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Abstract. We investigate properties of sparse and tight surface graphs. In particular we
derive topological inductive constructions for (2, 2)-tight surface graphs in the case of the
sphere, the plane, the twice punctured sphere and the torus. In the case of the torus we
identify all 116 irreducible base graphs and provide a geometric application involving contact
graphs of configurations of circular arcs.

1. Introduction

Inductive characterisations of various families of graphs play an important role in many
parts of graph theory. A graph G is said to be (2, 2)-sparse if for any nonempty V ′ ⊂ V (G),
we have |E(V ′)| ≤ 2|V ′|−2. If, in addition, |E(G)| = 2|V (G)|−2 we say that G is (2, 2)-tight.
Such graphs arise naturally in various parts of geometric graph theory, including framework
rigidity, circle packings, and also in graph drawing.

We will derive inductive characterisations of (2, 2)-tight graphs that are embedded without
edge crossings in certain orientable surfaces of genus at most 1. Our characterisations will be
based on edge contractions and are in the spirit of well known results of Barnette, Nakamoto
and others ([2,16,17]) on irreducible triangulations and quadrangulations of various surfaces.
It may be worth noting, for example, that a plane simple graph is a quadrangulation of the
plane if and only if it is (2, 4)-tight: that is, |E(G)| = 2|V (G)| − 4 and for all V ′ ⊂ V (G) such
that |V ′| ≥ 3 we have |E(V ′)| ≤ 2|V ′| − 4. Thus it is clear that our results are related to, but
distinct from, existing results on quadrangulations.

Since our graphs are embedded, we consider inductive characterisations based on topolog-
ical edge contractions - that is to say that the contraction preserves the embedding of the
graph (precise definitions given below). This is a key point, since the well-known inductive
characterisation of simple (2, 2)-tight graphs by Nixon, Owen and Power is purely graph the-
oretic ([18]). To further illustrate the significance of this we give an application of our main
result to a recognition problem in graph drawing. The topological nature of the inductive
characterisation is crucial in this context.

Finally we note that there are related topological inductive characterisations of Laman
graphs in the literature already which have interesting geometric applications to pseudotrian-
gulations and auxetic structures ([7, 11]).
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1.1. Summary of main results. Section 2 and the first part of Section 3 are background
material for the rest of the paper. The main contributions of the paper are as follows:

• Theorem 3.4 presents an elementary but very useful principle concerning sparsity
counts and graphs embedded in surfaces. While related results and special cases al-
ready exist in the literature, our statement and proof emphasises that this is a general
principle that applies to a wide range of sparsity counts and to surfaces of all genus.
• In Section 4 we analyse the quadrilateral contraction move. This operation is well
known in the context of quadrangulations. Here we examine its properties with respect
to (2, 2)-sparsity and prove some structural results about non contractible quadrilat-
erals in this context.
• Theorem 6.6 shows that if G is an irreducible (2, 2)-tight surface graph, then any

(2, 2)-tight subgraph is also irreducible. This holds for surfaces of arbitrary genus.
• We give topological inductive characterisations of (2, 2)-tight graphs embedded in the
sphere, plane, annulus (Theorem 5.4) and the torus (Theorem 7.6). The first two of
these are relatively standard, whereas the latter two characterisations are new. In
the case of Theorem 7.6 we have also identified the 116 irreducible (2, 2)-tight torus
graphs. We do not give an explicit description of these graphs in the paper for reasons
of space, but the reader is referred to [5] and [20] for details.
• Finally we present an application of our results to a recognition problem in geometric
graph theory. Specifically we show that every (2, 2)-tight torus graph can be realised
as the contact graph of a collection of non overlapping circular arcs in the flat torus.
We note that by passing to the universal cover this result may also be interpreted as
a recognition result for contact graphs of doubly periodic collections of circular arcs
in the plane.

We also conjecture a generalisation of our main results (Conjecture 5.1) to the set of irreducible
(2, 2)-tight surface graphs for surfaces of arbitrary genus. This would be analogous to results
of Barnette, Nakamoto and others on triangulations and quadrangulations of surfaces. As
noted above and at appropriate points in the paper, many of our results are valid for a
range of sparsity counts and for surfaces of arbitrary genus and these will be useful in future
investigations of this conjecture.

2. Graphs, surfaces and embeddings

In this section we fix our conventions and terminology regarding topological graphs. Through-
out, we use the word graph for a finite undirected multigraph. So loop and parallel edges are
allowed a priori, although loop edges will not arise in most of the cases of interest. If Γ is a
graph then |Γ| is its geometric realisation.

Suppose that Σ is a real orientable 2-dimensional manifold without boundary. A Σ-graph,
or surface graph, is a pair (Γ, ϕ) where Γ is a graph and ϕ : |Γ| → Σ is a continuous embedding
of the geometric realisation of Γ in Σ. Given Σi-graphs (Γi, ϕi) for i = 1, 2 we say that they are
isomorphic if there is a homeomorphism h : Σ1 → Σ2 and a graph isomorphism g : Γ1 → Γ2

such that h ◦ ϕ1 = ϕ2 ◦ |g|, where |g| is the induced homeomorphism |Γ1| → |Γ2|.
Now we clarify the meaning of some standard terms which may have ambiguous interpre-

tations in this topological context. Let G = (Γ, ϕ) be a Σ-graph and let e ∈ E(Γ). By Γ/e we
mean the graph obtained by identifying the end vertices of e and deleting (only) the edge e.
Thus edge contractions can create parallel edges and/or loops. By G/e we mean the surface
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(a) (b) (c) (d)

Figure 1. Four pairwise non isomorphic torus graphs that all have the same
underlying graph. Here and in subsequent diagrams we use the standard repre-
sentation of the torus as a square with opposite edges identified appropriately.
In (a) there is just one face which is a degenerate cellular face of degree 8. In
(b) there are two faces. One is a degenerate quadrilateral (i.e degree 4) cellular
face. The other is a degenerate face of genus 0 with two boundary walks, both
of length 2. In (c) there is a non degenerate digon (i.e cellular of degree 2) face
and a non cellular genus zero degenerate face. In this case the non cellular face
has two boundary walks of length 2 and 4 respectively. In (d) there are three
faces: a non degenerate digon, a degenerate quadrilateral face and a face of
genus 1. We also observe that (d) is an inessential torus graph, while both (b)
and (c) are annular and (a) is essential but not annular (see Section 6 for the
relevant definitions).

graph obtained by collapsing the arc corresponding to e to a single point. Clearly the under-
lying graph of G/e is Γ/e. A face, F , of G is a connected component of Σ−ϕ(|Γ|). A cellular
face is one that is homeomorphic to R2. A surface graph is cellular if all its faces are cellular.

Associated to any face F there is a collection of closed walks, one for each topological end
of F , called the boundary walks of F . We outline the construction of these walks, for full
details see Chapter 4 of [15]. Our setting is slightly different in that we allow our faces to
be non cellular, however the discussion in loc. cit. can be adapted to our setting with the
understanding that a face may now have more than one end and thus more than one boundary
walk.

It is well known that associated to a surface graph (Γ, ϕ) there is a rotation system on the
graph Γ. Given an end E of F , we choose a half edge d that lies in the boundary of E. Now
the rotation system corresponding to G associates two other half edges d′, d′′ to d as follows:
d, d′ are half edges in the same edge and d, d′′ are half edges that have a common vertex and
both lie in the closure of the end E. The sequence d′, d, d′′ is part of the boundary walk
associated to E. By iterating this construction on the sequence of half edges, we ultimately
obtain a closed boundary walk associated to the end E. We note that the boundary walks are
only unique up to cyclic permutation and choice of orientation.

We say that F is non degenerate if no vertex occurs more than once in the set of boundary
walks of F . For a cellular face F , the degree of F , denoted |F |, is the edge length of its unique
boundary walk, which of course may differ from the number of vertices or edges embedded in
the boundary of the face in degenerate cases. We write fi for the number of cellular faces of
degree i. Note that if Σ is connected then f0 = 1 if Σ is a sphere and Γ comprises a single
vertex, and f0 = 0 otherwise. See Figure 1 for some examples of torus graphs illustrating
some of the definitions mentioned in this section.
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By the Heffter-Edmonds-Ringel rotation principle [15, pp. 90–91], the surface Σ and the
Σ-graph (Γ, ϕ) are determined up to isomorphism by data consisting of a rotation system on
Γ, a partition of the set of boundary walks associated to the rotation system and for each
part of that partition a nonnegative integer that represents the genus of the corresponding
facial region. Note that we do not assume that our surface graphs are cellular, hence the
necessity for the partition of the set of facial walks and data on the facial genus. See [15] for
details of this. We will be interested in determining certain classes of surface graphs up to
isomorphism. The above-mentioned principle allows us to argue topologically using properties
of surfaces and curves in surfaces to deduce combinatorial information and we choose to write
our arguments using topological terminology based on this.

