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Abstract. This paper proposes a control chart useful for detecting small shifts in the mean of a double
bounded process, such as fractions and proportions, in the presence of control variables. For this purpose,
we consider the cumulative sum control chart applied to different residuals of the beta regression model.
We conduct an extensive Monte Carlo simulation study to evaluate and compare the performance of the
proposed control chart with two other control charts in the literature in terms of run length analysis. The
numerical results show that the proposed control chart is more sensitive to detect changes in the process than
its competitors and that the quantile residual is the most suitable residual to be used in our proposal. Finally,
based on the quantile residual, we present and discuss applications to real and simulated data to show the
applicability of the proposed control chart.
Keywords: Beta regression, control chart, cumulative sum, residuals, run length.

1. Introduction

Statistical process control (SPC) is a collection of techniques useful for monitoring and controlling a
process (Fournier et al., 2006). Under natural variability, that is, a common variation that will always
exist, the process is in statistical control. However, when the variability stems from external sources, the
process is out of statistical control. Specialists desire to quickly detect shifts in the process monitoring,
thus the control chart is the simplest and most used tool for this purpose (Montgomery, 2009).

The usual control chart proposed by ShewhartShewhart, 1931 is widely used to monitor independent
random variables and can detect large shifts in the mean of a process (Aslam, Azam, and Jun, 2014).
These charts are also known as memory-less control charts because they consider observations at a given
time. However, not observing and analyzing previous observations can lead to the poor performance of
the control chart. Moreover, conventional control charts require some assumptions or approximations.
Alternatively, more advanced statistical methods have been proposed in the literature, such as the cumu-
lative sum (CUSUM) (Page, 1954) and the exponentially weighted moving average (EWMA) (Roberts,
1959) control charts. CUSUM and EWMA control charts have been studied by some authors over the
years. Some past works can be found in Crowder, 1989; Ewan, 1963; Gan, 1991; Hawkins, 1981; Lucas
and Saccucci, 1990; Page, 1961; Woodall and Adams, 1993, while some recent developments are found
in Adegoke et al., 2019; Aytaçoğlu, Driscoll, and Woodall, 2021; Haq, 2017; Park and Jun, 2015; Perry
and Wang, 2020; Sanusi, Abbas, and Riaz, 2018; Xue and Qiu, 2021. Such charts quickly detect small
shifts in the mean of a process and use cumulative information from the observations, thus being called
memory-type control charts.

CUSUM control charts can be built using different statistics. Recently, the discussion on residual-
based CUSUM control charts has received considerable attention. For example, Asadzadeh, Aghaie,
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and Niaki, 2013 monitored the Cox-Snell residuals of accelerated failure time models based on two
regression-adjusted control approaches. Chen and Huang, 2014 used a residual-based CUSUM control
chart to monitor syndromic data on the respiratory syndrome in Taiwan. Weiß and Testik, 2015 discussed
the problem of monitoring autocorrelated, count-type discrete data by investigating the CUSUM control
chart based on three different residuals. Alencar, Lee Ho, and Albarracin, 2017 and Albarracin, Alencar,
and Lee Ho, 2018 evaluate the performance of the CUSUM control chart using the deviance residual, and
other statistics, in the monitoring of negative binomial and negative binomial generalized autoregressive
moving average processes (Benjamim, Rigby, and Stasinopoulos, 2003), respectively. Kim and Lee, 2021
introduced the residual-based CUSUMscheme in first-order Poisson integer-valued autoregressivemodels
where the residuals are computed through squared difference estimates.

In practical situations, there is an interest in modeling and monitoring variables limited to the unit
interval (0, 1), such as fractions or proportions. Here, the traditional Shewhart-type control chart may
not be adequate since fractions or proportions frequently follow a skew distribution, thus not holding
the normality assumption. Alternatively, control charts for double bounded quality characteristics have
been proposed in the literature. For example, Sant’Anna and Caten, 2012 proposed the beta control chart
(BCC), where the authors assume that the variable of interest is beta distributed and the control limits
are estimated using the beta cumulative distribution function. The BCC is more advantageous than the
Shewhart control chart as it naturally captures the asymmetry of the quality characteristic and its control
limits range between (0, 1). Lima-Filho et al., 2019 proposed a new control chart to model the mean of
double bounded processes in the presence of zeros and ones. The control limits of this chart are based
on the inflated beta probability distribution function. As the Kumaraswamy distribution (Jones, 2009)
is a good alternative to the beta distribution, Lima-Filho and Bayer, 2021 introduced a novel control
chart based on the Kumaraswamy distribution to monitor environmental data limited to the unit interval.
Nevertheless, production processes can also be related to external variables. For this purpose, Bayer,
Tondolo, and Müller, 2018 proposed the beta regression control chart (BRCC), where the control limits
are defined using the quantile function of the beta distribution, and Lima-Filho et al., 2020 provided a
general framework to a recent control chart based on the inflated beta regression model to monitor the
mean of environmental processes containing zeros and ones. Recently, Hwang, 2021 proposed a novel
CUSUM control chart based on the deviance residual of a beta regression model to monitor the mean of
a univariate process.

