Far-field correlation of palaeokarstic surfaces in Mississippian successions using high-frequency foraminiferal diversity trends

Pedro Cózar ${ }^{1 *}$, Ian D. Somerville ${ }^{2}$, Mark W. Hounslow ${ }^{3,4}$ and Ismael Coronado ${ }^{5}$
${ }^{1}$ Instituto de Geociencias (CSIC-UCM), c/ Severo Ochoa 7, 28040 Madrid, Spain
${ }^{2}$ UCD School of Earth Sciences, University College Dublin, Ireland
${ }^{3}$ Lancaster Environment Centre, Lancaster University, Lancaster, UK. LA1 4YW
${ }^{4}$ Earth, Ocean and Ecological Sciences, University of Liverpool, Jane Herdman
Building, Liverpool, L69 3GP
${ }^{5}$ Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus de Vegazana s/n, 24071-León, Spain
* Corresponding Author
e-mail addresses: p.cozar@igeo.ucm-csic.es (P. Cózar); ian.somerville@ucd.ie (I.D. Somerville); mark.w.hounslow@gmail.com (M.W. Hounslow); icorv@unileon.es (I. Coronado)

Abstract

The degree to which emergent surfaces are correlated in late Asbian carbonate successions in Britain and Ireland is assessed by the integration of detailed biostratigraphy and diversity trends in foraminifers. Data are related to the Trowbarrow Quarry section in northern England, which provides a reference section for the upper Asbian because of its rich assemblages and high sampling density. Diversity trends are

shown to be non-random, possesses cyclic behaviour, and can be quantitatively correlated between sections. The assemblages allow stratigraphic segmentation into 13 intervals of foraminiferal diversity trends, which sub-divide the coarser-resolution biozones and sub-biozones. Similar foraminiferal trends are recognised in sections hundreds of kilometres away from Trowbarrow, in South Wales, and southeastern and western Ireland, facilitating a more precise correlation of strata. These highlight the coeval nature of emergent surfaces and rhythms between these regions, thus, establishing a precise stratigraphy. This new assessment also enables better discrimination of 'missing beats' and large hiatuses in the successions. The establishment of this rhythmic stratigraphy permits recognition of the late occurrence of some biostratigraphical markers, enabling amendment of biostratigraphic mismatches.

Keywords: carbonates, cyclicity, palaeokarsts, foraminifers, biodiversity, Britain, Ireland

RUNNING TITLE: Far-field palaeokarstic correlation

1. Introduction

Several authors have claimed that during the Asbian and Brigantian substages (George et al., 1976; Heckel, 2004) correlation of emergent surfaces (palaeokarsts) in carbonates was possible throughout their respective regions of study in Britain (Somerville, 1977; Davies, 1983; Berry, 1984; Ramsay, 1991). Other authors have also supported this concept (Walkden and Davies, 1983; Horbury, 1987), although admitting that the poor exposure of the outcrops, tectonic influence and existence of predepositional relief has led to some emergent surfaces being hidden or located at different levels within the platforms. Study of late Viséan cyclicity in Britain is an important issue in relationship to the main cooling phase of the Late Palaeozoic Ice Age (LPIA), with its onset located at the base of the Asbian for some authors (e.g., Wright and Vanstone, 2001; Barnett et al., 2002), late Asbian in Canada (Giles, 2009) or at the base -Brigantian equivalents in the USA (Smith and Read, 2000). However, the inference of cyclicity has been discarded for the late Viséan in some regions of Britain due to the inability to recognise appropriate facies stacking patterns (Manifold et al., 2020), although results using these mathematical approaches are not free of controversy (Barnett et al., 2002). There are numerous factors which can condition the observed cycles, in particular, the unfilled accommodation space, depositional topography and 'missing beats' (Eberli, 2013). It has been estimated that no more than $10-15 \%$ of rock deposited in each cycle are preserved (Eberli, 2013; Montañez, 2021). Despite these apparent problems, interpretation of vital factors such as the correlation of cycles, recognition of 'missing beats', estimation of orbital forcing, calculation of time durations and sea level amplitude changes, are only as good as the
biostratigraphic/chronostratigraphic control in these shallow water carbonates (Eberli, 2013).

Asbian cycles in central and northern England were named as 'rhythms' by some authors (Davies, 1983; Wright et al., 1997) in order to distinguish them from the classical cyclothems of the overlying Brigantian Yoredale Series, such as in the Alston Formation of northern England (Dean et al., 2011). Emergent surfaces and rhythms have been described in Asbian-age rocks, ranging in number from c. 15-20, but up to 49 in Derbyshire. However, some of these surfaces were considered as minor surfaces with impersistent lateral continuity, and thus, define internal cycles of differing hierarchical order. Detailed petrographic studies have focused on the characterization of the emergent surfaces, detailing the abundance and evolution of features related to estimated exposure times (e.g., Wright, 1994; Vanstone, 1996, 1998; Davies, 2001).

The near-field correlation of emergent surfaces in Britain is limited to regions of carbonate platforms or smaller shelves, in which the rhythms have been mostly attributed to local tectonics, regional (or plate) tectonics, eustasy, cumulative sedimentation or autogenic sedimentation processes (e.g., Somerville, 1977; Gray, 1981; Davies, 1983; Berry, 1984; Horbury, 1987, 1989; Ramsay, 1989). Paradoxically, some of the rhythmic successions of the "south Cumbria shelf" (SCS), Wales and Pennines regions (Figs. 1-2) are now recognised as being late Asbian in age, and the underlying lower Asbian interval is represented by non-rhythmic formations (Cózar and Somerville, 2020; Waters et al., 2021; Cózar et al., in press). The occurrence of lower Asbian carbonates in North Wales was questioned (or if even present) and is there of reduced thickness due to the occurrence of late Asbian markers from the Leete Formation (Cózar and Somerville, 2020).

The recognition of individual macrofossil horizons has been claimed as a correlation tool, but most of the utilised brachiopods and rugose corals are only indicative of the late Asbian, or first occur from the early Asbian or even older rocks (e.g., Riley, 1993). The macrofossil occurrences in these shallow-water facies do not allow a robust subdivision of the late Asbian, and the acmes of the species could be a result of particular palaeoecological conditions in the studied sections.

In contrast, in the shallow-water Viséan carbonate platforms of Britain and Ireland, foraminifers represent the best faunal group for providing high-resolution biostratigraphy. The upper Asbian limestones were originally included in the Cf6 γ foraminiferal subzone of Conil et al. (1980), but this subzone was subsequently subdivided into Cf6 $\gamma 1$ and Cf6 $\gamma 2$ intervals by Jones and Somerville (1996), and in turn into Cf6 $\gamma 1 \mathrm{a}$ and Cf6 $\gamma 1 \mathrm{~b}$ by Gallagher and Somerville (1997). In addition, the Cf6 $\gamma 2$ interval has been further subdivided by Cózar et al. (in press), into Cf6y2a, Cf6y2b and Cf6 2 c assemblages (Table 1). Nevertheless, these assemblages, by themselves, do not allow a rhythm-by-rhythm correlation and so establishment of a more detailed subdivision and correlation is necessary to develop a detailed rhythmic-stratigraphy. This so-far unrealised aim would be a powerful tool for correlation, for recognising orbitally-forced Milankovich cycles, and a possible astrochronological dataset for developing age models in the Viséan (Montañez, 2021).

The aims for this study are to demonstrate: (1) there is a similar pattern in the foraminiferal diversity of stratigraphic sections in Britain and Ireland within coeval upper Asbian carbonate platform facies; (2) these diversity changes permit the far-field correlation of emergent surfaces, and establishment of a precise rhythm-basedstratigraphy; (3) possible hiatuses may be detected in the succession, and (4) biostratigraphic mismatches can be precisely highlighted.

2. Studied sections

Four regions have been selected as providing representative rhythmic late Asbian shallow-water carbonate sections in Britain and Ireland: north Lancashire (Trowbarrow Quarry), South Wales (Port Eynon coast section), southeast Ireland (Ballyadams Quarry, Clogrenan B Borehole and Clogrenan Quarry) and western Ireland (Aillwee section, Burren) (Figs. 1-2). The foraminiferal assemblages from these sections are rather similar, and fossil markers (particularly foraminifers) are apparently valid for all of the regions (e.g., Conil et al., 1980; Riley, 1993). These four regions have been selected because of previous intensive sampling campaigns, whereas other less closely sampled sections do not allow inference of foraminiferal diversity trends. In total, the foraminiferal assemblages from 598 samples have been analysed (see full list of samples in Supplementary Fig. S1) comprising Trowbarrow Quarry (202), Port Eynon (64), Ballyadams Quarry (118), Clogrenan B Borehole (57), Clogrenan Quarry (23) and Aillwee (134).

2.1. South Cumbria-north Lancashire (Trowbarrow Quarry)

The reference-record for our analysis is Trowbarrow Quarry (Silverdale, north Lancashire), because it contains one of the richest and most diverse upper Asbian foraminiferal assemblages recorded anywhere in Britain and Ireland. The section of the Urswick Limestone Formation is well-known in British studies (e.g., Strank, 1981; Horbury, 1987; Athersuch and Strank, 1989) and the section contains 29 emergent surfaces recognisable in the field. Horbury $(1987,1989)$ recognised 12 major emergent
surfaces, thereby generating 11 rhythms. The lower 5 rhythms (numbered 1 to 5) were considered as tectonically-driven and early Asbian in age by Horbury (1987), whereas the upper 6 rhythms (labelled as A to G) were attributed to glacioeustasy during the late Asbian. However, the base of the upper Asbian is located in the uppermost part of the Park Limestone Formation (Fig. 3A), whereas the base of the Brigantian Alston Formation (formerly Gleaston Formation in this region; Rose and Dunham, 1977), is located above the Humphrey Head Limestone Member (Fig. 3A), in the first marine shale, but without an emergent surface. In the studied section, five upper Asbian foraminiferal assemblages (Table 1) are recognisable (Cózar et al., in press). The upper Asbian succession in this quarry section is approximately 170 m thick. The foraminiferal database was included in the Supplementary Appendix 1 of Cózar et al. (in press), reproduced herein in the supplementary material as Appendix A.

2.2. South Wales (Port Eynon coast section)

The upper Asbian limestones in Port Eynon (South Wales) only contains 4 thick palaeosols with clay wayboards (Cózar and Somerville, 2020), although reddish horizons (in shales and limestones) are common, as are pebbly horizons, suggesting emergent surfaces but with winnowed clays or less developed palaeokarsts (cf. Horbury and Qing, 2004; Vanstone, 1996). In total, 14 horizons can be attributed to emergent surfaces (Fig. 3B) a rather similar number of 12 palaeosols and erosion surfaces was recognised by Ramsay (1991). The overall lithostratigraphic framework of South Wales is not as well studied as the succession in North Wales (Fig. 2), where 6 to 20 rhythms were defined for the so-called lower Asbian and 8 to 13 rhythms for the upper Asbian (e.g., Somerville, 1977; Gray, 1981; Davies, 1983).

The upper Asbian in South Wales is represented by the Oxwich Head Limestone Formation, although the upper part of the formation is Brigantian in age (Fig. 2). The lower Asbian was interpreted as missing in this region, with the Oxwich Limestone Formation (late Asbian age) lying directly on the Holkerian Stormy Limestone Formation (Cózar and Somerville, 2020), although the presence of the lower Asbian strata was suggested by Waters et al. (2011). In the section, only the Cf6 $\gamma 1$ and Cf6 $\gamma 2$ subzones were formerly recognised. The rocks attributed to the upper Asbian in this region are 87 m thick. The foraminiferal database is extracted from figure 3 in Cózar and Somerville (2020), reproduced herein as Appendix B.

2.3. Southeast Ireland (Ballyadams Quarry, Clogrenan B Borehole and Clogrenan Quarry)

In southeast Ireland the Ballyadams Formation contains the entire Asbian although the lower Asbian strata are non-rhythmic (Fig. 2). It was sampled in the Ballyadams Quarry and Clogrenan B Borehole (Figs. 3C-4A), both representative sections of the rhythmic upper Asbian (Cózar and Somerville, 2005; Somerville and Cózar, 2005). To characterise the transition into the succeeding Brigantian, the lower part of the Clogrenan Quarry (Fig. 4B) is also included. Unit 1 of the upper part of the Ballyadams Formation is characterised by the rarity of palaeokarsts (except in its upper part and base; Fig. 3C), whereas the younger unit 2 contains several emergent surfaces, allowing cycles 1 to 6 to be defined (Cózar and Somerville, 2005). The Ballyadams Quarry succession contains the unit 1 and cycles 1 to 4; Clogrenan B Borehole contains cycles 3 to 6 and the base of the Brigantian, and Clogrenan Quarry (5 km south of Carlow), contains the uppermost part of cycle 6 and the entire Brigantian (Figs. 3C, 4A-4B). The
succession includes 13-14 palaeokarsts in total. The upper Asbian in the sections was not formerly subdivided into foraminiferal subzones or assemblages. The total thickness measured in the composite section is about 100 m thick. The foraminiferal database was summarised in Cózar and Somerville (2005) and Somerville and Cózar (2005), with only the most relevant biostratigraphic markers highlighted. More detailed information compiled from notes of the original investigations are included in the Appendices C-E.

2.4. Western Ireland (Aillwee section, Burren)

The succession in the Burren, western Ireland, contains the entire Asbian in the Burren Formation (Gallagher, 1992; Gallagher et al., 2006; Fig. 2), although late Asbian cyclic sedimentation is only represented in the youngest Ailwee Member, where 9 main cycles are recognised, separated by palaeokarsts (T1 to T9) (Fig. 4C). The total thickness of this member is 152 m in natural outcrops of the Aillwee section. The succession was originally subdivided into the Cff $\gamma 1$ and $\mathrm{Cf} 6 \gamma 2$ subzones. The database is based on the original data used by Gallagher et al. (2006), but also incorporates the details in Gallagher (1992). Most of the foraminiferal taxa were identified at genus level, and the species-level data reported were less than 10% of the assemblages, with only occurrence/absence of taxa also published. The data are reproduced in Appendix F.

3. Methodology

Foraminiferal diversity and richness indices of the sections have been generated using the Past 4.05 software
(https://www.nhm.uio.no/english/research/infrastructure/past/), with the database in

Appendices A to F (supplementary information), corresponding to the foraminiferal records in the above listed publications and regions. Of the many diversity indices available, the Margalef, Simpson, and Shannon-Wiener indices are more popular because of their easy calculation (Jayalakshmy and Kameswara Rao, 2006; Gamito, 2010). The Margalef richness index, D, is displayed particularly in this study, since it is known to respond to basic environmental variables (Li et al., 2019). It is defined as $D=(S-1) / \ln (n)$, where S is the number of species and n is the total number of individuals. The relationships of D to other diversity indices are shown in the supplementary information (Fig. S2). The range of values for single indices vary between sections from Britain and Ireland, a fact that depends on the state of preservation of the assemblages, particular environmental/ecological conditions, as well as species relative abundance. Thus, the Margalef D index in sections from Britain ranges from 1 (low) up to 9 (high) (abscissa axes in Fig. 3), whereas sections in Ireland range from 0 to 6-7 (Figs. 3-4).

Statistical analysis of the diversity indices was performed using R (R Development Core Team, 2005) using the sarima and geoChronR packages (McKay et al., 2021; Boshnakov, 2021). Quantitative correlations used 'sequence slotting' as implemented in CPLSlot (Hounslow and Clark, 2016), based on the methods in Clark (1985) but extended along the principles outlined by Thompson et al. (2012).

4. Do the foraminiferal diversity changes have stratigraphic significance?

To breakdown this question we examine three sub-questions.

1) Are changes random in their stratigraphic ordering? This is evaluated with a statistical assessment in Section 4.1.
2) Can the diversity changes be objectively correlated between sections? This is evaluated using sequence slotting (Gary et al., 2005; Thompson et al., 2012; Wakefield et al., in press) to correlate section data to the reference section at Trowbarrow. The slotting correlation uses only the bases of the foraminiferal subzones as correlation constraints as detailed in Section 4.2. The ability to correlate changes demonstrates evidence of consistent regional stratigraphic ordering.
3) Does the diversity data show rhythmicity and therefore reflect in some way the cyclicity shown to exist in this interval, which have been previously associated primarily with the emergent surfaces? The purpose here is not to demonstrate external forcing of such rhythms but merely to show that cyclicity exists in the foraminiferal diversity data. This is evaluated in Section 4.3.

