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Abstract. A converse is given to the well-known fact that a hyperplane localised zero
mode of a crystallographic bar-joint framework gives rise to a line or lines in the zero mode
(RUM) spectrum. These connections motivate definitions of linear zero mode spectra for
an aperiodic bar-joint framework G that are based on relatively dense sets of linearly
localised flexes. For a Delone framework in the plane the limit spectrum Llim(G, a) is
defined in this way, as a subset of the reciprocal space for a reference basis a of the
ambient space. A smaller spectrum, the slippage spectrum Lslip(G, a), is also defined. For
quasicrystal parallelogram frameworks associated with regular multi-grids, in the sense
of de Bruijn and Beenker, these spectra coincide and are determined in terms of the
geometry of G.

1. Introduction

A zero mode of a crystallographic bond-node framework C in Rd, d ≥ 2, is considered
here to be an excitation state of the nodes which has vanishing energy. These are also
known as rigid unit modes (RUMs) or mechanical modes. More precisely, a zero mode
is a simple harmonic motion oscillatory state, with wave vector k in a reciprocal space
Rd

k
, where the bonds are unstretched to first order. Comparisons between simulations and

experimental results have shown that the wave vectors of RUMs for simulated crystals
coincide with those observed in material silicates and zeolites. See, for example, Giddy
et al. [11], Wegner [25] and the recent perspective of Dove [8]. On the other hand,
it is known that zero modes correspond to certain infinitesimal flexes [19]. Also, the
purely mathematical theory of infinitesimal flexibility and rigidity for periodic bar-joint
frameworks is now well-developed as can be seen, for example, in the survey of Schulze
and Whiteley [24]. Moreover, recent articles have led to further mathematical insights into
the spectra of zero modes. See, for example, Badri, Kitson and Power [3], Connelly, Shen
and Smith [5], Kastis, Kitson and McCarthy [13] and Kastis and Power [15].

In what follows we define linear zero mode spectra for aperiodic bar-joint frameworks in
R2 that generalise certain linear structure in the crystallographic case. Also, these spectra
are determined for quasicrystal parallelogram frameworks associated with regular multi-
grids. We remark that infinite bar-joint frameworks provide fundamental mathematical
models for material crystals and topological insulators (Dove et al [7], Kane and Lubensky
[12], Lubensky et al [16], Rocklin et al [21]). The same is true for quasicrystals and the
analysis of floppy modes (infinitesimal flexes) and zero modes (floppy modes with wave
vectors in some sense). See for example, Stenull and Lubensky [23] and Zhou et al [26].

The notion of an excitation mode wave vector for a quasicrystal framework G in Rd is
somewhat paradoxical since wave vectors are defined relative to a periodic structure for
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G. Indeed, for a crystallographic framework C one has a finite building block, or motif,
of joints and bars, whose translates relative to a basis a, generate C. A zero mode u is
then a velocity field, satisfying the first-order flex conditions, that is determined by a finite
velocity field umotif on the motif joints together with a wave vector k, or equivalently, in
the complex case, by a unimodular phase-factor ω in the d-torus Td. This infinitesimal
flex definition of a zero mode is in analogy with Bloch’s theorem in condensed matter
physics. Since the phase-modulation of the velocities of umotif within a translated block
is constant we can view the entire phase modulation in terms of an ambient phase field
φω(x), x ∈ Rd, which is constant on the cells of a partition associated with the lattice for
a. In other words the zero mode u, with phase factor ω relative to the periodicity basis a,
is given as a pointwise product u = φω · ũmotif , where ũmotif is the velocity field given by
the periodic extension of umotif . That is, for each joint pi,

u(pi) = (φω · ũmotif)(pi) = φω(pi)ũmotif(pi).

We generalise this particular mathematical formalism to aperiodic bar-joint frameworks
G by considering phase fields associated with variable vector space bases that are not
necessarily commensurate with a fixed reference basis a. Specifically, we consider how
the presence of infinitesimal flexes which are approximately phase-periodic for specific
directions can lead, in the limit, to the identification of lines in the reciprocal space for
a. A totality of such lines is considered as a linear zero mode spectrum. In particular
we determine such spectra for quasicrystal frameworks that are associated with regular
multigrid parallelogram tilings, examples of which are the Penrose rhomb tilings [6] and
the Ammann-Beenker tilings [4], from pentagrids and tetragrids respectively.

In Section 2 we give a self-contained account of the zero mode spectrum of a crys-
tallographic bar-joint framework (or crystal framework) C in Rd. Moreover, we show in
Theorem 2.8 that lines in the (unreduced) zero mode spectrum K(C, a) necessarily arise
from hyperplane localised infinitesimal flexes. This seems to be a new observation in the
mathematical theory and answers a question posed in Remark 4.12 of Badri, Kitson and
Power [3]. The converse direction is a well-known paradigm in crystallography. That is,
crystal structure symmetries can lead to linearly localised modes, or even modes with
finite support, and these modes are observable experimentally, or in simulations, as spec-
tral lines or planes. We remark that a connection between linear structure in the RUM
spectrum and the presence of certain free bases of infinitesimal flexes is examined in [3].

In Section 3 we use the terminology of line figures to summarise the results in Section
2 for crystal frameworks in R2. In particular the line figure of the zero mode spectrum,
denoted LF (K(C, a)), is the set of lines through the origin that are parallel to a line of
K(C, a).

Linear zero mode spectra are defined in Section 4 in the setting of Delone bar-joint
frameworks in the plane. The simplest of these is the slippage spectrum Lslip(G, a). This is
a subset of the reciprocal space R2

k
, for the reference basis a in R2, consisting of a set of lines

through the origin associated with certain relatively dense sets of linearly localised flexes.
The “slippage” terminology reflects the fact that these localised flexes are restrictions of
translation velocity fields. A Penrose rhomb tiling has slippage spectrum consisting of 5
lines through the origin. More generally, the framework GP of a general regular multigrid
parallelogram tiling P has slippage spectrum given by the reciprocal line figure RF (P )a
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of the ribbon figure RF (P ), where the ribbon figure records the finite number of linear
directions of the parallelogram ribbons of P . See Theorem 4.10 and Example 4.12. Also,
in the periodic case, when GP is periodic for a, the slippage spectrum Lslip(GP , a) coincides
with line figure LF (K(GP , a)) (Theorem 4.13).

For these identifications we use the characterisation of infinitesimal flexes of parallelo-
gram frameworks obtained in our companion article [20], where we also give an explicit
formula for RF (P ) in terms of the tile geometry of P .

The limit spectrum Llim(G, a) is a larger line figure in reciprocal space, which is similarly
defined but in terms of general approximating phase-periodic velocity fields. For the
parallelogram frameworks GP it agrees with the slippage spectrum. On the other hand,
for the crystallographic kagome framework Ckag in R2, with periodicity basis a, the slippage
spectrum is empty whereas Llim(Ckag, a) is the union of 3 lines through the origin and agrees
with K(Ckag, a).

In the final section we give further commentary and indicate some natural directions
for investigation.

2. Zero mode spectra for crystals

The existence of a wave vector k for a zero mode excitation of crystallographic bar-
joint framework C means that the oscillatory motion pi(t) of a joint pi is determined
by the motion of the joints in some fixed base unit cell, associated with a periodicity
basis a for C, together with k and the integral coordinates labelling the cell containing
pi. In fact such a real-valued zero mode corresponds to a phase-periodic complex-valued
infinitesimal flex of the framework. Specifically, the real part of the infinitesimal flex is
a velocity field on the joints giving the initial velocity of the motion of the joints [19].
With this perspective, of linearisation and complexification, the (reduced) RUM spectrum
Ω(C, a) of a crystallographic bar-joint framework (or crystal framework for brevity) may
be defined quite directly. It is the subset of the d-torus Td consisting of the multiphases
ω = (ω1, . . . , ωd) of infinitesimal flexes which are periodic with respect to a modulo the
multiphase factor ω.