Finally we note that we extend much of the standard language of graph theory concerning
subgraphs, intersections and unions to surface graphs, understanding that these terms apply
to the underlying graphs. Thus if G = (Γ, ϕ) is a Σ-graph, a Σ-subgraph of G is a pair
(Γ′, ϕ|Γ′) where Γ′ is a subgraph of Γ and ϕ|Γ′ is the restriction of ϕ to |Γ′|. If H1, H2 are
Σ-subgraphs of G then H1∪H2, respectively H1∩H2, is the Σ-graph whose underlying graph
is the union, respectively intersection, of the underlying graphs of H1 and H2.

3. Sparsity

For a graph Γ = (V,E) define γ(Γ) = 2|V | − |E|. For l ≤ 2 we say that Γ is (2, l)-sparse
(or just sparse if l is clear from the context) if, γ(Γ′) ≥ l for every nonempty subgraph Γ′

of Γ. We say that Γ is (2, l)-tight if it is (2, l)-sparse and γ(Γ) = l. We will be particularly
interested in (2, 2)-sparse graphs. Note that (2, 2)-tight graphs cannot have loop edges but
can have parallel edges.

We record some standard elementary facts for later use. The proofs are straightforward
and we omit them. Suppose that Γ1,Γ2 are subgraphs of Γ. Then

(1) γ(Γ1 ∪ Γ2) = γ(Γ1) + γ(Γ2)− γ(Γ1 ∩ Γ2)

Lemma 3.1. Suppose that Γ is (2, 2)-sparse and that γ(Γ′) ≤ 3 for some subgraph Γ′ of Γ.
Then Γ′ is connected. �

Lemma 3.2. Suppose that Γ1,Γ2 are (2, 2)-tight subgraphs of a (2, 2)-sparse graph Γ. If Γ1∩Γ2

is not empty then both Γ1 ∪ Γ2 and Γ1 ∩ Γ2 are (2, 2)-tight. �

We also record a straightforward consequence of Euler’s polyhedral formula.

Theorem 3.3. If Σ is a connected boundaryless compact orientable surface of genus g and G
is a cellular Σ-graph then

(2)
∑
i≥0

(4− i)fi = 8− 8g − 2γ(G)

Proof. Use the polyhedral formula and the fact that
∑
ifi = 2|E|. �

Next we will derive an elementary but subsequently very useful principle relating the func-
tion γ, which is defined purely in terms of the underlying graph, to the embedding of the
graph in the surface. We note that related results and special cases of this have appeared
elsewhere (notably [3,4,7]). Here we attempt to express this principle in more general terms:
for surfaces of arbitrary genus and for a variety of sparsity counts.

In order to state the result we introduce some notation. Let H be a Σ-subgraph of the
Σ-graph G and suppose that F is a face of H. Let intG(F ) be the Σ-subgraph of G consisting
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of all vertices and edges of G that lie inside F (the topological closure of F in Σ). Let extG(F )
be the Σ-subgraph of G consisting of all vertices and edge of G that lie in Σ − F . Define
∂F = intG(F )∩ extG(F ) and note that ∂F is the smallest Σ-subgraph of G that supports the
boundary walks of F . It follows that G = intG(F ) ∪ extG(F ) since any edge joining intG(F )
to extG(F ) must pass through ∂F .

Theorem 3.4. Suppose that l ≤ 2 and that G is a (2, l)-tight Σ-graph. If H is a Σ-subgraph
of G and F is a face of H, then γ(H ∪ intG(F )) ≤ γ(H).

Proof. By (1) we have

γ(H ∪ intG(F )) = γ(H) + γ(intG(F ))− γ(H ∩ intG(F )).

Now, H ∩ intG(F ) = extG(F ) ∩ intG(F ) and using (1) again, we see that

γ(H ∩ intG(F )) = γ(extG(F ) ∩ intG(F ))

= γ(intG(F )) + γ(extG(F ))− γ(extG(F ) ∪ intG(F ))

= γ(intG(F )) + γ(extG(F ))− γ(G)

= γ(intG(F )) + γ(extG(F ))− l
≥ γ(intG(F )).

The last inequality above follows from applying the sparsity of G to the nonempty Σ-subgraph
extG(F ). �

Corollary 3.5. Suppose that l ≤ 2 and that G is a (2, l)-tight Σ-graph. If H is a Σ-subgraph
of G and F is a face of H, then γ(extG(F )) ≤ γ(H).

Proof. Let J1, · · · , Jk be all the faces of H that are different from F . Then extG(F ) =

H∪
⋃k
i=1 intG(Ji). Now the conclusion follows from repeated applications of Theorem 3.4. �

We conclude this section by making some straightforward observations about the Σ-subgraphs
intG(F ) and extG(F ) that will be useful in the sequel. Any face of intG(F ) that is contained
in F is also a face of G. On the other hand, there are one or more faces of intG(F ) which
are contained in Σ − F . We call such a face an external face of intG(F ). Such an external
face need not be a face of G. Note that if F has a unique boundary walk that is a simple
cycle, then intG(F ) has just one external face. In general it may have more than one external
face. Observe that extG(F ) has one exceptional face, namely F , such that all other faces of
extG(F ) are also faces of G.

4. Inductive operations on surface graphs

In this section we will focus on topological inductive operations on graphs that are natural in
the context of (2, l)-tight graphs. We consider three types of contractions associated to cellular
faces of degree 2, 3 and 4, respectively called digons, triangles and quadrilaterals hereafter.
In each case the contraction decreases the number of vertices by one and the number of edges
by two. We investigate necessary and sufficient conditions for these moves to preserve the
property of being (2, 2)-tight. We pay particular attention to degenerate cases as these play
an important role later.
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4.1. Digon and triangle contractions. Let G be a Σ-graph and suppose that D is a digon
of G with boundary walk v1, e1, v2, e2, v1 such that v1 6= v2 and e1 6= e2. Let GD = (G/e1)−e2.
Observe that (G/e1)−e2 is canonically isomorphic to (G/e2)−e1, so GD depends only on the
digon and not the particular choice of labelling of the edges. We remark that, for a connected
surface Σ, while a digon in a (2, 2)-sparse Σ-graph necessarily has distinct vertices, it may
have a degenerate boundary, but only in the case that the graph is a single (non loop) edge
and Σ is a sphere.

The proof of the following is straightforward and we omit it.

Lemma 4.1. G is (2, l)-sparse if and only if GD is (2, l)-sparse

Now suppose that T is a triangle in G with boundary walk v1, e1, v2, e2, v3, e3, v1 such that
v1 6= v2 and e1 6= e2. Let GT,e1 = (G/e1) − e2. Again we omit the proof of the following
lemma as it is a straightforward consequence of the definitions.

Lemma 4.2. Suppose that G is (2, l)-sparse and that GT,e1 is not (2, l)-sparse. Then there is
a Σ-subgraph H of G that contains e1 but not v3 such that γ(H) = l

We refer to the graph H whose existence is asserted in Lemma 4.2 as a blocker for the
contraction GT,e1 .

We note that a triangle in a (2, 2)-sparse surface graph necessarily has a non degenerate
boundary walk since any degeneracy would entail a (forbidden) loop edge. Thus, in this case
there are three possible contractions (one for each of the edges) associated to any such face.

Lemma 4.3. Suppose that G is a (2, 2)-sparse Σ-graph and that T is a triangle with edges
e1, e2, e3. Then at least two of the Σ-graphs GT,e1 , GT,e2 , GT,e3 are (2, 2)-sparse.

Proof. Suppose that there are blockers H1, respectively H2, for GT,e1 respectively GT,e2 . Then
v1, v3 ∈ H1 ∪H2. However v3 6∈ H1 and v1 6∈ H2 so e3 6∈ H1 ∪H2. However v2 ∈ H1 ∩H2 so
by Lemma 3.2, H1 ∪H2 is (2, 2)-tight. This contradicts the sparsity of G. �

4.2. Quadrilateral contractions. In the case of quadrilaterals we consider a somewhat
different contraction move. In this case the analysis is a little more complicated and we
include the details.

Suppose thatQ is a quadrilateral ofG with possibly degenerate boundary walk v1, e1, v2, e2, v3, e3, v4, e4, v1.
Suppose that v1 6= v3 and e1 6= e3. Let d be a new edge that joins v1 and v3 and is embedded
as a diagonal of the quadrilateral Q. Define GQ,v1,v3 to be (G∪ {d})/d−{e1, e3}. Clearly the
underlying graph of GQ,v1,v3 is obtained from Γ by identifying the vertices v1 and v3 and then
deleting e1 and e3. Thus γ(G) = γ(GQ,v1,v3). However this quadrilateral contraction move
does not necessarily preserve (2, l)-sparsity.

Lemma 4.4. Suppose that G is (2, l)-sparse but GQ,v1,v3 is not (2, l)-sparse. Then at least
one of the following statements is true.

