
1

Future Internet Congestion Control:
The Diminishing Feedback Problem

Michael Welzl∗, Peyman Teymoori∗, Safiqul Islam†, David Hutchison‡, Stein Gjessing∗
∗University of Oslo, Norway †University of South-Eastern Norway ‡Lancaster University, UK

Abstract—It is increasingly difficult for Internet congestion
control mechanisms to obtain the feedback that they need. This
lack of feedback can have severe performance implications, and it
is bound to become worse. In the long run, the problem may only
be fixable by fundamentally changing the way congestion control
is done in the Internet. We substantiate this claim by looking at
the evolution of the Internet’s infrastructure over the past thirty
years, and by examining the most common behavior of Internet
traffic. Considering the goals that congestion control mechanisms
are intended to address, and taking into account contextual
developments in the Internet ecosystem, we arrive at conclusions
and recommendations about possible future congestion control
design directions. In particular, we argue that congestion control
mechanisms should move away from their strict “end-to-end”
adherence. This change would benefit from avoiding a “one size
fits all circumstances” approach, and moving towards a more
selective set of mechanisms that will result in a better performing
Internet. We will also discuss how this future vision differs from
today’s use of Performance Enhancing Proxies (PEPs).

I. INTRODUCTION

CONGESTION control is a network function that aims at
operating the network at a state where all sources send

with their ideal sending rates. Bottleneck capacities should
be fully utilized, queues should mostly be empty, and rates
should be allocated to senders according to some definition of
“fairness”.

The term “congestion control” was coined at a time when
experimental networks occasionally were overloaded, and so-
lutions were needed that would prevent such overload from
happening. The term indicates the necessity of a control loop,
which naturally entails that the sending rates of traffic sources
can increase as well as decrease—but arguably, “congestion
control” also sounds as if there has to be a congestion problem
to solve in the first place. As we will discuss in the next
section, this has not typically been the case in the Internet
during the last two decades: capacities have grown, networks
tend to be overprovisioned, and the prevailing problem is
underload rather than overload. In hindsight, “rate control”
might have been a more appropriate term.

Compared to overload, underload is harder to notice, and
less likely to be perceived as a problem. Indeed, limited
utilization may often be good for network operators, as they
need some leeway to cope with sudden traffic surges from
major events with an unusually large number of participants
(e.g. the football World Cup). So, why is underload a problem
at all?

Consider web traffic. It consists of typically short, con-
gestion controlled, reliable data transfers, and it is latency-

critical; the delay observed by users depends on the completion
time of transfers. This delay affects a multitude of web-based
applications—not just access of static pages, but also services
such as online road maps, various cloud applications, and e-
commerce, for example. These short transfers can experience
unnecessary delay even when there is plenty of available
capacity, and we need to reduce such delays by better utilizing
the network capacity. This is a case where time is money:
users of websites are quick to turn away when they experience
latency. Several companies have attempted to calculate the
related revenue loss. For example, already in 2006, Amazon
estimated that every 100 ms of delay costs 1% of sales [1].

The root of the problem is that the original Internet
congestion control mechanism was designed to operate in
circumstances where traffic loads would normally be moderate
or large compared to link capacities. When networks are
significantly underloaded, the mechanism delays packets un-
necessarily because it lacks feedback: unaware of the excessive
network capacity, it continues to apply the regular algorithm.

The situation will be explained further in the next section,
where we will discuss how Internet congestion control has
changed over the last decades. As we will see, missing
feedback became an issue at an earlier stage of Internet
development, and it was solved—yet, this prior solution does
not solve today’s problem. Section III examines factors that
make the present situation problematic: because of how the
network infrastructure is evolving, the problem is bound to
become worse, and fixing it may require a radical change of
the way Internet congestion control operates. We will therefore
discuss appropriate updates to congestion control, and what
implications such changes might bring, in Section IV.

II. WHAT PROBLEM DOES CONGESTION CONTROL SOLVE?
Responding to the prevalent problems at the time, the

primary focus of Internet congestion control has changed
multiple times over the course of three decades, which allows
us divide the related research into three major phases. We
discuss congestion control in the context of its traditional
vehicle: the “Transmission Control Protocol (TCP)”. However,
our observations are general, and therefore also apply to
other protocols such as “Quick UDP Internet Connection
(QUIC)” [2].