To indicate this explicitly, assume that d = 2 and let C = (G, p) be a crystallographic
bar-joint framework with a periodicity basis a = {a1, a2} and an associated labelling of
the joints,

p(V ) = {pκ,(i,j) : (i, j) ∈ Z2, 1 ≤ κ ≤ n},

so that pκ,(i,j) = pκ,(0,0) + ia1 + ja2. Here G = (V,E) is the underlying structure graph
and n is the number of orbits of the joints under translations from the lattice of vectors
determined by a. Let V(C,C) be the vector space of complex-valued velocity fields on the
set of joints which we may identify with the vector space of sequences u : {1, . . . , n} ×
Z2 → C2. Then for each ω ∈ T2 there is a finite-dimensional subspace of velocity fields
u which are phase-periodic (or periodic-modulo-phase, or ω-periodic), in the sense that
uκ,(i,j) = ωi

1ω
j
2uκ,(0,0) for all κ, i, j.

A complex infinitesimal flex of a bar-joint framework (G, p) in R2 is a velocity field
u : p(V ) → C2 which satisfies the first order flex condition for every bar. This means that

〈u(p(v))− u(p(w)), p(v)− p(w)〉 = 0, for vw ∈ E.
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For a crystal framework C these flexes are identified with a subspace F(C,C) ⊆ V(C,C).
Let us refer to an infinitesimal flex of C as an infinitesimal flex mode (IFM) for a if it
is nonzero and is phase-periodic for some multiphase ω in T2. In particular an IFM is
bounded. The RUM spectrum Ω(C, a) is defined to be the set of the multiphases ω for
these IFMs.

For general dimension d, let ω = (ω1, . . . , ωd) ∈ Td, ωi = e2πiγi , and let ωk be the

product ωk1
1 · · ·ωkd

d for k ∈ Zd. For a crystal framework C in Rd with periodicity basis
a, the (unreduced) zero mode wave vector spectrum K(C, a) is defined to be the set of
wave vectors k = (γ1, . . . , γd) such that there is an IFM for ω. This means that u is
phase-periodic for ω in the sense that for the shift isometries

Tk : (x1, . . . , xd) → (x1, . . . , xd) + (k1a1 + · · ·+ kdad), k ∈ Zd,

we have u(Tk(pj)) = ωku(pj) for each joint pj . The wave vectors (γ1, . . . , γd) are viewed
as elements of the space Rd

k
, with its standard basis, b = {b1, . . . , bd} and so (γ1, . . . , γd) is

identical to the vector γ1b1 + · · ·+ γdbd in Rd
k
. We refer to Rd

k
as the reciprocal space for

a since this terminology conforms with the usual usage in crystallography. That is, the
basis satisfies the identities 〈ai, bj〉 = δij . In particular it may also be considered as as the
usual dual vector space of the coefficient space of vectors (s1, . . . , sd) for the basis a.

The image of K(C, a) in [0, 1)d under the quotient map Rd
k
→ Rd

k
/Zd is the set of reduced

wave vectors, and this is the convenient wave vector form, or logarithmic form, of the RUM
spectrum Ω(C, a) used by crystallographers which we may denote as Ωlog(C, a). From the
definitions it is evident that K(C, a) is the periodic extension of Ωlog(C, a). Although
there is a complete equivalence between the wave vector and multiphase formalism it is
conceptually convenient to consider both forms. Also, in Section 4 we consider variant
reduced and unreduced spectra for aperiodic frameworks.

The RUM multiphases ω are given as the solutions of a set of multivariable polynomial
equations. Thus Ω(C, a) is a compact subset of Td and is also a real algebraic set in its
wave vector representation in [0, 1)d. In dimension d there are therefore d + 1 possible
values for the topological or Hausdorff dimension of Ω(C, a). In view of Proposition 2.1
below this value is independent of the choice of periodicity basis and we refer to it as the
RUM dimension, dimrum(C), of C [17], [19]. A gallery of examples with RUM spectra of
different dimension is given in Badri, Kitson and Power [2]. Note that an infinitesimal
translation velocity field is an IFM for 1 = (1, 1, . . . , 1) and so the origin is present in any
RUM spectrum Ω(C, a).

For k = (k1, . . . , kd) in Zd let k · a be the periodicity basis {k1a1, . . . , kdad}. Then there
is a natural map K(C, a) → K(C, k · a) given by

(γ1, . . . , γd) → (k1γ1, . . . , kdγd)

and a corresponding map for the RUM spectrum quotients. This follows since an infinites-
imal flex mode u, for the pair (ω, a), is an infinitesimal flex mode for the pair (ω(k), k · a)

where ω(k) = (ωk1
1 , . . . , ωkd

d ).

Proposition 2.1. The maps K(C, a) → K(C, k · a) and Ω(C, a) → Ω(C, k · a) are surjec-
tions.

To see this one must show that if u′ is an IFM for the pair (η, k · a) then there exist

a choice of complex roots ωi = η
1/ki
i , for 1 ≤ i ≤ d, such that there is an IFM u with
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multiphase ω = (ω1, . . . , ωd) for the periodicity basis a. This is a consequence of elementary
representation theory for finite abelian groups. (See the appendix of [19].)

Of particular interest is the identification of the RUM spectrum when C is a Maxwell
framework in Rd, that is, one for which the average coordination (valency of the joints)
is equal to 2d. Two basic examples in 2 dimensions are the square grid framework, which
we denote as CZ2 , and the well-known kagome framework Ckag. It can be shown that for
any periodicity basis a the wave vector spectrum K(CZ2 , a) (resp. K(Ckag, a)) is the union
of periodic extensions of 2 (resp. 3) straight lines through the origin together with their
integral translates and so these frameworks have RUM dimension 1.

For the case of maximal RUM dimension, dimension d, we have the following charac-
terisation. A local infinitesimal flex is one which is finitely supported.

Theorem 2.2. [19] The following properties are equivalent for a crystal framework in Rd

with periodicity basis a.
(i) C has a local infinitesimal flex.
(ii) Ω(C, a) = Td.
(iii) Ω(C, a) has dimension d.

Proof. The equivalence of (ii) and (iii) holds since the RUM spectrum is a real algebraic
variety in R2d. To see that (i) implies (ii) let z be a local infinitesimal flex of C, where a is
a periodicity basis for C. We must construct, for any given multiphase ω, an IFM u for the
pair (a, ω). Consider the translated flexes Tkz, for k ∈ Zd, defined by Tkz(pi) = z(T−k(pi)).
Note that there is an upper bound, M say, such that for any joint pi the number of the
translated flexes which have pi in their supports is no greater than M . Thus we may define
the velocity field

u =
∑

k∈Zd

ω−kTkz

and this is also an infinitesimal flex. Moreover, it is an IFM for (a, ω). The converse
direction, (ii) implies (i), is more involved and follows from Lemma 2.10. �

2.1. Localised flexes imply lines of wave vectors. Let H be a line in R2 through the
origin. A subset of joints of a bar-joint framework G in R2 is H-localised if there is an
upper bound to their distance from H . A velocity field or infinitesimal flex of G is linearly
localised if its support is H-localised for some line H .