Lastly, we show in Section 5 that the emergent surfaces provide additional points of correlation, which when integrated with the diversity changes enhance the expression of rhythmicity shown by the foraminiferal diversity data.

4.1. Stratigraphically random diversity data?

Statistical methods of recognising time series which are essentially noise are well developed and diverse (Uyanto, 2020). However, even in a rhythmic dataset, if the sample spacing is too far apart, sampling points will hit randomly points between adjacent oscillations - the so called 'aliased data' problem in cyclostratigraphy (Weedon, 1993). For this reason, we apply these tests to the most detailed samplingthat at Trowbarrow Quarry. However, time series methods rely on relating data to time on a regular scale, which we cannot do, so the best that is available using times-series methods is to use our sampling points as a rough proxy for time. The Durbin-Watson
statistic (shown by Uyanto (2020) to be a strongly- performing test), indicates that for all except the Fisher's-alpha index the diversity indices are significantly different from white noise (many with probability $<0.01 \%$; Table 2).

Secondly, if there is rhythmic pattern in the diversity data that is available to be sampled (and sampling is not aliased), then adjacent samples should show similarity in values. As a simple measure of consistency between adjacent samples, Hounslow and Morton (2004) used a stratal consistency function (SCF) comprising the Pearson crosscorrelation between subsets $\mathrm{X}(1, \ldots \mathrm{n}-1)$ and $\mathrm{X}(2, \ldots \mathrm{n})$ of a stratigraphic variable. This is free from assumptions of sampling regularity. A confidence limit was determined for the SCF values using bootstrap methods, with 10,000 simulations randomly drawn from a normal distribution. We apply this to the Trowbarrow diversity data (Table 2), indicating that most of the diversity indices exceed the 0.1% probability threshold (except Fisher's-alpha), indicating diversity indices are distinctly non-random. A subgroup of these have SCF >0.4, which substantially exceed the 0.1% probability threshold. Both these methods demonstrate the diversity changes are not randomly distributed in the succession.

4.2. Can the diversity changes be objectively correlated between sections?

Sequence slotting is used to quantitatively assess the correlation potential of the diversity changes between the sections. This method correlates section-data against a reference section (here Trowbarrow) and attempts to 'slot' the datasets together, such that it minimises a statistical measure of dissimilarity of the data. Sequence slotting does not utilise height (measured thickness above the base of sections), but only utilises the stratigraphic order of samples. Multiple diversity indices were used to produce a
multivariate correlation of the successions. In order to pre-select which diversity indices to use, we selected a sub-set which had SCF >0.4 (Table 2) from the Trowbarrow data. This initial subset of seven was further reduced by eliminating those diversity indices with the larger between-indices cross-correlation, whilst maintaining those with the larger SCF. This pre-selection results in three indices finally chosen, Shannon, Margalef and $\log _{e}$ (Berger-Parker). These were subsequently used in correlating the Port Eynon, Ballyadams and a Clogrenan composite to Trowbarrow. A Clogrenan composite was produced by joining diversity data from Clogrenan Quarry and Clogrenan B Borehole at the lower of the two correlated emergent surfaces. The Aillwee section was not used, since the data is based on presence- absence only, unlike the other sections. Correlations were constrained using the bases of the foraminiferal subzones. A blocking constraint (Thompson et al., 2012) was also applied which serves to express the differences in the number of sampling points between sections, and also limit the grouping of sample levels, which is an adverse feature of sequence slotting.

Two measures of distance in multivariate space were used, Euclidean and cityblock (or Manhatten) metrics. The kind of data scaling to apply to the diversity indices is an important issue to evaluate, since this will impact the magnitude of the dissimilarity and relative contributions (to the total distance) from each index used (Gary et al., 2005; Wakefield et al., in press). No-scaling, scaling each index to a mean of zero, or scaling each index to mean of zero and σ of 1 (Zscore scaling) could be used in CPLSlot (that is scaling each index in each section independently- perhaps to remove the effects of variable preservation). Therefore, six slotting models were produced for each correlation-pair, using the two types of metric and the three types of scaling. We classified the goodness of the six correlation models using several types of success
statistics (Table 3), and from these produced a summed ranking of the best to worst models (see Supplementary Information for details).

Generally, the more successful correlation models produced similar correlation relationships (see Supplementary Information for details). Also, either the mean-zero or Zscore-scaling produced the more successful correlation models and the city-block metric was also preferred in the two top correlation models (except for TrowbarrowBallyadams where a Euclidean model was in the top two). For each of the section intercorrelation pairs in Figs. 5-7 the two top-ranked city-block models using either meanzero or Zscore scaling are shown. Summary statistics from the slotting are shown in Table 4. The Shannon diversity index is not shown in Figs. 5-7, since it is rather similar to the Margalef index, but it is displayed in the SI, along with further details of the slotting.

These correlation relationships (Figs. 5-7) demonstrate that quantitative correlation provides good between-section coherent patterns of diversity changes. Differences between correlation models normally occurs where the variations in diversity are rather ambiguous (e.g. above 120 m level in Fig. 6; 170-178 m level in Fig. 7). Notably, the correlations independently suggest that many of the palaeokarsts are near-coeval and so linked to the diversity changes (labelled on right columns in Figs. 5-7). Sequence slotting tends to perform best with roughly equal spacing of sample levels, since the blocking constraint imposes some regularity in the number of samples from each sequence over particular intervals. This imposition may distort the correlations, like in Cf6y2a at Port Eynon, where sampling density differs to the underlying Cff6 1b (Fig. 5) in comparison to Trowbarrow. We argue in Section 5 that many palaeokarsts provide additional correlation points and are inferred to be near synchronous, and so enhance the ability of diversity changes to reflect synchronous environmental change.

4.3. Does foraminiferal diversity show evidence of rhythmic change?

Periodograms were determined for the Margalef index at Trowbarrow, assuming height scale as a proxy of time using two methods (Fig. 8). Firstly, the Lomb-Scargle method which handles the unequally spaced height data (Fig. 8A). Secondly the data were interpolated into equally spaced data at a median spacing of 0.95 m using linear interpolation, and the multi-taper method used (Fig. 8B). This method better represents likely periodicity at smaller periods compared to the Lomb-Scargle method and also limits spectral leakage (McKay et al., 2021). Both the methods suggest significant periodicity at around 11 m , and the multi-taper method, rather stronger periodicity between 4 and 6 m . The 11 m periodicity is broadly related to the average spacing of major palaeokarsts at Trowbarrow, and the smaller periods, rhythmic changes in the intra-palaeokarst diversity.

5. Foraminiferal diversity and integration with palaeokarst rhythms

To aid description and subdivision, rhythmic changes in the Margalef index are labelled as foraminiferal trends (Ft's) and subdivided into intervals Ft0 to Ft13. These can be recognised in the entire upper Asbian, and mostly coincide with the major palaeokarst rhythms Rh1 to Rh11 which are separated by emergent surfaces (Table 5). This is also borne out by the periodograms (Fig. 8). Foraminiferal trends are recognised on the basis of marked shifts, peaks or changes in the overall trend linked to emergent surfaces in the Trowbarrow Quarry (which in general coincides with major emergent surfaces defined by Horbury, 1987) or to the chronostratigraphical lower and upper
boundaries (early Asbian and Brigantian respectively). Factors such as the density of sampling, diagenesis or even individual richness properties condition the recognition of the Ft's in some sections, as explained in more detail below.

5.1. Trowbarrow Quarry trends (north Lancashire, N England)

Using the major emersion surfaces of Horbury (1987) (Supplementary Figs. S4S8), biostratigraphic subdivisions, slotting results and the foraminiferal diversity, fourteen foraminiferal trends are recognised in the upper Asbian succession in the quarry (Figure 3A). The transition from the early Asbian to the late Asbian, and in turn to the Brigantian, do not coincide with any emergent surfaces, as they are based on biostratigraphical and lithological criteria (see Cózar et al., in press).

Foraminiferal trend Ft 1 coincides with Rh1, the base of which coincides with the base of the Urswick Limestone Formation used by Horbury (1987) and Cózar et al. (in press). The base of the upper Asbian is c. 2.3 m below and thus, Ft0 is present in the uppermost part of the Park Limestone. Ft0 does not contain palaeokarsts or rhythms (Fig. 3A). Foraminiferal trends Ft 2 to Ft 10 coincide with the rhythms of the same numbers Rh2 to Rh10 (Fig. 3A). The Ft11 to Ft12 coincide in their upper and lower boundaries with those of Rh11, but not with the internal boundaries (Fig. 3A). The interval corresponding to Ft13 and the succession above, was originally considered as part of the Alston Formation by Horbury (1987), and so no rhythm was defined for this part of the succession.

The upper Asbian succession starts at the base of Ft0, which is clearly not a rhythm, because the base is within a continuous succession with a biostratigraphically-defined base (Cózar et al., in press). This interval is characterised by an increase in richness
compared with the earlier Asbian, up to the first developed palaeokarst with development of a major clay wayboard.

Richness in Ft1 is high in its lower part, and shows a marked decrease in the upper part, but rising again at the top, and contains the occurrence of several minor emergent surfaces (Figs. 3A). Similar patterns are observed in Ft3 and Ft4, whereas Ft2 is mostly a thin interval with low diversity (Fig. 3A). The marked decrease into the upper part of Ft4 could be attributed to the presence of the Woodbine Shale Member (Fig. 3A), although similar decreases are observed in other intervals, as well as in other sections for the same interval. Thus, this shale unit has had a limited impact on the foraminiferal diversity.

A progressive decrease occurs in Ft5 and Ft6 with a subsequent slow recovery of diversity in Ft7, never reaching a high value (Figs. 3A). In contrast, the lower part of Ft8 shows a marked peak in diversity and a pronounced decrease in its upper part, similar to the patterns observed in $\mathrm{Ft} 1, \mathrm{Ft} 3$ and Ft 4 .

Trends Ft9 and Ft10 are similar, with both showing more moderate diversity, but a distinctive feature is the decrease in diversity in the middle part of Ft10, followed by a peak in diversity in its upper part (Fig. 3A). This latter kind of variation is shown in Ft11 which is also characterised by a progressive decrease in diversity, interrupted by higher diversity peaks in its upper part.

The Ft12 shows a small progressive increase in diversity, which passes upwards into Ft13 reaching maximum diversity in the upper part of Ft13. However, Ft13 also contains strong fluctuations between individual samples, as well as a decrease in diversity in the uppermost samples (Fig. 3A). Ft9 to Ft12 are also characterised by several minor emersion surfaces, mostly occurring in the upper part of each interval.

The transition into the Brigantian is marked by a strong increase in diversity and a subsequent decrease. This notable change in the foraminiferal diversity trends suggests that this level corresponds to a major event.

5.2. Port Eynon trends (Gower Peninsula, S Wales)

The Oxwich Head Limestone Formation, contains the upper Asbian and lower part of the Brigantian strata (Fig. 2), although it has a diachronous upper boundary with the Oystermouth Formation (Cózar and Somerville, 2020). The sampling interval is less dense than in the other regions, leading to more subdued and less confident (more aliased) diversity changes, particularly in the upper part of the succession (Figs. 3B, 5).

The first key feature is the apparent absence of Ft 0 , so that Ft 1 rests directly on the lower Asbian Stormy Limestone Formation (Fig. 3B). This fact implies the presence of the first hiatus in the succession- although owing to the poor characterization of the early Asbian, it is not possible to quantify how much is missing. The slotting correlation model at the base of the Cf6 $\gamma 1$ a subzone has not inserted this hiatus (Fig. 5), so the base of Cf6y 1a and start of Ft1 at Port Eynon should be rather higher in Ft1 at Trowbarrow (at around 24 m level; Fig. 5). Similar patterns to those recorded in Trowbarrow and with numerous palaeokarsts occur in Ft1, Ft2 and Ft3. At Port Eynon the boundary between Ft2 and Ft3 coincides with shaley mudstones but features of emersion have not been observed.

The Ft4 is rather flattened and uniform, and does not exhibit decreasing diversity in the upper part, like that observed at Trowbarrow- this may indicate a missing or condensed upper Ft4 at Port Eynon. The upper part of the succession is poorly sampled, and thus, trends are not so easily recognized, but slotting provides possible relationships
to Trowbarrow (Fig. 5), but the Ft-boundaries can be more confidently identified using the emergent surfaces. In particular, the Ft7 trend does not contain any feature which allows it to be characterized. However, the beginning of Ft5 with a marked decrease in diversity is rather characteristic, and is followed by decreasing diversity during Ft6 (Figs. 3B, 5). An increased diversity in the lower part of the interval and decrease in the upper part is characteristic of Ft8, although it is not clear if this interval is complete.

Directly succeeding the Ft8 trend are Brigantian strata. The Brigantian has a similar profile to that at Trowbarrow, with a prominent diversity increase at the base followed by a gradual decline (Fig. 3B). Thus, it is inferred that the Brigantian is more or less complete from its base at Port Eynon. However, of more significance, a major hiatus in the succession occurs, accounting for the absence of rocks representative of most of the later part of the Cf6 62 a assemblage and the entire Cf6 62 b and $\mathrm{Cf} 6 \gamma 2 \mathrm{c}$ assemblages. This hiatus also explains why the successions in South Wales contain only a few emergent surfaces compared to those in North Wales, where the emergent surfaces are more numerous.

5.3. Ballyadams-Clogrenan trends (Carlow, southeast Ireland)

The base of the upper Asbian was located at the first palaeokarst in the Ballyadams Quarry (15 km NW of Carlow), at sample 1631 (Fig. 3C) (Cózar and Somerville, 2005). However, there were some problematic taxa below this level such as Pseudoendothyra sublimis. Compared with the Trowbarrow Quarry succession, the lower part of the base of a massive limestone bed (at sample 1614) can be attributed to the Ft0 trend (and assigned to the late Asbian), which shows an increased richness compared to the underlying beds (Fig. 3C).

Foraminiferal trends Ft1, Ft3 and Ft4 each show similar higher diversity in their lower parts and lower diversity in their upper parts, with a maximum peak in richness in the middle, and decreasing values in the lower and upper parts - much the same pattern as in Trowbarrow (Fig. 6). The trend Ft 2 is more difficult to recognise due to the fewer samples in this interval. There are peaks of high and low diversity at samples 1117 (high) and 1119 (low), which are attributed to the Ft2 trend (Fig. 3C). In addition, this interval also coincides with the appearance of foraminiferal markers for the Cf6 1 lb assemblage (Fig. 6). Nevertheless, this lower part of the succession is characterised by the absence of emergent surfaces, and the boundaries of the Ft intervals are inferred by changes in the diversity and the slotting correlations to Trowbarrow (Figs. 3C, 6).

In the Ft5-Ft7 interval, foraminiferal markers of the Cf6 $\gamma 2 \mathrm{a}$ assemblage occur below the minor palaeokarsts in Ft 5 , and so the base of Ft 5 is inferred by the diversity changes and slotting results (Figs. 3C, 6). The correlation to the lower part of Ft5 is readily recognisable in the slotting correlation for both the Margalef and Berger-Parker indices (Fig. 6). However, the upper part of Ft5-lowest Ft6 interval is less clear in the slotting and visual comparison to Trowbarrow (Fig. 6). We interpreted this as a significant hiatus in the upper half of the Ft5 trend, so that Ft6 sits on the lower part of Ft5 across the palaeokarst at the Ft5/Ft6 boundary (Fig. 3C; see supplementary Fig. S16).

The Ft8 is recognised by the increase in the lower part and later decrease of diversity. This well-marked variation, enables correlation with the Clogrenan B Borehole succession (Fig. 4A). This contrasts with the original correlation which was considered at the palaeokarst at the top of Ft 9 at Ballyadams, with the base of the Ft 8 at Clogrenan B (see Cózar and Somerville, 2005).

No obvious change in diversity, and its reduced thickness (ca. 3.5 m), are observed in Ft9 in the Clogrenan B Borehole, whereas in Ballyadams Quarry it contains richer assemblages in the lower part, which decrease to the upper part (Fig. 3C). In Ballyadams Quarry, an emergent surface was not recognized at the base and the position of the trend is recognized by foraminiferal diversity and the slotting correlation.