A. Phase 1 (the 1990’s):
Keeping the Internet Operational

Congestion control was added to TCP in response to a
global Internet “congestion collapse” in the late 1980’s; the

2

introduced behavior added a “congestion window (cwnd)” as
an extra limitation on the number of packets to send per round-
trip time (RTT). From an initial value called “Initial Window
(IW)”, TCP gradually increases its cwnd until it notices a sign
of congestion, as a result of a growing queue at the bottleneck
router—at the time, losing a packet when the queue reaches
its maximum size was the only indicator. Then, TCP backs
off, and the cycle repeats. The initial increase is exponential,
dubbed “slow start”, and later increases, dubbed “congestion
avoidance”, are linear. Very severe congestion can put TCP
back to its initial state, where it begins with slow start again.
Because TCP congestion control shifted the whole Internet
from a failure mode back into being “normally” operational,
in the following years, the primary focus was on preserving
this relatively stable operation.

In the 1990’s, work on rate-adaptive multimedia applications
flourished, and there was a wish to offer such applications
a suitable behavior in terms of congestion control. These
applications needed some form of compatibility with TCP,
as an unresponsive application using the “User Datagram
Protocol (UDP)” can easily render a TCP connection (or even
a large number of them) unusable. This concern is depicted in
Figure 1.

Capacity limit

Queue limit

Time
cwnd

Fig. 1. 1990’s concern: an aggressive unresponsive flow (red line) starves a
TCP connection (blue line).

To handle this problem, the notion of “TCP-friendliness”
was established. It became acceptable to propose different
congestion control methods which yield fewer quality fluctua-
tions and less jitter than a TCP-like behavior, as long as these
congestion control mechanism would, on average, not exceed
the rate of a TCP connection under similar circumstances.

B. Phase 2 (the 2000’s):
Working With High-Speed Links

The early 2000’s saw an increase of network capacities up
to a Gigabit per second, combined with a desire to use the
Internet for large-scale distributed (“Grid”) computing. For
such uses, it was necessary to ship very large amounts of
data. TCP became a bottleneck: the additive increase of TCP’s
cwnd does not scale with capacity, which means that it may
sometimes take a standard TCP flow up to an hour or more
to fully saturate the bottleneck when the Bandwidth×Delay
Product (BDP) is large. Even large data transfers would often
not last long enough for TCP to saturate the capacity and
obtain congestion feedback once under such circumstances.
As Figure 2 shows, the network was underloaded.

Capacity limit

Queue limit

Time
cwnd

Fig. 2. 2000’s concern: the bandwidth×delay product is large (diagrams are
not to scale), and TCP is too slow to reach the capacity limit.

Increasing the sending rate more quickly is not “TCP-
friendly”, however, and thus, mechanisms for large BDP
networks needed an “emergency brake”, to ensure that they
only are more aggressive than standard TCP when the packet
loss ratio is low. One such mechanism, “Binary Increase
Congestion control TCP (BIC-TCP)”, was made the default
in Linux in mid-2004. The Internet did not melt, but the new
Linux behavior was significantly more aggressive than the
behavior of other operating systems. This situation was soon
improved when the slightly less aggressive CUBIC mechanism
was chosen as the new default. Like other competitors of the
time, neither BIC nor CUBIC is “perfect”, but it appears that
CUBIC performed well enough to make the “large BDP prob-
lem” less problematic for the following years—or, perhaps, it
was also due to the changing Internet usage.

C. Phase 3 (since the 2010’s): Minimizing Latency

Today, the Internet is a cornerstone of modern society. We
use it to work from home, access social media, chat with
friends and family, play games and watch movies or TV. From
the network’s point of view, much of this communication is
short-lived. Web pages are transmitted as many short connec-
tions, often from a variety of servers. Messengers often only
transfer text or images which easily fit in a handful of packets.
As Figure 3 shows, these short or broken transfers often do
not last long enough to probe for the available capacity even
once (we will confirm this with measurements in the next
section), yet, for most web based applications, they should be
finished as quickly as possible. No current congestion control
mechanism lets a sender increase its cwnd faster at this initial
stage.

This means that the optimization goal is: keep the on-path
latency low (by avoiding queuing delay) while quickly making
use of the available capacity. We will discuss how this could
be done in Section IV—but first, we confirm the importance
and timeliness of solving this optimization problem by taking
a brief look at the development of the Internet infrastructure
as well as the typical properties of Internet traffic.