Although the BCC and BRCC are better alternatives than the conventional charts for double bounded
data, they still are memory-less approaches and a CUSUM control chart alternative could detect more
quickly a shift in the mean of a process. In this regard, the chief contribution of this paper is to propose
and compare the performance of the CUSUM beta regression control chart on the residuals of the beta
regression model, named CUSUM-BRCC. The CUSUM-BRCC is useful for monitoring double bounded
processes where the quality characteristic is affected by control variables in which the process output may
represent individual measures (e.g. efficiency score) or a ratio between continuous numbers (e.g. relative
humidity). As there are different residuals for the beta regression (Espinheira, Ferrari, and Cribari-Neto,
2008; Pereira, 2019), we explore the CUSUM-BRCC based on the standardized, two types of standardized
weighted, and quantile residuals. It is noteworthy that we do not consider the deviance residual because
it cannot be calculated for several observations in beta regression provided that the contribution of these
observations to the deviance is negative. In addition, a similar approach is already published in the
literature (Hwang, 2021). We conduct an extensiveMonte Carlo simulation study to evaluate and compare
the performance of the proposed control chart based on different residuals in terms of run length (RL)
analysis. Our Monte Carlo simulation results show that the quantile residual is the most suitable residual
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to be considered when controlling and monitoring processes limited to the unit interval (0, 1) and in the
presence of external variables.

The remainder of the paper unfolds as follows. In Section 2, we present the proposed CUSUM-BRCC
and the residuals considered in this paper. Section 3 presents a simulation study to evaluate and compare
the performance of the proposed control chart with of the BRCC and the control chart proposed by Hwang
Hwang, 2021, which we shall denote CUSUM-BRCCHwang, based on RL analysis. In Section 4, based on
the quantile residual, we discuss and present two applications to show the applicability of the proposed
control chart. Finally, some concluding remarks are presented in Section 5.

2. Residual-based CUSUM beta regression control chart

Control charts are powerful tools used to monitor a quality characteristic of interest. Usually, this
graphical device consists of a center line (CL), representing the mean of the quality variable, and two
other horizontal lines representing the upper (UCL) and lower (LCL) control limits. When all the sample
points fall within the control limits, the process is in a state of control and no further action is needed. If
an observation exceeds the desired limits, the process is assumed to be out of control and corrections are
required to understand the causes and improve the process.

In this paper, we consider themonitoring of processes limited to the unit interval (0, 1), such as fractions
or proportions. The beta distribution is frequently used to model this type of data. The beta law is very
flexible and can assume a wide variety of shapes, such as symmetric, asymmetric, J-shaped, inverted
J-shaped, U-shaped, and uniform. Using a parametrization that considers a location (`) and a precision
(q) parameter, Ferrari and Cribari-Neto, 2004 introduce the beta density as

5 (H; `, q) = Γ(q)
Γ(`q)Γ((1 − `)q) H

`q−1(1 − H) (1−`)q−1, 0 < H < 1, (1)

where 0 < ` < 1, q > 0, and Γ(·) is the gamma function. The mean and variance of H are E(H) = ` and
Var(H) = `(1 − `)/(1 + q), respectively.

The cumulative distribution function of H is given by

F (H; `, q) = Γ(q)
Γ(`q)Γ((1 − `)q)

H∫
0

H`q−1(1 − H) (1−`)q−1dH. (2)

Therefore, the quantile function of H is expressed as F −1(D, `, q), where D is the desired quantile.
Let H1, H2, . . . , H= be a set of independent random variables where each HC , with C = 1, 2, . . . , =, has

density and cumulative distribution given in (1) and (2), respectively, with mean `C and precision qC . We
shall consider the following varying precision beta regression model in our study (Simas, Barreto-Souza,
and Rocha, 2010; Smithson and Verkuilen, 2006):