Similar to Trowbarrow, Ft10 is recognised by lower diversity in the lower half and higher diversity in the upper part (Fig. 7). In both Clogrenan B and Ballyadams, the first occurrence of Cf6 62 b markers are recorded in the mid-parts of Ft10 (Fig. 4A), confirming this correlation.

The lower Brigantian and Ft11 to Ft13 have no marked diversity changes, perhaps because of the low-density sampling, as well as stronger diagenetic effects (i.e. silicification). In Clogrenan B Borehole, diagenesis has had a marked affect, producing lower richness and a more flattened profile. Nevertheless, the upwards decreasing diversity in Ft11, a prominent peak in the upper part of Ft12, and lower diversity for Ft13 before the Brigantian can be observed (Fig. 4A). The bases for Ft11, Ft12 and Ft13 are interpreted to coincide with emergent surfaces. The sequence slotting with respect to Trowbarrow confirms the near synchroneity of the major palaeokarsts in the Cf6 62 a to base Brigantian interval (Fig. 7)

Owing to the poorer preservation of foraminiferal assemblages in Clogrenan B borehole, markers for Cf6 6 2c do not occur, and its position is inferred by trends Ft12 and Ft13 and the slotting results. Cf6 62 c markers are identified in the Clogrenan Quarry (Fig. 4B), although less than 3 m of the upper Asbian strata is exposed and is inferred to belong to Ft13. In the Clogrenan Quarry the highest peak in diversity is in the lower Brigantian, which is more weakly expressed in the Clogrenan B Borehole (Figs. 4A-B and 7).

The transition into the Brigantian is marked by a prominent palaeokarst, a significant feature in the Clogrenan region, and differences to Trowbarrow are indicated (Fig. 7). These imply that the uppermost part of Ft13 might be missing in the Clogrenan region (see supplementary Fig. S16).

5.4. Aillwee trends (Burren, western Ireland)

The base of the section seems to replicate the scenario in Port Eynon, with Ft0 and the lower part of Ft1 missing in the basal emergent surface (Fig. 4C). In contrast, the T1 cycle includes the remaining parts of Ft 1 and all of Ft 2 , which implies the authors may have either overlooked an intermediate palaeokarst, or just like in Ballyadams Quarry, this emergent surface may not exist in the Burren region. Ft4 appears to display the amalgamation of the T3 and T4 cycles, and thus, the palaeokarst separating both cycles is considered a minor feature. Markers for the Cf6 $\gamma 1 \mathrm{lb}$ assemblage are not recognised in the section, and its position is inferred at the base of Ft2, close to the base of the preserved upper Asbian succession (Fig. 4C). Ft4 forms a distinctive convex-shaped peak of higher diversity in its mid-parts, which together with Ft3, forms the interval with the largest overall diversity - similar to that seen in the Trowbarrow Quarry. The other foraminiferal trends from Ft5 to Ft 7 are well defined, although both Ft6 and Ft7 are included within the T6 cycle. Gallagher et al. (2006) divided cycle 6 into two subcycles (T6A, T6B) and cycle 9 into three subcycles (T9A, T9B and T9C), which were based on prominent bedding planes and pedogenic features, but there was no development of clay wayboards (Fig. 4C). Markers of the Cf6 $\gamma 2 \mathrm{a}$ are recorded in the upper part of Ft 7 , although these markers likely should first occur at a lower horizon,
from Ft5 (shown by the down-pointing arrow in Fig. 4C). Further detailed sampling is required to confirm this mismatch.

Trend Ft8 is not well expressed, since it does not display a marked higher diversity as in other sections, although it does contain an overall higher diversity than the preceding Ft5-Ft7 interval. This issue could be a matter of less dense sampling. However, as seen in other sections, Ft8 shows marked richness fluctuations in its upper part. Ft9, Ft10 and Ft11 are rather similar to those in Trowbarrow Quarry, but the lower sampling density at Aillwee Member shows a rather subdued variation, but with fluctuations similar to those observed in other sections. The diversity trends Ft10 and Ft11 are recognised in the sub-cycles T9A and T9B, whereas the uppermost sub-cycle T9C (with only two samples) does not allow inference of the Ft12 boundary. It is possible that sub-cycle T9C might be an intermediate minor palaeokarst in Ft11, similar to that seen at the Trowbarrow and Ballyadams quarries for this part of the succession.

The Aillwee Member has only 9 cycles, which implies the absence of Ft13 and also most likely Ft12 in the late Asbian of the Burren region. Missing foraminiferal trends Ft12 and Ft13 could have been eroded at the emergent surface below the base of the Brigantian in the Burren region, forming a notable hiatus in the youngest upper Asbian strata.

The foraminiferal response during the transition from the Aillwee Member into the Balliny Member shows a decreasing richness from near its base, reaching lower values than the underlying Aillwee Member (Fig. 4C). We have not observed such low values, except in the Clogrenan B Borehole, where the assemblages were impoverished by silicification.

The foraminiferal diversity changes and slotting correlations between the regions indicates three consequences:

Firstly, the stratigraphy and correlation between some sections can be amended: (i) the lower Asbian is present in Port Eynon, below the upper Asbian where the basal part is absent; (ii) the base of the late Asbian in Ballyadams Quarry is complete and continuous with the early Asbian; and (iii) correlation of the Ballyadams Quarry and Clogrenan B Borehole is amended to a position 19 m below that previously inferred, allowing a more accurate position of the stratigraphic cycles in the sections.

Secondly, some foraminiferal assemblages, as indicated by their foraminiferal markers, have been inferred (owing to the lack of the markers), or amended (due to their later first occurrences, specifically: (i) the position of the Cf6y2a and Cf6ץ2c in Clogrenan B Borehole have been inferred; (ii) the position of the Cf6 $\gamma 1$ 1a has been inferred in the Aillwee section; and (iii) the basal position of the Cf6y2a has been amended in the Aillwee section.

Thirdly, some major hiatuses have been detected in the succession: (i) the uppermost lower Asbian-Ft0-basal Ft1 is absent in Port Eynon; (ii) the upper part of Ft4 at Port Eynon is absent or is a condensed series; (iii) the Ft9 to Ft13 are missing in Port Eynon; (iv) the upper half of the Ft5 is missing in Ballyadams Quarry; (v) the upper half of the Ft13 is absent in Clogrenan Quarry and Borehole; (vi) Ft0 and lower half of Ft 1 is missing in the Aillwee section; (vii) parts of Ft11 (?), Ft12 and Ft13 are absent in the Aillwee section.

6. Far-field correlation of emergent surfaces

Up to 16 emergent surfaces can be correlated (surfaces 0 to XIII and 0 ' to VI' in Figs. 9, S3), corresponding to interbasinal palaeokarsts and informally denominated as major palaeokarsts. The remaining palaeokarsts do not have the same lateral continuity, and thus have to be considered as more relevant for intrabasinal correlations and/or are impersistent palaeokarsts.

6.1. Palaeokarsts correlation within Britain

The correlation between emergent surfaces from north Lancashire and South Wales is rather complete in the lower part of the succession, taking into consideration the limitations of the South Wales successions due to hiatuses. Most of these surfaces can be considered as major palaeokarsts in both regions (Fig. 9B). Notable, is the hiatal gap at the base of the upper Asbian succession in South Wales, which has amalgamated 3 or 4 emergent surfaces seen at Trowbarrow, possibly up to the palaeokarsts situated just above the so-called surface 1 (Fig. 3A) of Horbury (1987). Thick palaeosols are only developed at the boundary between Ft3 and Ft4 (Fig. 9B). The two underlying prominent palaeosol horizons observed within the Ft3 interval in Port Eynon are classed as secondary emergent surfaces, whereas the Ft1-Ft2, Ft4-Ft5, Ft5-Ft6 and the inferred Ft6-Ft7 and Ft7-Ft8 boundaries coincide with palaeokarsts without development of thick clay wayboards and palaeosols (Fig. 9B). In total, the rhythms Rh1, Rh4 to Rh7, as well as their respective emergent surfaces are recognised in South Wales, whereas rhythms Rh2 and Rh3 can only be inferred by the position of trends Ft2 and Ft3 (Fig. 9B). These rhythms are separated by some pale grey shaley and argillaceous limestones at Port Eynon, where no evidence of emergence is detected, and perhaps further examination of this interval in South Wales will be required to validate this.

In addition, in the upper part of Rh1, another palaeokarst may have its counterpart in Trowbarrow Quarry, and it should be considered also as a major emergent surface (horizon 0'a; Fig. 9B). In the Rh5 rhythm in the Port Eynon section there is one palaeokarst nearly coincident in stratigraphic position with an irregular surface in Trowbarrow situated at 53.5 m , which needs a closer re-examination to determine if they are both genuine subaerial exposures. Horbury (1987, fig. 5.6) recognised a further emergent surface between surfaces 5 and A in other sections in south Cumbria, which may be the lower of these palaeokarsts (see Fig. S5). As will be shown later, they also coincide stratigraphically with an emergent surface in Ireland (surface IV'a in Fig. 9B and their counterpart in Ireland IVa in Fig. 9A).

Because of the large hiatus in the upper part of the upper Asbian in the Port Eynon section, there is a sharp transition into the Brigantian, which is not seen in the more complete succession at Trowbarrow.

In conclusion, up to 8 palaeokarsts (possibly 10) and their associated foraminiferal trends recorded in South Wales can be correlated with horizons in Trowbarrow, ~320 km to the north (surfaces 0 ' to VIII' in Fig. 9B; see supplementary Figs. S4 to S8), suggesting that they should be considered as major emergent surfaces. These palaeokarsts are developed only within the biostratigraphic interval from Cf6 $\gamma 1$ a to the lower part of Cf6 $\gamma 2 \mathrm{a}$. At Port Eynon a few apparently major palaeokarsts in the field, with thick clay wayboards (e.g., horizon above sample 3492; Fig. 9B), do not have equivalents in the SCS, and thus, they have to be considered as minor rhythms. In contrast, most of the correlated emergent surfaces do not present thick development of palaeosols or dramatically undulose karstic features, which confirm that factors such as the state of preservation or quality of exposure have a direct impact on the field interpretation of the surfaces.

The succession in South Wales is interrupted with significant hiatuses, and it would be desirable to study in more detail the successions in North Wales, comparing foraminiferal diversity with respect to the numerous shallowing-upward cycles defined in that region, such as in the Eglwyseg Limestone Formation of Llangollen (see Somerville, 1977, 1979; Fig. 2).

The occurrence of the younger rhythms in North Wales and not in South Wales can be explained if South Wales was emergent land for this time interval, which could be attributed to differential regional tectonics. Indeed complex synsedimentary tectonics were also suggested by Ramsay $(1989,1991)$ for the South Wales Coalfield during the Carboniferous, but mostly localised in the northerly outcrop belt. Ramsay attributed the limestone cycles to pulsed subsidence followed by marine transgression and the deposition of upward-shoaling and prograding sequences for the Asbian and Brigantian (deposited on a southward-deepening platform). Ramsay (1989) also proposed the correlation of emergent surfaces based on the facies relationships between the northerly and southerly outcrops (including the Gower Peninsula), in which those in the north displayed the largest hiatuses. In contrast, the southerly outcrops contained a more or less continuous succession with minor hiatuses, and therefore, no evidence of major uplift in the latest Asbian. The contrasting interpretation of Ramsay compared to ours, is likely the result of poor biostratigraphic control, because the early Asbian is present in formations traditionally considered as Holkerian (need a reference here), whose base is currently unknown in the region. In addition, the Asbian-Brigantian transition had traditionally been considered as continuous, which is not the case. The Port Eynon Thrust, interpreted as an inverted extensional fault by Ramsay (1989), is one possible cause of the latest Asbian uplift in the Gower Peninsula.

An alternative interpretation can be also be proposed, because in our interpretation, lower Asbian rocks are not clearly documented in the cyclic successions of the northerly outcrops, and neither have foraminiferal markers of the $\mathrm{Cf} 6 \gamma 2 \mathrm{~b}$ and $\mathrm{Cf} 6 \gamma 2 \mathrm{c}$ been documented or illustrated there. In South Wales the northerly outcrops show a similar cyclic succession to those of the south (Ramsay 1989)- which by comparison may be Rh1 to Rh8 rhythms- and hence the biostratigraphic mismatches recognised at Port Eynon in the south may correspondingly also exist in the northerly outcrops. Hence, the major hiatus in the latest Asbian recognised here, may have affected the entire South Wales Coalfield.

6.2. Palaeokarst correlations in Ireland

The upper part of the Ballyadams Formation shows good correlations with some of the Trowbarrow Quarry emergent surfaces, from rhythm Rh6 up into the Brigantian, and thus, all of them can be considered as major palaeokarsts. There is also an intermediate palaeokarst in rhythm Rh1 1 (Xa) which also seems be present in the Trowbarrow Quarry (see surfaces IVa to XII in Figs. 7, 9A). Rhythm Rh10 is recognised from the palaeokarst separating Ft10 and Ft11. One of the most striking levels of correlation is that using the base of rhythm Rh9 (recognizable in Ft9), which in Ballyadams Quarry is not expressed as an emergent surface, but occurs in the near-by correlation to Clogrenan B Borehole (Fig. 9A). It is assumed that a closer reexamination of the quarry at this position may allow recognition of a karstic feature. At intermediate positions within Ft5 at both Port Eynon and Ballyadams Quarry, there is a palaeokarst (surface IVa in Fig. 9A) which could also be a major emergent surface, with possible interbasinal correlation. The base of the Ballyadams Quarry mimics the
diversity succession at the base of the Trowbarrow Quarry, with a continuous foraminiferal recording of the transition between the lower and upper Asbian, with a basal Ft0, overlaid by a major emergent surface (Fig. 6). In total, 10 surfaces (possibly 12) could be correlated between the Carlow and Trowbarrow regions.

The section in the Burren region shows a more or less continuous lower and middle part of the succession, where the rhythms Rh3 to Rh11 can be well correlated, mostly with the Trowbarrow Quarry, with only the emergent surfaces within trends Ft1 and Ft2 not recognised in the field (Fig. 9A). At Aillwee, the base of the upper Asbian seems to be a hiatus, missing Ft0 and the lower part of Ft1 (a similar situation to the Port Eynon section). In total, 9 emergent surfaces (possibly 10) are correlated with northern England ($>440 \mathrm{~km}$ to the east; Fig. 1). The major palaeokarsts from Ft5 to the top-most Asbian, can be also correlated with the Clogrenan region (Fig. 9A).

Significantly, from the middle part of Ft 1 to the base of Ft 5 in the Ballyadams Formation, there are no emergent surfaces recognised (see Cózar and Somerville, 2005). The absence of palaeokarsts in this lower part of the formation was also documented by Gallagher et al. (2006), a little further to the south in Callan, County Kilkenny (Fig. 1). This absence is rather puzzling, when taking into account the laterally equivalent formations in north County Cork (Ballyclogh Formation) and in the Burren (Aillwee Member of the Burren Formation), which both show a marked cyclicity from the base of the late Asbian (Gallagher, 1996; Gallagher and Somerville, 2003; Gallagher et al., 2006) (Fig. 2). These formations show similar facies as in the Ballyadams Formation, but with palaeokarsts.

There are three possible explanations: (1) that the Clogrenan and Callan regions (where the Ballyadams Formation is represented) corresponds to a slightly deeper-water facies than in other regions of the so-called Southern Irish Platform (Gallagher, 1996;

Fig. 1); (2) that the Clogrenan/Callan region corresponds to shallower-water settings, and that most of the clays, pebbles and other lithological features typical of emergence were winnowed by wave or tides and hence not preserved; and (3) local tectonics influenced the Clogrenan/Callan region, allowing higher rates of tectonic subsidence preventing the emergence of the cycle tops.

