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Abstract 

The majority of phase III clinical trials use a 2-arm randomized controlled trial with 

50% allocation between the control treatment and experimental treatment. The 

sample size calculated for these clinical trials normally guarantee a power of at least 

80% for a certain type I error, usually 5%. However, these sample size calculations, 

do not typically take into account the total patient population that may benefit from 

the treatment investigated. 

In this paper, we discuss two methods, which optimize the sample size of phase III 

clinical trial designs, to maximize the benefit to patients for the total patient 

population. We do this for trials that use a continuous endpoint, when the total 

patient population is small (i.e. for rare diseases). One approach uses a point 

estimate for the treatment effect to optimize the sample size and the second uses a 

distribution on the treatment effect in order to account for the uncertainty in the 

estimated treatment effect. Both one-stage and two-stage clinical trials, using three 

different stopping boundaries are investigated and compared, using efficacy and 

ethical measures. 
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A completed clinical trial in patients with anti-neutrophil cytoplasmic antibody 

(ANCA)-associated vasculitis is used to demonstrate the use of the method. 

Keywords: continuous response, patient benefit, rare disease, sequential design 

1 Introduction 

The design most often used in Phase III superiority clinical trials is a 2-arm 

randomized controlled trial (RCT) with equal allocation between treatment arms 

(Sibbald and Roland, 1998). This method assigns each patient to the experimental 

treatment or the control treatment (placebo or standard of care) with a fixed 

probability of 50%. At the end of said superiority trial the outcomes of the two 

treatments are compared using a one-sided two sample hypothesis test, with a pre-

specified type I error, α, (usually 5 %  ). If the p-value calculated from the test is 

smaller than α then the null hypothesis of ‘the experimental treatment is not superior 

to the control treatment’ is rejected, (see Lieberman et al., 2001). Then, the 

experimental treatment will either under go further testing, or an application to a 

regulatory agency (e.g. the FDA) will be made, so that the treatment can be given to 

future patients, (see Tonkens, 2005). If the p-value is larger than or equal to α the 

null hypothesis cannot be rejected and therefore, the testing on the experimental 

drug is likely to stop and the standard of care treatment will carry on being given to 

patients. 

If the primary outcome of the RCT is normally distributed, 
2

~ ( , )
k k

Y N  
 for both the 

control treatment, k = C and the experimental treatment, k = E, then the equation 

below, 

2 1 1 2

2

4· (1 ) (1 )
,

( )
n

  



 
    

  (1) 

can be used to determine the sample size, n, of the RCT. The sample size 

calculated using equation (1) will ensure a trial with power (1  ), if a difference in 

treatment means ( E C
   

) and common standard deviation (σ) is present, for a 

specified type I error (α) (Charan and Biswas, 2013). This sample size determination 
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does not take into account the total patient population, that is all patients that could 

potentially benefit from the treatment. 

For some rare diseases, equation (1) may produce a trial size which is a large 

proportion of the total patient population. For example, for a type I error, α, of 5%, a 

type II error, β, of 20%, a standard deviation, σ, of 1.5 and a difference in treatment 

means, δ of 0.4, results in a sample size of 348. The anti-neutrophil cytoplasmic 

antibody (ANCA)-associated vasculitis (AAV) are rare multisystem autoimmune 

diseases, thought to have a prevalence of 4 6 1 8 4  per million (Yates and 

Watts, 2017). If we assume a prevalence of 100 per million, this would give a patient 

population of roughly 6, 680 in the UK. Hence, in a rare disease trial where the total 

patient population might only be N = 6680, a trial size of n = 348 would result in a 

high proportion (5.2%) of patients in the trial. 

There are a number of reasons why having a large proportion of the patient 

population in the clinical trial is not desirable. Firstly, there will only be a relatively 

small proportion of patients outside the trial, who will actually benefit from the results 

of the trial. Furthermore, the larger the trial, the more patients are allocated to the 

lesser treatment (Faber and Fonseca, 2014), due to half the trial population receiving 

the inferior treatment by design. 

These issues highlight the difficulty associated with determining the sample size for a 

clinical trial, particularly in a small population. It must be large enough to provide a 

reliable decision on which treatment is superior. However, it should not be too large, 

so that extra patients are being given a non-effective drug unnecessarily. In small 

patient populations this difficulty only increases. 

The effect of the total patient population, N, on the sample size of a trial, n, has been 

explored by Stallard et al. (2017). They look to maximize a gain function that 

captures any kind of cost, loss or benefit associated with the treatment, using a 

decision theoretic approach. Furthermore, Colton (1963) investigates a minimax 

procedure to minimize an expected loss function and a maximin procedure to 

maximize an expected net gain function, where each of these functions is 

proportional to the true difference in treatment means, δ, and incorporates the total 
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patient population, N. Additionally, Cheng et al. (2003) explores a decision-analytic 

approach to determine a trial’s sample size. They assume the total patient horizon is 

treated in a fixed number of stages and they choose the size of each stage in order 

to maximize the number of patient successes. This paper focuses on binary patient 

outcomes, when the success probability of one arm is known and when the success 

probabilities of both arms are unknown. 

Similarly to Kaptein (2019), we aim to optimize the sample size of a phase III 

superiority clinical trial in order to maximize the patient benefit for the whole patient 

population, N, and we assume that N is finite and fixed. Kaptein (2019) uses a point 

estimate method for a given treatment difference δ, to find the optimal sample size, 

n


, for a total patient population, N. They focus on a one-stage RCT where all 

patients in the trial are recruited and the primary outcome observed prior to selecting 

a treatment to be given to all patients outside the trial. They further investigate the 

effect on the total patient benefit, when the assumption on the total patient 

population, N, is incorrect. In our work we show the lack of robustness in this 

method, investigate introducing a distribution on the treatment effect instead and 

also consider a two-stage extension, where an interim analysis is performed. 

Patient benefit can be defined in two different ways. The average patient benefit can 

be defined as the proportion of patients who receive the treatment that is proved to 

be superior for the majority of patients (i.e. the superior treatment within the trial on 

average). The individual patient benefit can be described as the proportion of 

patients who receive the superior treatment for them, as an individual. These two 

definitions are not the same, as highlighted by Senn (2016), since patients’ 

characteristics, such as age, gender and genetics, can cause patients to react 

differently if given the same treatment. In addition, the total patient benefit is defined 

as the proportion of patients in the whole patient population, N (both inside and 

outside the trial) who are allocated to the superior treatment. 