III. WHY IS THERE A FEEDBACK PROBLEM?

We will now examine two factors that make the the present
situation particularly worrisome. First, the way the infras-
tructure has been evolving gives TCP an increasingly large

3

Capacity limit

Queue limit

Time
cwnd

Fig. 3. 2010’s (and later) concern: flows cannot probe for the capacity limit
because they are too short. Reducing latency is the primary goal.

operational space in which it does not see any feedback at
all. Second, most TCP connections are extremely short. As
a result, it is quite rare for a TCP connection to even see a
single congestion notification during its lifetime.

A. The Evolution of Internet Connection Speeds

Figure 4 shows the development of the “average peak” vs.
average connection speeds according to Akamai’s “State of
the Internet” reports in the time frame 2010-2017 (newer
reports do not contain this information). The “average peak”
represents an average of the maximum measured connection
speeds. From the countries where data was available for the
full 2010-2017 time frame, we chose South Korea and Switzer-
land as high-capacity examples, and China and Venezuela
as lower-capacity cases, respectively, in addition to the USA
and the global average. Altogether, an upward trend of the
peak vs. average ratio is noticeable. In fact (not evident from
Figure 4 but available in the reports), from 2010 to 2017,
the average capacity has roughly quadrupled, both globally
and in the USA—but the global average peak capacity in
2017 is 7 times the value of 2010 (5.4 in case of the USA).
This shows that the Internet not only becomes faster: the
range between low-end and high-end connectivity grows. The
reasons are not documented, but this may be the effect of
Internet connections being upgraded at different rates—i.e.,
some links are upgraded, but some legacy links with lower
capacities are still in place.

Measurements confirm this: Figure 5 illustrates the evolu-
tion of end-to-end Internet throughput ranges according to
Measurement Lab data sets. The data were collected from
2012 to November 2021 in over 90 countries by a tool called
Neubot [3] that ran daily in the background of up to 4500 static
volunteer user computers and periodically tested the network
performance. Some values are very small because many of
the countries in the study have poor Internet connectivity. The
lower and upper ends of the boxes in the figure represent
the 25% and 75% percentiles, respectively. Outliers are not
presented for the sake of clarity. Referring to the figure, we
observe that the range of link capacities is widening. For
example, the difference between 25% and 75% percentiles
from 2012 to 2021 is 0.328, 0.499, 0.621, 0.988, 1.29, 1.91,
2.38, 16.2, 18.1, 29.6 Mbps, for upload, and 1.37, 1.4, 1.6, 2.2,
3.1, 4.5, 6.2, 44, 42.2, 48.1 Mbps, for download, respectively.

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 2010 2011 2012 2013 2014 2015 2016 2017

R
at

io
: a

vg
 p

ea
k

co
nn

. s
pe

ed
 /

av
g

co
nn

. s
pe

ed

Year

Venezuela
Global
China

USA
Switzerland
South Korea

Fig. 4. Internet connection speed developments and trends according to
Akamai’s “State of the Internet” reports.

Download

Upload

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

0

10

20

30

40

50

60

70

80

90

100

110

120

Year

S
p

e
e
d
(M

b
p

s
)

Fig. 5. Internet throughput ranges and developments for 90 countries
according to Measurement Lab data sets. The sudden increase in 2019 is
due to the measurement campaign switching to CUBIC congestion control,
which eliminates the problem shown in Figure 2.

From 2019, when CUBIC was enabled for these measurements
in the Neubot tool, the upper end of the measured values
increases drastically, but the lower end is only marginally
affected.

B. Wireless connectivity

As we increasingly use wireless links to connect to the
Internet, the development of wireless technology has important
ramifications for TCP/IP protocols too. One issue stands out
in particular: while it was once correct to assume that the
capacity of a bottleneck along an end-to-end path is relatively
stable, this is no longer the case.

For example, very high data rates can be achieved using
millimeter Waves (mmWave), which are adopted by new tech-
nologies such as 5G, IEEE 802.11ay and vehicular communi-
cations as the demand for high-speed mobile Internet access
is growing—but mmWave communication can be obstructed
by obstacles, causing sudden outages and high fluctuations

4

TABLE I
MEASUREMENTS—15-MINUTE LONG TRACES FROM EACH MONTH FROM

JANUARY 2019 TO NOVEMBER 2021 AT THE TRANSIT LINK OF THE
JAPANESE WIDE BACKBONE NETWORK.