The first hypothesis does not seem to be realistic, considering that basinal facies surrounding the Southern Irish Platform are distant from this region, but in the Dublin Basin, Shannon Trough and South Munster Basin (Fig. 1); whereas North Cork is located on a topographic high between the Shannon Trough and South Munster Basin, and the Burren (Aillwee section) is on the northern border of the Shannon Trough (Fig. 1). Re-examination of the Ballyadams Formation might discover possibly overlooked emergent surfaces, but such surfaces have not been previously recognised, which argues against the second hypothesis. Therefore, the third hypothesis, local tectonics, seem to be the most feasible factor controlling the absence of emergent surfaces, although foraminiferal diversity trends are well preserved. Thus, tectonics is possibly the main factor controlling the subsidence rates between both regions in Ireland, where the Burren section nearly duplicates the thickness in the Carlow region (Fig. 9A).

7. Discussion

It is difficult to determine, precisely, the origin of the foraminiferal trends (Ft 's). The wide recognition of these trends implies a general controlling factor, whereas local factor(s) affecting individual sections, intervals or levels cannot be completely discarded.

From a biological point of view, using the criteria proposed by Stanley (1990), foraminifers show a simple behaviour and high dispersal ability (Groves and Lee, 2008), and also probably a broad environmental tolerance within the shallow-water carbonate platform. These three factors in other fossil groups characterise a low rate of origination/extinction, and thus, do not facilitate the alternation between large and small populations. Thus, the richness peaks and falls are best interpreted as having been controlled by habitat fragmentation, a factor controlled exclusively by extrinsic factors.

A direct relationship between the Ft's and the facies is not recognized either, because the diversity indices are similar in sections with distinctly differing facies, as can be demonstrated even between geographically close sections, such as the Ballyadams Quarry and the Clogrenan B Borehole (see details of facies in Cózar and Somerville, 2005).

The presence of emergent surfaces, and the implied periods of emergence, do not show a correlation with the diversity indices, because the Ft's can be recognized in sections unaffected by emergent surfaces, or at least, less conditioned by them. However, the major palaeokarst spacing at Trowbarrow is clearly reflected in some periodicity in the diversity data (Fig. 8). The Ft's are also recognised in the Archerbeck Beds of the Archerbeck Borehole in Scotland (Fig. 1) (using foraminiferal data from Cózar and Somerville, 2013), whereas they are more poorly recognised, but present, in the Rookhope Borehole of the Alston Block (utilising foraminiferal data from Cózar and Somerville, 2004), and in the Silverdale Borehole of the southern Askrigg Block (utilising foraminiferal data from Waters et al., 2017) (Fig. S9). In the latter two boreholes, the sampling density is sparse, which impacts the poorer recognition of each cycle, as well as the occurrence of common barren horizons.

Tectonics is another potential factor, as a trigger for some of the cycles. In this study, it has been demonstrated that the Ft's can also be identified in parts of the sections where a larger tectonic control was presupposed, such as in the lower part of the Ballyadams Quarry and the lower rhythms in the Trowbarrow Quarry (as proposed by Horbury, 1989). Thus, tectonics are not directly controlling the occurrence of the Ft's.

Horbury and Adams (1996) proposed a subdivision of the rhythms in the Urswick Limestone Formation into base/middle/top, depending on lithological and palaeontological features, with each part of the rhythms also characterised by lowstand, transgressive and highstand system tracts. When defining these intervals in the Trowbarrow Quarry and adding the regional/local first occurrences and disappearances of the foraminifers, a direct relationship between these parameters and the richness values is not apparent (Fig. 10). Dismissing the previously discussed factors such as biological/intrinsic, environmental/facies, ecological, emergent surfaces and time exposure issues, and tectonics on the foraminiferal diversity- the most likely control on the Ft's seems to be glacioeustasy.

One reason for this is new regional occurrences happen most often during the lowstand and transgressive phases of the high-frequency rhythms (for a relatively small number of samples) (Fig. 10; Table 6).

Secondly, in relation to the phase of each cycle, there is a decreasing number of regional occurrences from the base to the top of the cycles (ratio's 0.51 to 0.23 ; Table 6). The highest proportion of new local occurrences is observed in the base of the cycles (ratio 1.16) and in the transgressive phase (ratio of 1.24). This situation corresponds with the classical understanding of foraminiferal renovation (in the sense of Conil and Lys, 1977), in which faunal renovation was produced at the transgressive phase of the
main event which separated the main stages or substages - similar to the Mesothems described by Ramsbottom (1977), but with higher frequency cyclicity. As suggested by this model, the highest concentration of new occurrences would be observed at the base of the Cf6 $\gamma 1 \mathrm{l}$ a assemblage (Fig. 10), equivalent to the base of the so-called Mesothem 5B. However, this is not observed at the base of the Brigantian. In addition, there are common new occurrences throughout the section and in different parts of the rhythms, that might be the result of particular ecological conditions.

A third reason which supports glacioeustatic control is that fluctuations in the foraminiferal diversity are more or less observed in other upper Asbian successions in England and Scotland. In contrast, in lower Asbian rocks, such as the Little Asby section in northern England (using foraminiferal data in Strank, 1981) or in the lower part of the Ballyadams Formation in the Tankardstown Borehole, southeast Ireland (using unpublished data of the authors), the diversity profiles are rather subdued. Nevertheless, in these carbonates some typical peaks and troughs are observed, but not ordered in trends (Fig. S9).

Groves and Lee (2008) and Groves and Yue (2009) proposed that accelerated rates of origination in the Palaeozoic foraminifers were mostly due to the higher-amplitude glacioeustasy, which repeatedly disrupted the shallow-water environments. Thus, the best explanation for the Ft's and the high-frequency rhythmicity of the Urswick Limestone and other analysed sections in Britain and Ireland is a glacioeustatic control on the platform successions.

However, the precise relationship between glacioeustasy and the foraminiferal diversity needs to be further investigated (merged oceans waters, variation in nutrient inputs, temperature, salinity, alkalinity, etc.), and explanations do not seem as simple as previous authors have proposed.

The foraminiferal trends in the late Asbian (in some way related to glacioeustasy), and the different glacioeustatic models proposed by previous authors for Britain (e.g., Barnett et al., 2003), supports the concept of high-amplitude sea-level fluctuations during severe phases of glaciation (Smith and Read, 2000; Wright and Vanstone, 2001; Barnett et al., 2003; Bishop et al., 2009; Eros et al., 2012; Fielding and Frank, 2015; Montañez, 2021). Records of emergent surfaces in carbonates are the best approach to determining sea-level changes in low latitude regions. From the onset of cyclic sedimentation, an increase in the average thickness of the cycles has been observed in USA and Britain (Smith and Read, 2000; Wright and Vanstone, 2001; Fielding and Frank, 2015). Smith and Read (2000) described cyclicity from the base of the Chesterian Substage, and interpreted it to correspond with the Brigantian (old Belgian subzone V3c). This would coincide with levels recognized in Scotland (Fielding and Frank, 2015), whereas, in northern England the initial cyclicity was positioned at the base of the Asbian (Wright and Vanstone, 2001; Barnett et al, 2002). However, as has been demonstrated for many platform successions in Britain (e.g., Cózar and Somerville, 2020; Waters et al., 2021; Cózar et al., in press), biostratigraphic revision of cyclic successions suggests that cyclicity started at the base of the late Asbian, whereas the lower Asbian is composed of largely non-cyclic carbonates. On the other hand, at the base of the Chesterian (the Ste. Genevieve Formation in Illinois and Battleship Wash Formation in Nevada), correlated with the Mikhailovian Substage (Lane and Brenckle, 2005; Bishop et al., 2009), and from lower levels, these formations contain typical foraminifers and conodonts which can be correlated with the late Asbian (Cózar and Somerville, 2014; Cózar et al. in press). A negative shift in the $\delta^{18} \mathrm{O}_{\text {apatite }}$ in the late Viséan of northern Ireland also suggests an overall global cooling (Barham et al., 2012), although the supposed base for the Asbian in northern Ireland (the Glencar Limestone

Formation) should be considered mostly as late Asbian (see Aretz et al., 2010, and references therein). The lack of biostratigraphic precision has induced many of these false mismatches with the onset of high-amplitude sea-level fluctuations in low latitude regions. In reality, the onset of the main phase of cooling of the LPIA, and subsequent high-amplitude sea-level changes, probably coincide in these regions, and this is likely situated at the base of the late Asbian, similar to that in the Maritimes Provinces of Canada (Giles, 2009).

8. Conclusions

Despite differences of preservation, richness and taxonomic criteria for the recognition of species, there is a marked pattern of foraminiferal diversity that is consistent for the upper Asbian strata between northern England, South Wales and southeast and western Ireland. These patterns can be divided in intervals, referred to as Foraminiferal trends (Ft's), of which fourteen have been defined for the late Asbian (Ft0 to Ft13), in the most complete succession in the Trowbarrow Quarry section (north Lancashire). The foraminiferal trends allow the repositioning of biostratigraphic mismatches due to the paucity of data and are an additional powerful tool for intersection correlation (especially those with poorer exposures). These also allow the recognition of potentially chronostratigraphic boundaries, based on biostratigraphy and key emergent surfaces. The relationships and inferred correlations of Ft's allow sedimentary gaps to be inferred at the base of the late Asbian in western Ireland and South Wales. These also allow recognition of major gaps in the upper parts of the successions in both regions, as well as the chronostratigraphic repositioning of
foraminiferal subzones in the western Ireland succession and the Clogrenan B borehole (in southeast Ireland).

Both minor and major emergent surfaces can be distinguished uniting the Ft intervals with the cycles and rhythms (Rh) defined by previous authors. The combined Ft's and Rh's units give additional information on the likely dominant factors controlling the cycles, providing a new perspective for the analysis of tectonics, differential subsidence rates, glacioeustacy and facies progradation of the studied sections. It may be also possible to establish a cyclostratigraphy for the region, if it can be shown they are driven by astronomical forcing. In total, sixteen major palaeokarstic surfaces have been correlated between different basins separated by hundreds of kilometres (Fig. 9), emphasizing their lateral continuity.

Supplementary data to this article can be found online at. \qquad

Declaration of Competing Interest

The authors declare that they have not known competing financial interest or personal relationship that could have appeared to influence the work reported in this paper.

Acknowledgements

We would like to thank Galina Nestell, Paul Wright and an anonymous reviewer for their constructive comments. PC and IC were funded by the Ministerio de Ciencia e

Innovación (grant PID2021-124596NB-I00) and MWH was part funded by NERC (grant NE/P00170X/1).

References

Abdi, H. 2010. Congruence: Congruence coefficient, Rv- coefficient and Mantle Coefficient, in: Salkind, N. (Ed.) Encyclopaedia of Research Design, Thousand Oaks, CA: Sage

Aretz, M., Herbig, H.-G., Somerville, I.D., Cózar, P. 2010. Rugose coral biostromes in the late Viséan (Mississippian) of NW Ireland: Bioevents on an extensive carbonate platform. Palaeogeogr. Palaeoclimatol. Palaeoecol. 292, 488-506.

Aretz, M., Nudds, J.R. 2005. The coral fauna of the Holkerian/Asbian boundary stratotype section (Carboniferous) at Little Asby Scar (Cumbria, England) and its implications for the boundary. Stratigraphy 2, 167-190.

Ashckenazi-Polivoda, S., Edelman-Furstenberg, Y., Almogi-Labin, A., Benjamini, C. 2010. Characterization of lowest oxygen environments within ancient upwelling environments: benthic foraminifera assemblages. Palaeogeogr. Palaeoclimatol. Palaeoecol. 289, 134-144.

Athersuch, J., Strank, A.R.E. 1989. Foraminifera and Ostracods from the Dinantian Woodbine Shale and Urswick Limestone, South Cumbria, U.K. J. Micropalaeontol. 8, 9-21.

Barham, M., Murray, J., Joachimski, M.M., Williams, D.M. 2012. The onset of the Permo-Carboniferous glaciation: reconciling global stratigraphic evidence with biogenic apatite $\delta^{18} \mathrm{O}$ records in the late Viséan. J. Geol. Soc. London 169, 119-122. Barnett, A.J., Burgess, P.M., Wright, V.P. 2002. Icehouse world sea-level behaviour and resulting stratal patterns in late Visean (Mississippian) carbonate platforms: integration of numerical forward modelling and outcrop studies. Basin Res. 14, 417438.

Berry, J.R. 1984. The sedimentology and diagenesis of the Asbian limestones of north Derbyshire. Ph.D. University of Aberdeen, 560 pp.

Bishop, J.W., Montañez, I.P., Gulbranson, E.L., Brenckle, P.L. 2009. The onset of midCarboniferous glacio-eustasy: Sedimentologic and diagenetic constraints, Arrow Canyon, Nevada. Palaeogeogr. Palaeoclimatol. Palaeoecol. 276, 217-243. Boshnakov, G.N., 2021. Autocorrelations and white noise tests. https://cran.rproject.org/web/packages/sarima/index.html

Clark, R.M. 1985. A FORTRAN Program for constrained sequence-slotting based on minimum combined path length. Comp. Geosci, 11, 605-617.

Conil, R., Lys, M. 1977. Les transgressions dinantiennes et leur influence sur la dispersion et l'évolution des foraminifères. Mém. Inst. Géol. Univ. Louvain 29, 9-55.

Conil, R., Longerstaey P.J., Ramsbottom, W.H.C. 1980. Matériaux pour l'étude micropaléontologique du Dinantien de Grande-Bretagne. Mém. Inst. Géol. Univ. Louvain 30, 1-187 (imprinted 1979).

Cózar, P., Somerville, I.D. 2004. New algal and foraminiferal assemblages and evidence for recognition of the Asbian-Brigantian boundary in northern England. Proc. York. Geol. Soc. 55, 43-65.

Cózar, P., Somerville, I.D. 2005. Stratigraphy of Upper Viséan rocks in the Carlow area, southeast Ireland. Geol. J. 40, 35-64.

Cózar, P., Somerville, I.D. 2013. The Carboniferous Archerbeck Borehole, near Canonbie (Dumfriesshire, southern Scotland): biostratigraphic revision of the late Asbian to early Pendleian succession using foraminiferans and regional correlations. Earth Environ. Sci. Trans. R. Soc. Edinb. 103, 105-122.

Cózar, P., Somerville, I.D. 2014. Latest Viséan-Early Namurian (Carboniferous) foraminifers from Britain: implications for biostratigraphic and glacioeustatic correlations. Newsl. Stratigr. 47, 355-367.

Cózar, P., Somerville, I.D. 2020. Foraminifers in upper Viséan-lower Serpukhovian limestones (Mississippian) from South Wales: regional correlation and implications for British foraminiferal zonal schemes. Proc. York. Geol. Soc. 63, pgys2020-009, https://doi.org/10.1144/pygs2020-009

Cózar, P., Somerville, I.D., Hounslow M.W., Kamenikova, T. in press. Proposal of a late Asbian (Mississippian) stratotype for England: Trowbarrow Quarry, S. Cumbria, UK. Pap. Palaeontol. https://doi.org/10.1002/spp2.1451

Davies, J.R. 1983. Stratigraphy, sedimentology and Palaeontology of the Lower Carboniferous of Anglesey. Ph.D. Thesis, University of Keele, 2 volumes, 326 pp. + 169 pp.

Davies, J.R. 1991. Karstification and pedogenesis on a late Dinantian carbonate platform, Anglesey, North Wales. Proc. Yorks. Geol. Soc. 48, 297-321.

Dean, M.T., Browne, M.A.E., Waters, C.N., Powell, J.H. 2011. A lithostratigraphical framework for the Carboniferous successions of Northern Great Britain (onshore). HMSO, British Geological Survey Research Report, RR/10/07, London, 174 pp . Eberli, G.P. 2013. The uncertainties involved in extracting amplitude and frequency of orbitally driven sea-level fluctuations from shallow-water carbonate cycles. Sedimentology 60, 64-84.

Eros, J.M., Montañez, L.P., Osleger, D.A., Davydov, V.I., Nemyrovska, T.I., Poletaev, V.I., Zhykalyak, M.V. 2012. Sequence stratigraphy and onlap history of the Donets Basin, Ukraine: Insight into Carboniferous icehouse dynamics. Palaeogeogr. Palaeoclimatol. Palaeoecol. 313-314, 1-25.

Fielding, C.R., Frank, T.D. 2015. Onset of the glacioeustatic signal recording late Palaeozoic Gondwanan ice growth: New data from palaeotropical East Fife, Scotland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 426, 121-138.

