditions are distinguished by 

introducing a two-level threshold strategy of the KLD values, which are defined as 

fault-free condition (H0) and fault condition (H1).  

The probability density function of the KLD can be described as: 

𝑓(𝑥) = (
H√4T

𝑒,(,@,UVW3)+/4H+ 																																											(6-7)      
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where KLDM and std are the mean value and standard deviation of the KLD, 

respectively. 

 

Figure 6.2 Structure of the proposed LSTM-KLD fault diagnosis method 

Referring to [190], to determine the thresholds, a normal value probability (PNV) and 

an alarm value probability (PAV) are adopted here. The PNV and PAV can be calculated 

from the error function (6-8) of the KLD: 

𝑒𝑟𝑓 = 4
√T
∫ 𝑒,&+𝑑𝑡@
#                                           (6-8) 

𝑃$Y = 0.5(1 + erf h6,UVW3"
H"√4

k)                                  (6-9) 

Raw time- 
series data

Pre-Processing 
data

LSTM
cell

LSTM
cell

LSTM
cell

Xt-1

LSTM
cell

Xt+1

Ct
ht

Ct-1
ht-1

... ...

Xf
Input layer

Hidden layer ht-1 ht ht+1 hf

Xt

Output layer

Prediction

Probability 
density 

distributions

Prediction dataOriginal data

LSTM

KLD calculation
KLD value

Decision making Fault-free Alarm Fault

Threshold

KLD

Ot

...



Chapter 6. A hybrid LSTM-KLD approach to condition monitoring of operational wind turbines 

Yueqi Wu – January 2022   115 

𝑃ZY = 1 − 0.5(1 + erf h6,UVW31
H1√4

k)                                 (6-10) 

where KLDM0, std0, KLDM1 and std1 are the mean and standard deviation values at two 

different conditions. By combining Equations (6-9) and (6-10), a COST function can be 

formed to evaluate the performance of the thresholds. 

COST = PNV + PAV                                               (13) 

The optimal thresholds are chosen when the COST reaches its minimum [191] at 

which both PNV and PAV are minimum as well. The threshold H0 is determined when 

KLDM=KLDM0 with a corresponding standard deviation of std 0. It indicates the system is 

in a normal condition. When KLDM=KLDM1 and std = std 1, the system is in an alarm 

condition. The data lower than H0 are considered as normal condition while the data 

higher than H1 are considered as faulty condition. The calculated KLD values between 

H0 and H1 are considered as alarm condition. Examples of these thresholds for specific 

subsystems of the faulty turbines will be given in the subsequent section. 

6.3 Case studies 

6.3.1 Case 1: Gearbox fault 

The first subsystem to be studied is the gearbox that is used to transmit kinetic power 

to the generator from the rotor. The WT torque control is made based on the gearbox 

by adjusting the rotation speed and torque accordingly. The two common faults 

associated with the gearbox are bearing and gear teeth faults. The unpredictable wind 

profiles can cause rapid changes of the torque, which may lead to misalignment of 

the gear teeth and uneven load for the bearing. Besides, the failure of the gearbox 

cooling system can also result in failures of bearing and gear teeth [184]. The 

gearbox under our study has 6 monitoring variables, including gearbox bearing 

temperature 1 at the main speed shaft bearing connected to the rotor, gearbox oil 

pressure, gearbox oil heat exchanger output temperature, gearbox oil sump 

temperature, gearbox oil pressure behind pump, and gearbox bearing temperature 2 

at the high-speed shaft connected to the generator. To improve the diagnosis 

accuracy, all these six monitoring variables are analysed. 
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Figure 6.3 Prediction result during gearbox fault time 

Figure 6.3 gives an example of the prediction result of the gearbox bearing 

temperature 1 as compared with the real measurements from 30 days, i.e., 4320 data 

samples, where the faulty time period of 10 days is circled in red. Because the 

prediction model is trained based on healthy data, the predicted results therefore can 

represent the performance of the target subsystem under fault-free condition. It can 

be observed from the figure that the predicted temperature is lower than the 

measured temperature during the fault time. The probability density distributions of 

both predicted and measured data are shown in Figure 6.4, where the KLD value 

indicating overall divergence of the two probability density distributions is 7.2893. 

Note that only 10-days data are shown in the Figure 6.4, focusing on the period of 

fault occurrence. 

Table 6.1 Thresholds of the gearbox components 

Threshold 

Gearbox 
bearing  

temperature 
1 (°C) 

Gearbox oil  
pressure 

(bar) 

Gearbox oil  
heat 

exchanger  
output  

temperature  
(°C) 

Gearbox oil 
sump  

temperature 
(°C) 

Gearbox  
oil 

pressure 
behind 
pump 
(bar) 

Gearbox 
bearing 

temperature 
2 

(°C) 

H0 0.3188 0.3477 0.5462 0.1197 0.1838 0.3381 
H1 1.9212 4.3833 3.0523 2.3068 4.2164 1.9404 
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Figure 6.4 Probability density distributions of predicted and measured data of gearbox 
bearing temperature 1 

The predicted data of all six variables are compared with measured data on a daily 

basis to calculate the KLD between them. The performance of the gearbox is shown 

in Figure 6.5, where the components 1-6 represent gearbox bearing temperature 1, 

gearbox oil pressure, gearbox oil heat exchanger output temperature, gearbox oil 

sump temperature, gearbox oil pressure behind pump, and gearbox bearing 

temperature 2, respectively. The fault index is measured in terms of KLD. The 

corresponding thresholds H0 and H1 for each component are also displayed in the 

figure to determine whether there is a fault or just alarms. Table 6.1 gives the 

thresholds associated with each component of the gearbox. 

Figure 6.5 shows that all the components are working normally for the first 5 days 

and alarms occur frequently since day 6. By checking the alarm logs, it is found that 

both false alarms and true alarms were triggered accordingly. The alarm named 

“Gearbox oil sump high temperature warning” and “Gearbox oil sump stop” were 

triggered before the fault occurrence. The two alarms clearly indicated the gearbox 

malfunction and therefore considered as true alarms. Thus the proposed method can 

give early warning of the fault 5 days in advance. After day 10, the gearbox bearing 

temperature 2 exhibited the first fault behaviour which were then propagated to other 

gearbox components in the following days. In day 16, all the gearbox components 

presented temporally normal behaviour due to the decreased wind speed. With the 

fault severity increased, the fault index reached its maximum on day 18. Overall, the 
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fault lasted for ten days with a high fault index appearing on all components. Since 

all the faulty components related to temperature or oil pressure, it can be concluded 

that the fault occurred in the cooling system of the gearbox. The pressure sensors 

are usually installed at the end of the filter whereas the temperature sensors are 

installed in the oil sump to monitor the temperature of the lubricating oil. With the 

dysfunction of the cooling system, the heat cannot be dissipated actively, thus 

leading to further damage of the gearbox due to the fault. 

 

Figure 6.5 Fault index in terms of KLD of the gearbox variables 

6.3.2 Case 2: Generator fault 

The second subsystem to be studied is the generator that plays a key role in WT 

operation and produces electric power by converting the rotation mechanical power. 