Total number of flows 2555005
Flows with re-transmissions (client to server) 317754 (12.44%)
Flows with re-transmissions (server to client) 52738 (2.06%)
Total flows with re-transmissions 370492 (14.50%)

in physical data rate. Tests that use capacity fluctuations from
real-life mmWave traces show that this is very problematic for
state-of-the-art congestion control mechanisms [4]: a capacity
reduction can cause cwnd to become very small, yet the end-
to-end control loop is not informed when the capacity is
increased again. This can lead to sustained underload. Also,
the delay at which an adjacent queue is drained changes with
the available capacity, affecting delay measurements.

C. Properties of Internet traffic

Internet traffic has long been known to consist of many
short flows (“mice”: web browsing etc.) which compete with
only a few very long flows (“elephants”: long file downloads
etc.). A recently published measurement study finds that, in
a large dataset consisting of traffic traces that were captured
on a Tier-1 Internet Service Provider (ISP) backbone in
Chicago between June 2008 and March 2016, 85% of all TCP
connections carry between 100 B and 10 kB of data [5]. In a
measurement of one week in 2017 in the mobile search service
of Baidu, Inc., 80.27% of all TCP connections terminate in
slow start [6].

To confirm these findings, and to investigate how often
short flows encounter packet loss, we obtained data from the
Japanese “WIDE” project’s MAWI Working Group archive.
This archive contains daily traffic traces captured on a 1 Gbps
transit link of WIDE to an upstream ISP. Table I summa-
rizes our analysis of packet losses in these traces, which
we identify in two ways, since losses can happen before
or after the measurement point. To cover the first (before)
case, we conclude that a flow experienced a loss when we
see a retransmitted data packet. For the second case (losses
after the measurement point), we consider three duplicate
acknowledgments as an additional indication of loss. In this
way, there is only one exceptional case of losses in end-to-
end TCP connections that we miss: “tail losses” (loss of the
last data packet in a connection) that happened before the
measurement point. (Since no further acknowledgments would
arrive, these retransmissions are caused by a timeout.)

In this example of real Internet TCP traffic, 85.5% of
all flows have no re-transmissions, i.e. they experienced no
packet loss. Because marking a bit in packets instead of drop-
ping them (a scheme called “Explicit Congestion Notification
(ECN)”) is negligibly rare, in all of these cases, the congestion
control mechanism never even managed to probe for the
available capacity before the transfer ended. It is important for
the remaining large flows to carry out appropriate congestion
control, or results could be devastating for the many short
flows that might see their packets enqueued or even dropped.

We have already explained that the inability of TCP to satu-
rate the network’s capacity incurs delay for web applications.
However, this shortcoming of congestion control is not equally
important for all applications. Netflix, for example, transmits
data in short bursts, and it is common to see pauses of multiple
seconds between them [7]. As long as data from these bursts
reach the receiver in time to keep the playback buffer from
draining, there is no problem. Since Netflix users can already
watch videos at the highest quality level that is being offered
for their output devices, a better congestion control mechanism
would not make any difference.

The following example highlights the significance for web
traffic. We accessed the front page of cnn.com with Google
Chrome (with QUIC disabled) and determined the length of
the longest TCP data transfer from the main server (which
plays a role for the overall delay in presenting the page).
This transfer consisted of 948 data packets in the server-client
direction and showed no noticeable packet loss. Due to the
initial “Transport Layer Security (TLS)” handshake, it is not
easy to see the actual IW that the cnn.com server used in
our test. With the common choice of IW=10, it would take at
least seven round trips to finish this transfer. At the beginning
of the 6th round, cwnd would be 320, and by the end of this
round, 630 packets would have been transmitted. The value
of 320 certainly worked in our test: within 948 packets, even
IW=1 would have allowed cwnd to grow beyond 320, with no
packet loss incurred. This value could, in principle, have been
used from the start, allowing the transfer to terminate within
three round-trips, i.e. in less than half of the previous time.
(Note that using such a large cwnd would probably require
a regime to “pace” traffic, i.e. interject pauses in between
packets, because large traffic bursts can cause a router queue
to overflow, causing packet loss.)

IV. THE WAY FORWARD

What is the road ahead for Internet congestion control in
the context of its diminishing feedback problem?