Gallagher, S.J. 1992. Lithostratigraphy, biostratigraphy and palaeoecology of Upper Dinantian platform carbonates in parts of southern and western Ireland. Ph.D. thesis, University College Dublin (National University of Ireland), 503 pp .

Gallagher, S.J. 1996. The stratigraphy, and cyclicity of late Dinantian platform carbonates in parts of southern and western Ireland, in: Strogen, P. Somerville, I.D., Jones, G.LL. (Eds.), Recent Advances in Lower Carboniferous Geology (Eds), Geological Society, London, Special Publications, 107, Oxford, pp. 239-251. Gallagher, S.J., Somerville, I.D. 1997. Late Dinantian (Lower Carboniferous) platform carbonate stratigraphy of the Buttevant area North Co. Cork, Ireland. Geol. J. 32, 313-335.

Gallagher, S.J., Somerville, I.D. 2003. Lower Carboniferous (Late Viséan) platform development and cyclicity in southern Ireland: foraminiferal biofacies and lithofacies evidence. Riv. Ital. Paleontol. Stratigr. 109, 152-165.

Gallagher, S.J., MacDermot, C.V., Somerville, I.D., Pracht, M., Sleeman, A.G. 2006. Biostratigraphy, microfacies and depositional environments of Upper Viséan limestones from the Burren region, County Clare, Ireland. Geol. J. 41, 61-91. Gamito, S. 2010. Caution is needed when applying Margalef diversity index. Ecol. Indic. 10, 550-551.

Gary, A.C., Johnson, G.W., Ekart, D.D., Platon, E. and Wakefield, M.I. 2005. A method for two-well correlation using multivariate biostratigraphical data. in; Powell, A.J. and Riding, J.B. (Eds) Recent Developments in Applied Biostratigraphy. The

Micropalaeontological Society, Special Publications, pp205-217.
https://doi.org/10.1144/TMS001.12
George, T.N., Johnson, G.A.L., Mitchell, M., Prentice, J.E., Ramsbottom, W.H.C., Sevastopulo, G.D., Wilson, R.B. 1976. A correlation of Dinantian rocks in the British Isles. HMSO, Geological Society London, Special Report 7, 87 pp.

Giles, P.S., 2009. Orbital forcing and Mississippian sea level change: time series analysis of marine flooding events in the Viséan Windsor Group of eastern Canada and implications for Gondwana glaciation. Bull. Can. Petrol. Geol. 57, 449-572. Gray, D.I. 1981. Lower Carboniferous carbonate palaeoenvironments in North Wales. Ph.D. Thesis, University of Newcastle, 524 pp.

Groves, J.R., Lee, A. 2008. Accelerated rates of foraminiferal origination and extinction during the Late Paleozoic ice age. J. Foram. Res. 38, 74-84.

Groves, J.R., Yue, W. 2009. Foraminiferal diversification during the late Paleozoic ice age. Paleobiology 35, 367-392.

Heckel, P. H. 2004. Chairman's column. Newsl. Carbonif. Stratigr. 22, 1-4.
Horbury, A.D. 1987. The sedimentology of the Urswick Limestone in south Cumbria and north Lancashire. Ph.D. thesis, University of Manchester, 668 pp .

Horbury, A.D. 1989. The relative roles of tectonism and eustacy in the deposition of the Urswick Limestone in south Cumbria and north Lancashire, in: Arthurton, R.S., Gutteridge, P. and Noland, S.C. (Eds.), The role of tectonics in Devonian and Carboniferous sedimentation in the British Isles, Yorkshire Geological Society Occasional Publication, 6, York, pp. 153-169.

Horbury, A.D., Adams A.E. 1996. Microfacies associations in Asbian carbonates: an example from the Urswick Limestone Formation of the southern Lake District, northern England, in: Strogen, P. Somerville, I.D., Jones, G.LL. (Eds.), Recent

Advances in Lower Carboniferous Geology, Geological Society, London, Special Publications, 107, Oxford, pp. 221-238.

Horbury, A.D., Qing, H. 2004. 'Pseudobreccias' revealed as calcrete mottling and bioturbation in the late Dinantian of southern Lake District, UK. Sedimentology 51, 19-38.

Hounslow, M.W. and Clark, R.M., 2016. CPLSlot a program for objective correlation between successions using sequence slotting. https://doi.org/10.13140/RG.2.2.17513.29288.

Hounslow, M.W. and Morton, A.C., 2004. Evaluation of sediment provenance using magnetic mineral inclusions in clastic silicates: comparison with heavy mineral analysis. Sed. Geol. 171, 3-36.

Jayalakshmy, K.V., Rao, K.K. 2006. Aspects of the biodiversity of brackish water foraminifera. Environ. Forensics 7, 353-367.

Jones, G.LL., Somerville, I.D. 1996. Irish Dinantian biostratigraphy: practical application, in: Strogen, P. Somerville, I.D. and Jones, G.LL. (Eds.), Recent Advances in Lower Carboniferous Geology, Geological Society, London, Special Publications, 107, Oxford, pp. 253-262.

Josse, J., Pagès, J. and Husson, F., 2008. Testing the significance of the RV coefficient. CSDA 53, 82-91.

Lane, H.R., Brenckle, P.L. 2005. Type Mississippian subdivisions and biostratigraphic succession, in: Heckel, P.H. (Ed.), Stratigraphy and Biostratigraphy of the Mississippian Subsystem (Carboniferous System) in its Type Region, the Mississippi Valley of Illinois, Missouri, and Iowa. Illinois State Geological Survey Guidebook, 34, pp. 76-105.

Li, M., Lei, Y., Li, T., Jian, Z. 2019. Impact of temperature on intertidal foraminifera: Results from laboratory culture experiment. J. Exp. Mar. Biol. Ecol. 520, https://doi.org/10.1016/j.jembe.2019.151224

Manifold, L., Hollis, C., Burgess, P. 2020. The anatomy of a Mississippian (Viséan) carbonate platform interior, UK: Depositional cycles, glacioeustasy and facies mosaics. Sed. Geol. 401, https://doi.org/10.1016/j.sedgeo.2020.105633

McKay, N.P., Emile-Geay, J. and Khider, D., 2021. geoChronR-an R package to model, analyze, and visualize age-uncertain data. Geochronology 3, 149-169

Montañez, I.P. 2021. Current synthesis of the penultimate icehouse and its imprint on the Upper Devonian through Permian stratigraphic record, in: Lucas, S. G., Schneider, J. W., Wang, X., Nikolaeva, S. (Eds.), The Carboniferous Timescale. Geological Society, London, Special Publications 512, https://doi.org/10.1144/SP512-2021-124

R Development Core Team, 2005. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org.

Ramsay, A.T.S. 1989. Tectonics and sedimentation of Late Dinantian limestones in South Wales, in: Arthurton, R.R., Gutteridge, P. and Nolan S.C. (Eds.), The role of tectonics in Devonian and Carboniferous sedimentation in the British Isles,), Yorkshire Geological Society occasional publication 6, Leeds, pp. 225-241. Ramsay, A.T.S. 1991. Sedimentation and tectonics in the Dinantian limestones of South Wales, in: Macdonald, D.I.M. (Ed.), Sedimentation, Tectonics and Eustasy - Sealevel changes at active margins. International Association of Sedimentologists, Special Publication 12, Oxford, pp. 485-511.

Ramsbottom, W.H C. 1977. Major cycles of transgression and regression in the Namurian. Proc. York. Geol. Soc. 41, 261-291.

Riley, N.J. 1993. Dinantian (Lower Carboniferous) biostratigraphy and chronostratigraphy in the British Isles. J. Geol. Soc. London 150, 427-446. Rose, W.C.C., Dunham, K.C. 1977. Geology and Hematite deposits of South Cumbria. Economic Memoir of the Geological Survey of Great Britain, Sheets 58 and part of 48. HMSO, London, 170 pp .

Smilde, A.K., Kiers, H.A.L., Bijlsma, S., Rubingh, C.M. and van Erk, M.J. 2009. Matrix correlations for high-dimensional data: the modified RV-coefficient. Bioinformatics 25, 401-405

Smith, L.B., Read, J.F. 2000. Rapid onset of late Paleozoic glaciation on Gondwana: evidence from Upper Mississippian strata of the Mid-continent, United States. Geology 28, 279-282.

Somerville, I.D. 1977. The sedimentology and stratigraphy of the Dinantian limestones in the Llangollen area and east of Clwydian range, North Wales. Ph.D., Queen's University of Belfast, 234 pp .

Somerville, I.D. 1979. Minor sedimentary cyclicity in late Asbian (upper D1) Limestones in the Llangollen district of North Wales. Proc. Yorks. Geol. Soc. 42, 317-342.

Somerville, I.D., Cózar, P. 2005. Late Asbian to Brigantian (Mississippian) foraminifera from south-east Ireland: Comparison with Northern England assemblages. J. Micropalaeont. 24, 131-142.

Stanley, S.M. 1990. The general correlation between rate of speciation and rate of extinction: fortuitous causal linkages, in: Ross, R.M., Allmon, W.D. (Eds.), Causes
of evolution: a paleontological perspective. University of Chicago Press, Chicago, pp. 103-127.

Strank, A.R.E. 1981. Foraminiferal biostratigraphy of the Holkerian, Asbian and Brigantian stages of the British Lower Carboniferous. Ph.D. Thesis, University of Manchester, 391 pp

Thompson, R., Clark, R.M. and Boulton, G.S. 2012. Core correlation. in; Birks, H.J.B., Lotter, A.F., Juggins, S. and Smol, J.P (Eds) Tracking environmental change using lake sediments. Springer, Dordrecht. pp. 415-430.

Uyanto, S.S., 2020. Power comparisons of five most commonly used autocorrelation tests. Pakistan J., Stat, Oper.Res. 16 119-130.

Vanstone, S. 1994. Late Dinantian palaeokarst of England and Wales: implications for exposure surface development. Sedimentology 45, 19-37.

Vanstone, S. 1996. The influence of climatic change on exposure surface development: a case study from the Late Dinantian of England and Wales, in: Strogen, P. Somerville, I.D. and Jones, G.LL. (Eds.), Recent Advances in Lower Carboniferous Geology. Geological Society, London, Special Publications, 107, Oxford, pp. 281302.

Wakefield, M.I., Hounslow, M.W., Edgeworth, M., Marshall, J.E.A. Mortimore, R.N. Newell, A.J., Ruffell, A., Woods. M.A. in press. Chapter 17: Examples of correlating, integrating and applying stratigraphy and stratigraphical methods, in: Coe, A.L. (Ed.), Deciphering Earth's history: the practice of stratigraphy. The Geological Society press.

Walkden, G. Davies, J. 1983. Polyphase erosion of subaerial omission surfaces in the Late Dinantian of Anglesey, North Wales. Sedimentology 30, 861-878.

Waters, C.N., Cózar, P., Somerville, I. D., Haslam, R.B., Millward, D. Woods, M. 2017. Lithostratigraphy and biostratigraphy of Lower Carboniferous (Mississippian) carbonates of the southern Askrigg Block, North Yorkshire, UK. Geol. Mag. 154, 305-333.

Waters, C.N., Waters, R.A., Barclay, W.J., Davies, J.R., Jones, N.S., Cleal, C.J. 2011. Chapter 5. South Wales, in: Waters, C.N., Somerville, I.D., Jones, N.S. et al. (Eds.), A revised correlation of Carboniferous rocks in the British Isles. The Geological Society, London, Special Report 26, pp. 29-36.

Waters, C.N., Burgess, I.C., Cózar, P., Holliday, D.W. Somerville, I.D. 2021. Reappraisal of Arundian-Asbian successions of the Great Scar Limestone Group across northern England. Proc. York. Geol. Soc. 63, https://doi.org/10.1144/pygs2021-002.

Weedon, G.P., 2003. Time-series analysis and cyclostratigraphy: examining stratigraphic records of environmental cycles. Cambridge University Press.

Wright, V.P. 1994. Paleosols in shallow marine carbonate sequences. Earth-Sci. Rev. 35, 367-395.

Wright, V.P. Vanstone, S.D. 2001. Onset of Late Palaeozoic glacio-eustasy and the evolving climates of low latitude areas: a synthesis of current understanding. J. Geol. Soc. London 158, 579-582.

Wright, V.P., Vanstone, S.D. Marshall, J.D. 1997. Contrasting flooding histories of Mississippian carbonate platforms revealed by marine alteration effects in palaeosols. Sedimentology 44, 825-842.

Captions

Table 1. Main foraminiferal markers of the late Asbian assemblages (based on Cózar et al., in press).

Table 2. Results of tests for randomness on the diversity indices for the Trowbarrow data (202 sample levels). For the stratal consistency function (SCF) of Hounslow and Morton (2004), the parametric bootstrap-derived probability threshold for randomness (obtained with 10,000 re-sampling from a normal distribution) are $5 \%, 1 \%$ and 0.1% are $0.114,0.0 .162,0.209$. Indices were also examined for similarity to a normal distribution. ${ }^{*}=$ test performed with index $\log _{\mathrm{e}}$ transformed to make it a closer to a normal distribution. The ($\mathrm{p} \%$) probability is shown for the Durbin-Watson test for autocorrelation shown by Uyanto (2020) to be the most powerful (small p indicates data is not noise).

Table 3. Measures of slotting success. CPL is the combined path length. Wakefield et al. (in press) has more details about these measures.

Table 4. Statistics for success of sequence slotting for the highest ranked city blockbased correlation models (see Table 3). Ratio in [] is the block constraint used for slotting [Trowbarrow: section concerned]. All the correlations pass a 5\% threshold for association using the RV-based $\mathrm{P}_{\text {ass }}$ value.

Table 5. Summary of foraminiferal trends Ft0 to Ft13 within the five late Asbian subzones (Cf6y1a-Cf6p2c) and related emergent surfaces.

Table 6. Ratio by the number of samples (n) of Local (in the Trowbarrow section) and regional (in northern England) occurrences and disappearances

Fig. 1. Location of the main sections and boreholes mentioned in the text. (1-column)

Fig. 2. Schematic lithostratigraphy of the main regions discussed in the text. The formal lithostratigraphy and substage ages are included in the columns labelled A , as they were originally described (from left to right) by Gallagher and Somerville (2003), Gallagher et al. (2006), Cózar and Somerville (2005), Horbury (1987), Davies (1983), Somerville (1977), Gray (1981) and Cózar and Somerville (2020). Age of reinterpreted lithostratigraphy is located in columns labelled B. Foraminiferal diversity has been analysed in the regions with grey shading on the formations. Abbreviation B.b. basement beds; Fm Formation; Lst. Limestone; N. North; S. South; SCS=South Cumbria shelf. (2-columns)

Fig. 3. Margalef diversity index (ranging from 1 (low) up to 9 (high) in abscissa axis) in A. Trowbarrow Quarry (1 to 5 and A to G are major emergent surfaces of Horbury, 1987), B. Port Eynon, C. Ballyadams Quarry sections. The asterisks in the biostratigraphy column marks the position where guides of the foraminiferal assemblages/subzones are recorded sensu Cózar et al. (in press), Cózar and Somerville (2020) and Cózar and Somerville (2005). Rh 1-11 are rhythms defined between the major emergent surfaces 1 to 5 and A to G in the Trowbarrow Quarry. The major emergent surfaces are interpreted as those with thick palaeosols and common pedogenic features, whereas dashed lines represent minor palaeokarsts with poorer development of
palaeosols. Ft 0-Ft13 are Foraminiferal trends with boundaries (dotted lines). Samples in all sections are placed equidistant, and differ in meter spacing. W.S. Woodbine Shale. (2-columns)

Fig. 4. Margalef diversity index in A. Clogrenan B Borehole, B. base of Clogrenan Quarry, C. Aillwee sections. The asterisks in the biostratigraphy column mark the position where guides of the foraminiferal assemblages/subzones are recorded sensu Cózar and Somerville (2005) and Gallagher et al. (2006). Foraminiferal Assemblage Cf6y2c in the Clogrenan B Borehole and Cf6 61 b in Aillwee section are in grey because foraminiferal guides are not recognised in this section. Cycles in the Clogrenan B Borehole with asterisks are the corrected position after correlation by foraminiferal diversity and slotting. Other remarks as in Fig. 3. (2-columns)