Both the total average and total individual patient benefit can be maximized in two 

different ways. The proportion of patients given the superior treatment can be 

maximized within the trial. This would involve finding the superior treatment during 

the trial and allocating more patients within the study to this superior treatment. This 
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is the basis of response adaptive randomisation (RAR) trials (Hu and 

Rosenberger, 2006). However, in order to maximize the total patient benefit using 

this method, the clinical trial must still reliably identify the superior treatment to 

ensure all the patients outside the clinical trial, are also allocated to the superior 

treatment. Unfortunately, many RAR trials need a large sample size, in order to keep 

the power of the clinical trial high (Williamson et al., 2017), though recent work seeks 

to overcome this challenge (see Barnett et al., 2021). This then decreases the 

patient population outside the trial who would benefit from the results of the study 

and increases the number of patients inside the study who could be assigned the 

lesser treatment. 

The second method to maximize the total patient benefit is to optimize the sample 

size of the superiority RCT, such that the patient benefit taken across the whole 

population of patients is maximized. A balance in sample size must be found, such 

that the sample size is large enough to identify the superior treatment with a high 

probability, but small enough such that a high proportion of patients are outside the 

trial to benefit from the results of the study. Below we investigate this method further. 

2 Case Study 

The effect of two doses of avacopan in the treatment of patients with AAV was 

investigated by Merkel et al. (2020) in a phase II study (NCT02222155). This study 

comprised nC = 13 patients who were given the control treatment (placebo + 

standard of care (SOC)), nE = 12 patients who were assigned to the first dose of 

experimental treatment (10mg avacopan+SOC) and 2
1 5

E
n 

 patients who were 

assigned to the second dose of experimental treatment (30mg avacopan+SOC). It 

showed the addition of 10mg of avacopan improved several vasculitis endpoints 

(Merkel et al., 2020). One key outcome in the trial, was the percent decrease of the 

Birmingham Vasculitis Activity Score (BVAS) at week 12 from baseline. Throughout 

this paper we use only the first two treatments, placebo and 10mg avacopan, to 

demonstrate our sample size calculation method. 

It is indicated by Merkel et al. (2020), that neither the safety nor efficacy outcomes 

within the trial were powered statistically. However, given a total sample size of n = 
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25, one-sided type I error of 2 .5 %  , power of (1 ) 8 0 %  , and the standard 

deviation, ˆ 1 8 %  , we can find the difference in means which this trial could have 

detected. Estimating the standard deviation of the decrease in BVAS from baseline, 

from a figure in Merkel et al. (2020), that shows the change in BVAS over time, 

yields an estimate of ˆ 1 8 %   in the trial. Hence, the difference in means which 

could have been detected is, 

2 1 1 2 2 2
4· (1 ) (1 ) 4·1 8 1 .9 6 0 .8 4

2 0 .2 %
2 5

( ) ( )

n

  


 


     

  

. 

The mean decrease in BVAS at week 12 was 82% on the placebo arm and 96% on 

the avacopan arm. Hence, the estimated difference in means from this trial is 

ˆ 9 6 8 2 1 4 %     (Merkel et al., 2020), but no formal statistical test was used in the 

reported analysis, due to its small sample size. 

In our work we will consider how one could have arrived at a suitable sample size for 

this trial taking the total patient population into account. Since AAV are rare 

multisystem autoimmune diseases we assume for our calculations a patient 

population of roughly 6, 680 in the UK on the basis of an estimated prevalence of 

100 per 1,000,000. 

3 Bayesian Decision Theoretic approach for Sample 
Size Calculation to Maximize Total Patient Benefit 

For a rare disease, assume a total constant patient population of N. We aim to 

design a superiority RCT with K = 2 treatments (including control) and a total sample 

size of n patients, to maximize the patient benefit for the total patient population, N. 

Here, we focus on the acute treatment setting as opposed to the chronic setting. We 

assume each patient within the total population, N, receives only one treatment and 

patients within the trial will not switch to the superior treatment after the clinical trial is 

completed. 

Similar to Kaptein (2019), we use a decision theoretic approach where the total 

expected average patient benefit (TEAVPB, 
[ ]

N
E A B

) is the proportion of patients in 
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the total population N, who are assigned the superior treatment on average, k k


 , 

as shown below, 

1
[ ] .

N

i i

N

g
E A B

N




  (2) 

Here, gi is a gain function where gi = 1 if the treatment given to patient i is superior 

on average i
k k




 and gi = 0 if the treatment given to patient i is not superior on 

average i
k k




. Kaptein (2019) explains, this sum can be split into the number of 

patients within the RCT who are given the superior treatment and the number of 

patients outside the trial who are given the superior treatment. The treatment 

assigned to the patients outside the trial is chosen based on some decision 

procedure, we use a hypothesis test which depends on the outcome of each patient 

within the trial. 

Kaptein (2019) goes on to explore the robustness in this method when the total 

patient population, N is incorrect and introduces software to compute these sample 

sizes. We focus on the robustness of this method when our prior assumptions on the 

treatment effect are incorrect and also extend this approach for two stage clinical 

trials. 

Equation (2) can be re-written by using the following assumptions to replace the gain 

function. A phase III superiority RCT with equal allocation, will assign / 2n  patients in 

the trial to the superior treatment, by design. We then assume there will be ( )N n  

patients outside the trial who will either be allocated to the experimental treatment, if 

it is found to be superior in the trial using the one-sided two sample Z-test, or the 

control treatment, if the experimental treatment is not found to be superior using the 

one-sided two sample Z-test. This is the conventional approach and as it is used 

most often in practice, our method also follows this approach. However, other 

decision metrics could be used instead. 

The treatment with the highest average standardized effect, 
/

k
 

, will be allocated 

to the ( )N n  patients outside the trial with probability (1 ) . Hence, the TEAVPB, 

[ | , ]
N

E A B n 
, for a given sample size, n and type II error, β, is 
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1
[ | , ] ( ) (1 ) .

2
( )

N

n
E A B n N n

N
      (3) 

We assume that the primary outcome for each treatment, k   {C, E} is normally 

distributed, 
2

~ ( , )
k k

Y N  
, with common variance. Then we can rearrange equation 

(1) to find the power, (1 ) , in terms of the sample size, pre-specified type I error, 

the clinically relevant difference in means and the variance of outcome, as follows, 

2

1

2

·
1 (1 ) .