The most common fault occurring in the generator is associated with the generator 

winding fault. This can be caused by phase-to-phase fault, phase to earth fault, or by 

additional thermal and mechanical stresses on the machine winding resulting from 

these electrical faults. The fault in the generator usually results in rising of generator 

temperatures. The generator under our study also has 6 monitoring variables, 

including generator stator top side temperature, generator stator bottom side 

temperature, generator bearing temperature phase A, generator bearing temperature 

phase B, generator cooling water advance temperature, and generator cooling water 

return temperature. Temperature sensors are embedded within the winding to 

monitor top and bottom side temperatures of the generator stator whereas bearing 
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temperature sensors are normally fitted to the bearing cartridge to monitor the 

temperatures of the generator bearings. Temperature sensors are also installed on 

the two ends of the cooling water system to monitor the temperatures of cooling 

water.  

 

Figure 6.6 Prediction result during generator fault time 

 

Figure 6.7 Probability density distributions of predicted and measured data for top side 
temperature of the generator stator 

As an example, Figure 6.6 shows predicted and measured values of the generator 

stator top side temperature from 30 days, i.e., 4320 data samples, where the faulty 

time period of 3 days is circled in red. Clearly the measured temperature is different 

from the predicted one during this faulty time period, indicating that the component 
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experienced abnormal behaviour. As can be seen from the figure, the temperature is 

normally around 52° and there are several large spikes in the temperature. The 

occurrence of these temperature spikes are due to larger wind speeds and hence the 

higher power output during these time periods, as indicated from investigation of 

the SCADA data. The probability density distributions of measurement and 

prediction values are shown in Figure 6.7, where the KLD of these two distributions 

is 16.1747. Note that only 3-days data are shown in the Figure 6.7, focusing on the 

period of fault occurrence.  

 

Figure 6.8 Fault index in terms of KLD of the generator variables 

Table 6.2 Thresholds of generator components 

Threshold 

Generator 
topside 

temperature 
(°C) 

Generator 
bottom side 
temperature 

(°C) 

Generator 
bearing 
phase A 

temperature  
(°C) 

Generator 
bearing 
phase B 

temperature 
(°C) 

Generator 
cooling 
water 

advance 
temperature 

(°C) 

Generator 
cooling 

water return 
temperature 

(°C) 

H0 0.4377 0.0088 0.2865 0.7004 0.0861 0.4322 
H1 1.3135 0.1199 1.3505 2.9033 0.9223 2.6808 

Figure 6.8 demonstrates behaviour of these generator components during one month 

in terms of KLD values (i.e., fault index). Table.6.2 gives the thresholds associated 

with each component of the generator. For the first three days, the generator operated 

normally since all the KLD of the monitoring variables were below H0. Alarms were 

triggered after day 3. Having checked SCADA alarm logs, it is found that the 

“Machine interface high temperature warning” alarm was triggered several times 
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before the fault occurrence, which also confirm that the predicted alarms are correct. 

On day 10, all fault indices raised to a comprehensive high level, where the two 

highest indices represent generator stator top side temperature and generator stator 

bottom side temperature, respectively. This verifies that the fault happens on the 

generator winding, which lasted for three days before being fixed by maintenance 

and then returned to fault free condition. 

6.4 Performance evaluation 

It is clear that the proposed method can distinguish the normal, alarm and fault states 

of the operating turbines. To further test the accuracy and effectiveness of the hybrid 

method, dataset size will be extended to 100 days. The proposed LSTM-KLD will 

be compared with three other well-established machine-learning algorithms 

combined with KLD, which are SVM-KLD, CNN-KLD and DBN-KLD, 

respectively. The implementation of these hybrid methods are shown in Figure 6.9, 

where the steps of these hybrid methods are essentially same. Only the SVM, CNN 

and DBN are used to replace the LSTM to produce the prediction results, which are 

then incorporated with KLD to calculate the fault index. 

 

Figure 6.9 Schematic diagram of the hybrid method implementation 
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LSTM-
KLD   Normal Alarm Fault  

Actual 
Class 

Normal 
60 4 0  

93.80% 6.20% 0.00%  

Alarm 
0 24 1  

0.00% 96.00% 4.00%  

Fault 
1 0 10  

9.10% 0.00% 90.90%  

   Prediction class (a) 

      
SVM-
KLD   Normal Alarm Fault  

Actual 
Class 

Normal 
58 6 0  

90.60% 9.40% 0.00%  

Alarm 
0 22 3  

0.00% 88.00% 12.00%  

Fault 
0 1 10 

90.90% 

 

0.00% 9.10%  

   Prediction class (b) 

      
CNN-
KLD   Normal Alarm Fault  

Actual 
Class 

Normal 
58 6 0  

90.60% 9.40% 0.00%  

Alarm 
2 19 4  

8.00% 76.00% 16.00%  

Fault 
0 0 11 

100.00% 

 

0.00% 0.00%  

   Prediction class (c) 

      
DBN-
KLD   Normal Alarm Fault  

Actual 
Class 

Normal 
28 34 2  

43.80% 53.10% 3.10%  

Alarm 
0 16 9  

0.00% 64.00% 36.00%  

Fault 
0 0 11 

100.00% 

 

0.00% 0.00%  

   Prediction class (d) 

 

Figure 6.10 Confusion matrices from four hybrid models for gearbox diagnosis (a) 
LSTM-KLD; (b) SVM-KLD; (c) CNN-KLD; (d) DBN-KLD 
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The performances of those four hybrid methods are evaluated by a confusion matrix 

to determine the accuracy rate when classifying normal, alarm and fault data. As is 

well known, the confusion matrix is also called as the error matrix, which is often 

used for solving classification issues [192]. It is essentially a visualised table 

showing the performance of a classification algorithm, where the rows of the 

confusion matrix show the prediction results while the columns show the actual data 

class [192]. For a confusion matrix, there are four main categories representing true 

positive, false positive, true negative and false negative. In this specific application, 

true positive indicates that the normal condition data are categorised correctly 

whereas false positive indicates that alarms and fault data are mistakenly considered 

as normal. True negative means the alarm and fault are classified precisely whereas 

the false negative shows how many normal data are mistakenly considered as alarm 

or fault data. By combing the true positive rate and true negative rate, the accuracy 

of the method is thus obtained. The decision of each class is made on a daily basis 

due to requirement of KLD calculation as mentioned previously. Hence, 100 

decisions are made for confusion matrix evaluation. 

Table 6.3 The overall accuracy of four hybrid methods for gearbox fault diagnosis 

Accuracy LSTM-KLD SVM-KLD CNN-KLD DBN-KLD 
TRUE 94% 90% 88% 55% 
FALSE 6% 10% 12% 45% 

Figure 6.10 and Table 6.3 shows confusion matrices and the overall accuracy of 

these hybrid methods for gearbox fault diagnosis, respectively. The true positive rate 

can be obtained by using the correct predictions divided by total samples available 

in the same row. For example, the true positive rate of the proposed LSTM-KLD can 

be calculated as 60/ (60+4) = 93.8% whereas the true negative rate for alarm and 

fault are 96% and 90.9%, respectively. Clearly, the LSTM-KLD outperforms three 

other hybrid methods. 