Fig. 5. The city block slotting-based correlation models for Port Eynon showing the Magalef and $\log _{\mathrm{e}}$ (Berger-Parker) indices. Data in each case shows the zero-scaled data for all sections in a sample position scale. Black lines represent the correlation constraints applied to the data at the foraminiferal subzone boundaries. Palaeokarst positions (in blue) are shown on the right side of each panel, with labelling as in Fig. 9. For many of the points for the two types of correlation models (orange and black squares and dots) the inferred slotted position at Trowbarrow overlap in showing the similarity in the slotting solutions irrespective of the scaling used. More data is shown in the SI, including the Shannon index not shown here. (1.5-column)

Fig. 6. The city block slotting-based correlation models for Ballyadams showing the Margalef and $\log _{e}$ (Berger-Parker) indices. Dashed-blue lines for palaeokarsts indicate
the two possible positions of the karsts, based on the two slotting models shown. See Fig. 5 for details. (1.5-column)

Fig. 7. The city block slotting-based correlation models for the composite Clogrenan section showing the Margalef and $\log _{e}$ (Berger-Parker) indices. See Figs. 5 for details. (1.5-column)

Fig. 8 Assessment of the periodicity in the Margalef index at Trowbarrow, using data in height scale of metres. A. Lomb-Scargle method for unequally spaced data. B. the periodogram determined using the Multitaper method. The lines in both represent the confidence intervals for a power-law function, as is normally the case in palaeoclimatic data (McKay et al. 2021), with periods (in metres) marked in B which exceed the 95% confidence threshold. (1.5-column)

Fig. 9. Correlation of the foraminiferal trends (Ft), sedimentological rhythms (Rh) and major and minor emergent surfaces in the studied basins (all vertical scales in metres). Emergent surfaces in roman numbers are considered as major palaeokarsts (see Fig. 1 for location of sections). Sample numbers are only included in the last sample below any of the important levels (biostratigraphic and palaeokarstic levels), beginning or end of the sections, whereas the full sample numbers are included in Figs. 3-4. Lines have been relocated at stratigraphic scales according to the position of the sample in the section. A. correlation between Trowbarrow, Carlow and Burren (western Ireland), B. correlation between Trowbarrow and Port Eynon (south Wales). Location of section lines in inset in B. (2-columns)

Fig. 10. Foraminiferal disappearances and occurrences in the Trowbarrow Quarry section compared with the high-frequency rhythms recognised in the section, the interpreted phases of the system tracts, the number of local and regional disappearances, and number of local and regional occurrences. LST lowstand system tract, TST transgressive system tract, HST highstand system tract. W.S. Woodbine Shale. (2columns)

A- Trowbarrow Quarry
A- Trowbarrow Quarry
major emergent surfaces $\quad-\quad$ - minor emergent surfaces

B.- Port Eynon

Foraminiferal trend boundary

	Assemblages	main foraminiferal markers
	Cf6p2c	common Archaediscus karreri group common Neoarchaediscus common Eostaffella ikensis
	Cf6p2b	Bradyina rotula Euxinita efremovi
	Cf6p2a	Neoarchaediscus s.s. large Cribrospira species
	Cf6ү1b	Bibradya small Cribrospira species
	Cf6p1a	Eostaffella ikensis Cribrostomum Koskinobigenerina Endothyranopsis crassa

Table 1. Main foraminiferal markers of the late Asbian assemblages (based on Cózar et al., in press).

	*Dominance (1-Simpson index)	Shannon	Evenness	Brillouin	Menhinick	Margalef	Equitability	*Fisher's-alpha	*Berger- Parker
SCF	0.433	0.438	0.424	0.499	0.424	0.486	0.259	0.012	0.442
(Chao-1	0.274								
Durbin-	$<0.01 \%$	$<0.01 \%$	$<0.01 \%$	$<0.01 \%$	$<0.01 \%$	$<0.01 \%$	0.01%	42	$<0.01 \%$

Table 2. Results of tests for randomness on the diversity indices for the Trowbarrow data (202 sample levels). For the stratal consistency function (SCF) of Hounslow and Morton (2003), the parametric bootstrap-derived probability threshold for randomness (10,000 samples from a normal distribution) are $5 \%, 1 \%$ and 0.1% are $0.114,0.0 .162,0.209$. Indices were examined for similarity to a normal distribution. $*=$ test performed with index $\log _{e}$ transformed to make it a closer to a normal distribution. The ($\mathrm{p} \%$) probability is shown for the Durbin-Watson test for autocorrelation shown by Uyanto (2020) to be the most powerful (small p indicates data is not noise).

Indicator

D- value

N-CSTAT

RV2, $\mathrm{RV}_{\text {std }}$ data textoutput.

What the measure indicates
Measure of success with smaller values indicate better success (Clark, 1985). This generally expresses a measure of short-range success in the slotted data.

The normalised sensitivity statistic. A measure of the robustness of the fit, largely independent of changes in the CPL between different slotting solutions. Values below 1 indicate the average sensitivity statistic is less than the average distance between adjacent points. Smaller N-CSTAT values are generally associated with better, more robust slotting solutions.

The RV-coefficients (Abdi, 2010) are measures of similarity (or association) of the two multivariate datasets. They express the overall, or long-range similarity. They have useful ranges of 0 to +1 for positive association. The modified RV-coefficient (RV2) of Smilde et al. (2009) is used, since it behaves more-like familiar regression coefficients. $\mathrm{RV}_{\text {std }}$ is the standardized RV coefficient, and is larger for better association. A probability of association of the datasets ($\mathrm{P}_{\text {ass }}$) when slotted together is also determined (Josse et al., 2008).

Table 3. Measures of slotting success. CPL is the combined path length. Wakefield et al. (in press) has more details.

Success measure	Mean-Zero model	Zscore model
Trowbarrow- Port Eynon [4:2]		
D	0.837	0.830
RV2	0.292	0.275
$\mathrm{P}_{\text {ass }}$ (\%)	4	4
Trowbarrow-		
D	0.670	0.652
RV2	0.323	0.350
$\mathrm{P}_{\text {ass }}$ (\%)	4	3
Trowbarrow- Clogrennan [5:3]		
D	0.664	0.648
RV2	0.682	0.525
$P_{\text {ass }}$ (\%)	3	3

Table 4. Statistics for success of sequence slotting for the highest ranked city block based correlation models (see Table 3). Ratio in [] is the block constraint used for slotting [Trowbarrow: section concerned]. All the correlations pass a 5% threshold for association using the RV-based $\mathrm{P}_{\text {ass }}$ value.

Rhythm-Trend	subzone	Diversity trend	Subsidiary emergent surfaces [position]
Brigantian	Cf68	Peak in the lower part, decreasing upwards	
Ft13	Cf6y2c	Minimum in mid parts	
Rh11-Ft12	Cf6y2c	Increasing mildly throughout	$\mathrm{Tr}[0.82]$
Rh11-Ft11	Cf6y2b	Declining, with low in upper part	$\operatorname{Tr}[0.04,0.07,0.09,0.22,0.55], \mathrm{Cl}[0.47]$
Rh10-Ft10	Cf6y2b	Peak in upper part, similar but low in lower part	$\operatorname{Tr}[0.85,0.95]$
Rh9-Ft9	Cf6y2a	Similar throughout	$\mathrm{Tr}[0.86,0.96]$
Rh8-Ft8	Cf6y2a	Peak in upper part of lower half, declining to top	
Rh7-Ft7	Cf6y2a	Similar throughout	Tr[0.80], Ba[0.25]
Rh6-Ft6	Cf6y2a	Low in lower parts	Tr[0.87]
Rh5-Ft5	Cf6y2a	Declining from base to top	PE[0.11,0.28,0.56,0.71], $\mathrm{Ba}[0.32,0.46]$
Rh4-Ft4	Cf6y1b	Declining from lower part	AI[0.45]
Rh3-Ft3	Cf6y1b	Declining in upper part to top	PE[0.62, 0.76]
Rh2-Ft2	Cf6y1b	Declining from lower to top	
Rh1-Ft1	Cf6y1a	Peak in lower, minimum in mid parts	$\operatorname{Tr}[0.09,0.14,0.19,0.70], \operatorname{PE}[0.58,0.81]$
Ft0	Cf6y1a	Increasing upwards	

[position] = position of emergent surface as proportion of the thickness from base of the rhythm. Tr=Trowbarrow, PE= Port Eynon, $\mathrm{Al}=$ Aillwee, $\mathrm{Ba}=\mathrm{Ballyadams}, \mathrm{Cl}=$ Clogrenan.

Table 5. Summary of foraminiferal trends Ft0 to Ft13 within the five late Asbian subzones (Cf6 1 1a-Cf6ץ2c) and related emergent surfaces.

	Base cycle	Middle cycle	Top cycle	Lowstand	Transgressive	Highstand
\mathbf{n}	51	77	44	16	37	119
Local first occurrences	$59 / 1.16$	$60 / 0.78$	$30 / 0.68$	$12 / 0.75$	$46 / 1.24$	$87 / 0.73$
Regional first occurrences	$26 / 0.51$	$30 / 0.38$	$10 / 0.23$	$9 / 0.56$	$18 / 0.49$	$39 / 0.32$
Local disappearances	$48 / 0.94$	$56 / 0.72$	$58 / 1.32$	$21 / 1.31$	$29 / 0.78$	$112 / 0.94$
Regional disappearances	$21 / 0.41$	$22 / 0.28$	$24 / 0.55$	$11 / 0.69$	$12 / 0.32$	$44 / 0.37$

Table 6. Local and regional occurrences and disappearances of foraminifers in absolute number and their ratio by the number of samples (n) in Trobarrow Quarry.

Supplementary information for "Far-field correlation of palaeokarstic surfaces in Mississippian successions using highfrequency foraminiferal diversity trends"

by Pedro Cózar, Ian D. Somerville, Mark W. Hounslow and ismael Coronado

The supplementary information contains the following:
Figs S1, S2. Additional plots of the Margalef diversity indices in the sections, and comparison of all the diversity indices initially considered at Trowbarrow.

Fig. S3. Summary plot of the cross-correlations between all sections.
Figs S4 to Fig. S8. Photographs of all the major palaeokarsts and surfaces proposed.
Fig. S9. Margalef diversity indices for other Asbian sections in Britain.
Tables S1 to S5. Additional information about variable section for the slotting analysis and selection of the slotting models for the Trowbarrow-Port Eynon, Trowbarrow-Clogrenan and TrowbarrowBallyadams.

Figs. S10-S15. Intersection correlations for the various slotting models, and plots of the Shannon-H diversity index

Fig. S16. Summary plots of the Margalef and Berger-Parker indices within the frame of the final correlation model (i.e. Fig. S3) to Trowbarrow.

Fig. S17. The composite diversity index plots for the late Asbian using data for all sections.
Table S6 to S9. Lists of the sets of diversity indices using in the sections, and slotting and their inferred position with respect to the Trowbarrow sampling psoitions.

Dominance, D	1						
Shannon H	-0.99875878	1	1				
Bruillouin	-0.98554659	0.9890905					
Margalef	-0.94884474	0.9477882	0.9526661	1			
FisherAlpha	-0.70475595	0.7098739	0.667396	0.639784	1	1	
Chao-1	-0.8456208	0.8473593	0.3470224	0.3634769	0.1648191		
berger-	0.95258787	-0.942023	-0.929929	-0.898603	-0.559554	Chao-1	1
	Dominance, D	Shannon H	Bruillouin	Margalef	Fisher- Alpha		Berger- Parker
SCF	0.43	0.44	0.50	0.49	0.01	0.27	0.44
Mean	-2.60	2.68	2.01	5.16	3.16	3.28	-2.15
SD	0.57	0.59	0.54	1.78	0.96	0.64	0.49

Table S1. Statistics for the primary diversity indices considered. The upper matrix are the Pearson correlation coefficients. The lower matrix are the stratal consistency function (SCF) and the mean and standard deviation (SD) of the respective indices. Green=good values, purple are adverse values.

	Ln (Berger-Parker)	Margalef
Ln (Berger-Parker)	1	
Margalef	-0.896629	1
Shannon_H	-0.927809	0.9574534

Table S2. The Spearman correlation coefficient's between the diversity indices (for Trowbarrow data) used in the sequence slotting for all sections.

Port Eynon

Model	Delta	N-CSTAT	Na/Nb	RV2	RVstd	Delta	N-CStat	RV2	RVstd	Score total
Slot [Eucl,none]\{6 cons\}	0.838	7.293	$202 / 50$	0.2409	0.4947	3	1	3	3	10
Slot [Eucl,Zero]\{6 cons\}	0.834	7.262	$202 / 50$	0.2392	0.4912	1	0	5	5	11
Slot [Eucl,ZSco]\{6 cons\}	0.839	8.682	$202 / 49$	0.2967	0.6109	4	4	0	1	9
Slot [City,none]\{6 cons\}	0.841	7.944	$202 / 50$	0.2407	0.4943	5	2	4	4	15
Slot [City,Zero]\{6 cons\}	0.837	7.974	$202 / 49$	0.292	0.6098	2	3	1	2	8
Slot [City,ZSco]\{6 cons\}	0.830	9.315	$202 / 49$	0.2752	1.0378	0	5	2	0	7

Table S3. Slotting model assessment table for the Trowbarrow to Port Eynon sequence slotting models. Orange indicates the best two values of the corresponding result. In the Model text $[x, y]$ indicates the metric used (Euclidean, or city-block) and the type of scaling (none=no scaling, zero= scaling to mean of zero, $\mathrm{ZSc}=$ scaling to mean zero and $\mathrm{SD}=1$. Score total= sum of the scores, with top-ranking having a score of 0 and bottom ranking score of 5 . Top two score totals in green. $\mathrm{Na} / \mathrm{Nb}=$ number in Trowbarrow/Port Eynon dataset slotted together

Fig. S10. The correlation models for the six slotting solutions at Port Eynon. On each axis are the sample numbers ordered with relative position from the base. The correlation-tie point constraints (ABN from CPLSlot) are labelled with the row number in the data files (on the horizontal tie), and the level used in the stratigraphy of the sections (on the vertical tie).

Fig. S11. The overlaid slotted diversity data for Trowbarrow (in black) and Port Eynon (in red). Diversity indexes have been plotted with data scaled to a mean of zero and a standard deviation of 1 (i.e. Zscore). The y-axis is the sample position at Trowbarrow, which in the case of the Port Eynon data are the position (possibly non integer) of the estimated positions using the slotting metrics and scaling shown.

CLogrenan composite

Model	Delta	N-CSTAT	$\mathrm{Na} / \mathrm{Nb}$	Rc	RV2	Rvstd	Delta	N -Cstat	RV2	RVstd	Score Total
Slot [Eucl, none]\{3 cons\}	0.84	0.801	202/69	0.559	0.3183	0.6416	4	1	5	4	14
Slot [Eucl,Zero]\{3 cons\}	0.672	1.274	202/69	0.753	0.5831	2.1182	3	5	1	0	9
Slot [Eucl,ZSco]\{3 cons\}	0.671	1.115	202/69	0.682	0.4756	1.4729	2	3	3	2	10
Slot [City, none]\{3 cons\}	0.842	0.783	202/69	0.577	0.339	1.2317	5	0	4	3	12
Slot [City,Zero]\{3 cons\}	0.664	1.237	202/69	0.814	0.6818	2.1163	1	4	0	1	6
Slot [City, ZSco]\{3 cons $\}$	0.648	1.108	202/69	0.715	0.5246	0.3616	0	2	2	5	9

Table S4. Slotting model assessment table for the Trowbarrow to Clogrenan composite sequence slotting models. See Table S3 for details,

Fig. S12. The correlation models for the six slotting solutions at the composite Clogrenan section. See Fig S10 for details.

Fig. S13. The overlaid slotted diversity data for Trowbarrow (in black) and Clogrenan (in red). Diversity indexes have been plotted with data scaled to a mean of zero. The y-axis is the sample position at Trowbarrow, and in the case of the Clogrenan data are the position (possibly non integer) of the estimated position using the slotting method indicated.