4·
( )

n 
 




       (4) 

Using this, we can rewrite equation (3), such that the TEAVPB is 

2

1

2

1 ·
[ | , , , ] ( )· (1 ) .

2 4·
( ( ))

N

n n
E A B n N n

N


   




        (5) 

For the total expected individual patient benefit (TEIPB, 
[ ]

N
E IB

), we have the added 

complication that the superior treatment on average, may not be an individual patient

’s superior treatment. Thus, equation (5) changes to incorporate this, as shown 

below, 

2

1

2

2

1

2

1
[ | , , , ]

2

·
( ) (1 )

4·

· (S u p e r io r  t re a tm e n t  o n  a v e ra g e  is  b e s t  fo r  p a t ie n t )

·
1 (1 )

4·

· (1 (S u p e r io r  t re a tm e n t  o n  a v e ra g e  is  b e s t  fo r  p a t ie n t ) ) .

(

[ ( )

( ( ) )

] )

N

n
E IB n

N

n
N n

P

n

P

  

















     

     



 (6) 

In the absence of additional factors the probability, (S u p e r io r  tre a tm e n t o n  a v e ra g e  isP  

b e s t  fo r  p a tie n t ) , can be calculated using the distributions of the outcomes of each 

treatment. Generalizations accounting for predictive factors are discussed in Section 

5. When the experimental treatment is chosen as superior on average, 

(S u p e r io r  tre a tm e n t o nP  
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averag e is  b est fo r p atien t ) ( )
E C

P Y Y 
 and when the experimental treatment is not 

chosen, 
(S u p erio r trea tm en t o n  averag e is  b est fo r p atien t ) ( )

C E
P P Y Y 

. Here, both the 

outcome of the control treatment, YC and the outcome of the experimental treatment, 

YE are normally distributed. To find the probability that the outcome of the 

experimental treatment is larger than the outcome of the control treatment, 

( ) ( 0 )
E C E C

P Y Y P Y Y   
, can be found as 

2

( )
( ) 1 .

2

( )E C

E C E C
P Y Y P Y Y

 



 
      (7) 

This expression for TEIPB takes into account, that each individual patient will not 

react to a treatment in exactly the same way. Furthermore, some patients will react 

differently to the same treatment due to their specific covariate value(s). We extend 

the TEIPB in Section 5 to explore the covariate total expected individual patient 

benefit (CTEIPB). 

3.1 Point Estimate Method 

The total expected patient benefit is calculated using the equations (5) and (6) and 

(7), for different two treatment trial scenarios. A continuous outcome, e.g. percent 

decrease of the BVAS 12 weeks after baseline in patients with AAV is used. 

We compare two treatment arms, a control and an experimental treatment. The 

average response from the two treatment arms will be compared using the one-sided 

two sample Z-test, where the variance is assumed to be known and equal between 

groups. The one-sided type I error value is chosen to be 0 .0 2 5   in order to 

compare the scenarios accurately. The patient population size is assumed to be N = 

500 to reflect that we are considering the context of rare disease trials. 

In the supplementary materials 1.1, Figure 1 shows the TEAVPB and TEIPB for a 

range of sample sizes. For all scenarios with a non-zero treatment effect, 

( ) / 0
E C

     
, as sample size increases initially, a larger total expected patient 

benefit is produced. This is due to the trials having more patients and hence, more 

data, enabling them to correctly reject the null hypothesis with higher probability. 

However, this increase in total expected patient benefit will peak and then decrease 
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as the sample size continues to increase. This is due to the trial over recruiting 

patients and having more data than needed to correctly reject the null hypothesis. 

In the null scenario, where there is no difference in means for the two treatments, we 

label the control treatment as ‘best’. Even though the two treatments result in equal 

outcomes on average, in this rare disease setting there is unlikely to be an active 

standard of care treatment and, hence, no side effects from the control treatment. If 

the patients were to receive an active treatment with no better effect, they would 

have an increase in risk of side effects and increase the cost of treatment, with no 

benefit to the patient. 

As the null scenario has no difference in treatment means, it only needs a small 

sample size to (correctly) fail to reject the null hypothesis and allocate all patients 

outside the trial to the control treatment. Thus, as the sample size, n increases the 

TEAVPB in the null scenario decreases. Due to both treatments having a normally 

distributed outcome, the individual variation between patients is symmetric, this 

along with the mean outcomes being equal implies the TEIPB should always be 0.5 

for the null scenario. No matter which treatment a patient is assigned there will 

always be a 50% chance it will be their individual ‘best’ treatment. 

We use numerical optimisation methods such as the function ‘fminbnd’ 

(fminbnd, 2016) in matlab (MATLAB, 2016) to find the optimal sample size, n


, which 

maximizes the TEAVPB, 
[ | , , , ]

N
E A B n   

, and the TEIPB, 
[ | , , , ]

N
E IB n   

, for six 

scenarios shown in Table 1. 

In Table 1, the individual optimal sample size is left blank for scenario 1, as the 

sample size does not make a difference to the TEIPB in this scenario. For the 

different scenarios above, the optimal sample size varies. However, Table 1 does 

show the same optimal sample sizes for both TEAVPB and TEIPB for all scenarios 

and, Figure 1 in the supplementary materials 1.1, shows that TEAVPB and TEIPB 

follow the same pattern. This is due to the normally distributed outcome which 

implies that the individual variation between patients is symmetric about the average 

response of each treatment. Hence, the definition of patient benefit does not make a 

difference to the optimal sample size. This is true for all trial designs investigated. 
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However, this may not be the case when a non-symmetric outcome is considered or 

when patient’s covariate value(s) affect the outcome of the treatments (see Section 

5). 

We also find that the clinical trials that use these optimal sample sizes have high 

power (often well over 80%) in addition to resulting in the maximum patient benefit 

overall. 

3.2 Point Estimate Method: Deviation from assumptions 

The method above finds the TEAVPB and TEIPB for all scenarios when our initial 

assumptions of 
,

C C E E
   

 
 

, and  

  are correct. As this will rarely be the 

case we also explore the TEAVPB when our initial assumptions (or priors) of the 

treatment mean outcomes, 
,

C E
 

 

 and standard deviation, 


, are incorrect. 