Likewise, Figure 6.11 and Table 6.4 show confusion matrices and the overall 

accuracy of four hybrid methods for generator winding fault diagnosis, respectively. 

Again, the LSTM-KLD outperforms three other hybrid methods. 
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LSTM-
KLD   Normal Alarm Fault  

Actual 
Class 

Normal 
64 6 1  

90.10% 8.50% 1.40%  

Alarm 
0 25 1  

0.00% 96.20% 3.80%  

Fault 
0 0 3  

0.00% 0.00% 100.00%  

   Prediction class (a) 

      
SVM-
KLD   Normal Alarm Fault  

Actual 
Class 

Normal 
62 8 1  

87.30% 11.30% 1.40%  

Alarm 
0 25 1  

0.00% 96.20% 3.80%  

Fault 
0 0 3 

100.00% 

 

0.00% 0.00%  

   Prediction class (b) 

      
CNN-
KLD   Normal Alarm Fault  

Actual 
Class 

Normal 
64 7 0  

90.10% 9.90% 0.00%  

Alarm 
0 23 3  

0.00% 88.50% 11.50%  

Fault 
0 0 3 

100.00% 

 

0.00% 0.00%  

   Prediction class (c) 

      
DBN-
KLD   Normal Alarm Fault  

Actual 
Class 

Normal 
40 23 8  

56.30% 32.40% 11.30%  

Alarm 
0 18 8  

0.00% 69.20% 30.80%  

Fault 
0 0 3 

100.00% 

 

0.00% 0.00%  

   Prediction class (d) 

Figure 6.11 Confusion matrices from four hybrid models for generator winding 
diagnosis (a) LSTM-KLD; (b) SVM-KLD; (c) CNN-KLD; (d) DBN-KLD 
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The computation time of the four hybrid methods is also compared to evaluate the 

efficiency of the proposed method. The programmes are run on MATLAB R2018a 

under the computer with Intel R Core ™ i7- 6820 HK CPU @ 2.70GHz and 16.0 GB 

RAM. The GPU acceleration was disabled during the training process. The 

computation process includes training process and judgement process. The training 

processing is completed by the ML algorithms whereas the judgement process is 

completed by KLD. The four methods are run 10 times each on both faulty turbines 

and the average time is listed in Table 6.5. As can be seen from the table, the SVM-

KLD consumes the shortest computation time since SVM relies only on the kernel 

function. The other three methods are essentially deep-learning algorithms and 

possess a much more complex structure in comparison to the SVM. Thus, those three 

methods consume a longer computation time, among which the LSTM-KLD clearly 

consumes shortest computation time. 

Table 6.4 The overall accuracy of four hybrid methods for generator winding fault 
diagnosis 

Accuracy LSTM-KLD SVM-KLD CNN-KLD DBN-KLD 
TRUE 92% 90% 90% 61% 
FALSE 8% 10% 10% 39% 

Table 6.5 Average computation time required from four hybrid methods for fault 
diagnosis 

Computation time LSTM-KLD SVM-KLD CNN-KLD DBN-KLD 
Training (s) 167.536 32.101 306.808 279.027 

Judgement (s) 21.683 12.994 21.148 27.495 

6.5 Summary 

This paper presents a novel WTCM approach by a hybrid method of LSTM and 

KLD. The effectiveness of the proposed method has been evaluated and validated 

by SCADA data acquired from an operational wind farm. Two case studies are 

carried out to detect gearbox bearing fault and generator winding fault respectively 

from the turbines. In order to improve the reliability of diagnostic results, multiple 

monitoring variables relating to the specific WT subsystem are analysed. The 

probability density distributions of the measured data and the predicted data are 

compared and calculated in order to bring a first intuitive impression of the health 

condition of the turbine subsystem. The KLD values are calculated and used as a 

fault index to quantify the fault severity of the turbines. By cross-checking the 
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predicted alarms and SCADA alarm logs, an early warning of the fault can be 

detected 5 days in advance. In order to further evaluate the performance and 

effectiveness, the proposed LSTM-KLD is compared with three other ML algorithms 

combined with KLD and the results prove superiority of the LSTM-KLD method.  

The results demonstrate that the proposed data-driven model-based approach is 

accurate and sensitive for fault detection. It is capable of identifying different faults 

occurring in the different WT subsystems. With the proposed method, normal, alarm, 

fault conditions can be clearly distinguished, thus enhancing detection robustness. 

The results also show that the LSTM-KLD requires a shortest computation time in 

comparison to other deep learning approaches. Furthermore, by adopting the 

proposed method, the false alarm rate from the SCADA system is reduced, thus 

improving the diagnosis confidence. Future work will focus on the datasets with 

higher sampling rate to reveal fault dynamics and hence the fault mechanism. This 

method can also be extended to detect early faults of other WT subsystems and 

components. 
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Chapter 7. Wind turbine 
power conversion test rig 
design and experiments 

This chapter presents the design of WT power conversion test rig. The test 

rig is used to simulate various operation conditions including different kinds of 

faults. The experiments procedures and results are also presented in this chapter. 

The data obtained from the test rig with high sampling frequency at 1 kHz are then 

used to validate the condition monitoring algorithms and models proposed in the 

previous chapters.  

 

 

 

  



Advanced data-driven modelling approaches to alarm-related fault detection and condition monitoring of 
wind turbines 

128  Yueqi Wu – January 2022 

7.1 Description of the power conversion test rig 
Because the electrical system has the highest failure rate among all subsystems of 

the WT, it is necessary to understand the mechanism of the WT power conversion 

unit [193]. A power conversion test rig was built to simulate the dynamic operation 

of a WT under different operating conditions. Measurement data were thus acquired 

and used for analysis. Compared to SCADA data acquired from an operational wind 

farm, the measurement data had a much higher sampling frequency. In addition, the 

data could also simulate various types of faults. This is significant for condition 

monitoring because the transient behaviour that occurs during the faults may be lost 

when the sampling rate is low. Existing SCADA data contain only limited types of 

faults, which is not ideal for fault diagnosis modelling. Compared with the 

MATLAB simulation results, the experimental results were more realistic because 

the computer simulation was based on the mathematical model of a WT, which may 

not be suitable for practical conditions. For example, the virtual grounding in the 

simulation has completely different behaviour with experiment test rig. Therefore, 

it is necessary to design and construct a WT power conversion unit.  