Model	Delta	N-CSTAT	Na/Nb	RV2	RVstd	Delta	N-CStat	RV2	RVstd	Score total
Slot [Eucl,none]\{5 cons\}	1.042	2.626	$202 / 118$	0.3156	0.8139	4	5	5	4	18
Slot [Eucl,Zero]\{5 cons\}	0.686	0.32	$202 / 118$	0.3232	0.8336	3	2	3	1	9
Slot [Eucl,ZSco]\{5 cons\}	0.682	-0.321	$202 / 118$	0.3269	0.8216	2	0	1	2	5
Slot [City,none]\{5 cons\}	1.055	2.551	$202 / 118$	0.3175	0.8188	5	4	4	3	16
Slot [City,Zero]\{5 cons\}	0.67	0.246	$202 / 118$	0.3233	0.8338	1	3	2	0	6
Slot [City,ZSco]\{5 cons\}	0.652	-0.67	$202 / 118$	0.3502	0.4806	0	1	0	5	6

Fig. S14. The correlation models for the six slotting solutions at the Ballyadams section. See Fig S10 for details.

Fig. S15. The overlaid slotted diversity data for Trowbarrow (in black) and Ballyadams (in red). Diversity indexes have been plotted with data scaled to a mean of zero and a standard deviation of 1 (i.e. Zscore). The y-axis is the sample position at Trowbarrow, and in the case of Port Eynon data are the estimated positions (possibly non integer) using the slotting metric and scaling indicated.

Fig. S16. Summary of diversity data in the sections, with sample positions at Trowbarrow based on the slotting analysis. The inferred hiatuses are displayed as square coloured blocks. For each section the data is displayed with the a) Margalef and b) Berger-Parker indexes. Offsets applied to the mean Margalef diversity indices are shown in the top key. i.e. offsets of $0,5,10$ and 9 for Margalef and $0,+1.5,+4$ and +3.5 for Loge(Berger-Parker) respectively.
a)

Fig. S17. Standardized composite diversity indices for the sections. The data have been standardized by converting all data to section-means of zero and standard deviation of 1.0, to try and account for the between section-differences in the range of the diversity indices. A) Shows the data for Trowbarrow as a line and the other sections as dots as a visual assessment of the mis-match between the sets of data. B) shows the Trowbarrow data as the black line and a composite of the entire dataset displayed with a mean offset of +3 . The difference between these two curves is a measure of the disparity in the datasets, and also possibly incomplete parts at Trowbarrow such as over the Woodbine Shale interval (upper Ft4) and in Ft5 and Ft7.

Table S6. Diversity indices using in the slotting analysis for Trowbarrow. Position is the sample number ordered from the base of the section. $\operatorname{Ln}(B P)=\log e$ (Berger-Parker)

Position	Shannon_H	Margalef	Ln(BP)	Height (\mathbf{m})	Position	Shannon_H	Margalef	Ln(BP)	Height (m)
202	2.832	5.218	-2.565	193.185	175	3.316	7.809	-2.615	160.915
201	3.139	6.551	-2.565	192.035	174	2.657	4.66	-2.120	159.765
200	2.778	5.218	-1.872	190.485	173	2.736	5.19	-2.197	157.605
199	1.772	2.274	-1.253	186.585	172	2.476	4.152	-1.792	156.285
198	2.095	3.219	-1.386	185.735	171	2.998	5.714	-2.464	155.555
197	2.245	3.46	-1.504	184.885	170	2.831	5.281	-2.526	
196	2.992	6.093	-2.225	183.085	169	2.558	4.27	-1.946	
195	2.653	4.617	-2.079	182.975	168	3.212	7.048	-2.590	153.355
194	2.999	5.655	-2.327	182.185	167	2.098	3.336	-1.299	151.515
193	2.783	4.905	-2.079	181.235	166	2.431	4.062	-2.015	150.065
192	2.864	5.533	-2.048	181.205	165	2.144	3.031	-1.946	149.315
191	3.374	7.736	-2.621	179.545	164	2.426	3.967	-2.079	148.605
190	3.308	7.339	-2.565	178.505	163	3.079	6.007	-2.442	147.825
189	3.233	7.503	-2.639	177.015	162	2.513	4.328	-2.079	144.935
188	3.404	8.507	-2.833	174.305	161	2.78	5.255	-2.351	143.915
187	3.309	7.697	-2.944	172.005	160	3.11	6.37	-2.512	143.365
186	3.594	9.526	-2.890	169.555	159	2.025	3.04	-1.609	140.965
185	2.678	4.66	-2.120	168.855	158	0	0	0.000	140.065
184	2.823	5.049	-2.269	168.005	157	2.476	4.235	-1.734	139.645
183	2.861	5.148	-2.398	167.805	156	2.043	3.186	-1.504	139.045
182	3.418	8.06	-2.872	166.535	155	2.458	4.289	-1.872	138.445
181	2.771	4.948	-2.251	166.015	154	1.946	3.083	-1.946	136.995
180	2.593	4.405	-2.079	164.995	153	2.713	4.853	-2.398	134.865
179	1.933	2.652	-1.540	163.815	152	2.648	4.598	-2.351	133.915
178	3.145	6.864	-2.398	162.975	151	2.197	3.641	-2.197	133.495
177	3.016	6.059	-2.367	162.115	150	2.67	4.941	-2.140	132.705

176	3.34	7.708	-2.793	161.515	149	2.523	4.431	-2.015	131.425
148	3.066	6.602	-2.234	130.635	117	2.97	5.824	-2.335	93.72
147	2.988	6.068	-2.603	129.735	116	3.016	6.059	-2.367	92.9
146	2.771	5.218	-2.159	128.485	115	2.72	4.66	-2.526	91.95
145	3.259	7.697	-2.251	127.755	114	2.58	4.415	-2.251	90.82
144	3.015	6.115	-2.335	126.105	113	2.625	4.755	-1.846	89.39
143	3.261	7.444	-2.663	124.725	112	1.906	2.885	-1.386	89.01
142	2.94	5.388	-2.428	123.625	111	1.099	1.82	-1.099	87.94
141	1.894	2.502	-1.705	121.875	110	2.025	3.04	-1.609	86.96
140	2.476	4.152	-1.792	120.775	109	2.441	4.168	-1.946	85.91
139	2.845	5.525	-2.159	119.775	108	2.02	2.919	-1.705	85.06
138	2.867	5.664	-2.079	118.375	107	2.691	4.784	-2.037	83.89
137	2.705	4.604	-2.159	117.275	106	3.059	6.348	-2.367	82.74
136	2.558	4.27	-1.946	116.775	105	3.291	7.618	-2.420	81.99
135	2.866	5.461	-2.197	115.975	104	3.326	7.792	-2.464	80.84
134	2.845	5.148	-2.398	115.075	103	2.781	5.102	-2.234	79.74
133	3.248	7.093	-2.708	112.575	102	2.507	4.075	-2.251	78.44
132	2.548	4.146	-2.037	110.215	101	2.626	4.529	-1.992	77.64
131	2.871	5.346	-2.269	109.365	100	1.946	3.083	-1.946	76.84
130	2.996	5.907	-2.457	107.965	99	2.21	3.622	-1.386	76.34
129	3.011	5.907	-2.457	106.965	98	2.095	3.219	-1.386	75.74
128	3.022	5.955	-2.428	105.665	97	2.67	4.941	-2.140	74.64
127	2.886	5.592	-2.526	104.165	96	2.322	3.46	-1.792	74.04
126	3.153	6.551	-2.565	102.765	95	2.025	3.04	-1.609	72.24
125	2.714	4.784	-2.442	101.865	94	2.582	4.498	-2.197	71.34
124	2.216	2.912	-1.992	101.165	93	2.877	5.148	-2.398	70.04
123	2.805	5.049	-2.269	99.965	92	1.792	2.791	-1.792	69.14
122	2.758	4.911	-2.159	98.165	91	2.54	4.547	-1.946	67.64
121	2.776	5.176	-2.398	97.065	90	2.691	4.784	-2.037	67.04
120	2.81	5.349	-2.079	96.265	89	2.254	3.622	-1.792	65.94
119	2.956	5.771	-2.367	95.765	88	0	0	0.000	64.99

118	2.65	4.529	-2.398	95.02	87	2.426	3.967	-2.079	63.89
86	1.748	2.569	-1.253	63.39	55	1.792	2.791	-1.792	31.6
85	1.386	2.164	-1.386	62.77	54	2.164	3.474	-1.609	31.2
84	2.043	3.186	-1.504	61.87	53	2.458	4.289	-1.872	29.95
83	2.48	4.328	-1.674	61.12	52	3.376	8.008	-2.773	29
82	0.6931	1.443	-0.693	60.89	51	3.022	6.239	-2.140	28
81	2.138	3.119	-1.872	60.39	50	3.354	7.669	-2.813	27.25
80	1.561	2.232	-1.099	59.49	49	3.109	6.269	-2.442	26.25
79	2.272	3.753	-1.705	57.69	48	3.319	7.112	-2.691	24.95
78	1.887	2.606	-1.609	56.84	47	3.508	8.757	-2.725	24.45
77	2.146	3.336	-1.705	56.24	46	3.349	7.541	-2.725	22.95
76	1.561	2.232	-1.099	55.69	45	3.527	9.192	-2.639	22.45
75	2.48	4.328	-1.674	54.29	44	3.082	6.235	-2.590	21.45
74	2.582	4.498	-2.197	53.29	43	3.142	6.923	-2.512	20.55
73	2.616	4.801	-2.015	51.5	42	2.624	4.598	-1.946	19.55
72	1.609	2.485	-1.609	49.5	41	2.653	4.755	-2.251	18.45
71	2.78	5.255	-2.351	48.8	40	3.449	8.446	-2.927	17.2
70	3.227	7.001	-2.615	47.95	39	3.319	7.491	-2.773	15.2
69	2.81	5.349	-2.079	47.4	38	3.495	8.723	-2.741	14.7
68	2.558	4.27	-1.946	47	37	2.552	4.415	-1.846	13.98
67	2.875	5.292	-2.303	46.6	36	2.431	4.062	-2.015	12.5
66	2.342	3.789	-1.946	44.25	35	2.686	5.049	-2.079	11.8
65	3.019	6.006	-2.398	41.66	34	2.847	5.242	-2.335	10.97
64	3.202	7.15	-2.803	39.79	33	2.5	3.882	-1.992	10.3
63	2.953	5.824	-2.335	39.36	32	1.946	3.083	-1.946	9.24
62	3.283	7.019	-2.603	38.88	31	1.04	1.443	-0.693	8.75
61	3.277	7.173	-2.657	36.9	30	2.992	6.139	-2.565	7.1
60	3.04	6.115	-2.375	36.1	29	3.461	8.352	-2.853	6.6
59	3.459	8.304	-2.708	35.2	28	3.238	7.048	-2.996	5.1
58	2.898	5.765	-2.197	33.9	27	2.93	5.422	-2.303	4.05
57	3.424	8.127	-2.962	33.3	26	3.305	7.413	-2.813	3.3

56	2.107	3.031	-1.540	32.3	25	3.248	7.093	-2.708	2.68
24	3.014	6.174	-2.303	1.65					
23	2.968	5.88	-2.303	1.3					
22	2.996	5.907	-2.457	1.25					
21	3.465	8.691	-2.813	0.9					
20	2.844	5.592	-2.120	0.36					
19	3.378	8.099	-2.565	0.2					
18	3.224	7.097	-2.565	-0.25					
17	2.272	3.753	-1.705	-0.55					
16	3.145	6.873	-2.539	-1					
15	2.921	5.903	-2.120	-1.7					
14	2.81	5.281	-2.120	-1.95					
13	2.552	4.415	-1.846	-2.85					
12	2.623	4.673	-1.897	-2.9					
11	3.185	7.089	-2.428	-4.8					
10	2.138	3.219	-1.792	-6.7					
9	2.146	3.336	-1.705	-8.25					
8	1.099	1.82	-1.099	-9.45					
7	2.726	5.094	-2.251	-11.35					
6	2.831	5.281	-2.526	-13.2					
5	3.085	6.602	-2.639	-14.4					
4	3.033	6.236	-2.674	-16.1					
3	2.853	5.194	-2.367	-17.35					
2	3.227	7.001	-2.615	-19.05					
1	3.128	6.83	-2.674	-20.8					

Table S7. Diversity indices using in the slotting analysis for Port Eynon. Position is the sample number ordered from the base of the section. Ln(BP)= Loge (Berger-Parker). Position at TQ= position in the Trowbarrow section based on the slotting analysis and position revisions based on inferred hiatuses.

Position	Shannon _H	Margalef	$\operatorname{Ln}(\mathrm{BP})$	Position at TQ	position	Shannon H	Margalef	$\operatorname{Ln}(\mathrm{BP})$	Position at TQ
64	1.561	2.232	-1.099	199.08	37	3.034	5.964	-2.590	60.56
63	2.406	3.736	-1.846	198.36	36	2.953	5.824	-2.335	60.14
62	2.245	3.509	-1.872	198.3	35	2.685	4.604	-2.159	59.73
61	1.677	2.276	-1.099	197.58	34	2.800	5.102	-2.234	59.6
60	2.333	3.736	-1.558	196.8	33	2.940	5.498	-2.251	58.18
59	2.992	6.139	-2.565	195.85	32	2.827	5.461	-2.197	58.08
58	2.254	3.622	-1.792	195.19	31	2.996	5.907	-2.457	57.61
57	2.901	5.643	-2.269	193.83	30	2.785	4.951	-2.335	56.63
56	2.705	4.911	-1.872	191.88	29	2.953	5.824	-2.335	56.53
55	2.978	5.816	-2.512	189.53	28	1.667	2.404	-0.981	55.48
54	3.395	8.097	-2.730	187.82	27	2.996	5.907	-2.457	51.38
53	3.266	7.657	-2.428	185.65	26	3.265	7.444	-2.375	47.46
52	1.792	2.791	-1.792	111.68	25	2.835	5.148	-2.110	43.55
51	2.425	3.883	-2.140	107.36	24	2.841	5.292	-2.303	43.39
50	1.332	1.864	-0.916	103.42	23	2.685	4.604	-2.159	42.78
49	2.788	5.341	-2.303	101.51	22	1.609	2.485	-1.609	42.35
48	2.812	4.998	-2.303	97.19	21	3.035	6.302	-2.639	40.5
47	0.693	1.443	-0.693	94.6	20	3.105	6.463	-2.327	40.35
46	2.672	4.911	-1.872	90.41	19	2.763	5.158	-1.910	37.22
45	2.376	3.613	-1.946	86.88	18	2.816	5.194	-2.079	34.73
44	2.811	5.422	-2.037	82.79	17	2.946	5.907	-2.169	34.39
43	2.756	5.255	-1.946	78.61	16	2.653	4.784	-1.749	33.48
42	3.145	6.200	-2.485	74.42	15	2.215	3.396	-1.558	31.62
41	3.458	8.605	-2.853	70.36	14	2.767	4.905	-2.079	29.39
40	2.245	3.509	-1.872	68.5	13	2.068	2.885	-1.674	29.19
39	3.068	5.653	-2.506	64.56	12	3.024	6.078	-2.398	27.85

38	3.025	6.445	-2.159	63.45	11	3.221	7.356	-2.420
10	2.431	4.062	-2.015	23.32				
9	2.643	4.349	-2.120	21				
8	2.008	2.652	-1.540	9.48				
7	2.582	4.598	-1.658	7.36				
6	2.369	4.024	-1.792	7.23				
5	3.133	6.647	-2.512	4.59				
4	2.636	4.405	-2.079	3.29				
3	2.988	6.068	-2.603	2.29				
2	2.651	4.604	-1.872	0.96				
1	2.069	2.824	-1.447	-0.37				

Table S8. Diversity indices using in the slotting analysis for Clogrenan composite. Position is the sample number ordered from the base of the composite section. Pos-S= position in either Clogrenan Quarry (Clog-Q) or the Clogrenan B corehole (Clog-B). Ln $(B P)=$ Loge $^{(B e r g e r-P a r k e r) . ~ P o s i t i o n ~ a t ~ T Q ~}=$ position in the Trowbarrow section based on the slotting analysis and position revisions based on inferred hiatuses.