We investigate the TEAVPB for different scenarios with various initial priors on the 

treatment outcome parameters, 
,

C E
 

 

 and 


. We substitute these priors into 

equation (5) to find the optimal sample size, n


, and then use these optimal sample 

sizes to find the TEAVPB for the actual treatment outcome parameters, μC, μE and σ 

in each scenario. The results are shown by the dotted lines in Figure 1 in section 3.3 

while additional scenarios are provided in the supplementary materials 1.2. The 

black 5 pointed stars show the maximum TEAVPB, when the correct values are used 

as priors: 
,

E E C C
   

 
 

 and  

 . 

In the null scenario, the largest difference in prior means, E C
  

  
 

, coupled with 

the smallest prior standard deviation, 


, produces the largest TEAVPB. This is 

because it produces the smallest optimal sample size and the null scenario only 

needs a small sample size to fail to reject the null hypothesis and thus, give all 

patients outside the trial the control treatment. When the true treatment effect is non-

zero, 
( ) / 0

E C
     

, Figure 2 in the supplementary materials 1.2, shows as the 

prior standard deviation, 


, increases, the prior difference in means, 


, which 

produces the largest patient benefit, also increases. Therefore, if the prior standard 

deviation, 


, is too high, a large patient benefit can still be produced if an optimistic 
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prior difference in means, 


, is also used. The added bonus of using a large prior 

standard deviation is it produces a trial with larger power, shown in Figure 3 in the 

supplementary materials 1.2. 

If the initial assumptions on the treatment outcome parameters: 
,

C E
 

 

 and 


 are 

incorrect, we soon start to see a rapid decrease in TEAVPB highlighting the lack of 

robustness of the point estimate method. 

3.3 Adding uncertainty in the treatment effect 

To extend the ideas described by Kaptein (2019) and in order to combat the lack of 

robustness in the point estimate method, we introduce a distribution on the prior 

treatment effect, /  
  
 , instead of using a single prior value on each treatment 

parameter: 
,

C E
 

 

 and 


. The fraction, /   in equations (5) and (6) is replaced 

with the single term θ, and the TEAVPB and TEIPB are found by taking the 

expectation over the random variable θ, which is shown in equations (8) and (9), 

2 2

1

2

[ | , , ] [ [ | , , ] ]

( )1 1
e x p · ( ) (1 ) ,

2 2 42
( ( ( ) ) ( ( ) ) )

N N
E A B n E E A B n

n n
N n d

N







   

  
 

 






 

 
     

 (8) 

2 2

1

2

2

1

[ | , , ] [ [ | , , ] ]

( )1 1
e x p · ( ) (1 )

2 2 42

· (S u p e r io r  t re a tm e n t  o n  a v e ra g e  is  b e s t  fo r  p a t ie n t )

1 (1 )
4

·(1 (S u p e r io r  t re a tm e n t  o n  a v e ra g e  is

( ( ( ) ) ( [ ( )

( ( ) )

N N
E IB n E E IB n

n n
N n

N

P

n

P







   

  


 











 

 
     

     





 b e s t  fo r  p a t ie n t ) ) .] ) )d 

 (9) 

The TEAVPB is investigated for three scenarios with various prior treatment effects 

which are normally distributed with mean, 
{0 .1, 0 .2 5, 0 .3 3 3, 0 .5, 0 .6 6 6 ,1}







, and 

standard deviations, 
{0 .2 , 0 .5}







, shown by the dashed lines in Figure 1. We 

further investigate a uniform distribution on the prior treatment effect between 0 and 

1 (reported by the horizontal line in Figure 1), where the normal probability 

distribution, 
2 2

(1 / ( 2 ))·e x p ( ( ) / 2 )
  

     
, is replaced with 1 in equations 8 and 9. 
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These priors are used to find the optimal sample size, n


, and then the optimal 

sample size is used to find the TEAVPB for the actual treatment outcome 

parameters: μC, μE and σ in each scenario. 

In the null scenario, the largest prior treatment effect mean, 




, coupled with the 

smallest prior treatment effect standard deviation, 




, produces the larger TEAVPB. 

Here, using the point estimate prior on each outcome parameter, performs better 

than using a normal distribution on the prior treatment effect. Specifically, when the 

point estimate method is used with the priors: 
5 .7 5 , 5 .2 5

E C
 

 
 

 and 0 .5

 , the 

TEAVPB=0.9104 is found when the treatment effect is actually 
5

E C
  

. 

However, when we use a normal distribution on the prior treatment effect: 

( ) / (5 .7 5 5 .2 5) / 0 .5 1
E C

   
   
    

 with treatment effect standard deviation 

0 .5






, the TEAVPB=0.8800. Thus, the point estimate prior results in a TEAVPB, 

which is larger than using a normal distribution prior on the treatment effect by 

0.0304. However, this gain in the null scenario comes at a loss when the treatment 

effect is non-zero, shown in Figures 1b-c. 

In Figures 1b-c, when the treatment effect prior mean, 




, is smaller than the true 

treatment effect, θ, the value of its prior standard deviation, 




, does not have a 

large effect on the TEAVPB produced and both methods produce similar patient 

benefit. As the prior, 




, increases past the true mean, it is the smaller prior 

treatment effect standard deviations, 




, which cause a quicker decrease in 

TEAVPB. Here, using a normal distribution on the prior treatment effect is more 

robust than the point estimate prior. Specifically, when a normal distribution with prior 

mean 
( ) / (5 .7 5 5 .2 5) / 0 .5 1

E C
   

   
    

 and prior standard deviation 
0 .5







 

are used, the TEAVPB=0.6643, when the true treatment effect is 

( ) / (5 .7 5 5 .2 5) / 1 0 .5
E C

       
. However, when the point estimate method is 

used with priors: 
5 .7 5 , 5 .2 5

E C
 

 
 

 and 0 .5

 , the TEAVPB=0.5350. Hence, the 

prior point estimate method results in a TEAVPB, which is smaller than using a 

normal distribution on the prior treatment effect by 0.1293. Introducing a uniform 

distribution on the prior treatment effect performs well in Figures 1b-c, giving a 
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TEAVPB close to the maximum value. However, using a uniform distribution on the 

prior treatment effect will struggle in the null scenario. A further three scenarios are 

explored in Figure 4 in the supplementary materials 1.3. In addition, Figure 5 in the 

supplementary materials 1.3, shows the power is largest for the larger values of 




. 