The large majority of previous congestion control research
has focused on improving the congestion avoidance phase
of TCP, which begins upon the first packet loss. Moreover,
it has been common to assume a “greedy” sender, i.e. an
application which always sends as much data as allowed by the
congestion control mechanism. Given how rare packet losses
and long-term “greedy” applications really are, this kind of
improvement may no longer be worth the effort, and the focus
should probably shift to improving the initial start-up behavior.

We will now take a closer look at three directions for such
improvements: changing the end-to-end control, letting devices
in the network help, and changing the path itself.

A. End-to-end congestion control

To some degree, the shift of focus has already happened.
Since underload is primarily disadvantageous for web traffic,
it is not surprising that Google has already developed a
number of fixes for this problem, with the goal to reduce the
completion time of short Internet data transfers. Several of
these fixes are incremental changes to existing standards, and

5

have been standardized in the Internet Engineering Task Force
(IETF). But how far can these gradual improvements take us?

In the absence of packet loss, the completion time of TCP
transfers primarily depends on three factors: i) the number
of management round-trips, ii) the RTT and iii) TCP’s slow
start behavior. Recent work related to TCP (“TCP Fast Open
(TFO)”) [8], TLS 1.3 [9] and QUIC [2]) has brought the
number of management round-trips down, in some cases even
to zero; we may well have reached the limit of optimization
for this aspect. Regarding TCP’s slow start behavior, Google
has successfully lobbied for an increase of the standard IW
from 4 to 10 TCP packets, and Internet servers now use a
large range of different values, with common choices as low
as 1 and as large as 48, or even 100 in some cases [10].

If the Internet would uniformly become faster everywhere,
TCP could gradually be improved by scaling the IW along
over the years—however, as we have discussed, this is not the
case: it appears that low-end capacity links do not disappear
as quickly everywhere as high-end capacity links become
available in some parts of the world. Since transport protocols
like TCP and QUIC are worldwide standards, they must be
able to cope with the increasingly difficult situation of a
growing operational range in which there is no feedback.

This points at a need to make an informed choice instead.
One possibility is to try to learn from past success or failure,
and to assume some correlation between a newly starting data
transfer and previous transfers. This has, for example, been
done by the authors of [6], who report positive results obtained
with a reinforcement learning based IW adjustment strategy
during a year of production use for the mobile search service
of Baidu, Inc.

The relatively new mechanism “Bottleneck Bandwidth and
Round-trip propagation time (BBR)” offers potential for using
the network capacity more suitably to avoid unnecessary la-
tency due to its use of pacing [11]. Because large packet bursts
are likely to cause queues to overflow, pacing is advisable
when trying to speed up short transfers, whether this is done
by changing the IW or by adapting the cwnd increase behavior.
Currently however, BBR does not propose a change to the
default IW value and also does not initially increase its rate
any faster than the common slow start mechanism.

B. Network-assisted congestion control

Future congestion controls could leverage two essential
methods to cope with this increasingly difficult situation:

1) Explicit feedback: The problem of diminishing feed-
back is intrinsically connected to its implicit nature—
measurements of delay and packet loss, as a result of
a growing queue. Explicit feedback can be provided
earlier, before a queue attains a significant length.
More than a decade ago, researchers proposed a handful
of mechanisms that are based on a joint sender-router
control design with multi-bit explicit feedback (e.g.,
the “eXplicit Control Protocol” (XCP) [12]). These
mechanisms worked much better than the more common
implicit feedback based schemes—including a much
faster startup behavior—but their reliance on support

from all routers along the path made them unsuitable for
practical use in the Internet. Even the much simpler ECN
scheme, where routers set a bit to indicate congestion
instead of dropping a packet, has a long history of
deployment failures. This highlights the difficulty to
deploy explicit feedback in support of an end-to-end
control loop. However, explicit feedback schemes may
work well on shorter path segments.

2) Faster feedback: The reaction speed of any congestion
control mechanism is in the order of RTTs—so, to
react faster, the RTT needs to be shorter. This could
be achieved by putting the control close to the bot-
tleneck. Also, short-RTT loops could then carry data
from multiple end-to-end flows. Such aggregate control
would avoid unnecessary side-effects from competition
between end-to-end flows, and it would allow to imme-
diately assign an ideal share of the current aggregate rate
to a newly arriving short flow.

Control loops are already shortened today by Performance
Enhancing Proxies (PEPs) which, in their simplest form,
split a TCP connection in two, claiming to be the receiver
towards the sender and claiming to be the sender towards the
receiver [13]. With such a connection splitting device in place,
it is, in principle, not necessary for the same congestion control
mechanism to be uniformly deployed across the whole end-
to-end path. PEPs therefore allow better use of links that have
a fluctuating capacity, such as a mmWave link layer.