(i) There is some Σ-subgraph H of G such that v1, v3 ∈ H, exactly one of v2, v4 is in H
and γ(H) = l. (H is called a type 1 blocker.)

(ii) There is some Σ-subgraph K of G such that v1, v3 ∈ K, v2, v4 6∈ K and γ(K) = l+ 1.
(K is called a type 2 blocker.)

Proof. Let K be a maximal Σ-subgraph of GQ,v1,v3 satisfying γ(K) ≤ l − 1. Let z be the
vertex of GQ,v1,v3 corresponding to v1 and v3. Clearly z ∈ K, otherwise K would also be a Σ-
subgraph of G. Let H be the maximal Σ-subgraph of G satisfying (H∪{d})/d−{e1, e3} = K.
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Figure 2. A (2, 2)-tight projective plane graph. Here we are using the rep-
resentation of the projective plane as a disc with antipodal boundary points
identified. This surface graph has a single quadrilateral face, with a degenerate
boundary walk.

It is clear that H is an induced Σ-subgraph of G, since K is an induced Σ-subgraph. If
{v2, v4} ⊂ H, then γ(H) = γ(K) ≤ l− 1 which contradicts the sparsity of G. So at most one
of v2, v4 belongs to H. Also, it is clear that l ≤ γ(H) ≤ γ(K) + 2 ≤ l + 1. So γ(H) = l or
l + 1. If γ(H) = l and one of v2, v4 ∈ H then (i) is true. If γ(H) = l and neither of v2, v4

is in H, then let H ′ = H ∪ {v2} ∪ {e1, e2}. Now observe that e1 6= e2 since v1 6= v3. Thus
γ(H ′) = γ(H) = l and, again, (i) is true. Finally if γ(H) = l+ 1. Then γ(H) = γ(K) + 2 and
since H is an induced graph, it follows that neither of v2, v4 belongs to H. Thus (ii) is true in
this case. �

In the special case that l = 2, certain degenerate cases cannot arise.

Lemma 4.5. Suppose that G is a (2, 2)-sparse Σ-graph and that Q is a quadrilateral face of
G with boundary walk v1, e1, v2, e2, v3, e3, v4, e4, v1. For i = 1, 2, 3, vi 6= vi+1, and v1 6= v4.

Proof. Loop edges are forbidden in a (2, 2)-sparse graph. �

Lemma 4.6. Suppose that Σ is orientable, G is a (2, 2)-tight Σ-graph and that Q is a quadri-
lateral face of G with boundary walk v1, e1, v2, e2, v3, e3, v4, e4, v1.

(i) ei 6= ej for 1 ≤ i < j ≤ 4.
(ii) If v1 = v3 then v2 6= v4 and GQ,v2,v4 is (2, 2)-tight.

Proof. We observe that since Σ is orientable, a repeated edge in ∂Q implies the existence
either of a vertex of degree one or of a loop edge. Both of these are forbidden in a (2, 2)-tight
graph. This proves (i).

Now suppose that v1 = v3. If v2 = v4 then by Lemma 4.5 and the sparsity of G, ∂Q has
exactly two vertices and two edges. This contradicts (ii), thus v2 6= v4. Suppose that GQ,v2,v4
is not (2, 2)-tight. By Lemma 4.4 there is a blocker for this contraction. Since v1 = v3 by
assumption, the blocker must be a type 2 blocker. Thus we have a Σ-subgraph K such that
γ(K) = 3, v2, v4 ∈ K and v1 6∈ K. However, by Lemma 4.6 there are at least four edges
joining v1 to K, contradicting the sparsity of G and completing the proof of (ii). �

See Figure 2 for an example of (2, 2)-tight projective plane graph whose only face is a
quadrilateral with repeated edges in the boundary walk. This example shows that orientability
is a necessary hypothesis in the statement of Lemma 4.6.

Lemma 4.7. Suppose that Σ is orientable, G is (2, 2)-tight and Q is a quadrilateral face of G
such that neither GQ,v1,v3 nor GQ,v2,v4 is (2, 2)-sparse. Then Q has a non degenerate boundary.
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Furthermore, if H1 and H2 are blockers for GQ,v1,v3 respectively GQ,v2,v4, then both H1 and
H2 are type 2 blockers and H1 ∩H2 = ∅.

Proof. The non degeneracy of the boundary walk of Q follows immediately from Lemmas 4.5
and 4.6.

Now suppose that one of the blockers, say H1, is of type 1 and suppose that v2 6∈ H1. Then
v4 ∈ H1 ∩H2. So γ(H1 ∪H2) = γ(H1) + γ(H2)− γ(H1 ∩H2) ≤ 2 + γ(H2)− 2 = γ(H2). Now
if H2 is also type 1 then γ(H1 ∪ H2) = 2. However v1, v2, v3 ∈ H1 ∪ H2 but H1 ∪ H2 does
not contain one of e1, e2 which contradicts the sparsity of G. Similarly if H2 is type 2, then
γ(H1∪H2) ≤ 3, but H1∪H2 does not contain either of e1, e2, again contradicting the sparsity
of G.

So both H1 and H2 are type 2 blockers. Moreover v1, v2, v3, v4 ∈ H1∪H2 but e1, e2, e3, e4 6∈
H1 ∪H2. Now

2 ≤ γ(H1 ∪H2 ∪ {e1, e2, e3, e4})
= γ(H1) + γ(H2)− γ(H1 ∩H2)− 4

= 2− γ(H1 ∩H2)

So γ(H1 ∩H2) ≤ 0 which implies that H1 ∩H2 = ∅. �

4.3. Simple loops in surfaces. Now we briefly digress to review some necessary terminology
and facts from low dimensional topology. Proofs of all of the assertions below can be found
in (or at least easily deduced from) many sources (for example [6]). A loop in a surface Σ is
a continuous function α : S1 → Σ. We say that α is simple if it is injective. We say that α
is non separating if Σ − α(S1) has the same number of connected components as Σ. Given
simple loops α, β in Σ, recall that the geometric intersection number is defined by

i(α, β) = min |α′(S1) ∩ β′(S1)|
where α′, respectively β′, varies over all simple loops that are homotopic to α, respectively β.
If i(α, β) 6= 0 then both α and β are essential: that is to say they are not null homotopic. If
i(α, β) = 1 then both α and β are non separating in Σ. In the special case that Σ is the torus,
if i(α, β) = 0 and i(β, δ) = 0 then i(α, δ) = 0.

Given a simple loop α in a surface Σ we say that Σ − α(S1) is the surface obtained by
cutting along α. Given a surface Σ with boundary we can cap a boundary component by
gluing a copy of a closed disc to the surface along the given boundary component.

If Σ is an orientable surface of genus g and α is a non separating simple loop in Σ then
we form Σα by removing a tubular neighbourhood of α 1 and then capping the two resulting
new boundary components by gluing a copy of the disc into each of the resulting open ends.
Clearly Σα is an orientable surface of genus g− 1. We will refer to this process as cutting and
capping along α.

Suppose that G is a Σ-graph and let F be a face of G. Further suppose that α is a non
separating loop in Σ such that α(S1) ⊂ F . By cutting and capping Σ along α we can form a
Σα-graph, denoted Gα, which has the same underlying graph as G. Observe that all faces of
Gα except the one(s) corresponding to F are also faces of G.

Finally some terminology. If G = (Γ, ϕ) is a Σ-graph and α is a loop in Σ, we say that α
is contained in G if α(S1) ⊂ ϕ(|Γ|).

1that is a neighbourhood of α that is homeomorphic to an open annulus
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Now we return to the situation of Lemma 4.7. Suppose that Q is a quadrilateral in G as
in the statement of that lemma. We say that the quadrilateral Q is blocked. By Lemma
3.1 the blocker H1 is connected so it is possible to find a simple walk from v1 to v3 in H1.
By concatenating the geometric realisation of this walk with the diagonal of Q joining v3

and v1 we obtain a simple loop in Σ, which we denote by α1. Note that we can choose
different parameterisations of this loop, but this ambiguity will make no difference in our
context. Similarly we construct another simple loop, denoted α2, by concatenating a walk
in H2 with the diagonal of Q that joins v4 and v2. Now since H1 ∩H2 is empty by Lemma
4.7, we can choose these loops so that they intersect transversely at exactly one point (where
the diagonals meet). Thus these loops have geometric intersection number equal to one. In
particular, we note that both α1 and α2 must be non separating loops in Σ. These loops will
play an important role in the following sections.

5. Irreducible surface graphs

Let G be a (2, 2)-tight Σ-graph. In light of Lemmas 4.1 and 4.3 we say that G is irreducible
if it has no digons, no triangles and if, for every quadrilateral face of G, both of the possible
contractions result in graphs that are not (2, 2)-sparse.