Furthermore, using a distribution on the prior treatment effect produces a larger 

power than using the prior point estimate method. 

3.4 Case Study Results 

Equation (5) can further be used to find the optimal sample size n


 to produce the 

maximum TEAVPB for the case study described in Section 2, using the prior point 

estimate method. We assume a difference in means of 2 0 .2 %

  and a prior 

standard deviation of 1 8 %

  to give an optimal sample size of 8 4n


 , TEAVPB

0 .9 9 3 0  and power 0 .9 9 9 3 . This sample size would actually result in a TEAVPB

0 .9 4 0 1  and power 0 .9 4 5 7 , due to the actual difference between the means in the 

trial being 
ˆ 1 4 %  . When the true difference in means from the trial, 

ˆ 1 4 % 

  , 

and standard deviation, 1 8 %

 , are used as the point estimate priors, the resulting 

optimal sample size of 1 6 0n

 , gives TEAVPB 0 .9 8 6 5  and power 0 .9 9 8 5 . 

In addition, equation (8) is used to find the optimal sample size n


 to produce the 

maximum TEAVPB using a distribution on the prior treatment effect, 


. We assume 

a treatment effect which is normally distributed with prior means 

{0 .5, 0 .7 8,1,1 .1 2 ,1 .2 5,1 .5}






 and prior standard deviations of 
{0 .0 5 , 0 .2 , 0 .5 , 0 .7 5}







 

and investigate the actual TEAV-PB and power produced in the trial with treatment 

effect 
ˆ (9 6 8 2 ) / 1 8 0 .7 7 8    . 

As seen before, when the prior mean of θ is smaller than the true treatment effect, 


 




, the value of its prior standard deviation, 




, does not have a large effect on 

the TEAVPB produced. As 




 increases past the true mean, it is the smaller prior 

standard deviations, 




, which cause a quicker decrease in TEAVPB. When we use 

our prior treatment effect mean, 
2 0 .2 / 1 8 1 .1 2





 

, and moderate prior standard 

deviation, 
0 .2







, we get 1 2 2n

 , TEAVPB=0.9813 and power=0.9902, 
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(incidentally, these are larger than using the incorrect treatment effect in the point 

estimate method). Whereas, using the treatment effect from the trial as the prior 

mean, 
ˆ 0 .7 8


 


 

, and small prior standard deviation, 
0 .0 5







, gives 1 6 6n

 , 

TEAVPB=0.9865 and power=0.9989. The difference here is not large and therefore, 

we can still produce a large TEAVPB even when our initial assumptions about the 

treatment effect are incorrect. 

3.5 The effect of the Total Patient Population 

If the total patient population N decreases, the sample size which maximizes the 

total patient benefit also decreases. If N is decreased enough, the optimal sample 

size n


, will no longer produce a trial with power larger than 80%. When the 

treatment effect is small and the whole patient population is N = 80, it is actually 

most beneficial to have everyone in the trial. This can be seen from Figure 6c in the 

supplementary materials 1.4. Here, we use the prior point estimate method with the 

correct treatment outcome parameters: 
,

C C E E
   

 
 

 and  

  for each 

scenario. Figure 6, in the supplementary materials 1.4, also displays vertical lines 

which represent the sample size n needed for a trial to have 80% power, for each 

scenario. 

4 Sequential Designs 

A sequential design for a clinical trial is described by Whitehead (2002) as an 

approach which performs a series of analyses throughout the trial, where there is the 

potential to stop the trial at each analysis. These designs are efficient due to their 

ability to stop the trial early for either efficacy or futility (Pallmann et al., 2018). 

We now seek to optimize a two-stage sequential design (which includes a single 

interim analysis) using techniques similar to those shown above. We focus on the 

two-stage design as these are commonly used in clinical trials (Jovic and 

Whitehead, 2010). We investigate the Pocock boundaries (Pocock, 1977), O’Brien 

Fleming boundaries (O’Brien and Fleming, 1979) and triangular boundaries 

(Whitehead and Stratton, 1983). 
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In a two-stage design, the trial is stopped after the first stage for efficacy, if the test 

statistic, Z1, is larger than the first stage upper boundary, 1 ,u
B

. The trial is stopped for 

futility after the first stage, if the test statistic, Z1, is smaller than the first stage lower 

boundary, 1 , l
B

. And, hence, the trial reaches the second stage if the test statistic, Z1, 

is between 1 , l
B

 and 1 ,u
B

. 

If the trial is stopped after stage one for efficacy, then all patients outside stage one, 

1
N n

, will receive the experimental treatment. If the trial is stopped after stage one 

for futility then all patients outside stage one, 1
N n

, will receive the control 

treatment. 

After the second stage has been completed, the Z-test is used to determine if the 

null hypothesis should be rejected. This time the null hypothesis is rejected if the test 

statistic, Z2, is larger than the second stage boundary, B2, and thus, all patients 

outside stage one and stage two, 1 2
N n n 

, will receive the experimental treatment. 

If the null hypothesis is not rejected after the second stage all patients outside stage 

one and stage two, 1 2
N n n 

, will receive the control treatment. 

Thus, given we know the distributions of the patient outcomes, the TEAVPB is 

1 2

1 2 1 1, 1 1, 1 1,

1 2 1, 1 1, 2 2

1
[ | , , , , ] ( ) ( ) ( )

2 2

( ) ( , ) .

(

)

N u l u

l u

n n
E A B n n N n P B Z P B Z B

N

N n n P B Z B B Z

         

     

 (10) 

Here, Z1 and Z2 represent Z-test statistics calculated from the trial after the first and 

second stage of the trial has been completed. Hence, 

2 1

1
/ 2 /

2

n
Z  

 and 

2 1 2

2
/ 2 /

2

n n
Z  




, where δ is the difference between the two treatment means 

and σ is the common standard deviation of the outcome for both treatments. 