Let C be a crystal framework in R2 with periodicity basis a = {a1, a2}. A line H through
the origin is said to be rational for C if it is parallel to some vector j1a1+ j2a2, where j1, j2
are integers. This is a well-defined notion since any two periodicity bases are equivalent
by an invertible matrix with rational entries.

An H-localised infinitesimal flex uloc, for a rational line H for C, is said to be periodic,
or rationally periodic, if it is periodic relative to some integral direction vector j1a1 + j2a2
for H . In particular, H = R(j1a1 + j2a2). Also, uloc is phase-periodic if it is periodic up
to a multiplicative unimodular factor λ.

Proposition 2.3. Let C be a crystal framework in R2 with periodicity basis a = {a1, a2}
and let z be a nonzero H-localised infinitesimal flex for the rational line H = Ra1 which is
phase-periodic, with respect to translation by a1, with unimodular phase factor λ1 = e2πiγ1.
Then the zero mode spectrum K(C, a) contains the line {(γ1, t) : t ∈ R}.
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Proof. As in earlier notation, let Tk, k ∈ Z2, be the translation group for a. For each joint
pj we have z(T(k1,0)pj) = λk1

1 z(pj). For λ2 ∈ T the velocity field

u =
∑

k2∈Z

λ−k2
2 T(0,k2)z

is well-defined, since z being H-localised ensures that each joint lies in the support of only
finitely many of the velocity fields T(0,k2)z, for k2 in Z. In particular u is an infinitesimal
flex. Moreover it is an IFM for the multiphase (λ1, λ2) relative to the periodicity basis a.
Since λ2 = e2πit is arbitrary, K(C, a) contains {(γ1, t), t ∈ R}. �

From a geometric point of view note that the spectral line in the previous proposition
is the line orthogonal to the line s2 = 0 in the (new) coefficient Euclidean space of pairs
(s1, s2) representing points s1a1 + s2a2 in the ambient Euclidean space.

Let a be a periodicity basis for C in R2 as before and consider now the line H = Ra′1
in the ambient space for C given by a rational vector a′1. Suppose moreover that uloc is a
nonzero H-localised phase-periodic flex with phase-factor e2πiγ

′

1 for translation by a′1 in R2.
Then uloc determines a line L′ inK(C, a). The line L parallel to L′ and containing the origin
is denoted Ha, and is not dependent on the phase factor. In general, if a′1 = α1a1 + β1a2
then in the coefficient space for a the line Ra′1 is represented as R(α1, β1) and the spectral
line Ha is the orthogonal line R(β1,−α1).

With this notation we have the following corollary. In the next section we see that it
has a converse.

Corollary 2.4. Let C be a crystal framework in R2 with periodicity basis a and let H be a
rational line through the origin for which there exists a nonzero H-localised phase-periodic
infinitesimal flex. Then K(C, a) contains a line parallel to Ha.

Let us also note that in two dimensions the wave vector spectrum K(C, a) contains a
line with nonrational gradient only in the extreme case that it is equal to R2. Indeed, in
this irrational case the reduced RUM spectrum is dense in [0, 1)2. Since it is closed set in
[0, 1)2, by the compactness of Ω(C, a), it is equal to [0, 1)2, and so K(C, a) = R2.

Example 2.5. A crystal framework may have a linearly localised infinitesimal flex and
yet have a trivial RUM spectrum. For example, Figure 1 indicates a crystal framework
C++
Z2 which is a double augmentation of the grid framework CZ2 whose joints have integer

coordinates.
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Figure 1. The infinitesimally flexible crystal framework C
++
Z2 in R2 with

trivial RUM spectrum {(0, 0)} in [0, 1)2.
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In the first augmentation diagonal bars have been added creating an infinitesimally rigid
framework C+

Z2 . Then each row of joints of CZ2 has been augmented by pairwise connected
triangle frameworks. The resulting crystal framework has nonrigid motion infinitesimal
flexes but they are necessarily unbounded. Indeed, each horizontal chain of added joints
is the support set of nonzero linearly localised infinitesimal flexes where the individual
velocity vectors increase geometrically in magnitude in the positive x-direction.

Remark 2.6. In Kastis and Power [14], [15] we use techniques from algebraic spectral
synthesis to obtained a complete characterisation of the infinitesimal rigidity of a crystal
framework C in terms of a geometric spectrum Γ(C, a) in Cd\{0}. This spectrum accommo-
dates modes and flexes with geometric growth, such as those existing in our Example 2.5,
and it extends the RUM spectrum in Td. It is potentially significant for the identification
of bounded modes of semi-infinite crystals relative to a free surface of C. See also, Power
[18]. On the other hand further spectral synthesis methods are required to characterise
when there are no proper bounded infinitesimal flexes of C beyond translations. The case
of almost periodic infinitesimal flexes was resolved in Badri, Kitson and Power [2] with
the RUM spectrum playing a role analogous to that of the Bohr spectrum of an almost
periodic sequence.

2.2. Lines of wave vectors imply localised flexes. We now obtain, in Theorem 2.8,
a converse direction to Proposition 2.3. We first remark that this proposition extends
readily to dimensions d ≥ 3. The terminology in this case is that a rational hyperplane
H for C in Rd is a hyperplane which is spanned by d − 1 vectors in a periodicity basis
a. Since any two periodicity bases for C are equivalent by a matrix in GL(Rd,Q) this is
well-defined. In this case an H-localised velocity field u is said to be phase-periodic for a
phase factor ω in Td−1 if for some such basis {a1, . . . , ad−1} for H , we have Tku = ωku for
all k ∈ Zd−1.

Lemma 2.7. Let C be a crystal framework in Rd, d ≥ 2, and suppose that there is a period-
icity basis a = {a1, . . . , ad} such that K(C, a) contains the line of points {(γ1, . . . , γd−1, t) :
t ∈ R}. Then there exists an H-localised phase-periodic flex, for the hyperplane H spanned
by {a1, . . . , ad−1}, with phase factor ω = (e2πiγ1 , . . . , e2πiγd−1).

Proof. Suppose first that d = 2. Then the given line is {(γ1, t) : t ∈ R} and H = Ra1.
Let Q be the set of m rational numbers l/m with 0 ≤ l < m. Then for each q ∈ Q there
is an IFM uq for the wave vector (γ1, l/m). These are linearly independent and span an
m-dimensional vector space of infinitesimal flexes, denoted Fm.

Consider the parallelogram Rm of points with positions t1a1+ t2a2 in the ambient space
with 0 ≤ t1 < 1, 0 ≤ t2 < m . This “vertical” rectangle is associated with 1-fold phase
periodicity in the “horizontal” direction a1, and m-fold periodicity in the direction a2. Let
Vm be the vector space of all velocity fields which, are 1-fold phase-periodic with phase
factor e2πiγ1 , with respect to a1, and m-fold periodic for the vector a2. We refer to this
loosely as Rm-periodicity. In particular Fm ⊆ Vm.

Let R̃m be the horizontal a1-periodic band, generated by Rm and let Jm be the set of
joints belonging to “overlapping” bars which have exactly one joint in Rm and one joint
outside R̃m, as in Figure 2. Note that the size of Jm is independent of m. Thus, the space
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Jm of Rm-periodic velocity fields with support contained in the a1-periodic extension J̃m

of Jm has a fixed dimension. It follows that we may choose m large enough so that the
natural restriction map from Fm to Jm has nontrivial kernel, containing a nonzero Rm-
periodic infinitesimal flex u. Since u assigns the zero velocity vector to both joints for any
bar with a joint in the complement of R̃m, it follows that the linearly localised velocity
field z which is defined to be zero outside R̃m and equal to u on joints in R̃m is in fact an
infinitesimal flex. The flex z is H-localised and phase-periodic for e2πiγ1 , completing the
proof in this case.