For each of the contractions described in Section 4 there are the corresponding vertex
splitting moves. More precisely, if G′ = GD, respectively G′ = GT,e, respectively G′ = GQ,u,v
for some digon D, respectively triangle T and edge e ∈ ∂T , respectively quadrilateral Q
and vertices u, v ∈ ∂Q, then we say that G is obtained from G′ by a digon, respectively
triangle, respectively quadrilateral split. Thus every (2, 2)-tight Σ-graph can be constructed
from some irreducible by applying a sequence of digon/triangle/quadrilateral splits. Our goal
is to identify, for various surfaces, the set of irreducibles.

Conjecture 5.1. If Σ is a surface with finite genus and finitely many boundary components
and punctures, then there are finitely many distinct isomorphism classes of irreducible (2, 2)-
tight Σ-graphs.

We will address some special cases of Conjecture 5.1 in this and later sections. Let S be
the 2-sphere.

Theorem 5.2. If G is a (2, 2)-tight S-graph with at least two vertices then G has at least two
faces of degree at most 3. In particular, any (2, 2)-tight S-graph can be constructed from a
single vertex by a sequence of digon and/or triangle splits.

Proof. By Lemma 3.1, G is connected and therefore cellular. Since G has at least two vertices,
f0 = 0. Also f1 = 0 by sparsity, so by Theorem 3.3, we see that 2f2 + f3 ≥ 4. �

The case of plane graphs is similarly straightforward.

Corollary 5.3. If G is a (2, 2)-tight R2-graph with at least two vertices then G has at least one
cellular face of degree at most 3. In particular, any (2, 2)-tight R2-graph can be constructed
from a single vertex by a sequence of digon and/or triangle splits.

Proof. Cap (i.e fill in the puncture of) the non cellular face of G and then apply Theorem
5.2. �

Theorem 5.2 and Corollary 5.3 are implicit already in other places in the literature, we
include them here for completeness. We note that in both cases the quadrilateral splitting
move is not required in the inductive characterisation.

9



Figure 3. The top and bottom dashed lines are identified to form an open
cylinder. Thus this diagram represents an A-graph with no digons or triangular
faces and 3 quadrilateral faces.

Figure 4. The two non cellular irreducible torus graphs. Note that by cutting
the torus along a non separating loop these graphs can also be viewed as graphs
in the twice punctured sphere.

Now let A be the twice punctured sphere R2 − {(0, 0)}. Observe that for any positive
integer n, it is straightforward to construct an A-graph that has no digons or triangles, but
has n quadrilateral faces (see Figure 2). So, in contrast to the cases of the sphere or plane,
we do require the quadrilateral contraction move in order to have finitely many irreducible
(2, 2)-tight A-graphs.

There are two obvious examples of irreducible (2, 2)-tight A-graphs, with one vertex and
two vertices respectively: see Figure 4.

Theorem 5.4. If G is an irreducible (2, 2)-tight A-graph, then G is isomorphic to one of the
A-graphs shown in Figure 4.

Proof. There are two cases to consider. First suppose that G does not separate the two
punctures of A. In this case it follows easily from Theorem 5.2 that if G has at least two
vertices then it has at least one triangular face and so is not irreducible.

Now suppose that G does separate the punctures of A. Clearly G has exactly two non
cellular faces. By capping these two faces, we create a (2, 2)-tight S-graph G̃. This graph
satisfies 2f2 + f3 = 4 + f5 + 2f6 + · · · and since all but two of the faces of G̃ are also faces of
the irreducible G, it follows that the two exceptional faces of G̃ are digons and all other faces
are quadrilateral faces of G. Thus it suffices to show that there cannot be any quadrilateral
faces in G.

For a contradiction, suppose that Q is a quadrilateral. Since G is irreducible, both possible
contractions of Q are blocked and we infer the existence of simple loops α1 and α2 as described
at the end of Section 4. Recall that these loops intersect transversely at exactly one point and
thus α1 is non separating in A. However the Jordan Curve Theorem tells us that any simple
loop in A must be separating. �
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6. Subgraphs of irreducibles

Recall that a surface is closed if it is compact and without boundary. The goal of this
section is to show that if Σ is an orientable closed surface and G = (Γ, ϕ) is an irreducible
(2, 2)-tight Σ-graph, then any (2, 2)-tight Σ-subgraph of G is also irreducible.

Let H = (Λ, ϕ||Λ|) be a Σ-subgraph of G. We say that H is inessential if there is some
embedded open disc U ⊂ Σ such that ϕ(|Λ|) ⊂ U . If there is no such disc then H is essential.
Observe that if F is a cellular face of G that has a non degenerate boundary walk, then ∂F is
inessential: let U be an open disc neighbourhood of the embedded closed disc F . We also note
that if H is inessential and connected then it has at most one non cellular face F . Moreover
if we cut and cap along an appropriate2 set of loops in F we obtain an S-graph which, in this
section, we will denote by Ĥ.

Let K1 be the graph with one vertex and no edges. Let K2 be the complete graph on two
vertices. For n ≥ 2 let Cn be the n-cycle graph (in particular C2 has exactly two parallel
edges).

Lemma 6.1. Suppose that Σ is an orientable closed surface, G = (Γ, ϕ) is an irreducible
(2, 2)-tight Σ-graph and H is a Σ-subgraph of G whose underlying graph is isomorphic to
either C2 or C3. Then H is essential.

Proof. Suppose that the underlying graph of H is isomorphic to C2. The other case is similar.
Suppose that H is inessential. Let U be an open disc that contains ϕ(Λ). Clearly there is a
digon face D of H that is contained in U . Now let K be the S-graph obtained by cutting and
capping the external face of intG(D). By Theorem 3.4, γ(K) = 2 and by Theorem 3.3, K has
at least two faces of degree at most 3. One of these faces is also a face of G contradicting the
irreducibility of G. �

Lemma 6.2. Suppose that Σ is an orientable closed surface, G = (Γ, ϕ) is an irreducible
(2, 2)-tight Σ-graph and H is an inessential Σ-subgraph of G and that γ(H) = 2. Then the
underlying graph of H is K1.

Proof. Suppose that H has at least two vertices. Then by Theorem 3.3, Ĥ has at least two
faces of degree at most 3. If one of these is a triangle or a digon with non degenerate boundary
then the underlying graph of H contains a copy of C2 or C3 which contradicts Lemma 6.1.
Therefore Ĥ must have two digon faces both of which have degenerate boundaries. However,
as pointed out in Section 4.1, no S-graph can have more than one degenerate digon. �

Lemma 6.3. Suppose that Σ is an orientable closed surface, G = (Γ, ϕ) is an irreducible (2, 2)-
tight Σ-graph, H is an inessential Σ-subgraph of G and that γ(H) = 3. Then the underlying
graph of H is K2.

Proof. By Theorem 3.3, Ĥ satisfies 2f2 +f3 = 2+f5 +2f6 + · · ·. As in the proof of Lemma 6.2
we see that Ĥ cannot have a triangle or a digon with non degenerate boundary. So the only
possibility is that Ĥ has a digon face with degenerate boundary. As pointed out in Section
4.1, there is only one S-graph with a degenerate digon face and its underlying graph is indeed
K2. �

The case of a Σ-subgraph isomorphic to C4 is a little more involved.

2more precisely, a maximal set of pairwise disjoint simple loops that is non separating in F
11



Lemma 6.4. Suppose that Σ is an orientable closed surface, G = (Γ, ϕ) is an irreducible (2, 2)-
tight Σ-graph and H is an inessential subgraph of G whose underlying graph is isomorphic to
C4. Then H is the boundary of some quadrilateral face of G.

Proof. Suppose that U is an embedded disc containing ϕ(|Λ|) and let R be the face of H that
is contained in U . First observe that γ(H) = 4, so by Theorem 3.4, γ(intG(R)) ≤ 4. Now, by
Lemma 6.1, intG(R) has no digons or triangles and it follows easily from Theorem 3.3 that
γ(intG(R)) = 4 and that all the cellular faces of intG(R) are quadrilaterals: that is to say that
intG(R) is in fact a quadrangulation of R.

Now, let Q (with boundary vertices v1, v2, v3, v4 ) be a quadrilateral face of intG(R) that
is contained in R. Since G is irreducible, we have blockers H1 and H2 for the two possible
contractions of Q, as described in Lemma 4.7. Also we have simple loops α1 and α2 as
described in Section 4. These loops intersect transversely at one point in Q. If w1, w2, w3, w4

are the vertices of ∂R in cyclic order, it follows that one of the loops, say α1, contains w1 and
w3 and that α2 contains w2 and w4. Thus α2 divides R into disjoint open subsets R1 and R3

(see Figure 5) where w1, v1 ∈ R1 and w3, v3 ∈ R3. Now we can decompose the blocker H1 as
Ke ∪K1 ∪K3, where Ke = extG(R)∩H1, K1 is the part of H1 contained in R1 and K3 is the
part of H1 contained in R3. It is clear that Ke ∩K1 = {w1} and Ke ∩K3 = {w3}. Therefore,
by (1),

3 = γ(H1) = γ(Ke) + γ(K1) + γ(K3)− 4.