6(`C) =
A∑
8=1

GC8l8 = [1C and ℎ(qC) =
B∑
9=1

IC 9W 9 = [2C ,

whereω = (l1, . . . , lA)> ∈ RA and γ = (W1, . . . , WB)> ∈ RB are unknown parameters vectors, G1C , . . . , GAC
and I1C , . . . , IBC are the known and fixed covariates of the mean and precision submodels, respectively,
η1 = ([11, . . . , [1=)> and η2 = ([21, . . . , [2=)> being the mean and precision linear predictor vectors,
respectively. Here, 6(·) and ℎ(·) denote the link functions that are strictly monotonic and twice differen-
tiable such that 6 : (0, 1) ↦→ R and ℎ : (0,∞) ↦→ R. Thus, the mean and precision of each HC are given,



4

respectively, by

`C = 6
−1([1C), (3)

qC = ℎ
−1([2C). (4)

One can choose the logit, probit, loglog, and cloglog for the mean link function, while for the precision
link function we have the log as a common choice.

Let θ = (ω>, γ>)> be the beta regression parameter vector. The log-likelihood function of θ is given
by

ℓ(θ) =
=∑
C=1

ℓC (`C , qC), (5)

where
ℓC (`C , qC) = logΓ(qC) − logΓ(`CqC) − logΓ((1 − `C)qC) + (`CqC − 1) log HC

+ [(1 − `C)qC − 1] log(1 − HC),
with `C and qC defined in (3) and (4), respectively.

By taking first-order derivatives of (5) with respect to each element of θ, we obtain a system of equations
called score vector. By setting the score vector equals zero, we obtain the maximum likelihood estimators
(MLE) of the model parameters. Since the MLE do not have closed-form expressions, we maximize the
log-likelihood function in (5) using numerical methods. It is noteworthy that using the MLE of θ gives
us [̂1C and [̂2C , which are used to obtain ˆ̀ and q̂. These quantities are essential in the construction of the
residuals considered in the present paper. More details on inferences in beta regression models can be
found in Ferrari and Cribari-Neto, 2004 and Cribari-Neto and Zeileis, 2010.

For monitoring double bounded processes with covariates, based on the beta regression model, Bayer,
Tondolo, andMüller, 2018 proposed the BRCC, where the control limits are based on the quantile function
and evaluated under the estimated parameters in a Shewhart fashion. The authors show that the BRCC
works well for monitoring fractions and proportions and easily detects changes in the mean of the process.
When the interest response variable depends on control variables, one can apply a conventional control
chart to the residuals of themodel as they approximately follow a normal distribution and are independently
distributed if the fitted model is well specified (Montgomery, 2009). However, it is well known that
CUSUM control charts are more sensitive to detect shifts than Shewhart-type charts (Lucas, 1976). In
this way, we concentrate on the residual-based CUSUM beta regression control chart to model the process
mean.

As discussed in Espinheira, Ferrari, and Cribari-Neto, 2008, Pereira, 2019 and Ferrari and Cribari-
Neto, 2004, there are different residuals for the beta regression model. The residuals we consider are
the standardized residual defined by Ferrari and Cribari-Neto, 2004, the standardized weighted 1 and 2
residuals introduced by Espinheira, Ferrari, and Cribari-Neto, 2008, and the quantile residual (Dunn and
Smyth, 1996) considered in the beta regressionmodel by Pereira, 2019. AlthoughAnholeto, Sandoval, and
Botter, 2014 proposed adjusted Pearson residuals for beta regressions, we do not consider such residuals
due to the matrix formulae involved when implementing the residuals in a practical situation.

The standardized residual is given by

A BC =
HC − ˆ̀C√
V̂ar(HC)

, (6)

where V̂ar(HC) = ˆ̀C (1 − ˆ̀C)/(1 + q̂C) and ˆ̀C = 6−1([̂1C).
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The standardized weighted 1 residual is given by

AFC =
H∗C − ˆ̀∗C√

ĥ∗C
, (7)

where H∗C = log (HC/(1 − HC)), ˆ̀∗C = Ê(H∗C ) = k( ˆ̀C q̂C) −k((1− ˆ̀C)q̂C), ĥ∗C = V̂ar(H∗C ) = k′( ˆ̀C q̂C) +k′((1−
ˆ̀C)q̂C), k and k′ denoting the digamma and trigamma functions, respectively.
The standardized weighted 2 residual is computed by

AFFC =
H∗C − ˆ̀∗C√
ĥ∗C (1 − ECC)

, (8)

where ECC is the C-th element of + = ,̂1/2- (->,̂-)−1->,̂1/2, - = (G1, . . . , G=)> is the regressor matrix
and ,̂ = diag(F̂1, . . . , F̂=), with F̂C = q̂2

C ĥ
∗
C

[
1/{6′( ˆ̀C)}2

]
.