PEPs, however, come with a number of problems. For one,
by “cheating” TCP, they need to conflate congestion control
and reliability. As they reduce the length of the congestion
control loop, they must also buffer and retransmit packets—
such buffers can add delay. Because they take decisions based
on packet headers that should not normally be inspected within
the network, and seeing something unexpected in these headers
can cause failures, PEPs also contribute to the “ossification”
of the Internet architecture (the difficulty of changing network
protocols). This is one of the reasons why QUIC encrypts not
only the payload but also large parts of the packet header [2].

The “Multiplexed Application Substrate over QUIC En-
cryption (MASQUE)” IETF working group develops a set
of standards in which end systems explicitly communicate
with proxies. Such proxies could, at least in theory, carry out
certain functions that were previously only common for TCP
PEPs, but they would no longer be confined to the limitations
imposed by having to “cheat”. A similar approach already
exists for TCP [14]; it enables proxy support for Multipath
TCP, in line with the Access Traffic Steering, Switching,
and Splitting (ATSSS) service being specified within the
3rd Generation Partnership Project (3GPP). However, so far,
changing congestion control to improve the startup behavior
has not been a focus of this work.

C. Changing the path

The RTT can be minimized by placing content as close as
possible to its consumer using a “Content Distribution Net-
work (CDN)”. Beyond serving static content, “Multi-access
Edge Computing (MEC)” puts a variety of applications closer

6

to their users—to the “edge” of the network. The shorter, more
homogeneous MEC path may directly use explicit feedback
without the need for a proxy; this is also envisioned in the
ETSI MEC standard [15].

With CDNs and MEC, the underload problem of Internet
congestion control does not disappear, but its effect may be-
come minuscule. For the cnn.com example that we presented
in Section III-C, better congestion control may have reduced
the number of round-trips from 7 to 3. If the RTT to cnn.com
is 100 ms, this means a reduction by 400 ms—but when the
RTT to the server is only 10 ms, better congestion control
could only reduce the delay by 40 ms.

Multi-access (multi-path) congestion control can also play a
role for latency reduction—for example, the “Siri” application
by Apple Inc., is known to duplicate messages across multiple
paths and to use the earliest arriving one in order to speed up
processing. Here, again, the underload problem is relevant for
each of the paths in use, even though the latency reduction
per path will be relatively small.

V. CONCLUSION

The focus of this paper is whether Internet congestion
control needs to change. Given the vastly increasing capacity
of the Internet infrastructure and typical application traffic
behavior with mostly short or interrupted flows, we argue
for improved congestion feedback with a shift away from the
current end-to-end approach; this will improve performance.

The Internet ecosystem is also evolving towards a more
fragmented set of networks, with differing commercial goals
and imperatives. Our assumption, however, is that the basic
architecture and protocols in each will remain, but we conclude
that congestion control mechanisms in each network instance
must have the ability to be varied—i.e. moving away from a
“one size fits all circumstances” approach.

For some applications, latency benefits have been made
with the introduction of QUIC, which uses UDP instead of
TCP, thus incurring fewer protocol round trips [2]. We believe
that the focus should next be on replacing QUIC’s congestion
control mechanism, which would be a more fruitful source of
latency saving—especially in a large-capacity network when
it is significantly underloaded.

Nevertheless, today, any congestion control mechanism in
QUIC or TCP operates end-to-end, which we claim brings dis-
advantages. Further investigation of PEPs is needed—looking
at turning them into “good network citizens” and deploying
a mechanism that reacts to explicit feedback on a per-path-
segment basis. Today, PEPs are almost exclusively used with
links that have a very peculiar behavior, e.g. a satellite or
mmWave link. We believe there is a more general use for
PEPs, e.g. to increase the chance of discovering a workable
IW value over time by breaking paths into shorter segments.

We hope this paper will persuade our peers that it is
worth considering these issues, to debate and experiment with
alternative designs, and help prepare the Internet to shift
towards a future in which unnecessary latency is substantially
reduced or removed, and congestion control is no longer
routinely implemented end-to-end.

REFERENCES

[1] G. Linden, “Make data useful,” https://sites.google.com/site/glinden/
Home/StanfordDataMining.2006-11-28.ppt, (2006), accessed on
2021/13/12.