Pos-S	Position	Shannon _H	Margalef	Ln_BP	Section	Position at TQ		Pos-1	Position	Shannon _H	Margalef	Ln_BP		Position in TQ
23	69	2.736	4.865	-1.808	Clog-Q	201.22	10		56	2.542	4.905	-1.082	Clog-Q	181.68
22	68	1.735	2.422	-0.811	Clog-Q	199.4	9		55	1.846	2.502	-1.299	Clog-Q	181.36
21	67	2.306	3.821	-1.361	Clog-Q	195.86	8		54	2.243	3.41	-1.946	Clog-Q	181.1
20	66	1.748	2.525	-0.827	Clog-Q	195.37	7		53	1.099	1.82	-1.099	Clog-Q	179.61
19	65	2.671	4.386	-1.792	Clog-Q	194.3	6		52	1.787	2.164	-1.386	Clog-Q	179.36
18	64	1.735	2.276	-1.504	Clog-Q	193.42	5		51	1.751	2.519	-0.879	Clog-Q	179.17
17	63	2.765	5.128	-1.805	Clog-Q	189.81	4		50	2.192	3.616	-1.038	Clog-Q	178.64
16	62	3.209	6.811	-2.319	Clog-Q	187.65	3		49	2.058	2.414	-1.310	Clog-Q	178.43
15	61	2.95	5.359	-1.856	Clog-Q	187.16	2		48	2.503	4.309	-1.411	Clog-Q	178.14
14	60	3.23	7.054	-2.165	Clog-Q	186.27	1		47	2.67	4.727	-1.447	Clog-Q	174.56
13	59	2.562	4.708	-1.308	Clog-Q	185.61	46		46	1.845	2.463	-0.842	Clog-B	172.28
12	58	2.833	5.434	-1.887	Clog-Q	185.38	45		45	2.35	3.547	-1.678	Clog-B	171.18
11	57	2.818	5.446	-1.411	Clog-Q	185.27	44		44	2.908	5.728	-1.992	Clog-B	167.85

43	43	1.748	2.415	-1.099	Clog-B	166.55	12	12	2.525	3.95	-1.471	Clog-B	125.55
42	42	2.013	2.67	-1.386	Clog-B	166.09	11	11	2.008	2.621	-1.354	Clog-B	123.57
41	41	1.667	2.404	-0.981	Clog-B	165.44	10	10	2.591	3.858	-1.922	Clog-B	118.67
40	40	2.561	4.41	-1.792	Clog-B	162.87	9	9	2.171	3.189	-1.749	Clog-B	114.85
39	39	1.98	2.769	-1.126	Clog-B	161.75	8	8	1.906	2.885	-1.386	Clog-B	109.14
38	38	2.113	2.73	-1.361	Clog-B	161.48	7	7	1.386	2.164	-1.386	Clog-B	107.65
37	37	2.743	4.948	-1.846	Clog-B	159.87	6	6	2.452	4.075	-1.846	Clog-B	106.67
36	36	0	0	0.000	Clog-B	158.21	5	5	2.285	3.94	-1.016	Clog-B	106.32
35	35	1.946	3.083	-1.946	Clog-B	153.59	4	4	2.531	4.492	-1.705	Clog-B	105.79
34	34	2.261	3.366	-1.163	Clog-B	153.25	3	3	2.727	4.578	-2.104	Clog-B	103.64
33	33	2.101	3.057	-1.335	Clog-B	153.14	2	2	2.198	3.189	-1.526	Clog-B	102.72
32	32	2.884	5.517	-1.860	Clog-B	152.52	1	1	1.099	1.82	-1.099	Clog-B	99.64
31	31	2.138	3.219	-1.792	Clog-B	152.08							
30	30	1.386	2.164	-1.386	Clog-B	150.71							
29	29	2.07	2.956	-1.253	Clog-B	148.89							
28	28	2.277	3.301	-1.540	Clog-B	148.46							
27	27	2.324	3.174	-1.856	Clog-B	146.56							
26	26	2.302	3.188	-1.513	Clog-B	146.19							
25	25	2.385	3.76	-1.504	Clog-B	145.79							
24	24	2.656	4.433	-1.758	Clog-B	143.54							
23	23	2.703	4.5	-1.764	Clog-B	143.46							
22	22	2.649	4.659	-1.824	Clog-B	142.7							
21	21	1.55	2.056	-1.253	Clog-B	141.36							
20	20	1.099	1.82	-1.099	Clog-B	141.13							
19	19	1.099	1.82	-1.099	Clog-B	141.13							
18	18	1.28	1.303	-0.916	Clog-B	140.78							
17	17	1.951	2.729	-1.466	Clog-B	135.69							
16	16	2.395	3.883	-1.734	Clog-B	132.58							
15	15	1.882	2.377	-1.335	Clog-B	131.9							
14	14	1.636	2.274	-0.847	Clog-B	131.63							
13	13	2.379	3.736	-1.846	Clog-B	126.81							

Table S9. Diversity indices using in the slotting analysis for Ballyadams. Position is the sample number ordered from the base of the composite section. $\operatorname{Ln}(B P)=\log _{e}$ (Berger-Parker). Position at $T Q=$ position in the Trowbarrow section based on the slotting analysis and position revisions based on inferred hiatuses.

position	Shannon _H	Margalef	$\operatorname{Ln}(\mathrm{BP})$	Position at TQ	position	Shannon _H	Margalef	$\operatorname{Ln}(\mathrm{BP})$	Position at TQ
118	2.079	3.366	-2.079	141.86	93	2.229	4.049	-0.956	102.81
117	2.418	4.324	-1.224	138.49	92	2.601	4.877	-1.253	102.61
116	2.335	4.219	-1.253	138.4	91	2.684	4.820	-1.584	102.54
115	1.902	2.643	-1.076	135.71	90	2.014	2.377	-1.558	101.93
114	2.219	3.988	-1.122	133.64	89	2.129	3.338	-1.204	101.8
113	2.467	4.503	-1.447	133.3	88	2.971	5.516	-2.135	101.45
112	2.390	3.528	-1.609	132.57	87	1.034	1.251	-0.452	99.53
111	2.200	2.771	-1.573	131.44	86	1.845	2.534	-1.069	98
110	2.069	2.824	-1.447	131.32	85	2.060	2.688	-1.052	97.36
109	2.362	3.461	-1.792	130.53	84	1.504	1.541	-0.782	96.229
108	2.434	3.786	-1.824	127.5	83	2.309	3.267	-1.576	95.44
107	2.236	3.579	-1.022	125.44	82	1.583	2.012	-0.875	94.448
106	2.150	2.791	-1.281	122.51	81	2.018	2.824	-1.447	94.165
105	2.484	4.637	-1.413	119.36	80	2.211	3.892	-1.329	94.021
104	2.415	3.474	-1.386	117.3	79	1.834	2.427	-1.099	93.797
103	2.475	5.609	-0.981	115.67	78	2.689	5.317	-1.564	93.52
102	2.200	4.865	-0.796	115.49	77	1.706	2.383	-0.854	93.253
101	1.645	3.191	-0.542	112.8	76	0.919	1.542	-0.254	92.267
100	1.854	3.367	-0.670	112.69	75	2.254	4.382	-1.068	91.968
99	1.353	2.222	-0.405	112.3	74	1.824	2.676	-1.066	91.845
98	1.447	3.024	-0.419	109.42	73	1.386	2.164	-1.386	91.771
97	1.587	2.377	-0.642	109.16	72	2.826	4.952	-2.005	90.229
96	1.706	2.422	-0.811	107.32	71	2.758	4.564	-1.824	90
95	2.869	5.594	-1.988	104.53	70	1.817	2.449	-1.122	88.125
94	1.708	3.188	-0.581	103.19	69	1.290	1.218	-0.800	86.25

68	1.619	1.911	-0.956	84.375	37	0.693	1.443	-0.693	53.7
67	1.791	2.203	-0.981	82.5	36	1.831	2.623	-0.768	52.92
66	2.580	3.829	-1.810	73.48	35	2.636	4.337	-1.743	52.31
65	2.178	3.376	-1.264	73.21	34	1.909	3.385	-0.921	50.83
64	0.693	1.443	-0.693	72.29	33	1.512	2.246	-0.606	50.63
63	1.400	1.516	-0.847	71.63	32	2.603	4.343	-1.772	47.75
62	2.530	4.428	-1.155	70.52	31	2.007	3.706	-1.003	44.63
61	2.328	4.647	-0.903	70.35	30	1.373	1.154	-0.758	44.37
60	2.711	5.223	-1.692	69.88	29	2.396	4.577	-1.074	42.94
59	2.647	5.310	-1.504	69.79	28	2.338	4.154	-1.308	42.89
58	2.387	4.049	-1.118	69.27	27	0.000	0.000	0.000	42.37
57	1.323	1.535	-0.550	66.23	26	2.555	4.116	-1.792	40.6
56	1.594	1.535	-0.956	66.08	25	2.659	5.150	-1.247	40.34
55	1.241	1.251	-0.789	65.81	24	2.257	3.463	-1.478	37.33
54	1.373	1.669	-0.693	65.69	23	0.000	0.000	0.000	36.48
53	2.920	6.461	-1.679	63.66	22	1.609	2.485	-1.609	33.54
52	2.603	4.737	-1.425	63.24	21	1.764	2.038	-1.335	33.29
51	2.130	3.997	-0.947	62.82	20	1.810	2.274	-1.253	33.18
50	2.514	4.798	-1.151	62.44	19	0.500	0.621	-0.223	30.78
49	2.220	4.973	-1.042	62.28	18	1.194	1.108	-0.629	30.6
48	2.666	5.510	-1.253	60.76	17	1.765	2.076	-1.281	30.34
47	2.173	4.237	-1.024	60.18	16	2.887	5.037	-2.179	28.24
46	2.626	4.052	-1.804	59.75	15	1.857	2.265	-1.145	26.73
45	2.846	5.658	-1.547	58.84	14	2.181	3.067	-1.204	26.54
44	1.937	3.612	-0.680	58.17	13	1.560	1.443	-1.386	23.48
43	2.749	5.826	-1.581	57.2	12	2.649	4.231	-1.828	20.41
42	2.612	4.066	-1.897	56.79	11	2.097	2.968	-1.478	17.64
41	2.380	3.679	-1.370	56.68	10	1.256	1.122	-0.542	17.15
40	2.702	4.625	-1.589	56.55	9	2.041	2.717	-1.558	16.54
39	1.099	1.820	-1.099	54.86	8	1.597	2.232	-0.588	13.35
38	2.443	3.770	-1.634	54.45	7	1.772	2.652	-0.847	13.08

6	1.748	2.569	-1.253	10.38
5	0.000	0.000	0.000	8.4
4	0.500	0.621	-0.223	8.17
3	1.609	2.485	-1.609	7.49
2	1.374	1.470	-0.693	7.28
1	1.565	2.020	-0.632	7.21

Fig. S3. Correlation of the foraminiferal trends (Ft), sedimentological rhythms (Rh) and major and minor emergent surfaces in the studied basins.

Fig. S4. Karst surfaces a) O, b) Oa, c) I and d) II in Trowbarrow Quarry. All sections young to the left in the photos. Scale shown by the 0.5 m ruler, when extended. a) The karstic surface (1 of Horbury, 1989) and surface O here, shown by white arrows. The rather more mammilated karstic surface at the base of the Urswick Limestone indicated by yellow arrows. b) The weakly mammilated surface show by white arrows, with a more irregularly pitted surface of the underlying bed (indicated by green arrow). C) The relatively flat karstic surface '2 of Horbury (1989) and our I surface. D) strongly mammilated karstic surface II (3 of Horbury, 1989), with a well developed silty fill of the surface. Green arrows show two prominent pits in the top of the underlying bed.

Fig. S5 continued. Karstic surface IVa at Burton Well Cliff, Silverdale [grid reference SD744465], where the beding is sub-horizontal. Surface IVa it can be clearly located between the underlying Woodbine Shale, and the overlying karstic surface V at the top of the cliff (neither shown in photo). e) shows a mammilated surface with no development of silty of silty paleosol at the contact (shown with white arrows). f) In contrast the surface (white arrows) some 10 m to the south displays an intermittent silty layer $<1 \mathrm{~cm}$ thick which is preferentially weathered out like at the yellow ruler. Scale shown by 0.5 m ruler.

Fig. S5. Karstic surfaces: a) III, b) IV and in c), d) surface V in Trowbarrow Quarry. In a), b) beds young to the left in the photos; c) is the top surface of the underlying bed and in d) beds young to the right in the photo. a) The karstic surface 4 of Horbury (1989) and our surface III here shown by white arrows. The karstic surface is rather flat and strongly reddened, but has a well developed red silty palaeosol which the yellow ruler sits on. b) The very weakly mammilated surface IV (white arrows), with no silty palaeosol, which has a complex, strongly rootleted internal morphology described in detail by Horbury (1989). C) Very strongly mammillated and reddened karstic surface 'A' of Horbury (1989) and our V karstic surface. D) View of karstic surface V in the north part of the quarry (white arrows) showing the well developed silty palaeosol (underlying the ruler), and the rather irregular base of the overlying bed (black arrows). Red (hematite-bearing) fills occur in the cracks in the karstic surface shown with blue arrow. Scale shown by 0.5 m ruler.

Fig. S6. Karst surfaces: a) VI, b), c) VII and, d) VIII in Trowbarrow Quarry. All beds young to the right in the photos. a) The rather flattish karstic surface B of Horbury (1989) and our surface VI here, showing an upper surface in white arrows and a lower surface in yellow arrows. The pitting on these surfaces is rather like shown in Fig. S5. b) The karstic surface C of Horbury (1989) in white arrows (our surface VII), and a lower weaker reddened karstic surface shown by yellow arrows. c) Detail of the very strongly mammillated and reddened karstic surface VII showing the very thick $(25 \mathrm{~cm})$ red silty palaeosol. In Trowbarrow this karstic surface is the most deeply pitted and reddened of any of the palaeosols. d) View of mammilated karstic surface VIII (white arrows), also showing the well developed silty palaeosol (underlying the ruler), and the flat base of the overlying bed which sits on the silty palaeosol. The blocks above and below the ruler are large fallen blocks. Scale shown by 0.5 m ruler, when extended, and 35 cm wide mapboard in b).

Fig. S7. Karstic surfaces: a) IX and b), c), d) X in Trowbarrow Quarry. Beds in a), b), c) young to the right in the photos, and d) is a photo of the base of a bedding surface. a) The concatenated karstic surfaces-calcrete-palaeosols E of Horbury (1989) and our IX surface (white arrows) which is weakly mammilated. b) View of the interval covering the many karstic surfaces and palaeosols designated F by Horbury (1989) and surface X here. White arrows show the three main karstic surfaces. c) Detail of the calcrete bed (yellow arrow) and overlying silty red palaeosol at the position fo the rightmost arrow shown in b). d) View of red, silty-clay on the middle karstic surface arrowed in a). The lowest karstic surface arrowed in b) has similar features to those shown in d). Scale shown by 0.5 m ruler, when extended in a and c) and 1 m ruler in b .

Fig. S8. Karstic surfaces: a), b) Xa and c), XI and d) the conformable surface XIII in Trowbarrow Quarry. a), c) and d) young to the right in the photos, and d) is a phot of the base of bedding surface overlying urface $X a$. Scale shown by 0.5 m ruler, when extended in a and c) and 1 m stick in d). a) The rather flat karstic surface Xa (white arrows), and the rather irregular pitted surface of the overlying bed which contains extensive red mottling in its base (shown in b) and its lower few 10 cm . In this respect it is rather different in character to other palaeosols in the succession. c) Strongly reddened palaeosol-limestone XI, with the weakly mammilated karstic surface indicated by white arrows. d) The base of the Alston Formation shown by conformable surface XIII (which contains abundant brachiopod and large insitu coral heads), which rests on an underlying marine shale.

Fig. S9. Margalef diversity index in A. Trowbarrow Quarry, B. Archerbeck Borehole, C. Rookhope Borehole, D. Silverdale Borehole sections, E. Little Asby and F. Durrow 2 Borehole sections. The asterisks in the biostratigraphy column mark the precise position where guides of the foraminiferal assemblages/subzones are recorded sensu Cózar et al. (in press), Cózar and Somerville (2013), Cózar and Somerville (2004), Waters et al. (2017), Strank (1981) and unpublished data. Ft 0-Ft13 are foraminiferal trends with boundaries (dotted lines). Samples in all sections are placed equidistant, but differ in meter spacing.