Finally, the quantile residual is expressed as

A
@
C = Φ

−1{F (HC ; ˆ̀C , q̂C)}, (9)

where Φ(·) denotes the cumulative distribution function of the standard normal distribution and F (·) is
the cumulative distribution function of the beta distribution in (2).

The deviance residual used in the CUSUM-BRCCHwang is defined as

A3C = sign(HC − ˆ̀C){2| (ℓC ( ˜̀C , q̂C) − ℓC ( ˆ̀C , q̂C)) |}1/2.
Here, sign(·) is the signal function, ℓC (`C , qC) is the contribution of the C-th observation of the log-likelihood
function given in (5), ˆ̀C and q̂C are the maximum likelihood estimators of `C and qC , respectively, and
˜̀C and q̃C being the estimate of `C and qC in the saturated model, respectively. It is noted by Ferrari and
Cribari-Neto, 2004 that for large values of q, ˜̀C ≈ HC . Note that this residual considers the absolute value
of the contribution of each observation to the deviance, which is not reasonable for defining a residual.

Based on the regression structures defined in (3) and (4) and on the residuals given in (6), (7), (8), and
(9), we propose the CUSUM-BRCC using each of the residuals mentioned, thus resulting in four new
control charts.

The CUSUM-BRCC statistics are given by

�+C = max[0, AC − (<0 +  ) + �+C−1],
�−C = max[0, (<0 −  ) − AC + �−C−1],

where AC is the C-th observation of each residual considered,<0 is the target mean value, that is, the residual
mean,  is a reference value, and �+0 = �

−
0 = 0 are the starting values. The reference value is given by

 = : × f, where f is the standard deviation of the residual used to build the CUSUM chart, and the
choice of : is related to the magnitude of the change that we want to identify, that is, : = 1

2 × Δ, where
Δ is the size of the shift in standard deviation units. The decision interval of the CUSUM control chart
is expressed as � = ℎ × f where ℎ is estimated for each residual. If either �+C or �−C exceed �, then the
process is out of control.

3. Simulation study

In what follows, we shall present the results of aMonte Carlo simulation study we performed to evaluate
and compare the CUSUM-BRCC with the BRCC proposed by Bayer, Tondolo, and Müller, 2018 and the
CUSUM-BRCC proposed by Hwang, 2021. We considered the residuals in (6), (7), (8), and (9) to be
used in the CUSUM-BRCC proposed in this paper, and = ∈ {100, 200, 500}. For brevity and similarity
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Table 1. True parameter values for the scenarios considered in the simulation study.

Scenario l0 l1 W0 W1

1 −3.2 2.0 3.0 1.0
2 −3.2 2.0 4.0 0.5
3 −1.0 2.0 3.0 1.5
4 −1.0 2.0 2.0 2.0
5 1.0 2.4 2.0 3.0
6 1.0 2.4 4.0 2.5

of results, we only present numerical evidence for = = 500 based on 5,000 Monte Carlo replications. All
simulations were performed using the R programming language (R Core Team, 2021).
The performance of control charts is usually measured in terms of RL analysis. The average run

length (ARL) is the average number of observations that must be plotted until the control chart signals.
Thus, for an in-control process, this measure is known as ARL0, whereas for an out-of-control process
it is named ARL1. The latter case means that the mean has shifted, then a smaller number of samples
would allow the detection of the shift more quickly. In this work, we considered the ARL, median run
length (MRL), and standard deviation run length (SDRL) for a process in control, where ARL = 1/U,
MRL = ln(0.5)/ln(1−U), and SDRL =

√
(1 − U)/U2 (LeeHo, Fernandes, and Bourguignon, 2019; Lima-

Filho et al., 2019). Here, U is the false alarm probability, that is, the probability of a single observation
falling outside the control limits when the process is in control. Therefore, assuming that the process
is in control and U = 0.005, we obtain ARL0 = 200, i.e. we expect an out-of-control signal every 200
samples, on average, even when the process remains in control. The nominal values of MRL and SDRL
for a process with the same characteristics are 138.3, and 199.5, respectively. In order for the proposed
control charts to present the same target in-control ARL, we first calibrated them using Algorithm 1 to
find the optimal ℎ for each residual. To the best of our knowledge, this calibration is not needed for the
CUSUM-BRCCHwang, therefore we used the approximation given by Siegmund Siegmund, 1985 to obtain
the optimal ℎ for a target ARL0 = 200.
To evaluate the RL when the process is out of control, we introduced a X change in the mean regression

structure of the process. In the true data generation process, we used the following beta regression model:

logit(`C) = X + l0 + l1GC ,

log(qC) = W0 + W1IC ,

where C = 1, . . . , =, X ranging from −0.5 to 0.5 by steps of 0.1, l0, l1, W0, and W1 being the regression
coefficients. Since X is the induced change in the mean, the process is in control when X = 0. The values of
GC and IC were obtained from a uniform distribution in the interval (0, 1) and considered constant through
all Monte Carlo replications.