Rm R̃m

Figure 2. Bars in Rm overlapping the boundary of R̃m.

For general d the argument is the same. Take Rm to be the parallelepiped of points
with positions t1a1 + · · · + tdad, with ti ∈ [0, 1) for 1 ≤ ti ≤ d − 1, and td ∈ [0, m). Let
R̃m be the {a1, . . . , ad−1}-periodic set generated by Rm. The essential point, once again,
is that the set Jm, defined as before, has fixed size. �

It follows that we have the following converse to Corollary 2.4.

Theorem 2.8. Let C be a crystal framework in R2 with periodicity basis a and let H be a
rational line in R2 for C with reciprocal line Ha in R2

k
. If K(C, a) contains a line parallel

to Ha then C has a nonzero H-localised phase-periodic flex.

Lemma 2.7 generalises in a routine way to give the next lemma showing that a linear
subspace of dimension r < d in phase space implies the existence of H-localised phase-
periodic flexes for an associated linear subspace H in ambient space of dimension d− r.

Lemma 2.9. Let C be a crystal framework in the space Rd, d ≥ 2, and suppose that there is
a periodicity basis a such that K(C, a) contains the linear subspace {(γ1, . . . , γd−r, t1, . . . , tr) :
ti ∈ R} for some 1 ≤ r < d. Then there exists an H-localised phase-periodic flex, for the
ambient linear subspaceH spanned by {a1, . . . , ad−r}, with phase factor (e

2πiγ1 , . . . , e2πiγd−r).

Also, in the extreme r = d case K(C, a) = Rd
k
we have the following.

Lemma 2.10. Let C be a crystal framework in the space Rd, d ≥ 2, with periodicity basis
a. If K(C, a) = Rd

k
then there exists a nonzero local infinitesimal flex.

Proof. The following argument, for d = 2, is similar to the proof of Lemma 2.7, and the
argument for general d is entirely similar. Let Q be the set of m2 points in the RUM
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spectrum of the form (k/m, l/m), for 0 ≤ k, l ≤ m − 1, with associated IFMs uq, q ∈ Q.
Let Pm be the parallelogram in ambient space of points with positions t1a1 + t2a2, with
0 ≤ t1, t2 ≤ m, and let Vm be the space of velocity fields which are periodic for the vectors
ma1, ma2. The subspace of periodic velocity fields in Vm which are supported on joints for
bars that overlap the boundary of Pm has dimension of order m. On the other hand the
linear span, Fm say, of the IFMs uq, q ∈ Q, has dimension m2, and Fm ⊆ Vm. It follows
that there exist a nonzero linear combination u of the uq which is zero on the joints of the
overlapping bars. Thus, the restriction of u to joints in Pm defines a local infinitesimal
flex with support in Pm. �

3. Line figures for localised flexes

In the previous section we have given connections between linearly localised infinitesi-
mal flexes and linear structure in the RUM spectrum. As a prelude to considering such
relationships for quasicrystal bar-joint frameworks we summarise these connections for
crystal frameworks in R2 and introduce the additional terminology of line figures.

A line figure in the ambient space Rd, or in the reciprocal space of a basis a in Rd, is a
set of lines through the origin. For a general (Borel) set M in Rd the line figure LF (M)
is the union of the set of lines through the origin which are parallel to a line in M.

Definition 3.1. Let G be a countable bar-joint framework in Rd, for d ≥ 2. Then the
localised flex figure of G, denoted LFF (G), is the line figure in Rd formed by lines H
through the origin for which there exists a nonzero H-localised infinitesimal flex.

Definition 3.2. Let C be a crystal framework in R2 with a periodicity basis a. Then the
localised phase-periodic flex figure LPFF (C) is the line figure in R2 formed by the rational
lines H through the origin for which there exists a nonzero phase-periodic H-localised
infinitesimal flex.

In particular the localised phase-periodic flex figure is only defined for crystal frameworks
and it consists of at most a countable set of lines through the origin.

From the compactness of the RUM spectrum we have noted (in the comments following
Corollary 2.4) that for ambient dimension d = 2 we have the following dichotomy. Either
LF (K(C, a)) is equal to R2

k
or it consists of a (possibly empty) set of lines with rational

slope. In the latter case, when the spectrum is proper, it follows from Theorem 2.8 that
a line L in LF (K(C, a)) is determined by a rational line H in ambient space for which
there exists a phase-periodic H-localised infinitesimal flex. The converse also holds, by
Corollary 2.4. Thus, writing Ha for L, as we did prior to Corollary 2.4, we have a bijective
correspondence θa : H → Ha between the ambient space lines H of LPFF (C) (which
are necessarily rational with respect to a if the spectrum is proper) and lines in the line
figure LF (K(C, a)) (which are necessarily rational with respect to the reciprocal basis if
the spectrum is proper). Thus we have the following equality.

Theorem 3.3. Let C be a crystal framework in R2 with periodicity basis a and proper zero
mode spectrum K(C, a). Then

LF (K(C, a)) = θa(LPFF (C)).

Formally, the map θa is a map P (R2) → P (R2
k
) between projective spaces. However,

we have seen from the remarks preceding Corollary 2.4 how one may give a geometric
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specification of Ha and how the map may be linearly implemented. We use this map in
Definition 4.9 where it is considered, as above, as a map from a line figure in ambient
space to a line figure in the reciprocal space of an ambient space basis a.

The next lemma shows how the linear figure of the zero mode spectrum is transformed
under a change of periodicity basis.

Lemma 3.4. Let C be a crystal framework in R2 with periodicity basis a and let a∗ =
{a∗1, a

∗
2}, with a∗1 = α1a1 + β1a2 and a∗2 = α2a1 + β2a2 where α1, β1, α2, β2 are integers. Let

Z be the integral matrix

[

α1 β1

α2 β2

]

. Then

(i) ZK(C, a) ⊆ K(C, a∗).

(ii) LF (K(C, a∗)) = Z(LF (K(C, a))) = θa∗θ
−1
a (LF (K(C, a))).

Also, let a′ = {a′1, a
′
2} be a periodicity basis with a′1 = α′

1a1+β ′
1a2 and a′2 = α′

2a1+β ′
2a2,

where α′
1, β

′
1, α

′
2, β

′
2 are rational numbers. If Z ′ is the rational matrix

[

α′
1 β ′

1

α′
2 β ′

2

]

then

(iii) LF (K(C, a′)) = Z ′(LF (K(C, a))).

Proof. (i) Let (γ1, γ2) ∈ K(C, a) with associated IFM u. Let T ∗
l , l ∈ Z2, be the translation

isometries for the basis a∗. Then T ∗
l = T α1l1+α2l2

1 T β1l1+β2l2
2 . Thus, for a joint pκ,k of C, with

respect to the basis a, where 1 ≤ κ ≤ n, k ∈ Z2, we have

u(T ∗
l pκ,k) = e2πi(α1l1+α2l2)γ1e2πi(β1l1+β2l2)γ2u(pκ,k) = e2πiδ1l1e2πiδ2l2u(pκ,k)

where δi = αiγ1 + βiγ2, for i = 1, 2. It follows that (δ1, δ2) ∈ K(C, a∗), as required.
(ii) If K(C, a) = R2 then equality holds. Suppose on the other hand that the zero mode

spectrum is proper. Then it follows from Theorem 3.3 that LF (K(C, a)) and LF (K(C, a∗))
are in bijective correspondence by the linear map θa∗θ

−1
a . On the other hand, using (i), we

have

Z(LF (K(C, a))) = LF (ZK(C, a)) ⊆ LF (K(C, a∗).