[2] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed and
Secure Transport,” RFC 9000, May 2021.

[3] J. C. De Martin and A. Glorioso, “The Neubot project: A collaborative
approach to measuring internet neutrality,” in IEEE ISTAS, 2008.

[4] A. Srivastava, F. Fund, and S. S. Panwar, “An experimental evaluation of
low latency congestion control for mmWave links,” in IEEE INFOCOM
2020 - IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), 2020, pp. 352–357.

[5] S. Bauer, B. Jaeger, F. Helfert, P. Barias, and G. Carle, “On the evolution
of internet flow characteristics,” in Proc. ACM ANRW, 2021.

[6] X. Nie, Y. Zhao, Z. Li, G. Chen, K. Sui, J. Zhang, Z. Ye, and D. Pei,
“Dynamic TCP initial windows and congestion control schemes through
reinforcement learning,” IEEE JSAC, vol. 37, no. 6, 2019.

[7] V. K. Adhikari, M. Varvello, V. Hilt, M. Steiner, and Z.-L. Zhang,
“Unreeling netflix: Understanding and improving multi-CDN movie
delivery,” in Proc. IEEE INFOCOM, 2012.

[8] Y. Cheng, J. Chu, S. Radhakrishnan, and A. Jain, “TCP Fast Open,”
RFC 7413, Dec. 2014.

[9] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3,”
RFC 8446, Aug. 2018.

[10] J. Rüth and O. Hohlfeld, “Demystifying TCP initial window configura-
tions of content distribution networks,” in IFIP TMA, 2018.

[11] N. Cardwell, Y. Cheng, S. H. Yeganeh, I. Swett, and V. Jacobson,
“BBR Congestion Control,” IETF, Internet-Draft draft-cardwell-iccrg-
bbr-congestion-control-01, Nov. 2021, work in progress.

[12] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high
bandwidth-delay product networks,” in ACM SIGCOMM, 2002.

[13] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby, “Perfor-
mance Enhancing Proxies Intended to Mitigate Link-Related Degrada-
tions,” RFC 3135, Jun. 2001.

[14] O. Bonaventure (Ed.), M. Boucadair (Ed.), S. Gundavelli, S. Seo, and
B. Hesmans, “0-RTT TCP Convert Protocol,” RFC 8803, Jul. 2020.

[15] ETSI, “ETSI GS MEC 002 V2.2.1: Multi-access Edge
Computing (MEC); Phase 2: Use Cases and Requirements,”
https://www.etsi.org/deliver/etsi gs/MEC/001 099/002/02.02.01
60/gs MEC002v020201p.pdf, Jan. 2022, accessed on 2022/07/03.

VI. BIOGRAPHY SECTION

Michael Welzl is a full professor at the University
of Oslo, Norway, since 2009. He received his Ph.D.
and his habilitation from the University of Darmstadt
/ Germany in 2002 and 2007, respectively. Michael’s
main research focus is the transport layer; he is
active in the IRTF and the IETF.

Peyman Teymoori received his Ph.D. degree in
computer engineering from University of Tehran,
in 2013. Now, he is a researcher fellow in the
Network and Distributed Systems group, Department
of Informatics, University of Oslo, Norway. His re-
search interests include the design and performance
evaluation of computer network protocols, wireless
networks, and recursive network architectures.

7

Safiqul Islam is an Associate Professor at the
University of South-Eastern Norway. He received
his Ph.D. in Computer Science from the University
of Oslo, Norway. His research interests include
performance analysis, evaluation, and optimization
of transport layer protocols. He is active in the
IETF and IRTF where he has contributed to several
IETF/IRTF Working Groups.

David Hutchison is a Distinguished Professor of
Computing at Lancaster University, UK, and the
Founding Director of InfoLab21. His work is well
known internationally in a range of areas including
Quality of Service for computer networks, pro-
grammable networking, multimedia and content dis-
tribution networks, and testbed developments. His
most recent research focuses on the resilience of
networked computer systems, and the protection of
critical infrastructures and services.

Stein Gjessing is an emeritus professor of Computer
Science in Department of Informatics, University of
Oslo. He received his Dr. Philos. degree in 1985
form the University of Oslo. He has worked with
object-oriented concurrent programming, computer
interconnects and computer architecture for cache
coherent shared memory, with DRAM organization,
with ring based LANs (IEEE Standard 802.17) and
with IP fast reroute.