Owing to safety concerns, a miniaturised PMSG based power conversion unit was 

designed for the experiments. The overall topology and the major component list of 

the power conversion unit are shown in Figure 7.1 and Table 7.1, respectively. The 

test rig comprises six major modules: a phase conversion module, rectifier module, 

DC-link module, inverter module, load module, and signal conditioning module. The 

phase conversion module is connected to a signal generator to model the rotor-side 

power generation. The converted three-phase AC is then converted to DC by passing 

it through the rectifier module. The DC-link module is used to eliminate ripples from 

the converted DC and to store energy in the capacitors. The inverter module is used 

to convert DC into three-phase AC with the required phase and frequency. Finally, 

the three-phase resistive load is connected to deplete the electrical energy. All 

monitoring signals pass through the signal conditioning module to be converted into 

a certain voltage level that satisfies the data acquisition system. The control and data 

acquisition of the test rig were performed by the host computer. The computer 

communicated with a stand-alone field programmable gate array (FPGA) control 

system and a data acquisition card. Details of these modules are discussed in the 

following sections.  
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Table 7.1 Main components of the power conversion test rig 

Main functionality Components 

Rotor side simulation Signal generator 
Phase converter 

Rectifier module IGBT driver 
IGBT module 

DC-link DC filter  
DC-link capacitor 

Inverter module 
Voltage booster 

IGBT driver 
IGBT module 

Load module LC filter 
Passive resistive load bank 

Measurements and 
signal interface 

Current Transducers 
Signal conditioning modules 

National instrument data acquisition card 

Controller National instrument Compact Rio system 
Host computer 

Miscellaneous DC power supplies, circuit breakers and fuses 

7.1.1 Rotor-side modelling and power generation 

Owing to the limitations of the experiment, modelling of the mechanical rotation 

could not be implemented. Hence, a signal generator with a phase-shifter module 

was adapted to model the rotation of the rotor.  

 

Figure 7.2 Signal generator 
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Figure 7.3 Phase shifter circuit 

 

Figure 7.4 Phase shifter module 

The Thandar TG501 function generator shown in Figure 7.2 can generate signals at 

frequencies ranging from 0.005 Hz to 5 MHz with high quality at all frequencies 

levels. The sine, square, triangle, ramp, pulse, and haverwave signals can be 

Potentiometer Current sensorsCircuit breakers
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generated with a variable start/stop phase. The generated voltage level ranges from 

20 mV to 20 V peak-to-peak from 50 W, plus the transistor−transistor logic output. 

In the designed test bench, the function generator is used to generate a 50 Hz 

sinusoidal wave and is then connected to the phase shifter module, which can be 

seen in Figure 7.4. The phase shifter transforms a single-phase sine wave into three-

phase sine waves to simulate the behaviour of the rotor. Figure 7.3 shows the 

mechanism of the phase shifter. The phases and amplitudes of the three-phase sine 

waves can be varied using two potentiometers. Three circuit breakers were installed 

for circuit protection against faults.  

7.1.2 Rectifier module 

A rectifier module was used to convert the three-phase AC into DC. It consists of 

two main parts: an IGBT module and IGBT drivers.  

 

Figure 7.5 Rectifier module 

The core of the rectifier module is the IGBT module and its controller, as shown in 

Figure 7.5. The IGBT module consists of six IGBT gates, and each controller 

controls the shutdown states of two IGBT gates (one phase). The IGBT controllers 

are used as voltage booster producing maximum 25 Vp-p and 50 mA output current 

IGBT module 
(SK100GD073TD1)

IGBT controller 
(Skyper 12 R)
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to drive the IGBT modules. For cooling requirements, the IGBT module was 

installed on the back of the board to provide sufficient space for the heat sink and 

cooling fan. Figure 7.6 shows the topology of the IGBT module. 

The IGBT module used in this study was SK100GD073TD1 from Semikron with 

VCES 650 V and maximum power rating of 60.45 kW. As can be observed from the 

figure, each IGBT was connected in parallel with a diode. It has a rapid switching 

650 V diode technology that can satisfy experimental requirements. It can also 

handle a forward current of 105 A at 25 °C and 38.9 A at 150 °C. During the 

component selection process, all the parameters were set much higher than the 

experimental requirements to prevent potential damage, such as overflow current to 

the components. In addition to the electrical limitation, the temperature of the IGBT 

could be extremely high when operating under rated conditions. Hence, a heat sink 

and a cooling fan were required for the IGBT module.  

 

Figure 7.6 Rectifier structure 

In the rectifier, all IGBTs were set as open. In other words, the IGBTs were disabled, 

and diodes were used to rectify the three-phase sine wave. For the further experiment 

improvement, the IGBTs are used instead of the diode bridges. As shown in Figure. 

7.7, the conduction sequences of the diodes were D1D2, D2D3, D3D4, D4D5, D5D6, 

and D6D1, respectively, and the conduction angle for each diode was	2𝜋/3.  

Ideally, the average value of the output can be found using: 

A
B
C
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T5

T4 T6 T2
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𝑉)5 =
[
4T ∫ √34T/9

T/9 𝑉𝑠𝑖𝑛𝜃𝑑𝜃                                           (7-1) 

where V represents the input three phase voltage and Vdc represents the DC-link 

voltage. Or it be expressed as: 

𝑉)5 = 𝑉 9√9
T
= 1.654𝑉                                              (7-2) 

In addition, the current in each phase can be found using: 

𝐼:6E!1 = 𝐼�4
T
(T
[
+ √9

>
) = 0.78𝐼                                      (7-3) 

where I is the three phase line current. The RMS current through each diode is given 

by: 

𝐼);\)1 = 𝐼�(
T
(T
[
+ √9

>
) = 0.552𝐼                                    (7-4) 

where  𝐼 = 1.73𝑉/𝑅. 

 

Figure 7.7 Voltage and current waveforms of the three-phase full bridge rectifier [186] 

7.1.3 Capacitor bank 

The DC-link capacitor bank used in the test bench was used to eliminate ripples in 

the rectified DC voltage, as shown in Figure 7.8. To simulate different conditions of 
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the DC-link module, such as open circuit, short circuit, and capacitor fatigue, a total 

of eight capacitors were combined to achieve different capacitance values.  

 

 

Figure 7.8 Capacitor bank module 

In this design, two 3,900 μF, two 2,700 μF, two 1,000 μF, and two 470 μF, with 100 V 

rated voltage capacitors were used. Different capacitance combinations can be achieved 

by connecting the capacitors in parallel. According to the design, the maximum 

capacitance can reach (3,900 + 2,700 + 1,000 + 470) × 2 = 16,140	µF when all the 

capacitors are connected in the circuit. The minimum capacitance is 470 μF, and it results 

when only one 470 μF capacitor is connected. The capacitor bank can be disabled by 

connecting none of the capacitors to the circuit. A 5 W, 25 Ω resistor was also connected 

in parallel with the capacitors to limit the inrush current flow. The structure of the 

capacitor bank is shown in Figure 7.9.     
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Figure 7.9 Capacitor bank structure 

7.1.4 Inverter module 

Similar to the rectifier module, the inverter module consists mainly of one IGBT 

module and three IGBT drivers, as shown in Figure 7.10. A three-phase full-bridge 

inverter is used to convert the DC voltage into three-phase AC voltage.  

 

Figure 7.10 Inverter module 

IGBT module 
(SK100GD073TD1)

IGBT controller 
(Skyper 12 R)
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Figure 7.11 Inverter structure 

Figure 7.11 demonstrates the structure of the inverter. Sinusoidal pulse-width 

modulation (SPWM) is employed to convert DC to three-phase AC. The sinusoidal 

AC reference wave Vref was compared with a high-frequency triangular carrier wave 

Vc to determine the switching states for each IGBT. The switching states for each 

IGBT were determined using two rules [194]: 

• Vref > Vc, upper arm turned on. (Vupper=Vdc/2) 

• Vref > Vc, lower arm turned on. (Vlower=-Vdc/2) 

Here, the peak-to-peak voltage is given as the DC-link voltage Vdc. The SPWM 

technique for one phase is illustrated in Figure 7.12. 