Table 1 shows six scenarios of the parameter values with different characteristics considered in the
numerical evaluation. In Scenarios 1 and 2, the mean is close to 0.1, with q ∈ [20, 54] in Scenario 1 and
q ∈ [55, 90] in Scenario 2. In Scenarios 3 and 4, we have q ∈ [20, 90] and q ∈ [7, 54], respectively, and
the mean is centered on the standard unit interval. Finally, in Scenarios 5 and 6, the mean is close to 0.9
with q ∈ [7, 147] in Scenario 5 and q ∈ [55, 659] in Scenario 6. Note that we covered a wide range of
scenarios for the mean and precision of the process. The Monte Carlo simulation study is divided into
two procedures and summarized by Algorithms 1 and 2.
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Algorithm 1: Algorithm for estimating ℎ in forming the proposed control charts.
(1) Define the desired probability of false alarm U (herein we used U = 0.005);
(2) Generate = observations from a standard uniform distribution (0, 1);
(3) Using covariates and parameter values, compute `C and qC ;
(4) Generate = beta-distributed observations with parameters `C and qC ;
(5) Fit the beta regression model with varying precision and obtain the residuals in (6), (7), (8), and

(9);
(6) Obtain the CUSUM-BRCC for each residual in step 5 using � as decision interval;
(7) Plot each data point AC together with the control limits, for C = 1, . . . , =. The observation AC that is

out of the control limits interval is an out-of-control observation;
(8) Repeat steps 4 to 7 a large number of times, say 5,000;
(9) At the end of the replications, the in-control average run length is calculated, obtaining �ARL0;

(10) Repeat steps 4 to 9 for different values of �;
(11) Fit a linear regression where � is the response variable and the logarithm of the estimated ARL0

is the control variable to obtain the exact value of � that yields the desired ARL0 (herein we chose
ARL0 = 200).

Algorithm 2: Algorithm for the performance evaluation of the proposed control charts.
(1) Use the same probability of false alarm U defined in Algorithm 1;
(2) Generate = observations from a standard uniform distribution (0, 1);
(3) Using covariates and parameter values, compute `C and qC ;
(4) Generate = beta-distributed observations with parameters `C and qC ;
(5) Fit the beta regression model with varying precision and obtain the residuals in (6), (7), (8), and

(9);
(6) Obtain the CUSUM-BRCC for each residual in step 5 using the estimated value of ℎ obtained

from Algorithm 1 as decision interval;
(7) Plot each data point AC together with the control limits, for C = 1, . . . , =. The observation AC that is

out of the control limits interval is an out-of-control observation;
(8) Repeat steps 4 to 7 a large number of times, say 5,000;
(9) At the end of the replications, the average of each measure is calculated, obtaining the following

Monte Carlo estimates: �ARL, �MRL, and �SDRL;
(10) Include a shift (X) in the linear predictor of the mean after fitting the beta model in step 5 and

repeat steps 6 to 9 for different values of X.

Tables 2 and 3 present results for �ARL, �MRL, and �SDRL for all scenarios. Notice that the control charts
obtained similar performance when the process was in control (X = 0) and presented estimates close to
their nominal values, except for CUSUM-BRCCHwang, which presented the worst performance among the
control charts studied. We emphasize that the proposed control chart was calibrated (Algorithm 1) for
each residual in order to have a target ARL0 of 200. We observe in Scenario 1 that, when considering
CUSUM-BRCCAFC (Equation (7)), we obtained �ARL0 = 222.52 when ARL0 = 200 was expected, that is,
in the worst scenario, there was a distortion of 11%.
When the process was out of control, the CUSUM-BRCC presented smaller values of �ARL1 than the

BRCC, evidencing that the proposed control chart is more sensitive to detect changes in the mean of the
variable of interest. For example, in Table 2 for Scenario 2 and X = 0.1, the CUSUM-BRCCA@C signaled
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at sample 16, while the BRCC took on average 163 samples to detect an out-of-control observation. The
CUSUM-BRCCHwang signaled at sample 8, however, this is not an accurate estimate since the control
chart presented a distorted ARL for an in-control process. The exception is for the CUSUM-BRCCABC in
Scenarios 1 and 5 for X = −0.1 and X = 0.1, respectively, which yielded an �ARL1 greater than 200. This
control chart tend to be ARL-biased in the sense that some out-of-control ARL values are larger than the
in-control ARL (Paulino, Morais, and Knoth, 2016).