Putting these facts together it follows that the inclusion is an equality.
(iii) This follows from (ii) by considering a periodicity basis whose vectors are integral

linear combinations of the vectors of a, as well as being integral linear combinations of the
vectors of a′. �

4. Zero mode spectra for aperiodic frameworks

The zero modes, or infinitesimal flex modes (IFMs) of a crystallographic framework C

are determined by a finite data set, for a periodically repeating block of nodes and bonds,
and a multiphase ω ∈ Td. Nevertheless, zero modes capture many aspects of the flexibility
of C. It is of interest then to determine analogous zero modes and spectra, or partial
analogues, for quasicrystallographic frameworks. We shall do this in terms of generalised
phase fields and infinitesimal flexes which are approximately phase-periodic.
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4.1. Phase-periodic velocity fields on Rd. We first define phase fields and phase-
periodic velocity fields on Rd, with respect to partitions associated with a basis a. Phase-
periodic velocity fields can then be defined on a Delone bar-joint framework by restrictions.
In particular we define the zero mode spectrum of a crystallographic framework in these
terms.

Recall that a Delone set in Rd is a countable well-separated set which is also relatively
dense. The following definition seems to us to give the most natural catch-all aperiodic
setting in which to define zero mode spectra with respect to some reference basis, with no
a priori assumptions.

Definition 4.1. A Delone bar-joint framework in Rd is a countable bar-joint framework
G = (G, p), with G = (V,E) a simple countable graph, such that the set of joints p(v), for
v in V , is a Delone set, and the set of bar lengths |p(v)− p(w)|, for vw in E, is uniformly
bounded.

Let Rd, with d ≥ 2, be viewed as an ambient Euclidean space, with its standard basis
and points x with coordinates x = (x1, . . . , xd), and let a = (a1, . . . , ad) be a second basis.
The cell partition for a of Rd is defined to be the partition P = {Ck : k ∈ Zd} where Ck is
the parallelepiped

Ck = [k1a1, (k1 + 1)a1)× · · · × [kdad, (kd + 1)ad).

For notational simplicity let d = 2. A phase field for P is a map φ = φω,a from R2 to T2

determined by the multiphase ω = (ω1, ω2) ∈ T2, where for (x, y) in the cell Ck we have
φω,a(x, y) = ωk1

1 ωk2
2 . Also, for a velocity vector b in C2, define an associated discontinuous

C2-valued phase-periodic velocity field φω,a ⊗ b on R2, with

(φω,a ⊗ b)(x, y) = ωk1
1 ωk2

2 b, for (x, y) ∈ Ck.

Note, for example, that if (ω1, ω2) = (1, λ2) then the restriction of this velocity field to the
band Ra1 × [0, a2) acts as translation by b. On the parallel band obtained by translation
by na2, n ∈ Z, it acts as a constant velocity field given by the velocity vector λn

2b.
More generally, we define the matricial variant, φω,a ⊗ B, for a matrix of vectors B =

(bl,m), for 0 ≤ l ≤ L−1, 0 ≤ m ≤ M −1. This is the velocity field on R2 which assigns the
velocity vector blm to the (l, m) subcell of a cell partition of C(0,0), and which is defined on
the other cells Ck and their corresponding subcell partitions, by phase-periodic extension.
We refer to the map φω,a⊗B as a phase-periodic velocity field for the triple (a, L,M), and
we refer to B as the unit cell velocity vector matrix.

For a Delone bar-joint framework G in R2 one can choose L,M large enough so that
each subcell contains at most one joint. In particular, for a crystal framework C, with a
specified periodicity basis a, it follows that every phase-periodic velocity field u, associated
with the pair (ω, a), is the restriction of a matricial phase field φω,a ⊗ B to the joints pi
of C. With these assumptions, with fixed L,M , we have the following formulation of the
zero mode spectrum for the pair C, a;

Ω(C, a) = {ω ∈ T2 : ∃u ∈ F(C,C)\{0} and B with u(pi) = (φω,a ⊗ B)(pi), ∀pi},

K(C, a) = {(γ1, γ2) ∈ R2 : ω = (e2πγ1i, e2πγ2i) ∈ Ω(C, a)}.
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One can define the RUM spectrum of crystal frameworks in general dimensions in exactly
the same way; for d ≥ 3, the matricial phase field φω,a⊗B is given by an array B of multi-
indexed vectors bm, with the coordinates mi of m occurring in the range 0 ≤ mi ≤ Mi − 1
according to a subcell partition of the unit cell C(0,...,0) of the d-fold partition for a.

4.2. Parallelogram frameworks and their phase fields. When a is not a periodicity
basis, or when G is a general Delone framework, one can similarly define the sets K(C, a),
K(G, a). However, such strict analogues to the crystallographic definitions yield only
limited multiphase data that is associated with bases that are commensurate with a in the
sense that they are equivalent to a in terms of a rational transformation in GL(Q). To
get a more general analogue it is natural to introduce phase fields for other partitions of
the ambient space.

Consider, for example, a Penrose rhomb tiling Ppen and its Delone bar-joint framework
GPpen. Recall that the ribbons of Ppen are the 2-way infinite paths of pairwise adjacent
tiles whose common edges have the same orientation. To each ribbon we may associate
the straight line through the origin which is perpendicular to the tile-joining edges of the
ribbon. There are 5 such lines and we call their union the ribbon figure of Ppen, denoted
RF (Ppen). It can be shown that in fact a ribbon with line H is H-localised. Also for
every pair of ribbons which are H-localised there is an H-localised infinitesimal flex of
GPpen which is supported on the set of joints between them. This flex is an infinitesimal
translation on its support.

More generally, in our companion paper [20] we have considered parallelogram frame-
works GP for parallelogram tilings P of the plane which are determined by a regular
multigrid in the sense of De Bruijn [6] and Beenker [4]. Once again, ribbons are lin-
early localised although, for reasons of asymmetry, their directions, which are taken to
define the ribbon figure RF (P ), need not coincide with the perpendicular line directions.
Also, we have defined a zero mode spectrum for parallelogram frameworks GP in terms
of multivariable phase fields associated with partitions of the ambient space determined
by the ribbons. In the case of a Penrose tiling the associated wave vectors are vectors
in a 5-dimensional reciprocal space. In what follows below we take a quite different ap-
proach, valid for general Delone bar-joint frameworks, and which is based on standard
parallelepiped partitions but for variable bases. The main idea, motivated by the crys-
tallographic case, is that when there exist linearly localised infinitesimal flexes then, in
the presence of some form of aperiodic order one may expect that there exist infinitesimal
flexes that are approximately phase-periodic.

4.3. Ribbon shears and approximately phase-periodic flexes. We give some ob-
servations for parallelogram frameworks which provide a motivation for the formulation
of zero mode line spectra for general Delone frameworks in the plane.

For a regular multigrid parallelogram tiling, distinct ribbons which are H-localised for
the same line H do not cross [20]. Also H-localised ribbons which are of the same compo-
nent grid type are relatively dense in the following sense. If M is any line not parallel to
H then the intersection of M with this subset of ribbons is a relatively dense subset of M .
Equivalently, there exists c > 0 such that for every pair of parallel lines z1+H, z2+H , with
separation greater than c, the closed band they define contains a ribbon of the component
grid type.
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This structure of approximately periodical occurring H-localised ribbons of the same
type leads to the presence of infinitesimal flexes that are approximately phase-periodic for
a phase line which is reciprocal to H . More precisely, consider a periodic partitioning of
R2 by H-localised bands Bn, n ∈ Z, where the bands are semiopen and have a common
width d > c. Choose ribbons ρn in Bn, of common grid type, and corresponding shearing
flexes uρn. These infinitesimal flexes have velocity vectors equal to zero on the joints on
one side of the ribbon ρn (relative to an orientation of M) and a fixed common velocity b

on the other side. Thus every difference uρn − uρm, for m < n, has support contained in
the union of the bands Bm, Bm+1, . . . , Bn, and the nonzero velocity vectors are equal to b.