 

Figure 7.12 SPWM generation for one phase 

The ratio of the wave amplitude to the triangular carrier wave amplitude is defined 

as the modulation index (ma). 

𝑚E =
Y45#
Y6

                                                      (7-5) 
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The ratio of the wave frequency to the triangular carrier wave frequency is defined 

as the frequency modulation index (mf). 

𝑚" =
"45#
"6

                                                      (7-6) 

The fundamental component of the output Vo changes linearly with the reference 

voltage Vref if the carrier frequency is sufficiently large compared to the fundamental 

frequency and can be expressed as: 

𝑉\ = 𝑉31"𝑠𝑖𝑛𝜔𝑡                                             (7-7) 

In terms of the modulation index, Equation (7-7) can be rewritten as: 

𝑉\ =
Y76
4
𝑚E𝑠𝑖𝑛𝜔𝑡                                          (7-8) 

 

Figure 7.13 SPWM signal for one IGBT gate 

Figure 7.13 shows an example of the SPWM modulation result for one IGBT gate 

when fref=50, fc=3,000, and ma=1.  

7.1.5 Resistive load module 

Figure 7.14 shows the resistive load module for the designed test bench, which 

dissipates the generated power.  
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Figure 7.14 Resistive load module 

On the input side of the module, a 10 mH inductor and 220 μF capacitor were used to 

build an LC low-pass filter to remove the harmonics and smooth the waveforms. The 

output of the LC filter is given as: 

𝑉\]& =
(

(,-+VQ
𝑉;A                                            (7-9) 

In addition, the cut-off frequency for the designed LC filter is: 

𝑓5]&,\"" =
(

4T√VQ
                                           (7-10) 

In the designed LC filter, the cut-off frequency is 107.3 Hz, which is 2−3 times the 

fundamental frequency. Thus, the harmonics can be effectively removed.  

Six 5 W, 25 Ω power resistors were used to model the function as a load. Each of the two 

resistors was connected in parallel in one phase to perform normal, open-circuit, and 

short-circuit fault analysis.  

7.1.6 Signal conditioning module 

Various sensors were installed on the test bench to collect data for monitoring the 

conditions. The AC voltage, AC current, DC voltage, DC current, and temperature 

of the IGBT modules were monitored on the test bench. However, as the acquired 

LC filter Current sensors

Circuit breakers

Resistive load

LED indicator
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signals may be too large for a data-acquisition system, the signal conditioning 

module is required to adjust the amplitude of the signals to an acceptable range for 

data acquisition.   

 

Figure 7.15 Signal conditioning module 

 

Figure 7.16 Example of signal conditioning circuit 

Figure 7.15 shows the signal conditioning module, and Figure 7.16 illustrates an 

example of a signal conditioning circuit. Non-inverting amplifiers are connected to 

vary the signal amplitude without changing the phase. A voltage follower is 

connected between the non-inverting amplifier and the data acquisition system to 

eliminate loading effects while maintaining the same voltage from the former side.   

7.1.7 Control and data acquisition system 

To design the control system of the test bench, National Instrument CompactRIO 

(NI CRio) hardware, NI C series modules, and LabVIEW 2014a were chosen for 

real-time signal generation. The control signals to the rectifier were set as high at 

all times, and SPWM was employed as the gate control of the inverter. Thus, 
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compared with the former SPWM wave generator, a new signal generator has been 

designed based on direct digital synthesis (DDS).  

 

Figure 7.17 Waveform lookup function for DDS generation [195] 

The control signal-producing algorithm consists of two parts: an accumulator and a 

waveform lookup table. The accumulator is a 32-bit counter that increases the 

current phase value by a specified increment. It also embeds a function that can 

synchronise multiple DDS generators. The waveform lookup portion of the DDS 

generator uses the current accumulator phase value to return the current waveform 

value from the reference waveform lookup table. In this design, a 2,048-sample 

reference waveform representing one cycle was implemented. Figure 7.17 

demonstrates an example of a lookup function for DDS generation.  

 

Figure 7.18 Control system interface 
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Figure 7.18 shows the interface of the control system. As shown in the figure, the 

interface has three sections: parameter setting, memory indicators, and monitoring 

screens. Parameter settings include the frequency, offset, amplitude, conducting 

angles, and duty cycle of the SPWM control gate control signals. The two memory 

indicators show the communication status of the first in first out method between 

the FPGA and the computer. The screens monitor the control signals sent from the 

FPGA. As an example, the output cluster on the monitoring screen shows the control 

signals sent to the inverter.  

 

Figure 7.19 Data acquisition system interface 

The NI USB-6229 data acquisition module was used for data acquisition and transmission 

with a graphical user interface on a desktop PC. The data acquisition system can 

simultaneously monitor signals and save data. In addition, the sampling frequency can be 

manually selected by users. A total of 16 variables were monitored, including six AC 

voltages, six AC currents, one DC voltage, one DC current, and two temperature signals, 

as shown in Figure 7.19. The overall hardware system layout of the WT power conversion 

test bench is shown in Figure 7.20. 
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Figure 7.20 Hardware system layout of WT power conversion test rig 

7.2 Test bench experiments 

7.2.1 Experiment arrangement 

The aim of the test rig was to simulate multiple faults in a WT power conversion 

unit. As mentioned in the previous section, 16 variables were monitored. The 

locations of the sensors are shown in Figure 7.1. For safety purposes, the voltage 

levels in the experiments were reduced. Constant power was generated from the 

waveform generator and fed to the power conversion test rig. To control the SPWM 

inverter, the switching frequency and modulation index were set to 2 kHz and 0.8, 

respectively. The inverted AC output was then dissipated by a 5 Ω with 25 W 

resistive load per phase. First, normal operating conditions of the test rig were 

simulated. Figure 7.21 shows the normal operation condition after capacitor 

charging of 16 variables with a sampling rate of 1,000 samples/s. As shown in the 

figure, the amplitude of the three-phase AC input voltage is 5.5 Vpp. The inverter 

AC output voltage is approximately 4 Vpp. The voltage in the DC-link module is 

approximately 21 V. Under normal working conditions, the IGBT temperature was 

maintained below 50 °C. Owing to the limitation of the input power, the input and 

output current flows in the system are of the order of several mA.  
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Figure 7.21 Normal operation condition of test rig 

In addition to the simulation of the normal operation condition, open-circuit fault, 

phase-to-ground short-circuit fault, capacitor ageing, stator over/under synchronous 

speed, imbalanced load, inverter phase misalignment, inverter control signal update 

error, inverter control signal under-sampled, and inverter control signal over-

sampled were also simulated. Of these nine types of faults, the open-circuit fault, 

short-circuit fault, capacitor aging, stator under/over synchronous speed, and 

imbalanced load were simulated using hardware, and the rest of the faults were 

simulated using software.  
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Figure 7.22 Block diagrams for simulation of five types of hardware faults on the power 
conversion test rig 