Furthermore, 1 , l
B

 and 1 ,u
B

 represent the lower and upper boundaries for stage 1 and 

B2 represents the boundary for stage 2. 
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For the TEIPB, we have the added issue that the superior treatment on average, 

may not be an individual’s superior treatment. Thus, equation (10) changes to 

incorporate this, as shown in equation (11), 

1

1 2

1 1 , 1

1 , 1

2

1 , 1 1 ,

1 2 1 ,

1
[ | , , , , ]

2

( ) ( ) (S u p e r io r  t re a tm e n t  o n  a v e ra g e  is  b e s t  fo r  p a t ie n t )

( ) 1 (S u p e r io r  t re a tm e n t  o n  a v e ra g e  is  b e s t  fo r  p a t ie n t )

( )
2

( ) (

(

[

( ) ]

[

N

u

l

l u

l

n
E IB n n

N

N n P B Z P

P B Z P

n
P B Z B

N n n P B

   

  

  

  

   
1 1 , 2 2

1 , 1 1 , 2 2

, )

· (S u p e r io r  t re a tm e n t  o n  a v e ra g e  is  b e s t  fo r  p a t ie n t )

( , )

· 1 (S u p e r io r  t re a tm e n t  o n  a v e ra g e  is  b e s t  fo r  p a t ie n t ) .( ) ] )

u

l u

Z B B Z

P

P B Z B B Z

P

 

   



 (11) 

The probabilities from equations (10) and (11) are defined below, 

1

1 , 1 1 ,

1 1

1 , 1 1 , 1 , 1 ,

1 1 2

1 , 1 1 , 2 2 2 1 , 2

1 1 2

2 1 , 2

1

1 2

1

1 2

( ) ,
2

( ) ,
2 2

( , ) , ,
2 2

, , ,
2 2

1

.

1

( )

( ) ( )

( )

( )

u u

l u l u

l u l

u

n
P B Z B

n n
P B Z B B B

n n n
P B Z B B Z B B

n n n
B B

n

n n

n

n n





 

 

 

 

 

 

   

       


       


    

 

 


 
 

 

 

    

Here, 1
( )x

 is the normal cumulative distribution, 1 1
( )P x X

 and 2 1 2
( , , )x x 

 is the 

bivariate normal cumulative distribution, 1 1 2 2
( , )P x X x X 

 and Σ is the covariance 

matrix for X1 and X2. The boundaries 1 , 1 ,
,

l u
B B

 and B2, vary depending on the shape 

of the boundary and the chosen type I error, α. 

4.1 Point Estimate Method 
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We investigate the total expected patient benefit produced using equations (10) and 

(11) and (7) in a two-stage design. The average response from two treatment arms, 

a control and an experimental treatment, are compared using a Z-test where the 

variance is assumed equal. Additionally, the type I error is chosen to be 0 .0 5   and 

the patient population is N = 500, to reflect the context of rare disease trials. The 

TEAVPB and TEIPB are investigated for a number of sample sizes, where 1 2
n n

 


, 

shown in Figure 7 in the supplementary materials 2. 

Numerical optimisation methods such as the function ‘fminbnd’ (fminbnd, 2016) 

(when we assume 1 2
n n

) and ‘fmincon’ (fmincon, 2016) (when we assume 1 2
n n

) 

in matlab (MATLAB, 2016) are used to find the optimal sample sizes of the first 

stage, 1
n



, and the second stage, 2
n



, of the trial, which maximizes the TEAVPB, 

1 2
[ | , , , , ]

N
E A B n n   

, and TEIPB, 1 2
[ | , , , , ]

N
E IB n n   

, in each scenario for each 

boundary. These are listed in Table A.1 in Appendix A, where 1 2
n n

 


. 

The optimal sample sizes when 1 2
n n

 


, which maximize the TEAVPB, 

1 2
[ | , , ,

N
E A B n n 

 

, ]  , and the TEIPB, 1 2
[ | , , , , ]

N
E IB n n   

, for each scenario are displayed in Tables 

2, 3 and 4 in the supplementary materials 2.1.1, 2.2.1 and 2.3.1, respectively. 

4.2 Adding uncertainty in the treatment effect 

Additionally, we can explore this two-stage design using a distribution on the prior 

treatment effect, instead of the prior point estimate method used above. We 

investigate a normal distribution on θ with prior means 

{0 .1, 0 .2 5, 0 .3 3 3, 0 .5, 0 .6 6 6 ,1}






 and prior standard deviations 
{0 .0 5 , 0 .2 , 0 .5 , 0 .7 5}







 

and a prior uniform distribution between 0 and 1. Figure 3 displays the TEAVPB for 

the null scenario, using the Pocock and triangular boundaries. 

Figure 3 shows, as the prior mean of θ increases from 
0 .1







, the TEAVPB 

increases. The larger the prior mean of θ, the closer the sample sizes get to the true 

optimal sample sizes 
* *

1 2
1n n 

. Also, the smaller the prior treatment effect standard 
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deviation, 




, again the smaller the sample sizes and the larger the TEAVPB. The 

triangular boundaries produce a larger TEAVPB than the Pocock boundaries for the 

corresponding prior means and standard deviations of θ. In the null scenario the 

uniform distribution does not perform well and often produces a lower patient benefit 

than the normal distributions investigated. It makes sense that the triangular 

boundaries come out on top for the null scenario, as these boundaries have the most 

aggressive stopping probability when there is little difference between the two 

treatments. 

The optimal sample sizes of both stages, 1
n



 and 2
n



, are found for all three 

boundaries in the supplementary materials. These optimal sample sizes are then 

substituted into equation (10) to find the TEAVPB for all six scenarios. This is shown 

in Figures 9, 12 and 15 and the power is shown in Figures 10, 13 and 16 for Pocock, 

O’Brien Fleming and Triangular boundaries in the supplementary materials 2.1.2, 

2.2.2 and 2.3.2, respectively. 

When the true treatment effect is non-zero, the patient benefit tends to be fairly large 

when the prior mean of θ is small. Then as the prior mean of θ increases, the patient 

benefit starts to decrease. This decrease starts at smaller values of 




 for the 

smaller values of the prior standard deviation of θ. The TEAVPB is fairly robust when 






 is large. When the true treatment effect is non-zero, the uniform distribution 

performs well and often produces a larger patient benefit than the normal 

distributions investigated. 

The power of the trial decreases as the prior mean of θ increases and as the prior 

standard deviation of θ decreases. This is due to the sample sizes decreasing in 

these situations and hence, the power decreases. 

Figure 3a highlights the main issue with using ~ (0 ,1)U


. Even though it is robust 

and gives large patient benefit for scenarios with a non-zero treatment effect, the risk 

of using this distribution is too great. In application many clinical trials find no 

difference between the two treatments and therefore, the null scenario is most 
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important in regards to the application. In the null scenario, the potential loss in 

patient benefit is very large. 