Using the sparsity of G it follows that at least one of γ(K1) or γ(K3) is equal to 2. Now K1

and K3 are both inessential Σ-subgraphs of G since R1 and R3 are both embedded closed
discs in Σ. It follows from Lemma 6.2 that at least one of K1 or K3 is a single vertex. So
either v1 = w1 or v3 = w3. We have shown that at least one of v1 or v3 actually lies in the
boundary of R. Similarly at least one of v2 or v4 lies in the boundary of R.

Thus we have shown that if Q is any quadrilateral face of G contained in R then ∂Q and ∂R
share at least one edge. Now it is an elementary exercise to show that in any quadrangulation
of R that has this property, either there are no quadrilaterals properly contained in R, or some
quadrilateral has a boundary vertex with degree 2. Clearly, by Lemma 4.7, no quadrilateral
face of the irreducible graph G can have a boundary vertex of degree 2. It follows that there
are no quadrilateral faces of G that are properly contained in R and so R is itself a face of
G. �

We say that a Σ-subgraph H = (Λ, ϕ||Λ|) of G is annular if it is essential and ϕ(|Λ|) is
contained in some embedded open annulus of Σ. 3

Let B be the (unique) (2, 2)-tight graph with 3 vertices, one of which has degree 4. See
Figure 1 for some examples of annular and non annular embeddings of B in the torus.

Lemma 6.5. Suppose that Σ is an orientable closed surface, G = (Γ, ϕ) is an irreducible (2, 2)-
tight Σ-graph and H = (Λ, ϕ||Λ|) is a Σ-subgraph of G whose underlying graph is isomorphic
to B. Then H is not annular.

Proof. Suppose, seeking a contradiction, that H is annular. Let g be the genus of Σ. Since
H is annular, g ≥ 1. Now we observe that H must be obtained from one of the torus graphs
in Figure 1 (b) or (c) by adding g − 1 handles to the non cellular face and possibly cutting
and capping the resulting face along a separating curve. In case (c) H has a non degenerate

3We note that this is equivalent to saying that image of the induced homomorphism of fundamental groups
ϕ∗ : π1(|Λ|)→ π1(Σ) is nontrivial and cyclic. We will not need this fact, so we omit the proof.
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Figure 5. From the proof of Lemma 6.4: the shaded region represents the
blocker for the contraction GQ,v1,v3 .

digon face, contradicting Lemma 6.1. Thus H is isomorphic to the surface graph obtained
from Figure 1 (b) as described above. Let U be an open annulus containing ϕ(|Λ|) and let R
be the (unique) face of H that is contained in U . Observe that γ(H) = 2, so by Theorem 3.4,
γ(intG(R)) = 2. Let K be the S-graph obtained by cutting and capping the external faces
of intG(R) (there could be more than one in this case). Now K is a (2, 2)-tight S-graph with
two digon faces. Since all other faces of K are also faces of the irreducible G, it follows easily
from Theorem 3.3 that all other faces of K are quadrilaterals. Thus, all faces of G that are
contained in R are in fact quadrilaterals.

Now we can argue, using a straightforward modification of the argument from the proof
of Lemma 6.4, that any quadrilateral face of G that is contained in R must in fact share a
boundary edge with R. Again, following the proof of Lemma 6.4 it follows that R itself must
be a face of G. However this contradicts Lemma 4.7 where we showed that any quadrilateral
face of an irreducible has a non degenerate boundary. �

Now the main result of this section: a tight Σ-subgraph of an irreducible is also irreducible.

Theorem 6.6. Suppose that Σ is an orientable closed surface, G = (Γ, ϕ) is an irreducible
(2, 2)-tight Σ-graph and Λ is a (2, 2)-tight Σ-subgraph of Γ. Then H = (Λ, ϕ||Λ|) is an irre-
ducible Σ-graph.

Proof. We see that H cannot have any triangle or digon: the boundary of such a face must
be non degenerate by (2, 2)-sparsity, and so would be an inessential subgraph of G that would
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contradict Lemma 6.1. Now suppose that Q is a quadrilateral face of H. It is not clear, a
priori, that the boundary of Q is non degenerate, so we must prove that before proceeding.

Applying Lemma 4.6 to H, we see that there are no repeated edges in the boundary of Q.
Since ∂Q has 4 edges and G is (2, 2)-tight, it follows that ∂Q must have at least 3 vertices.
Thus the only possibility for a degenerate boundary is that one vertex is repeated and that
∂Q has underlying graph isomorphic to B. It follows that Q, the topological closure of the
open disc Q in Σ, is homotopy equivalent to an embedded loop. To see this, observe that Q
can be contracted onto the simple loop formed by the diagonal of Q that joins the repeated
vertex in ∂Q to itself. Thus a sufficiently small neighbourhood of Q is homeomorphic to an
open annulus. It follows that ∂Q is either inessential or annular. By Lemma 6.5 it cannot
be annular. On the other hand, if ∂Q is inessential then, since B contains a copy of C2, this
contradicts Lemma 6.1. Thus we see that in fact Q must have a non degenerate boundary.

By Lemma 6.4 this means that Q is also a face of G and so there are blockers H1, H2, in G,
as described by Lemma 4.7. Now consider the Σ-graph K = H1∪H2∪∂Q. This is (2, 2)-tight,
so, by Lemma 3.2, K ∩H is also (2, 2)-tight. Now, K ∩H = (H1∩H)∪ (H2∩H)∪∂Q. Using
(1), H1∩H2 = ∅, V (H1∩H∩∂Q) = {v1, v3}, E(H1∩H∩∂Q) = ∅, V (H2∩H∩∂Q) = {v2, v4}
and E(H2 ∩H ∩ ∂Q) = ∅, we have

2 = γ(K ∩H)

= γ(∂Q) + γ(H1 ∩H) + γ(H2 ∩H)− γ(H1 ∩H ∩ ∂Q)− γ(H2 ∩H ∩ ∂Q)

= 4 + γ(H1 ∩H) + γ(H2 ∩H)− 4− 4.

Thus γ(H1 ∩H) + γ(H2 ∩H) = 6. If γ(H1 ∩H) = 2 then (H1 ∩H) ∪ {v2} ∪ {e1, e2} would
be a type 1 blocker for the contraction GQ,v1,v3 , contradicting Lemma 4.7. So γ(H1 ∩H) ≥ 3
and similarly γ(H2 ∩H) ≥ 3. It follows that γ(H1 ∩H) = γ(H2 ∩H) = 3 and that H1 ∩H
and H2 ∩ H are blockers for the contractions HQ,v1,v3 and HQ,v1,v3 respectively. Thus both
possible contractions of Q are blocked in H as required. �

For example, suppose that Γ is the simple (2, 2)-tight graph obtained by adding a vertex of
degree two to K4. Is it possible to embed Γ into the torus to create an irreducible torus graph?
If so, how many non isomorphic embeddings exist? There are several possible embeddings of Γ
to consider, however we can significantly narrow the search space by observing that since K4 is
tight, by Theorem 6.6, any irreducible embedding of Γ must extend an irreducible embedding of
K4. It is not difficult to show that, up to isomorphism there is a unique irreducible embedding
of K4 in the torus (see figure 12). Thus any irreducible embedding of Γ must restrict to this
embedding of K4. Using this observation, it is not difficult to show that, up to isomorphism
there are exactly two distinct irreducible torus embeddings of Γ.

7. Irreducible torus graphs

Let T = S1 × S1 be the torus. Throughout this section let G = (Γ, ϕ) be an irreducible
(2, 2)-tight T-graph. Our goal in this section is to show that there are only finitely many
isomorphism classes of such graphs by establishing an upper bound for the number of vertices
of G.

In the case that G is not cellular we will see that we can essentially reduce the problem to the
sphere or the annulus. If G is cellular then using Theorem 3.3 and f2 = f3 = 0 we see that G
satisfies f5+2f6+3f7+4f8 = 4 and fi = 0 for i ≥ 9. Now using |V |−|E|+

∑
i≥0 fi = χ(T) = 0
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and |E| = 2|V |−2 we deduce that |V | = 2+f4+f5+f6+f7+f8 ≤ 2+f4+f5+2f6+3f7+4f8 =
6 + f4. Thus the problem reduces to establishing a bound for the number of quadrilateral
faces that an irreducible T-graph can have.

First we deal with the non cellular case.

Lemma 7.1. Suppose that G = (Γ, ϕ) is an irreducible (2, 2)-tight T-graph. If G is not cellular
then Γ is either isomorphic to K1 or to C2. Furthermore, in the latter case, G is annular.

Proof. Since Γ is connected it is clear G has a single non cellular face. By cutting along a
non separating loop in this face we obtain an A-graph Ĝ. Observe that any face of Ĝ that
is not also a face of G is non cellular. It follows that Ĝ is an irreducible A-graph. Now the
conclusion follows from Theorem 5.4. �

In order to avoid repeating long lists of hypotheses in the next few statements, we fix some
notational conventions as follows.