Figure 7.22 shows the five types of hardware generating methods, where all the 

switching positions are circled in red and the measurement locations are also 

specified. A phase-to-ground short-circuit fault is generated by connecting the target 

phase directly to the ground to create a short circuit. The phase voltages and currents 

were measured after LC filtering, as shown in the figure. An open-circuit fault is 

generated by opening the connection between the filtered AC and resistive load. The 

capacitor breakdown fault can be generated by shortening all capacitors in the DC-

link module. Two potentiometers installed on the phase converter module were used 

to model the behaviour of the stator over/under synchronous speed. By rotating these 

potentiometers, the input voltage amplitude and phase could be misaligned. For an 

imbalanced load fault generation, each phase has two power resistors connected in 

parallel. An imbalanced load fault is modelled by changing the connection status of 

the resistors. Other faults including inverter phase misalignment, inverter control 

signal update error, inverter control signal under-sampled, and inverter control 

signal over-sampled are generated by the control system of the test rig. The 

parameters in the control system interface were changed separately to model the 

different types of software faults. 
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7.2.2 Data acquisition 

In the experiments with the WT power conversion unit test rig, nine different faults 

were simulated. As an example, Figure 7.23 shows the simulation results of the 

open-circuit fault. To demonstrate the amplitudes and observe small changes of 

electrical parameters clearer, the figures show the sinusoidal form instead of the 

RMS form.   

 

Figure 7.23 Simulation results of open-circuit fault 

It can be observed from the figure that the fault is triggered at 6.5 s. Because the 

fault is triggered on the inverter side, there is no interference with the input side. 

The output current of phase A instantly reduces to zero and causes turbulence in the 

other two phases. The on and off voltages of the switching signals for one bridge of 

the IGBT are approximately +15 V and -8 V, respectively, which causes different 

voltage references between the IGBT and the ground. When phase A is an open-

circuit, its reference voltage is no longer the same as that of the ground. This causes 

the output voltage of phase A to reach −2 V instead of 0 V. When the fault is 

triggered, the inverter-side temperature of the IGBT is higher than the temperature 

of the rectifier. When phase A is an open-circuit, the LC filter connected to phase A 

is also disabled, which results in more harmonics in the DC voltage. For the DC 

current, there appears to be no significant change after the fault is triggered.  
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Figure 7.24 simulation results of stator over/ under synchronous speed 

The different degrees of severity of the faults were also simulated. As an example, 

the stator over/under synchronous speeds with different degrees of severity are 

shown in Figure 7.24. At 34 s, all of the readings were normal. After 35.5 s, the 

stator over/under synchronous speed was generated manually. It can be observed 

from the figure that the input currents and voltages started to reduce when the fault 

was triggered. As the fault severity increased with time, the output-side voltages and 

currents were also affected. The temperatures of both the inverter and rectifier 

increased after 37 s. The changes in the output voltage exceeded the design 

limitation of the RC filter in the DC links. Hence, more ripples were added to the 

DC voltage.  

7.3 Model validation 

Several data-driven model-based WTCM methods are proposed in Chapters 4, 5, and 

6. Based on the functionalities, the proposed models can be classified into two 

categories: fault classification and fault-severity estimation. The data acquired via 

the test bench were used for fault classification and fault severity estimation. 

7.3.1 Normal-fault condition classification 

Owing to data limitation, the previous chapter proposed methods focused on single-

fault classification or extraction. The first type of data was obtained from an 

operational wind farm that could only provide a single type of fault on one turbine. 
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The other type of data is the software simulation data that can only reflect ideal 

operation conditions. Because the power conversion unit test rig was designed and 

built, multiple faults could be simulated in this way.  

Based on the model proposed in Chapter 5, normal-fault classification can be 

realized using KSVM. In this section, imbalanced load and short-circuit faults are 

generated. A total of 16 monitoring variables were used for modelling, as described 

above. Two KSVM classification models were built to distinguish between the two 

types of faults. The model was first built to distinguish between imbalanced loads. 

It was trained using normal and imbalanced load fault data and was then validated 

for a longer time period. The results are shown in Figure 7.25, where the classified 

faulty data are labelled using red crosses. As can be observed from the figure, the 

fault occurs in two periods. Both faulty periods are clearly distinguishable in the 

figure.  

 

Figure 7.25 Imbalanced load fault classification results 
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Figure 7.26 Short circuit fault classification results 
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Figure 7.27 Confusion matrices of classification model for two faults: (a) imbalanced 
load; (b) short circuit 

Similarly, the short-circuit fault classification model was trained and validated, and 

the results are shown in Figure 7.26. The red crosses in the figure indicate the faulty 

time period. It can be observed from the figure that the short-circuit fault generated 
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on the grid side has a significant effect on the output current, output voltage, and 

temperature of the inverter. The fault was clearly distinguished using the KSVM 

classification model. The accuracy of both the imbalanced load and short-circuit 

fault classification results were evaluated using confusion matrices, as demonstrated 

in Figure 7.27. 

It can be observed from Figure 7.27 that both classification models have extremely 

high accuracy. The overall accuracies for the imbalanced load fault and short-circuit 

fault were 99.7% and 99.8 %, respectively. 

7.3.2 Fault severity estimation 

As described in Chapter 6, KLD can be used as a fault index to evaluate the fault 

severity. The fault severity estimation is based on the simulation stator over/under 

synchronous speed, as shown in Figure 7.24.  

 

Figure 7.28 Fault index in terms of KLD of the test rig variables 
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The fault indices of the stator over/under synchronous speeds are shown in Figure 

7.28. The KLD values are calculated every 0.5 s for all 16 variables. It can be 

observed from the figure that the fault was injected at 36.5 s on the input side. The 

input-side variables, such as the three-phase current and voltage, responded 

immediately when the fault occurred and became increasingly severe based on the 

fault index. However, it appears that the fault does not have a significant influence 

on the phase C input voltage. This is due to the fault generation mechanism, which 

is not affected by the phase C input voltage. It can also be observed from the figure 

that the inverter temperature suffers more than that of the rectifier.  

7.4 Summary 
The design and construction of the WT power conversion unit test rig were described 

in this chapter, and the selection of hardware based on their characteristics was 

discussed in detail. The design of the control and data acquisition systems was also 

described. The main aim of the test rig was to simulate different types of operating 

conditions that might occur. The open-circuit fault, short-circuit fault, capacitor 

ageing fault, stator over/under synchronous speed, imbalanced load, inverter phase 

misalignment, inverter control signal update error, inverter control signal under-

sampled, and inverter control signal over-sampled were simulated. The experimental 

procedures and results were also provided. The next chapter provides a summary of 

the research achievements and contributions. Potential research developments are 

also discussed.  
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Chapter 8. Conclusions 
and future improvements 

This chapter summarises achievements from the research. It also describes 

how the aims and objectives listed in chapter one are fulfilled. In addition, the 

contributions of knowledge in the line of research are explained, followed by the 

limitations of the research and prospects to the future work. 
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8.1 Summary of current research achievements 
As a major type of renewable energy, the use of wind energy has become more and 

more popular in the past decades especially for offshore wind energy. The location 

of WTs are usually in the remote areas or offshore installations, thus increasing the 

O&M costs. In order to reduce the O&M costs, the condition based maintenance 

strategies have been carried out, which requires high reliability condition monitoring 

techniques. However, there are still challenges existing in current CMS. The 

redundant monitoring variables and large amount of monitoring data would increase 

not only the CMS complexity but also the computation load, thus compromising the 

CMS reliability. Hence, developing an effective condition monitoring method that 

can achieve a dedicated and rapid fault diagnosis and prognosis while maintaining 

the sufficient information is necessary. Besides, the information about the alarm 

signals contained in the SCADA system is often neglected.  