According to the results obtained, it is important to highlight that all proposed charts and the BRCC
presented a similar performance when the process was in control. However, the performance of the
proposed control chart was far superior when the process was out of control. For example, in Scenario 3
and X = −0.1, the BRCC took on average 131 samples to detect a change in the process while the proposed
CUSUM-BRCC, considering all residuals, took on average 8 samples to detect a change (approximately
16 times faster). Comparing the CUSUM-BRCC using the quantile residual with the CUSUM-BRCC
using the other residuals when the process shifted, we note from Tables 2 and 3 that the CUSUM-BRCCA@C
outperformed in Scenarios 1, 2 and 4 for X = 0.1 while in the other scenarios its performance was quite
similar to that of using the other residuals. For a negative shift, the CUSUM-BRCCA@C presented better
performance in Scenario 5. Although the CUSUM-BRCC using the standardized residual performed
better in some scenarios, the distribution of such residual is not well approximated by the standard normal
distribution Espinheira, Ferrari, and Cribari-Neto, 2008 compared to its weighted competitors, also this
control chart can be ARL-biased as mentioned before.

Note that the variability of the model is directly related to the ability of the control chart to detect
changes in the process. For example, in Scenario 4, where we considered a low precision (q ∈ [7, 54])
and X = −0.1, the CUSUM-BRCCA@C signaled every 17 samples, on average. On the other hand, when the
precision in the process was high (q ∈ [55, 659], Scenario 6), the same control chart took on average 3
samples to detect a change of the same magnitude in the mean.

Finally, the numerical evidence showed that regardless of the value of X and the scenario studied, the
proposed CUSUM-BRCCpresented a better behavior compared to the other control charts in the literature.
As the quantile residual has proved itself to be a good residual for beta regressions (Pereira, 2019) and
our simulation results suggest it performs better in some scenarios and equally in others, we recommend
using such residual in the proposed CUSUM-BRCC.

4. Applications

In this section, we shall present and discuss two applications to show the applicability of the proposed
control chart. As the CUSUM-BRCCHwang presented poor perfomance under a controlled scenario, we
do not consider this control chart in our applications. We performed the applications using the quantile
residual for the CUSUM-BRCC and compare it with the BRCC. The construction of the control charts
follows Algorithms 1 and 2 and ARL0 = 200 (U = 0.005) for both applications.

4.1. Application to simulated data. In the first application, we considered simulated data to better
illustrate the studied methodology. We used the following structures for the data generation process:

logit(`C) = −3.2 + 2G1C + 2G2C

log(qC) = 3.0 + I1C + I2C ,
where (G1, G2) = (I1, I2). The values of G1 (G2) were obtained from a uniform distribution in the unit
interval (Bernoulli distribution with ? = 0.3). We generated 1000 observations considering the process
in a state of control.
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Table 4. Descriptive statistics of the quantitative variables; simulated data.

Variables min Q1/4 median mean Q3/4 max sd

H 0.001 0.073 0.153 0.216 0.306 0.755 0.187
G1 0.001 0.264 0.511 0.509 0.758 0.999 0.288

Table 5. Fitted beta regression model with varying precision; simulated data.

Submodel for `

Estimate SE ?-value

Intercept −3.2190 0.0480 < 0.0001
G1 2.0835 0.0591 < 0.0001
G2 2.0026 0.0341 < 0.0001

Submodel for q

Estimate SE ?-value

Intercept 3.2316 0.1306 < 0.0001
I1 0.6345 0.2123 0.0028
I2 0.8498 0.1412 < 0.0001

Some descriptive statistics about H and G1 are shown in Table 4, namely: minimum (min), first quartile
(&1/4), median, mean, third quartile (&3/4), maximum (max), and standard deviation (sd). Descriptive
statistics for G2 are not presented because it is a binary covariate. Note that 25% of the response variable
(H) does not exceed the value of 0.306, and the largest value is 0.755. The mean and median are 0.216
and 0.153, respectively. For G1, we have a minimum of 0.001 and a maximum of 0.999.