For a positive integer N the infinitesimal flexes uρkN−1−uρ(k−1)N+1 have disjoint supports,
lying between the bands B(k−1)N and BkN , and so for each unimodular complex number
λ we may define the infinitesimal flex

uN,λ =
∑

k∈Z

λk(uρkN−1 − uρ(k−1)N+1).

For large N the velocity field vectors for uN,1 are “most often” equal to b, and in this
sense uN,1 is “mostly close” to infinitesimal translation by b. Moreover, the associated
“phase-modulated” velocity fields uN,λ are infinitesimal flexes that are close, in the same
sense, to phase-periodic velocity fields. We make these connections more precise in the
subsequent sections.

4.4. Banded phase-fields and slippage flexes. Let t = {t1, t2} be a basis and let
B = {Bk, k ∈ Z} be the partition of R2 by the bands Then φ(1,λ),t is equal to λk on Bk

and we refer to this as a banded phase field.
Let τb be the velocity field on R2 which is constant and equal to the vector b ∈ R2. The

restriction of τb to the set of joints of a Delone framework G is a translational infinitesimal
flex. The modulation of τb by φ(1,λ),t is the pointwise product

(φ(1,λ),t · τb)(x, y) = (φ(1,λ),t(x, y))(τb(x, y)).

In general, if φ is a real or complex scalar field on the ambient space and u is a real or
complex velocity field on a bar-joint framework, then we similarly define the velocity field
φ · u, which we refer to as the modulation of u by φ.

Definition 4.2. A slippage velocity field (resp. slippage flex ) for a Delone framework G

in R2 is a velocity field u ∈ V(G) (resp. F(G)) of the form u = χS · τb, where S is an
H-localised set, for some line H , which contains the support of u.

In particular, as observed in Section 4.3, a Penrose tiling framework is rich in slippage
flexes supported on sets of nodes between a pair of ribbons of the same type.

The following definition formalises our earlier indication of two velocity fields being
“mostly close”. It requires that the proportion of joints where the local velocities differ
by more than ǫ, in Euclidean norm, can be arbitrarily small in all squares of a given size.

Definition 4.3. Let u, z be velocity fields on the set J of joints of a Delone bar-joint
framework in R2 and let ǫ, N be positive. Then u and z are (ǫ, N)-close if

|{p ∈ J : ‖u(p)− z(p)‖2 > ǫ} ∩ [−N,N ]2| < ǫ|J ∩ [−N,N ]2|.
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Also u and z are uniformly (ǫ, N)-close if this inequality holds with [−N,N ]2 replaced by
any of its translates, (a, b) + [−N,N ]2, for (a, b) ∈ R2, and u and z are mostly ǫ-close if
they are uniformly (ǫ, N)-close for all N ≥ N0, for some N0.

The next somewhat technical phase-field based definition of a periodic slippage line
and the periodic slippage figure of a Delone framework in R2 is motivated in part by the
approximately phase-periodic flexes of parallelogram frameworks discussed in Section 4.3.
We show subsequently that one can also define this figure in terms of linearly localised
flexes appearing in periodic bands. Both forms of the definition give useful insights. In
particular the phase-field formulation is closer to the definition of the RUM spectrum and
allows modification to more general variants.

One might note the important distinction in the next definition that we are considering
velocity fields that are infinitesimal flexes and that are also approximately phase-periodic,
rather than phase-periodic velocity fields that are approximate infinitesimal flexes in some
sense.

Definition 4.4. Let H = Rt1 be a line in R2. Then H is a periodic slippage line for the
Delone bar-joint framework G in R2 if there exists a nonzero velocity vector b in R2 and a
vector t2, with t = {t1, t2} a basis, such that for every ǫ > 0 there exists an infinitesimal
flex u of G and a positive integer M with the following properties.

(i) The modulation φ(1,λ),{t1,Mt2} · u is an infinitesimal flex, for all λ ∈ T.

(ii) The modulation φ(1,λ),{t1,Mt2} · u is mostly ǫ-close to the restriction of the velocity
field φ(1,λ),{t1,Mt2} · τb, for all λ ∈ T.

Also, the periodic slippage figure, PSF (G), is the line figure given by the union of the
periodic slippage lines of G.

A periodic slippage line H is special in the following ways. If M is sufficiently large then
there exist nonzero H-localised infinitesimal flexes with disjoint supports in every band

Ck = Rt1 × [kMt2, (k + 1)Mt2).

To see this, let λ0, . . . , λp−1 be the distinct pth roots of unity and let u be an infinitesimal
flex with the property (i) of Definition 4.4. Then the infinitesimal flex

w =
1

p

p−1
∑

j=0

φ(1,λj),{t1,Mt2} · u

has the property χS ·w = w where S is the union of the bands Ck, for k = 0 mod p. Since
GP is a Delone framework there is an upper bound to the lengths of the bars and we may
take M so that pM is greater than this upper bound. This implies that for each integer
k the velocity field χCk

· w is an infinitesimal flex of GP . Also, χCk
· w is mostly ǫ-close to

χCk
· τb.

Observe next that the banded phase field λjφ(1,λj),{t1,Mt2} is equal to the Mt2-translate
of the phase field φ(1,λj),{t1,Mt2}. Repeating the averaging argument above, using the

infinitesimal flexes λjφ(1,λj),{t1,Mt2} · u, gives a similar nonzero infinitesimal flex w′ with

support the union of the bands Ck with k = 1 mod p. More generally (considering λj
l

for l = 2, . . . , p− 1) we obtain similar nonzero infinitesimal flexes with support the union
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of the bands Ck for any k. In this way we obtain a sequence of infinitesimal flexes uk,
indexed by integers k, with support in Ck, such that

∑

k uk is an infinitesimal flex which
is mostly ǫ′-close to τb where ǫ′ = pǫ.

We can now state the following equivalence of definitions for a periodic slippage line.

Proposition 4.5. Let G de a Delone bar-joint framework in R2. Then the following are
equivalent.

(i) The line H = Rt1 given by the vector t1 is a periodic slippage line.

(ii) For any basis {t1, t2} and ǫ > 0 there exists M > 0 such that for each band Ck of
the band partition for {t1,Mt2} there is an infinitesimal flex uk, with support in Ck, such
that the sum

∑

k uk is mostly ǫ-close to the restriction of τb for some b ∈ C2.

Proof. That (i) implies (ii) has already been shown. Assume that (ii) holds for ǫ and M ,
and u =

∑

k uk so that u and τb are mostly ǫ-close. Observe that φ(1,λ),{t1,Mt2} · u is an
infinitesimal flex, for each λ ∈ T (since it is an infinite sum of infinitesimal flexes of the
form αkuk). It follows that u,M, b satisfy both requirements of Definition 4.4. �

Theorem 4.6. Let GP be the parallelogram framework of a regular multigrid P . Then the
periodic slippage figure PSF (GP ) is equal to the ribbon figure RF (P ).