To find out which method (using a point estimate prior (PE), 
,

E C
 

 

 and 


, uniform 

distribution for prior treatment effect 


 or normal distribution for prior treatment 

effect 


) and which prior values for the treatment effect performed best, the 

TEAVPB and power were averaged across all six scenarios, for all three boundaries. 

The results for TEAVPB are shown in Figure 4 and the results for power are shown 

in Figure 5. 

The plots above show that the boundary that comes out on top across the majority of 

methods and treatment effect assumptions, is triangular. This is due to its superiority 

in the null scenario, outweighing its slight inferiority in the other scenarios. The 

assumed distribution on the prior treatment effect 
2

~ (2 / 3, 0 .2 )N


 produces the 

largest TEAVPB averaged across all scenarios. This distribution also gives an 

average power of 0.9244, which is very high. Traditionally, clinical trial designs 

should guarantee a power of at least 0.8. Our best method which maximizes 

TEAVPB, also gives an average power above 0.8 and therefore, this method could 

be applicable in a real clinical trial. 

4.3 Case Study Results 

The prior point estimate method is used with equation (10) to find the optimal sample 

sizes, 1 2
n n

 


, to produce the maximum TEAVPB for the case study described in 

Section 2. We use Pocock boundaries in this two-stage design and a prior difference 

in means of 2 0 .2 %

  and prior standard deviation of 1 8 %


  to generate optimal 

sample sizes 1 2
4 9n n

 
 

, TEAVPB 0 .9 9 5 9  and power 0 .9 9 9 7 . These sample 

sizes would actually give TEAVPB 0 .9 5 3 7  and power 0 .9 5 7 8 , due to the actual 

difference between the means in the trial being 
ˆ 1 4 %  . The trial would really need 

optimal sample sizes 1 2
9 5n n

 
 

, which would result in TEAVPB 0 .9 9 1 9  and power

0 .9 9 9 4 . 
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The assumption that 1 2
n n

 can be relaxed, and equation (10) used again to find the 

optimal sample sizes, 1
n



 and 2
n



, which give the maximum TEAVPB for the case 

study, again with Pocock boundaries. A prior 2 0 .2 %

  difference in means and 

prior standard deviation of 1 8 %

  gives optimal sample sizes 1

3 4n



 and 2
7 6n




, 

TEAVPB 0 .9 9 6 5  and power 0 .9 9 9 9 . These sample sizes would actually generate 

TEAVPB 0 .9 6 7 2  and power 0 .9 7 2 0 , due to the actual difference between the 

means in the trial being 
ˆ 1 4 %  . The trial would need optimal sample sizes 1

6 8n



 

and 2
1 4 3n




, which would generate TEAVPB 0 .9 9 3 0  and power 0 .9 9 9 7 . 

The optimal sample sizes 1
n



 and 2
n



 can further be determined using a distribution 

on the prior treatment effect to find the maximum TEAVPB for the case study. We 

assume a treatment effect which is normally distributed with prior means 

{0 .5, 0 .7 8,1,1 .1 2 ,1 .2 5,1 .5}






 and prior standard deviations of 
{0 .0 5 , 0 .2 , 0 .5 , 0 .7 5}







. 

We use Pocock boundaries in this two-stage design and investigate the actual 

TEAVPB and power produced in the trial, with treatment effect from the trial 

ˆ (9 6 8 2 ) / 1 8 0 .7 8    . 

As seen previously, when the prior mean of θ is small, the TEAVPB produced is 

large for all values of 




. As 




 increases past the true mean, it is the smaller 

standard deviations which cause a quicker decrease in TEAVPB. When we use our 

prior treatment effect mean, 
2 0 .2 / 1 8 1 .1 2





 

, and moderate prior standard 

deviation, 
0 .2







, we get 1
4 5n




 and 2
1 6 2n




, with TEAVPB=0.9921 and 

power=0.9997. This is larger than the TEAVPB and power produced using the same 

treatment effect assumption in the prior point estimate method. Whereas, using the 

true treatment effect from the trial as the mean, 
ˆ 0 .7 8


 


 

, and small prior 

standard deviation, 
0 .0 5







, gives 1
7 0n




 and 2
1 5 5n




, and TEAVPB=0.9929 and 

power=0.9999. The difference here is very small and thus, we still produce a very 

large TEAVPB even when our initial assumptions about the prior treatment effect are 

incorrect. 
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5 Covariate Expected Total Expected Individual 
Patient Benefit 

Following the definition of the TEIPB in section 3 we now seek to extended it to 

include a patient’s covariate value(s). We explore the situation, where the RCT 

indicates the superior treatment on average and this treatment is distributed to all 

patients outside the trial, but each individual patient’s 1, 2 , . . . ,i N  superior treatment 

will depend on their covariate value(s), xi (this could in theory be a vector of 

covariate values). Hence, we extend the TEIPB to calculate the covariate total 

expected individual patient benefit (CTEIPB). To calculate the CTEIPB, we find the 

expectation of the TEIPB over the patients’ covariate(s) distribution. 

2

1

2

2

1

2

1
[ [ | , , , , ] ]

2

·
( ) (1 )

4·

· (S u p e r io r  t re a tm e n t  o n  a v e ra g e  is  b e s t  fo r  p a t ie n t | )

·
1 (1 )

4·

· (1 (S u p e r io r  t re a tm e n t  o n  a v e ra g e  is  b e s t  fo r  p a t ie n t | ) ) .

[ (

[ ( )

( ( ) )

] ) ]

x N x

n
E E IB n x E

N

n
N n

P x

n

P x

  

















     

     



 (12) 

The RCT will always allocate / 2n  patients to their superior treatment by design, no 

matter if a patient’s covariate value affects their superior treatment or not. In addition, 

as the RCT will find the superior treatment on average, we assume that a patient’s 

covariate value does not affect the overall difference in treatment means within the 

trial, δ, nor the standard deviation of either treatment outcome, σ. Therefore, 

equation (12) can be re-written as, 

2

1

2

2

1

2

1
[ [ | , , , , ] ]

2

·
( ) (1 )

4·

· (S u p e r io r  t re a tm e n t  o n  a v e ra g e  is  b e s t  fo r  p a t ie n t | )

·
1 (1 )

4·

· (1 (S u p e r io r  t re a tm e n t  o n  a v e ra g e  is  b e s t  fo r  p a t ie n t | ) )

(

[ ( )

[ ]

( ( ) )

[ ]

x N

x

x

n
E E IB n x

N

n
N n

E P x

n

E P x

  

















     

     

 .] )
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If the patient’s covariate is bounded between [ , ]a b , has a probability distribution 

function 
( )

X
f x

 and we assume the experimental treatment produces the superior 

outcome on average, then the probability the superior treatment on average is 

superior for a patient is, 

[ (S u p e rio r  tre a tm e n t o n  a v e ra g e  is  b e s t  fo r  p a tie n t | ) ]

( )· ( )

[ ]
1 · ( ) .