The simulated data were split into two groups, Phase I (first 500 observations) and Phase II (last 500
observations). In Phase I, we estimated the submodels parameters, and in Phase II we monitored the
process. Table 5 presents the parameter estimates, standard errors (SE), and ?-values for the models
adjusted in Phase I. We note that all covariates were significant in both models at 5%, as expected.
Before determining the control limits, we performed a diagnostic analysis of the residuals of the model
fitted in Phase I. Figures 1 shows the quantile residuals and Quantile-Quantile (Q-Q) plot for the fitted
model in Table 5. Figure 1a shows that the residuals are randomly distributed around zero and within
three deviations from the mean. Similarly, Figure 1b suggests that there is no violation of the model
assumptions as the residuals are in agreement with the 45 degree line. The next step was the calibration
of both control charts to have a target ARL0, then in Phase II (last 500 observations) we introduced a
perturbation in the structure of the mean submodel of magnitude X = 0.3 to assess the power of the chart
in detecting changes within a controlled scenario.

Figure 2 presents the BRCC and CUSUM-BRCCA@C with Phase II data. The BRCC indicated only
one out-of-control point below the lower limit and one out-of-control point above the upper limit while
the CUSUM-BRCCA@C indicated 494 out-of-control observations (almost all the data in Phase II). It is
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Figure 1. Quantile residual (a) and Q-Q plot (b); simulated data.

noteworthy that in this phase a disturbance of X = 0.3 was introduced in the process mean, that is, the
process was out of control.

Figure 3 presents the performance of the BRCC and CUSUM-BRCCA@C with Phase II data. The values
were obtained considering the steps of Algorithms 1 and 2. Lastly, the covariates and parameters described
in Table 5 were used in this evaluation. We notice that, as evidenced in the simulation study, the CUSUM-
BRCCA@C presented better results than the BRCC (smaller ARL1), proving that the proposed control chart
is more sensitive to detect minor changes in the manufacturing process.

4.2. Empirical application. In the second application, the dataset refers to the relative humidity (RH) in
Australia and highlights the relevance of the proposed chart in monitoring double bounded environmental
data. The RH is a ratio between continuous numbers, being the ratio of the partial pressure of water to the
equilibrium vapor pressure of water, assuming values in (0, 1). Due to the genesis of the beta regression
model, rates and proportions usually can be well fitted by this model. Additionally, the monitoring of RH
is relevant because it exerts influence on temperature, rain, and thermal sensation (Lima-Filho and Bayer,
2021).

Table 6 contains a brief description of the variables used in this analysis. The quality characteristic
monitored was measured daily at 3:00pm, and the other variables were used to adjust the beta regression
model for the ` and/or q structures. This dataset is available in the R rattle package (Graham, 2011)
from October 2010 to June 2017 for the Sydney Station in Australia.

Table 7 includes descriptive statistics of the considered variables. We observe that 25% of the RH
does not exceed 43%, the largest prevalence of RH is 95%, and the mean and median values for RH are
54% and 53%, respectively. In the analyzed period, the lowest temperature was 5◦C and the highest was
45.8◦C.
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Figure 2. BRCC and CUSUM-BRCCA@C for simulated data with out-of-control observa-
tions highlighted in red.
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Figure 3. Performance of the BRCC (dashed line) and CUSUM-BRCCA@C (solid line)
considering ARL0 = 200; simulated data.
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Table 6. Description of the variables; RH data.

Variable Description

RelHumid3pm Relative humidity (%) at 3 pm
Cloud3pm Fraction of sky obscured by cloud at 3 pm.
Evaporation The so-called Class A pan evaporation (mm) in the 24 hours to 9 am
MaxTemp The maximum temperature in degrees celsius
MinTemp The minimum temperature in degrees celsius
Pressure3pm Atmospheric pressure reduced to mean sea level at 3 pm
Rainfall The amount of rainfall recorded for the day in mm
Sunshine The number of hours of bright sunshine in the day

Table 7. Descriptive statistics of the variables; RH data.

Variables min Q1/4 median mean Q3/4 max sd

RelHumid3pm 10.00 43.00 54.00 53.02 63.00 95.00 15.99
Cloud3pm 0.00 1.00 4.00 4.15 7.00 8.00 2.61
Evaporation 0.00 3.20 5.00 5.39 7.20 18.40 2.85
MaxTemp 11.70 20.20 23.30 23.45 26.40 45.80 4.48
MinTemp 5.00 11.30 15.05 15.03 18.90 27.10 4.52
Pressure3pm 994.00 1012.00 1016.00 1016.00 1021.00 1036.00 7.06
Rainfall 0.00 0.00 0.00 2.83 1.00 94.40 8.23
Sunshine 0.00 4.60 8.40 7.40 10.30 13.60 3.75

The dataset has a total of 1690 observations. We used the 845 (50%) first observations (October 2010
to December 2014) to estimate the submodels parameters (Phase I). In Phase II, we used the observations
from January 2015 to June 2017 to monitor the relative humidity.