Proof. The discussion in sections 4.2 and 4.3 show that each line H in the ribbon figure
RF (P ) satisfies the requirements of a periodic slippage line. On the other hand if H
is a periodic slippage line then by the averaging argument above there exists a nonzero
H-localised infinitesimal flex. By [20] H is necessarily a line in RF (P ). �

Example 4.7. Consider a Penrose tiling framework GP which is augmented with bars and
joints, for every tile, with the geometry shown in Figure 3. The resulting framework G

+
P has

essentially the same infinitesimal flex space in that the restriction map F(G+
P ) → F(GP ) is

an isomorphism. Note however that G+
P has no slippage flexes. Nevertheless this augmented

framework has H-localised infinitesimal flexes where the nonzero velocities at the joints
are mostly equal. The variation occurs for the newly added degree 2 joints that are
on the boundary of the support. Thus, by taking sufficiently wide support bands we
may find infinitesimal flexes uk, as in Proposition 4.5(ii). In this way it follows that
PSF (G+

P ) = PSF (GP ) = RF (P ).

Figure 3. Added joints and bars.

Example 4.8. We note that the kagome framework Ckag has no periodic slippage lines.
It is known that every infinitesimal flex is a unique infinite linear combination of basic
infinitesimal flexes, whose support joints lie in a line and whose velocities have two alter-
nating directions [3], [19]. If z is a nonzero H-localised infinitesimal flex then it follows
readily from this fact that z is a finite linear combination of these basic flexes where the
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support sets are disjoint and parallel. Since the velocity vectors alternate it follows that
for sufficiently small ǫ no sum

∑

k∈Z zk of H-localised flexes can be mostly ǫ-close to a
translation infinitesimal flex. The linear figure PSF (Ckag) is therefore equal to the empty
set.

Definition 4.9. Let G be a Delone framework in R2 and let a be a basis.

(1) The unreduced slippage spectrum Lslip(G, a) is the line figure in the reciprocal space
of a given by PSF (G)a = θa(PSF (G)).

(ii) The reduced slippage spectrum is the subset of [0, 1)2 given by

Ωlog
slip(G, a) = Lslip(G, a)/Z

2 = PSF (G)a/Z2.

From Theorem 4.6 we immediately obtain the following.

Theorem 4.10. Let GP be a regular multigrid parallelogram bar-joint framework and let
a be a basis for R2. Then

Ωlog
slip(GP , a) = RF (P )a/Z2.

Example 4.11. The most elementary parallelogram tiling bar-joint framework is the grid
framework CZ2 . For the standard periodicity basis a = {(1, 0), (0, 1)} the reduced slippage

spectrum Ωlog
slip(CZ2 , a) is the union of the two line segments [1, 0)× {0} and {0} × [0, 1).

One can check that this set is also the logarithmic form of the RUM spectrum Ω(CZ2 , a).
See also Theorem 4.13.

The slippage spectrum relative to a general basis a′ = {(α1, β1), (α2, β2)} may also be
computed. By Lemma 3.4(ii) Lslip(CZ2 , a′) is the union of the lines

ZR(1, 0) = R(α1, α2), ZR(0, 1) = R(β1, β2).

Thus Ωlog
slip(CZ2 , a), which is the periodic reduction of this set, is a compact set if and only

if the vectors (α1, α2), (β1, β2) do not have directions with irrational gradients.

Example 4.12. For a Penrose rhomb tiling P for a regular pentagrid [6], [20] the ribbon
figure RF (P ) consists of 5 lines through the origin with 10-fold symmetry. In particular
there is a line with irrational slope. For the standard basis b = {(1, 0), (0, 1)} the reciprocal
figure RF (P )b consists of 5 lines including a line of irrational slope and so the slippage

spectrum Ωlog
slip(GP , b) is a noncompact dense set. Figure 4 (b) is indicative of this.

Consider a rational approximation to a Penrose rhomb tiling P by a periodic parallelo-
gram tiling P ′. As is well known, one can construct such approximants by the projection
method [1], [9], [10], [23]. For definiteness let us say that the tilings P, P ′, as closed sets
in the plane, are (ǫ, N)-close if P ∩ [−N,N ]2 and P ′ ∩ [−N,N ]2 are ǫ-close in the Haus-
dorff metric. It follows readily from the geometric realisation of the slippage spectrum
Lslip(GP , a) that we have the following spectral approximation property for this metric.
For a fixed reference basis a of the ambient space and for each ǫ > 0 there exist N and a
periodic approximant P ′ such that Lslip(GP , a) and Lslip(GP ′ , a) are (ǫ, N)-close. We also
remark that computing the RUM spectrum of periodic approximants to Penrose frame-
works gives images akin to Figure 4(b) [22].
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Figure 4. (a) Part of the reciprocal ribbon figure RF (P )b of a Penrose
tiling P with respect to the standard basis b. (b) Some of the dense set of
lines in the reduced slippage spectrum of GP , translated to [−1/2, 1/2)2.

Theorem 4.13. Let GP be a regular multigrid parallelogram framework which is periodic
for a basis a and so is equal to a crystallographic framework. Then the unreduced zero
mode spectrum K(GP , a) is equal to the union of Lslip(GP , a) and its integral translates. In
particular

Ωlog(GP , a) = Ωlog
slip(GP , a).

Proof. By Corollary 2.4 of Power [20] the framework GP has no local infinitesimal flexes
and so, by Theorem 2.2, the RUM spectrum is proper. Let L be a line in K(C, a) which is
parallel to Ha for a line H in R2 through the origin. This is necessarily a rational line and
so by Theorem 2.8 there exists an H-localised infinitesimal flex. It follows from Theorem
2.8 of [20] that H is a line of the ribbon figure.

On the other hand let H be a line in the ribbon figure with reciprocal line Ha. Since a
is a periodicity basis for GP it follows that each H-localised ribbon is periodic with respect
to a rational vector b1 for a and that H = Rb1. By the discussion in Section 4.3 the
framework GP has an H-localised infinitesimal flex of translational type, z say, and this
flex is periodic with respect to translation by b1. Let b = {b1, b2} be a basis which is a
periodicity basis for GP . Then, as in Proposition 2.3, we may construct the IFM

u =
∑

k2∈Z

λ−k2
2 T k2

b2
z,

for any λ2 in T. It follows that the line Hb lies in K(C, b). We have Ha = θa(θb)
−1Hb and

so, by Lemma 3.4(ii) this line lies in K(GP , a). �

4.5. The limit zero mode spectrum. In spite of Example 4.7 it is clear from Exam-
ple 4.8 that Definition 4.4 is quite restrictive in that the approximating phase-periodic
velocity fields are based on modulations of the constant field τb. To define a larger ambi-
ent space line figure we now relax the slippage line definition, replacing the velocity field
φ(1,λ),{t1,Mt2} ·τb with a general matricial velocity field φ(λ1,λ),(M1t1,M2t2)⊗B. In this way we
identify a reciprocal line figure spectrum which is analogous to the line figure LF (K(C, a)).

Definition 4.14. Let H = Rt1 be a line in R2. Then H is a periodic localisation line for
the Delone bar-joint framework G in R2 if there exists a basis t = {t1, t2} such that for
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every ǫ > 0 there is a nonzero infinitesimal flex u, a phase factor λ1 ∈ T, and positive
integers M1,M2, such that the following holds.

(i) The modulation φ(λ1,λ),(M1t1,M2t2) · u is an infinitesimal flex, for all λ ∈ T.

(ii) The modulation φ(λ1,λ),(M1t1,M2t2) · u is mostly ǫ-close to the restriction of a velocity
field φ(λ1,λ),(M1t1,M2t2) ⊗ B, for some unit cell velocity vector B, for all λ ∈ T.