Assumption 1. Suppose that G is cellular, irreducible (2, 2)-tight T-graph. Let Q be a
quadrilateral face of G with boundary walk v1, e1, v2, e2, v3, e3, v4, e4, v1. Let H1, respectively
H2, be blockers for the contractions GQ,v1,v3 , respectively GQ,v2,v4 and let α1 and α2 be simple
loops intersecting transversely at one point whose construction is described in Section 4.

Lemma 7.2. Given Assumption 1 at least one of H1 or H2 is an inessential T-subgraph of
G.

Proof. Suppose that both are essential. Then there are non separating simple loops β1 con-
tained in H1 and β2 contained in H2. Now H1 ∩ H2 = ∅, so i(β1, β2) = 0. However, it
is also clear that i(α1, β2) = i(α2, β1) = 0. As pointed out in Section 4.3 this implies that
i(α1, α2) = 0, contradicting the fact that these curves intersect transversely at one point. �

We collect some more notational conventions for later use.

Assumption 2. The blocker H1 is an inessential (and so by Lemma 6.3 it’s underlying graph
is K2). The blocker H2 is maximal with respect to inclusion among all blockers for the
contraction GQ,v2,v4 . Furthermore J is the face of H2 that contains v1, v3.

See Figure 6 for an illustration of these Assumptions 1 and 2 in the case where H2 is an
essential blocker.

Lemma 7.3. Given Assumptions 1 and 2, then any face of H2 that is not J is also a face of
G.

Proof. Suppose that F 6= J is a face of H2. Then γ(H2 ∪ intG(F )) ≤ γ(H2) = 3, by Theorem
3.4. Also v1, v3 6∈ intG(F ), since F 6= J . It follows that H2 ∪ intG(F ) is a blocker for GQ,v2,v4
and so by the maximality of H2, intG(F ) ⊂ H2 as required. �

Next we want to examine the structure of H2. It turns out that there are exactly ten
distinct possibilities. If H2 is inessential then, by Lemma 6.3 it has graph K2 (Figure 7). On
the other hand, if H2 is essential we have the following.

Lemma 7.4. Given Assumptions 1 and 2 and also assuming that H2 is essential, then H2 is
isomorphic as a T-graph to one of the nine T-graphs shown in Figures 8 and 9.
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Figure 6. An illustration of the notational conventions in Assumptions 1 and
2. The shaded region represents an essential blocker H2.

Proof. Since γ(H2) = 3, it is connected by Lemma 3.1. Let K be the S-graph obtained by
cutting and capping H2 along α1 (which is a non separating loop in J). Clearly K has two
exceptional faces J+ and J− such that all other faces of K are faces of G (using Lemma 7.3).
Now, since J+ and J− are the only faces of K that could have degree less than 4, Theorem
3.3 implies that K satisfies

(3) 2f2 + f3 = 2 + f5 + 2f6

and fi = 0 for i ≥ 7. There are two cases to consider.
(a) There is no quadrilateral face of G in H2. There are various subcases:

(a1) |J+| = |J−| = 2. Then, from Equation 3 we get f5 + 2f6 = 2. So either f5 = 0 and
f6 = 1 and we have the example shown in Figure 8 (a), or, f5 = 2 and f6 = 0 and we
have one of the examples shown in Figure 8 (b) or (c).

(a2) |J+| = 2 and |J−| = 3. Then we have f5 = 1. There is one possibility: Figure 8 (d).
(a3) |J+| = |J−| = 3. In this case, Equation 3 implies that J+ and J− are the only faces

of K. So we have the example shown in Figure 8 (e).
(a4) |J+| = 2 and |J−| = 4. In this case, Equation 3 implies that J+ and J− are the only

faces of K and we have the example shown in Figure 8 (f).

(b) There is some quadrilateral face of G in H2. This case requires a little more effort as
we must first establish that there is no more than one such face. Let G′ = ∂Q ∪ H1 ∪ H2.
Clearly G′ is (2, 2)-tight and so by Theorem 6.6 it is also irreducible.

Suppose that R is a quadrilateral face of G, with boundary vertices w1, w2, w3, w4, that is
contained in H2 (and so is also a face of G′). By Lemma 7.2 we know that there is a blocker
for one of the contractions of R in G′ whose graph is K2. Without loss of generality assume
that a blocker L1 for the contraction G′R,w1,w3

has graph K2. Now we claim that L1 ⊂ H2.
If not then it is clear that L1 must intersect H1. Since the vertices of L1 are both in H2 this
contradicts H1 ∩H2 = ∅, thus establishing our claim.
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Now consider a maximal blocker, L2, for the contraction G′R,w2,w4
. By (1) we have

3 = γ(L2)

= γ(L2 ∩ (∂Q ∪H1)) + γ(L2 ∩H2)− γ(L2 ∩ (∂Q ∪H1) ∩H2)

= γ(L2 ∩ (∂Q ∪H1)) + γ(L2 ∩H2)− γ(L2 ∩ {v2, v4})

Now it is clear that {v2, v4} ⊂ L2 since L2 is connected, so we have

(4) γ(L2 ∩H2) = 7− γ(L2 ∩ (∂Q ∪H1))

Furthermore, it is also clear that L1 separates v2 from v4 in H2, so L2 ∩H2 has at least two
components, and hence γ(L2 ∩ H2) ≥ 4. Also L2 ∩ (∂Q ∪ H1) is a T-subgraph of ∂Q ∪ H1

that contains the vertices v2, v4. It follows easily that γ(L2 ∩ (∂Q ∪ H1)) ≥ 3 with equality
only if L2 ∩ (∂Q ∪ H1) = ∂Q ∪ H1. Therefore the only way that (4) can be satisfied is
that ∂Q ∪ H1 ⊂ L2 and L2 ∩ H2 has exactly two components X2 3 v2 and X4 3 v4 such
that γ(X2) = γ(X4) = 2. In particular it follows from Theorem 6.6 and Lemma 7.1 that
the underlying graph of X2, and also of X4, is isomorphic to K1 or C2. Now since L1 also
separates w2 and w4 in H1 we can, without loss of generality, assume that v2, w2 ∈ X2 and
v4, w4 ∈ X4.

Let Z2, respectively Z4, be the maximal (2, 2)-tight T-subgraph of H2 that contains v2,
respectively v4. By Lemma 3.2 we see that X2 ⊂ Z2 and X4 ⊂ Z4. Furthermore we see that
since Z2 and Z4 are both disjoint from α1, they are either annular or inessential. By Lemma
7.1, Z2 has graph K1 (inessential case) or C2 (annular case). Similar comments apply to Z4.
Now the argument in the paragraph above shows that every quadrilateral face of H2 has a
boundary vertex in Z2 and a diagonally opposite vertex in Z4. It follows easily that there is
at most one such quadrilateral face in H2.

Now we can argue as in case (a) but with the proviso that there is exactly one quadrilateral
face, R, of H2 that is also a face of G. We observe that there is a cycle of length 3 in H2

(formed by two edges of ∂R and the inessential blocker for R) and so also in K. It is not hard
to see that it follows that K must have at least two faces of odd degree: at least one on either
‘side’ of the cycle of length 3. We find the following subcases.

(b1) |J+| = |J−| = 2. From Equation (3) we have f5 + 2f6 = 2. Since K has some face
of odd degree we can rule out the possibility f5 = 0, f6 = 1. Therefore f5 = 2 and
f6 = 0. There is only one possibility for H2: Figure 9 (a).

(b2) |J+| = 2 and |J−| = 3. Then, as in case (a) we have f5 = 1 and there is one possibility:
Figure 9 (b).

(b3) |J+| = |J−| = 3. In this case, Equation 3 implies that R, J+ and J− are the only
faces of K: Figure 9 (c).

(b4) |J+| = 4 and |J−| = 2. Since K must have at least two faces of odd degree, Theo-
rem 3.3 would imply that there is a triangle or digon in K that is also a face of G,
contradicting its irreducibility. Thus this subcase cannot arise.

�

It remains to rule out the possibility of a quadrilateral face that is neither Q nor a face of
H2. In fact we can prove something a little more general than that.
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Figure 7. The unique inessential blocker

(a) (b) (c)

(d) (e) (f)

Figure 8. Essential blockers with no quadrilateral face

(a) (b) (c)

Figure 9. Essential blockers with a quadrilateral face

Lemma 7.5. Suppose that G is an irreducible (2, 2)-tight T-graph. Let K be a (2, 2)-tight
T-subgraph of G and suppose that F is a cellular face of K. There is no quadrilateral face of
G properly contained within F .