Table 8 shows the parameter estimates, SE, and ?-values for the fitted beta regression model with
varying precision. We considered the logit and log link functions in the mean and precision submodels,
respectively. Considering the covariates that were statistically significant at the significance level of
5%, two of them were significant in both submodels, namely: minimum temperature (MinTemp) and
atmospheric pressure reduced to mean sea level (Pressure3pm).
As in the previous application, we performed a diagnostic analysis of the residuals to check if the beta

model is a good fit to the data. Figure 4 shows the residuals and Q-Q plot for the model fitted to RH
data. In Figure 4a, the residuals are randomly distributed around zero and within three deviations from
the mean. Figure 4b displays theoretical quantiles against the empirical quantiles of the residuals. There
is no evidence of violation of the model assumptions as the residuals are mostly on the 45 degree line,
indicating that this model is a good fit to the data.

Figure 5 shows the BRCC and CUSUM-BRCCA@C with Phase II data. Considering the BRCC for mon-
itoring relative humidity, the control chart indicated no more than ten out-of-control points below the
lower limit and three points exceeded the upper limit. Differently, the CUSUM-BRCCA@C triggered 62
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Table 8. Parameter estimates, standard errors (SE), and ?-values for the fitted beta re-
gression model with varying precision; RH data.

Submodel for `

Estimates SE ?-value

Intercept −20.6930 2.6299 < 0.0001
Cloud3pm 0.0657 0.0062 < 0.0001
Evaporation −0.0509 0.0066 < 0.0001
MaxTemp −0.0729 0.0062 < 0.0001
MinTemp 0.1161 0.0060 < 0.0001
Pressure3pm 0.0204 0.0025 < 0.0001
Rainfall 0.0121 0.0026 < 0.0001

Submodel for q

Estimates SE ?-value

Intercept −60.4090 7.6854 < 0.0001
MinTemp 0.0284 0.0121 0.0190
Sunshine 0.0765 0.0129 < 0.0001
Pressure3pm 0.0615 0.0075 < 0.0001
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Figure 4. Quantile residual (a) and Q-Q plot (b); RH data.
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Figure 5. BRCC and CUSUM-BRCCA@C for the monitoring of relative humidity in Aus-
tralia with out-of-control observations highlighted in red.

out-of-control points. These results reinforce the characteristic of the CUSUM control chart’s power to
detect changes in the quality characteristic of interest.
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Figure 6. Performance of the BRCC (dashed line) and CUSUM-BRCCA@C (solid line)
considering ARL0 = 200; RH data.

Figure 6 shows the performance of the BRCC and CUSUM-BRCCA@C . The construction of the control
charts followed the same steps of Application 1. The control charts obtained similar performance when
the process was in control (X = 0); however their performance differed when the process was out of
control. The CUSUM-BRCCA@C presented smaller values of �ARL1 than its counterpart, evidencing that
the proposed control chart is more sensitive to trigger a signal in the quality characteristic. For example,
considering X = 0.1, the BRCC took on average 149 samples to detect a change in the process while the
CUSUM-BRCCA@C took on average 20 samples to detect a change of the same magnitude. In a nutshell,
in the presence of control variables, this analysis shows that the proposed CUSUM-BRCC is useful to
monitor quality characteristics in the interval (0, 1) in practical situations.

5. Concluding remarks

In this paper, we developed a new control chart for monitoring double bounded quality characteristics in
the presence of control variables (covariates). For this purpose, we proposed the residual-based CUSUM
beta regression control chart considering different residuals of the beta distribution. This control chart
has the advantage of accumulating information from the past as well as being more sensitive to detect
changes in the mean of a process. We conducted a Monte Carlo simulation study to evaluate and compare
the performance of the proposed control chart with two competing control charts in the literature. The
numerical results evidenced the superiority of the proposed control chart, presenting values of �ARL0,�MRL0, and �SDRL0 close to their nominal values when the process was in control, and smaller �ARL1
for an out-of-control process. We also presented and discussed applications to real and simulated data
that showed the practical importance of our proposal. Finally, we suggest the use of the CUSUM beta
regression control chart with the quantile residual when the objective is to monitor double bounded quality
characteristics in the presence of control variables and detect small shifts in the mean of the process.
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