As with the terminology “periodic slippage line” the adjective “periodic” in the term
“periodic localisation line” refers to the fact that there are H-localised flexes appearing
in periodic bands. Indeed, the first condition of Definition 4.14 implies, by averaging
arguments as before, that G has H-localised infinitesimal flexes supported in a periodic
bands parallel to H .

We refer to the union of the periodic localisation lines as the periodic localisation line
flex figure and denote it as PLLF (G). This is a line figure in the ambient space and we
have the following inclusions for Delone frameworks in R2,

PSF (G) ⊆ PLLF (G) ⊆ LFF (G).

We remark that if G has some sufficiently strong form of aperiodic order and has no
unbounded linearly localised flexes, then our expectation is that the linearly-localised flex
figure LFF (G) will coincide with PLLF (G).

Definition 4.15. Let G be a Delone framework in R2 and let a be a basis. The limit
spectrum, or limit zero mode spectrum, of G with respect to a is the line figure

Llim(G, a) = PLLF (G)a.

Theorem 4.16. Let GP be a regular multigrid parallelogram bar-joint framework and let
a be a basis for R2. Then

Llim(GP , a) = Lslip(GP , a) = RF (P )a.

Proof. By Theorem 4.6 we have Lslip(GP , a) = RF (P )a. Let H be a periodic localisation
line for the pair GP , a. Then, averaging as before, it follows that GP has an H-localised
infinitesimal flex. The line H is necessarily a line in the ribbon figure RF (P ), by [20], and
so Llim(GP , a) is contained in RF (P )a. �

Theorem 4.17. Let C be a crystallographic bar-joint framework in R2 with periodicity
basis a. Then

LF (K(C, a)) ⊆ Llim(C, a).

Proof. If K(C, a)) = R2 then there exists a local infinitesimal flex uloc by Theorem 2.2. Let
t be a basis and H = Rt1, with translation group Tk, k ∈ Z2. Replacing t1 and t2 with
Mt1 and Mt2 we may assume that the supports of the velocity fields Tkuloc, for k ∈ Z2,
are disjoint. For any given multiphase ω the velocity field

uω =
∑

k∈Z2

ω−kTkuloc

is an ω-periodic infinitesimal flex with respect to t. Moreover, u(1,λ) is equal to the mod-
ulation φ(1,λ),(t1,t2) · u

(1,1). Thus the requirement for H to be a periodic localisation line is
satisfied (exactly for all ǫ) and so equality of the line figures follows in this case.
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Suppose next that K(C, a) is proper and contains a line L. We show that L is a periodic
localisation line. Indeed, the definition of a periodic localisation line has been modelled on
the crystallographic case, and we check that the conditions of the definition hold exactly
in this case also.

By the remarks following Corollary 2.4 the line L is rational with respect to a. By
Theorem 2.8, C has an H-localised phase-periodic flex uloc for a rational line H = Rt1,
with a phase-factor λ1 ∈ T, where Ha is parallel to L. Let t2 be a rational vector for C
with t = {t1, t2} a basis. Now for any λ2 ∈ T, we may define

u =
∑

k2∈Z

λ−k2
2 Sk2

2 uloc

where S2 is the translation isometry for t2. Now, taking M1 = M2 = 1, the conditions (i)
and (ii) of Definition 4.14 for H to be a periodic localisation line are satisfied exactly (for
all ǫ), where B is a unit cell velocity vector matrix determined by the velocity vectors of
u on the joints of C in the unit cell for the partition defined by t. �

Example 4.18. Let a be any periodicity basis for the kagome framework Ckag. It is well-
known that K(Ckag, a) consists of the union of the integral translates of 3 lines through
the origin. These 3 lines are the lines Ha

1 , H
a
2 , H

a
3 which are reciprocal to the 3 lines

H1, H2, H3 in ambient space for the 3 linear directions of the kagome tiling edges. We
claim that Llim(Ckag, a) is precisely the union of the 3 reciprocal lines, and so is equal to
LF (K(Ckag, a)).

In view of the previous theorem it suffices to show that a line H of PLLF (Ckag) is one
of the 3-lines H1, H2, H3. From the definition of PLLF (Ckag) and the averaging argument,
there exists a nonzero H-localised infinitesimal flex u of Ckag. We now use the fact that the
infinitesimal flex space of Ckag has an explicit countable free basis of infinitesimal flexes,
each of which is Hi-localised for some i. See [3] for example. Recall that a free basis [3]
of a vector subspace V of velocity fields for a countable bar-joint framework is a finite
or countable subset u1, u2, . . . with the property that each u in V can be written as a
unique linear combination u =

∑

k αkuk. From this we see that u must be a finite linear
combination of Hj-localised infinitesimal flexes, for some j, and so H = Hj as desired.

The argument in the previous example similarly applies to any crystallographic frame-
work in R2 which has a free basis of linearly localised flexes. Although not every crys-
tallographic framework is in posession of a free basis it seems plausible that the equality
Llim(C, a) = LF (K(C, a)) holds in general.

By defining the limit spectrum as a union of lines through the origin we have not sought
any finer limiting information that might be given by the phase factors of localised flexes.
In particular the isolated zero modes (Weyl modes) of a crystallographic framework are
not reflected in the limit spectrum. It would be interesting to take account of some such
information in the case of quasicrystal frameworks. In particular this would be relevant for
braced Penrose rhomb frameworks given in [20] that have a finite dimensional infinitesimal
flex space.

5. Further directions

In 3 dimensions a line L in the zero mode spectrum K(C, a) of a crystallographic frame-
work corresponds to H-localised infinitesimal flexes for a plane H though the origin. Here



20 S. C. POWER

the plane H has a reciprocal line Ha which is parallel to L. See Section 2.2. Also, the
slippage spectrum and limit spectrum of a Delone bar-joint framework in R3 can be simi-
larly defined, as a reciprocal line figure of an appropriate hyperplane figure in the ambient
space. It would be interesting to compute such linear spectra, either analytically or com-
putationally, for particular 3D aperiodic frameworks and more structured quasicrystals.

In 2 dimensions we note the following further problems.

1. It would be natural to determine linear zero mode spectra for frameworks which have
aperiodic order by virtue of being derived from a multigrid parallelogram tiling P in some
well-defined local manner. As well as simple augmentations of GP by bars and joints, such
as bracing bars [20], or jointed bracing bars as in Example 4.7, such frameworks may be
derived from GP by substitution rules or periodic Henneberg moves.

2. As we have remarked in Section 4.2, for a regular multigrid parallelogram framework
with r component grids we have defined, in the companion article [20], a multivariable
reduced zero mode spectrum Ω(GP ,A) in Tr. This is based on multivariable phase fields
for a single “patchwork” partition of the ambient space R2 which is defined by all the
ribbons. Here A is a set of r affine transformations which determine the the component
grids in terms of a reference grid. Approximation does not feature in this definition and
Ω(GP ,A) can be viewed as a straight generalisation of the RUM spectrum of the grid
framework CZ2 . It would be natural to determine connections between the linear zero
mode spectra considered above and projections of the multivariable zero mode spectrum,
both for parallelogram frameworks and their derived frameworks.

3. The slippage spectrum and limit spectrum are defined in terms of infinitesimal
flexes with strictly localised supports. On the other hand bar-joint frameworks which are
random approximants or generic approximants to a quasicrystal framework are more likely
to posses “approximately localised flexes”, that is, flexes with exponential decay away from
a linear direction. This suggests that it would be appropriate to define less strict forms
of the linear zero mode spectra given here in order to capture this, and to explore other
forms of approximation in place of Definition 4.3 for this purpose.
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