Proof. Suppose that R, with vertices w1, w2, w3, w4, is a quadrilateral face of G properly
contained within F and let B1 and B2 be blockers for contractions of R in G. If B1 ⊂ F , then
since F is cellular, B1 would separate w2 from w4 which contradicts B1 ∩ B2 = ∅. Therefore
B1 is not contained in F or equivalently, since B1 is connected, B1 ∩ K 6= ∅. Similarly
B2 ∩K 6= ∅.
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Now, let M = ∂R ∪ B1 ∪ B2 and observe that M is (2, 2)-tight and therefore, by Lemma
3.2, M ∩K is also (2, 2)-tight. Now it is clear thatM ∩K = (B1∩K)∪ (B2∩K)∪E(∂R∩K).
Therefore

(5) 2 = γ(M ∩K) = γ(B1 ∩K) + γ(B2 ∩K)− |E(∂R ∩K)|
Now, we observe that |E(∂R ∩K)| ∈ {0, 1, 2, 4} since K is an induced T-subgraph of G. If

|E(∂R ∩K)| = 4 then clearly R must be a face of K which contradicts our assumption that
R is properly contained within F . On the other hand if |E(∂R ∩ K)| ≤ 1, then (5) yields
γ(B1 ∩ K) + γ(B2 ∩ K) ≤ 3 which contradicts the fact that both B1 ∩ K and B2 ∩ K are
nonempty. Finally if |E(∂R ∩ K)| = 2 then it is clear that K contains exactly three of the
vertices w1, w2, w3, w4. However in this case (5) implies that γ(B1 ∩K) = γ(B2 ∩K) = 2. It
follows that K contains at most one of the vertices w1, w3, otherwise (B1 ∩K) ∪ {w2} would
span a type 1 blocker for GR,w1,w3 , contradicting Lemma 4.7. Similarly K contains at most
one of the vertices w2, w4. Thus K contains at most two of the vertices w1, w2, w3, w4 yielding
the required contradiction. �

Finally we have our main theorem about torus graphs.

Theorem 7.6. Suppose that G is an irreducible (2, 2)-tight T-graph. Then G has at most two
quadrilateral faces.

Proof. Suppose, as above, that Q is a quadrilateral face of G, with maximal blockers H1 and
H2. Also by Lemma 7.2 we may assume that H1 is inessential. By Lemma 7.4 there is at most
one other quadrilateral face of G contained among faces of H2. Now let K = ∂Q ∪H1 ∪H2.
Clearly K is a (2, 2)-tight T-subgraph of G. Now we consider the faces of K that are not also
faces of G. If H2 is also inessential then, using Lemma 6.3, there is at most one such face and
that face is cellular of degree 8. If H2 is essential then there at most two such faces and each
such face is cellular and has degree at least 5. So by Lemma 7.5, there is no quadrilateral face
of G that is not also a face of K. �

Corollary 7.7. There are finitely many distinct isomorphism classes of irreducible (2, 2)-tight
T-graphs. In particular any such irreducible T-graph has at most eight vertices.

Proof. We may as well assume that G is cellular, since in the non cellular case we know that
G has at most two vertices. Since γ(G) = 2 we have |V | = 1 + 1

4

∑
ifi, so we must maximise∑

ifi. Since G is irreducible, fi = 0 for i = 0, 1, 2, 3 and f4 ≤ 2. From Theorem 3.3 we
have f5 + 2f6 + 3f7 + 4f8 = 4 and fi = 0 for i ≥ 9. Clearly the maximum value for

∑
ifi is

attained by having f4 = 2, f5 = 4 and fi = 0 for i 6= 4, 5. In that case |V | = 8. Now there are
finitely many isomorphism classes of (2, 2)-tight graphs with at most eight vertices. Moreover,
for each such graph, there are finitely many isomorphism classes of torus graphs with that
underlying graph. �

7.1. Identifying irreducibles. Given Corollary 7.7, a naive algorithm to find all the irre-
ducibles mentioned therein would be

(1) Find all (2, 2)-tight graphs with at most 8 vertices.
(2) For each such graph, find all isomorphism classes of torus embeddings.
(3) Eliminate all embeddings that are not irreducible.

It is impractical to carry out this procedure without the assistance of a computer as step (1)
will already yield many thousands of distinct graphs, each of which could have many different
torus embeddings.
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Figure 10. Irreducible torus graphs with eight vertices

Figure 11. Irreducible torus graphs with at most three vertices

However, since we have a lot of structural information about irreducibles, we can narrow
the search space significantly. For example, it is clear from the proof of Corollary 7.7 that any
irreducible with 8 vertices must have 2 quadrilateral faces, 4 faces of degree 5 and no other
faces. Moreover, we know that each quadrilateral face has one inessential blocker and one
other blocker which must be one of the 10 torus graphs described in Figures 7, 8 and 9. It
is not too difficult to deduce that any 8 vertex irreducible must be isomorphic to one of the
examples shown in Figure 10.

Similarly for torus graphs with at most 4 vertices there are relatively few possibilities for
the underlying graph: 13 in total. Now, using Lemmas 6.1, 6.4 and 6.5 we can easily deduce
that an irreducible with at most 4 vertices is isomorphic to one of the examples shown in
Figures 11 or 12. For the cases of 5, 6 and 7 vertices this naive approach yields a relatively
manageable problem in computational graph theory. We have used the computer algebra
system SageMath [19] to automate much of the search process in these cases. The interested
reader can find full details of the search algorithm and its implementation at [5]. As a result
of this computation we have the following.

Theorem 7.8. There are 116 distinct isomorphism classes of (2, 2)-tight irreducible torus
graphs. �

At the end of the next section, we will describe an alternative inductive construction for
(2, 2)-tight irreducible torus graphs that has fewer irreducibles but requires an additional
inductive operation. See Theorem 8.4 below.

8. Application: contacts of circular arcs

In this section we describe an application to the study of contact graphs. The foundational
result in this area is the well known Koebe-Andreev-Thurston Circle Packing Theorem ([13]).
More recently, contact graphs for many different classes of geometric objects have been studied,
with various restrictions placed on the allowed contacts. See for example [1, 8, 9]
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Figure 12. Irreducible torus graphs with four vertices

We consider contact graphs arising from certain families of curves in surfaces of constant
curvature. We begin by giving a model for a general class of contact problems and then
specialise to a case of particular interest.

Let α : [0, 1]→ Σ be a curve. We say that α is non self-overlapping if it is injective on the
open interval (0, 1). Now suppose that α, β : [0, 1]→ Σ are distinct curves in Σ. We say that
α and β are non overlapping if α((0, 1)) ∩ β((0, 1)) = ∅. Let C be a collection of curves in Σ
having the following properties

• Every α ∈ C is non self-overlapping.
• For every distinct α, β ∈ C, α and β are non overlapping.

We want to construct a combinatorial object that describes the contact properties of such a
collection. In order to do this we impose some further non degeneracy conditions on C as
follows.

• α(0) 6= α(1) for every α ∈ C
• For every distinct α, β ∈ C, {α(0), α(1)} ∩ {β(0), β(1)} is empty.

In other words, we allow the end of one curve to touch another curve (or to touch itself), but
the point that it touches cannot be an endpoint of that curve. We say that C is a non degen-
erate collection of non overlapping curves. Note that if a collection fails the non degeneracy
conditions, it can typically be made non degenerate by an arbitrarily small perturbation. A
contact of C is a quadruple (α, β, x, y) where α, β ∈ C, x ∈ {0, 1}, y ∈ (0, 1) and α(x) = β(y).

Now we can define a graph ΓC as follows. The vertex set is C and the edge set is T , the
set of contacts of C. We define the incidence functions s, t : T → C by s(α, β, x, y) = α and
t(α, β, x, y) = β. The quadruple (C, T , s, t) is a directed multigraph and we let ΓC be the
graph obtained by forgetting the edge orientations. We can construct an embedding |ΓC | → Σ
as follows. For β ∈ C, suppose that t−1(β) = {(α1, β, x1, y1), · · · , (αk, β, xk, yk)}. Let Jβ be a
nonempty closed subinterval of [0, 1] with the following properties.

(1) {y1, · · · , yk} ⊂ Jβ .
(2) 0 ∈ Jβ if and only if there is no contact (β, γ, 0, y) in T .
(3) 1 ∈ Jβ if and only if there is no contact (β, γ, 1, y) in T .

In other words Jβ is a subinterval that covers all the ‘points of contact’ in β together with any
endpoints of β that do not touch a curve. Now we observe that the restriction β|Jβ is injective
and therefore is a homeomorphism onto its image. So it follows from the Jordan-Schoenflies
Theorem that Σ/β(Jβ) is homeomorphic to Σ. Furthermore, since β(Jβ)∩δ(Jδ) = ∅ for β 6= δ
it follows that Σ is homeomorphic to Σ/ ∼ where ∼ is the equivalence relation that collapses
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α

γ

αβ γ

Figure 13. The construction of the contact graph associated to a collection
of curves. On the left we have a collection of curves. The bold section of α rep-
resents α(Jα). On the right is the corresponding graph with edge orientations
as indicated.

each β(Jβ) to a point, for all β ∈ C. Using this homeomorphism we construct an embedding
ϕ : |ΓC | → Σ/ ∼ by mapping each vertex of ΓC (i.e. element of C) to the corresponding point
of Σ/ ∼. Since an edge of ΓC is a contact (α, β, x, y), we can construct the corresponding edge
embedding by using the restriction of α to the component of [0, 1]− Jα that contains x. The
contact graph of C is defined to be the (Σ/ ∼)-graph (ΓC , ϕ): see Figure 13 for an illustration
of this construction. Note that the term contact graph is used in a variety of different ways
in the literature depending on the context. In the remainder of this paper we shall always use
the term contact graph to mean the surface graph described above.