In this research, the KSVM based fault feature extraction model is firstly proposed 

to extract particular fault features during the WT operation. The model is tested and 

validated against both SCADA data from an operational wind farm and simulation 

data. A statistical tool based on KLD is adopted for monitoring variable selection 

and fault localisation. Only the variables with highest KLD values are selected for 

further fault detection 

To further discover the relationship among monitoring variables and find out how 

much information is contained in the variables, the KPCA incorporating with 

KSVM are considered. Compared with PCA, the KPCA has the capability to solve 

non-linear mathematic issues, which is more suitable for monitoring variables in 

the WTs.  The KPCA is used for variable selection to reduce the information 

redundancy and thus improve the calculation efficiency. To select appropriate 

monitoring variables, the accumulated variance contribution is set to 85%. 

Furthermore, the use of alarm signals in the SCADA data is also taken into 

consideration, which can provide vital information relating to the fault. The 2-step 

KSVM model is used to distinguish the normal, alarm and fault condition of the 

turbine. The normal and abnormal data are firstly classified and the abnormal data 

are then further classified as alarm and fault data. Thus, the three operation states of 

the turbine are distinguished and the relationship between alarm and fault data are 

obtained. These variable selection and operation condition classification methods 
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are not only tested with historical SCADA data but also evaluated with simulation 

data with short circuit fault and capacitor breakdown fault.  

In addition, the fault localisation and severity estimation are performed by 

incorporating LSTM with KLD. Multiple monitoring variables that contribute to 

the specific subsystems are taken into consideration to improve the reliability of 

fault diagnosis. Besides, by cross-checking alarm logs, the predicted alarms from 

the algorithm can be used as a significant evidence to support diagnostic results as 

early warning of the fault. Specifically, the LSTM is used to achieve the behaviour 

prediction of the key subsystems such as gearbox and generator. Then the KLD is 

employed to detect the fault by comparing probability distributions of the variables 

over the time between predicted data and test data. Consequentially, the monitoring 

data can be classified as normal, fault, true alarm and false alarm while the severity 

of the fault is also evaluated. 

Furthermore, the research also involves design and construction of a PMSG based 

WT power conversion test rig. The representative faults emulated in the 

experiments include open circuit fault, short circuit fault, capacitor aging fault, 

stator over/ under synchronous speed, imbalanced load, inverter phase 

misalignment, inverter control signal update error, and inverter control signal under-

sampled and over-sampled faults. A sampling rate of 1 kHz is sufficient to capture 

the transient change of the fault, as compared with low sampling rate SCADA data 

that are usually sampled in the interval of minutes. The data acquired from the test 

rig are also used for further evaluation of the proposed methods for fault 

classification and fault severity estimation. All the results demonstrate the 

effectiveness of the proposed condition monitoring algorithms and models. 

The research objectives presented in the previous Section 1.3 and their 

corresponding main achievements are summarised in the table below.  
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Table 8.1 Objective achievements 

Objectives Achievements 

Conduct critical literature 
reviews of current WT 
technologies, including the 
fundamental working principle, 
common failure modes, 
condition	monitoring 
technologies and maintenance 
strategies.  
 

The overview of current wind 
energy technologies, including 
WT common structure, 
configuration, working 
principle and failure modes, are 
described in Sections 2.1 and 
2.2. Sections 2.3 and 2.4 review 
the state-of-the-art condition	
monitoring technologies. The 
modern maintenance strategies 
are also reviewed in Section 
2.5. 

Model and simulate WT 
systems with different 
configurations under different 
operation scenarios	such	as	
normal	condition	and	fault	
condition. 
 

The simulation models of both 
DFIG and PMSG are built 
based on MATLAB/Simulink. 
The models are built based on a 
real GE 1.5 MW WT. The 
model details including control 
strategies are presented in 
Section 3.2. Besides, different 
representative faults are 
simulated in order to study the 
dynamic behaviour of WTs 
under different fault scenarios.  

Understand the physical 
relationships among monitoring 
variables not only in the 
simulation data but also in the 
real measurement data.  
 

Section 2.1 introduces the WT 
structure in details, including 
physical relationships among 
different components. Section 
3.1 is focused on the SCADA 
data, where impact of the faults 
on the monitoring data is also 
described. 

Develop an appropriate 
methodology that can 
distinguish and separate the 
faults from the healthy 
conditions effectively. 
 

A statistical tool based on KLD 
incorporating with KSVM is 
used to classify the 
representative faults (bearing 
fault and generator winding 
fault in this research) from the 
operating WTs, which is 
presented in Chapter 4.  

Develop effective models to 
distinguish the normal, alarm 
and fault conditions of the WTs 
whilst reducing the computation 
load by optimising the variable 
selection for dedicated 
condition	monitoring. 
 

The kernel function is used in 
PCA to solve the nonlinear 
problem in the condition	
monitoring of WTs. The KPCA 
is further used to select fault 
related variables based on 
accumulative variance 
contribution. The alarm signals 
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are introduced to provide more 
information of the fault. The 
proposed model is tested and 
validated with both SCADA 
data and simulation data, which 
are shown in Section 5.3. 

Develop novel methods to 
estimate fault severity index 
that can measure the severity of 
abnormal conditions of the WT.  
 

To locate and estimate the 
abnormality of the turbines, a 
hybrid LSTM-KLD method is 
proposed in Chapter 6. LSTM is 
adopted to capture relation 
features in temporal 
dependencies among monitoring 
data in an iterative manner, thus 
improving the prediction 
capability. The KLD is used as 
fault indicator, which measures 
the severity of the fault by 
comparing probability 
distributions between predicted 
data and test data. By adopting 
a COST function based on 
normal value probability and 
alarm value probability of the 
calculated KLD values, the 
optimised thresholds are 
determined to distinguish the 
normal, alarm and fault 
conditions. 

Design and develop an 
operational WT power 
conversion test rig to further 
experimentally validate the 
proposed condition	monitoring 
algorithms and models.  

The test rig is described in 
Section 7.1, mainly including 
designs of hardware modules, 
control system and data 
acquisition system. The 
proposed condition	monitoring 
algorithms and models are 
further validated by 
experimental data in Section 
7.3.  