We are interested in the recognition problem for contact graphs: can we find necessary
and/or sufficient conditions for a surface graph to be the contact graph of a collection of curves?
Typically we are looking for conditions for which there is an efficient decision algorithm. As
noted in the introduction, there are efficient algorithms for deciding whether or not a given
graph is (2, l)-sparse. See [14] and [10] for details.

Hliněný ([12]) has shown that a simple plane graph is the contact graph of a generic collec-
tion of plane curves if and only if it is (2, 0)-sparse. We note that he uses a slightly different
notion of generic than we have and he states the result in terms of the intersection graph of
the collection of curves. However it is easy to see that the result and the method of proof
adapt easily to the model of contact graphs described above and to arbitrary surfaces. We do
not need this result but nevertheless include a precise statement to provide some context for
our later result.

Theorem 8.1. Let G be a Σ-graph. Then G ∼= GC for some collection of curves C in Σ if and
only if G is (2, 0)-sparse. �

It is worth noting here that graphs studied in [12] and elsewhere are typically the intersection
graphs of a collection of curves. While this is usually appropriate in the plane, for non simply
connected surfaces we propose that it is more natural to consider the contact graph as defined
above. We observe that the intersection graph is obtained from the surface graph GL by
taking the underlying graph, deleting all loops and replacing any sets of parallel edges by a
single edge.

Now we suppose that Σ is also equipped with a metric of constant curvature. In this context
we can distinguish many interesting subclasses of curves. For example, a circular arc is a curve
of constant curvature and a line segment is a locally geodesic curve. For collections of such
curves the recognition question can depend on the embedding of the graph and not just the
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Figure 14. A torus graph and a corresponding CCA representation in the
flat torus. The orientation of the graph edges is the orientation induced by the
CCA representation.

graph itself (in contrast to Theorem 8.1). For example, the graph C2 has two non isomorphic
embeddings in the torus, one essential and one inessential. It is easy to see that the essential
embedding results in a surface graph that is the contact graph of a pair of line segments in
the flat torus. On the other hand the inessential embedding has no such representation by a
pair of line segments.

Given a Σ-graph G and a non degenerate non overlapping collection of circular arcs C such
that G ∼= GC we say that C is a CCA representation of C (abbreviating Contacts of Circular
Arcs). See Figure 14 for an example in the torus. Alam et al. ([1]) have shown that any
(2, 2)-sparse plane graph has a CCA representation in the flat plane. We prove an analogous
result for the flat torus.

First we need a lemma to show that every sparse surface graph can be obtained by deleting
only edges from a tight surface graph.

Lemma 8.2. Suppose that Σ is a connected surface, l ≤ 2 and G is a (2, l)-sparse Σ-graph.
There is some (2, l)-tight Σ-graph H such that V (H) = V (G) and G is a Σ-subgraph of H.

Proof. Clearly it suffices to show that if γ(G) ≥ l+ 1 then we can add an edge e within some
face of G so that G ∪ {e} is (2, l)-sparse.

So suppose that γ(G) ≥ l + 1. Now if G has no tight Σ-subgraph then we can add any
edge without violating the sparsity count. So we assume that G has some nonempty tight Σ-
subgraph. Let L be a maximal tight Σ-subgraph of G. If V (L) = V (G) then, γ(G) ≤ γ(L) = l,
which contradicts our assumption, so V (L) is a proper subset of V (G). Since Σ is connected
there is some face F of G whose boundary contains vertices u ∈ L and v 6∈ L. Let e be a new
edge that joins u and v through a path in F . We claim that G∪{e} is (2, l)-sparse. If not then
there must be some tight Σ-subgraph K of G such that u, v ∈ K. But K ∩L is nonempty, so
by Lemma 3.2, K ∪ L is (2, l)-tight. This contradicts the maximality of L. �

Theorem 8.3. Every (2, 2)-sparse torus graph admits a CCA representation in the flat torus.

Proof sketch. First observe that edge deletion is CCA representable: just shorten one of the
arcs slightly. So by Lemma 8.2 it suffices to prove the theorem for (2, 2)-tight torus graphs.
To that end we must show that
(a) each irreducible (2, 2)-tight torus graph has a CCA representation.
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Figure 15. CCA representations of quadrilateral splitting moves. The con-
figurations in the top row are CCA representations of a graph consisting of
two edges incident to a vertex (i.e circular arc) z and are representative of the
various possibilities depending on the orientations of the contacts at either end
of the arc z. The configurations in the bottom row are the CCA representa-
tions of the graph obtained by applying a quadrilateral split to the two incident
edges that replaces z by arcs v1, v3. Observe that in each case v1 and v3 can
be chosen so that they are contained in an arbitrarily small neighbourhood of
the arc z. Thus it is clear that any other arc (not shown in the diagram) that
might be incident with z in the top configuration can be perturbed so that it
is incident with either v1 or v3 as appropriate in the bottom configuration.

(b) if G → G′ is a digon, triangle or quadrilateral contraction move and G′ has a CCA
representation, then G also has a CCA representation. In other words the relevant vertex
splitting moves are CCA representable.

For (a) it is possible to give an explicit CCA representation for each of the 116 irreducibles
referred to in Theorem 7.8. We will not describe those here but below we shall explain a
simple method to make these constructions easily. Full details are given in [20].

For (b), see Figure 8 for an illustration of the various possible CCA representations of a
quadrilateral split. It should be apparent from this diagram that any quadrilateral split is
CCA representable. The digon and triangle vertex splits are also representable and indeed
have already been dealt with in the plane context in [1]. We observe that the constructions
described there work equally well for torus graphs.

In order to construct the CCA representations for the 116 irreducible torus graphs men-
tioned in Theorem 7.8, we can make use of topological Henneberg moves. We remind the
reader that a Henneberg vertex addition move is the operation of adding a new vertex to a
graph and two edges from that vertex to the existing graph. Note that we allow the two new
edges to be parallel. Moreover in the context of surface graphs we insist that the new vertex
is placed in some face of the existing graph and the two edges are incident with vertices in
the boundary of that face. We refer to such an operation as a topological Henneberg move.
Clearly a Henneberg move is the inverse operation to divalent vertex deletion. It is well known
(and elementary) that divalent vertex deletions preserve (2, l)-sparseness for all l. On the other
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Figure 16. A CCA representation of a topological Henneberg move. The
bold arc on the right represents the new vertex, that touches two of the initial
arcs.

hand Henneberg moves preserve (2, l)-sparseness for l ≤ 2, and for l = 3 if we also insist that
the new edges are not parallel. 4

It turns out that there are just 12 irreducibles that have no vertices of degree 2. In Figure
17 we give diagrams of each of these torus graphs and in Figure 18 we give sample CCA
representations of each of these in the flat torus. We observe that each of the 116 irreducible
graphs can be constructed by a sequence topological Henneberg moves from one of the torus
graphs in Figure 17: indeed one easily sees that at most five Henneberg moves are required.

It remains to show that the required topological Henneberg moves are CCA representable.
A CCA representation of a topological Henneberg move is illustrated in Figure 16. In general
of course, topological Henneberg moves can fail to be CCA representable given a fixed repre-
sentation of the initial graph. It is easy to construct a CCA representation of a graph that has
a highly non convex region and so may not admit the required circular arc to realise a topo-
logical Henneberg move. However, it is readily verified that given the CCA representations in
Figure 18, it is possible to represent all the necessary Henneberg moves that are required to
construct CCA representations of the full set of 116 irreducible graphs. See [20] for complete
details of this. �

Finally we observe that allowing divalent vertex additions we have the following inductive
construction for (2, 2)-tight torus graphs.

Theorem 8.4. If G is a (2, 2)-tight torus graph then G can be constructed from one of the
torus graphs in Figure 17 by a sequence of moves each of which is either a digon split, triangle
split, quadrilateral split or a divalent vertex addition. �

4A graph Γ is (2, 3)-sparse if γ(Λ) ≥ 3 for every subgraph Λ of Γ that contains at least one edge.
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Figure 17. The irreducibles that have no vertex of degree 2.
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Figure 18. CCA representations of the 12 irreducible torus graphs with no
vertices of degree two: Cij is a CCA representation of Gij from Figure 17.
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