8.2 Contributions in the line of research 

The contributions in the line of research are summarised as follows: 

1. In the study, the statistical tool based on KLD is applied to investigate the 

difference of probability density distribution in different operation conditions 

for fault localisation. Besides, the KLD can also be used for variable selection 

in order to reduce the dataset size for an effective condition monitoring. By 
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combining with the COST function, the fault severity of the WT components 

can be estimated.  

2. The kernel function is further applied in both SVM and PCA. The 

employment of the kernel function can solve non-linear mathematic issues. 

The KSVM is able to project the original dataset into hyper-dimension and 

convert the linearly inseparable problems into linearly separable problems. 

The different operating conditions of the WTs can be separated in hyper-

dimension by the hyperplanes. The confusion matrix is adopted for 

estimation of the classification accuracy.  

3. To further quantify the effect of dimension reduction in fault classification, 

KPCA is applied. The KPCA is aimed to maximise dataset variability and 

maintain the maximum information entropy. The accumulative variation 

contribution is used to estimate the performance of variable selection and 

dimension reduction.  

4. The LSTM is investigated for WT behaviour prediction. The study of alarm 

signals was dug further to correlate the relationship with the targeted 

particular fault. The distinguished alarms are then cross-referenced with 

SCADA alarm logs in order to provoke early warning of the fault. The 

proposed approach is validated by two faulty WTs with gearbox bearing fault 

and generator winding fault. By comparing the results with other well-

established methods, the effectiveness of the proposed method is 

demonstrated in terms of detection accuracy and time complexity. 

5. A PMSG based WT power conversion test rig is designed and constructed to 

emulate the operational behaviours of the turbine under various type of faults 

in order to collect sufficient experimental data to validate the proposed 

algorithms. Imbalanced load and short circuit faults are emulated, which have 

been clearly distinguished by the proposed algorithms. Furthermore, the fault 

severity of the stator over/ under synchronous speed is also estimated.  

8.3 Prospects to the future work 

The future improvements to study the proposed WTCMs are summarised below: 

1. The KLD used for variable selection and fault localisation has been verified 

with different faults with both SCADA data and simulation data. In simple 

cases, zero of relative entropy indicates that the two distributions have 
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identical quantities of information. However, this is a distribution-wise 

asymmetric measure, which does not qualify as a statistical metric of spread. 

In other words, the KLD does not satisfy the triangle inequality. To solve 

this problem, the Wasserstein metric can be used to compare the difference 

between two distributions since Wasserstein metric does not neglect the 

geometrical features of two distributions and thus leading to more precise 

results. 

2. Compared with ordinary PCA method, the KPCA provides a non-linear 

solution to the linearly inseparable issues. KPCA is a nonlinear PCA by 

generalising the kernel method into linear PCA. However, the high 

generalisation performance of KPCA is obtained at the cost of a large 

amount of computation time. The future work can also focus on exploring 

ways of reducing the large computation cost resulting from KPCA. The 

independent principal components analysis (IPCA) and other selection 

algorithms such as U matrix can be taken into consideration. 

 
3. The KSVM has shown satisfactory results for the proposed fault feature 

extraction and normal-alarm-fault classification. However, the SVM does 

not perform very ideal when dealing with large datasets especially when the 

dataset contains the noise. The target classes due to ambiguous regions in the 

data could overlap with the noise, leading to misclassification in the results. 

Other deep-learning algorithms, such as deep belief network (DBN) and 

convolutional neural network (CNN), can be used to improve the accuracy 

of the model.  

4. The LSTM has shown benefits on the trend predictions as compared with 

RNN. The LSTM is able to solve the gradient decent problems and hence 

has a better performance for maintaining information on inputs. However, 

the computation cost of LSTM can be massive. Other optimisation methods, 

such as adaptive particle swarm optimisation (APSO), can be introduced to 

improve the performance of LSTM, with the normalised mean absolute error 

and naive ratio being used for performance evaluation.  

5. Due to the time limitation, the design and construction of WT power 

conversion test rig is simplified. For example, the phase locked loop was 

not installed on the test rig, resulting in an open loop control of the inverter. 
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In addition, for the rotor side converter, the IGBT is used as the function of 

rectifier. Further work can be focused on the hardware improvement of 

technologies.  

6. Because of the safety issue, the test rig was designed for low-voltage 

implementation. The dynamic behaviours of the test rig can be different 

when compared with high voltage configurations. Besides, some high-

voltage components like IGBT generate extra noise when running in a low-

voltage condition. Therefore, enhancing safety level of the test rig can be 

further developed so that high-voltage tests can be implemented.   
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Appendix A: Simulation parameters 
 

Table A.1 Electrical control parameters of wind turbine generator 

Parameter Name Recommended Value 
Tr 0.05 

Tv 0.05 

Kpv 20 

Kiv 2 

KQi 0.05 

KVi 20 

Tvz 1 

Qmax 0.29 

Qmin -0.432 

XIQmax 0.07 

XIQmin -0.07 

Vmax 1.05 

Vmin 0.95 

VL1 0.9 

VH1 1.1 

TL1 0.1 

TL2 0.5 

TH1 0.1 

TH2 1 

QL1 0.45 

QL2 0.45 

QH1 0.45 

QH2 -0.245 

QH3 0.45 

Vhyst 0.05 

Zc 0 

 

 



Appendices 

Yueqi Wu – January 2022   179 

Table A.2 Cp coefficients ai,j 

i j aij 

4 4 4.97E-10 

4 3 -7.15E-08 

4 2 1.62E-06 

4 1 -9.48E-06 

4 0 1.48E-05 

3 4 -8.92E-08 

3 3 5.99E-06 

3 2 -1.05E-04 

3 1 5.41E-04 

3 0 -8.60E-04 

2 4 2.79E-06 

2 3 -1.49E-04 

2 2 2.15E-03 

2 1 -1.10E-02 

2 0 1.57E-02 

1 4 -2.39E-05 

1 3 1.07E-03 

1 2 -1.39E-02 

1 1 6.04E-02 

1 0 -6.76E-02 

0 4 1.15E-05 

0 3 -1.34E-04 

0 2 -1.24E-02 

0 1 2.18E-01 

0 0 -4.19E-01 

 

 

 

 



Advanced data-driven modelling approaches to alarm-related fault detection and condition monitoring of 
wind turbines 

180  Yueqi Wu – January 2022 

Table A.3 Turbine control parameters 

Parameter Name 
Recommended 

Value 

Kpp 150 

Kip 25 

Tp (second) 0.01 

Θmax(degreees) 27 

Θmin(degreees) 0 

dθ/dtmax (degree/second) 10 

dθ/dtmin (degree/second) -10 

Pmax (pu) 1 

Pmin (pu) 0.1 

dP/dtmax (pu/second) 0.45 

dP/dtmin (pu/second) -0.45 

Kpc 3 

Kic 30 

Kptrq 3 

Kitrq 0.6 

Tpc 0.05 
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Appendix B: Schematics of power converter test rig 

 

Figure B.1 Schematic of phase converter 
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Figure B.2 Schematic of IGBT control circuit 
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Figure B.3 Schematic of DC-link 

 

Figure B.4 Schematic of load 
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Figure B.5 Schematic of signal conditioning 