( )
( ( ))

x

b

E C X
a

b
E C

E C X
a

E C

E P x

P Y Y f x d x

E Y Y
P Y Y f x d x

V a r Y Y

 

 
   







 (13) 

For example, using the case study described in section 2 we assume there is a 

binary biomarker, e.g. ANCA type (anti-MPO or anti-PR3), which affects the outcome 

of a patient who is given the experimental treatment (which we assume to be the 

superior treatment on average), 10mg avacopan, such that: 

2

, 0

, 2

,1

( , )  w h e n  0 ,  (a n t i-M P O )
~

( , )  w h e n  1, (a n t i-P R 3 ),

E i

E i

E i

N x
Y

N x

 

 

 




 

and the control (lesser treatment on average) is not affected by the biomarker such 

that, 
2

~ ( , )
C C

Y N  
   xi. Therefore, equation (13) can be used to calculate the 

probability of the superior treatment on average being the superior treatment for a 

patient, as shown below, 

1

0

1

,

2
0

[ (S u p e r io r  tre a tm e n t o n  a v e ra g e  is  b e s t  fo r  p a tie n t | ) ]

( ) · ( )

( )
1 · ( ) .

2

( ( ) )

x

E C

b

E b C

E C

b

E P x

P Y Y P x b

P Y Y P x b
 







  

 
    





 

This CTEIPB could be further extended to include a clinical trial which indicates the 

superior treatment for each subgroup of patients, depending on their covariate 

value(s). This would imply the power of the trial would depend on each patient’s 

covariate(s), xi. This form of individualisation would be of particular benefit if a phase 

II or previous phase III trial indicated the effect of the biomarker on the treatment 
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outcome, and we needed to perform a further phase III trial in order to prove said 

biomarker effect. We leave this as an extension to the work. 

6 Conclusions and Further Work 

In many clinical trial designs, the calculation of the sample size for the trial is found 

to be the minimum number of patients which guarantee a power of 80%, to prove a 

predicted clinically relevant treatment effect, 
( ) /

E C
   

   
 

. Many designs do not 

even factor in the total patient population. However, the small patient population we 

have investigated shows a larger trial with larger power may be more beneficial to 

the population as a whole. 

In the scenarios explored above, we have shown this method is applicable in small 

patient populations for a continuous outcome. In addition, we have shown this 

method can be used in both a one-stage and two-stage clinical trial. Furthermore, 

the method could be adapted to include a sample size re-estimation at an interim 

analysis. 

In many scenarios above, the proposed optimal sample size found using our method 

often also has large power. These two factors are normally talked about as 

competing in the literature, but here, we have shown in these situations, when the 

total expected average patient benefit is maximized, the power for the trial is also 

large. However, this method can still be extended in several different ways. 

Firstly, our proposed method only looks at a continuous outcome, which is normally 

distributed. We could explore non-normally distributed continuous outcomes, binary 

outcomes and survival outcomes. We could further investigate how our method 

would perform, if the treatment outcomes were affected by the covariate values of 

patients. We could inspect multiple covariates of different types (continuous, binary, 

categorical) and also, look into covariate selection methods. 

Additionally, our proposed method only looks into randomized controlled trials, with 

equal allocation between the treatments. This is most applicable to clinical trials, as 

the randomized controlled trial is the gold standard and most often used in practice, 

(Sibbald and Roland, 1998). However, many adaptive clinical trials have proven to 
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increase patient benefit within a trial (Korn and Freidlin, 2017). Therefore, we could 

further investigate our sample size calculation above for a response adaptive trial 

design, rather than a randomized controlled trial. 

Finally, we currently assume the total patient population N is constant throughout the 

trial. This is not applicable in real life. The patient population is always changing due 

to birth, death and migration rates. If we investigate a life threatening disease then 

the death rate within the trial could be different dependent on which treatment a 

patient is given. Or if we were to investigate a disease, which can be easily passed 

between susceptible patients (such as influenza), the total patient population would 

increase due to susceptible patients contracting the disease and decrease due to 

patients recovering or dying from the disease. Also, whether a patient who recovers 

from the disease becomes immune or susceptible to the disease again, would alter 

how you account for the changing population. If we were to investigate a changing 

patient population, it could alter the optimal sample size of the clinical trial. 

Limitations of our method include the assumptions we make on simplifying the drug 

development process. Firstly, we only take into account patients within an equal 

allocation phase III RCT and those patients outside the trial, who will be allocated the 

treatment chosen as superior within the trial. However, there are many stages 

between a treatment being created and finally making it to market. Some of these 

early phase trials will have small sample sizes. In our application of investigating 

small patient populations, however, these trials could still have a large impact on our 

method and the actual TEAVPB produced. 

Furthermore, we use the one-sided two sample Z-test at level α to determine which 

treatment will be allocated to the ( )N n  patients outside the trial. Although, this is a 

conventional approach there are other decision rules which could be used to 

determine which treatment is given to patients outside the trial. Day et al. (2018), for 

example, suggests using a larger type I error α, in the context of small populations. A 

future direction of this work considers optimising the choice of α used in the one-

sided two sample Z-test, in order to increase the TEAVPB. 
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In this work, we assume each patient within the total population will only be assigned 

one treatment (i.e. we focus on acute treatments). For many diseases (particularly 

those more chronic in nature) after a clinical trial has taken place, any patient within 

the trial has the opportunity to switch to the superior treatment. This set-up would 

translate to a three state version of the problem discussed above. Patients would not 

only be assigned to either the superior treatment or not, they would also have a third 

option of initially being given the non-superior treatment within the trial, but changing 

to the superior treatment after the trial was completed. This would not be as 

advantageous to the patient as being allocated the superior treatment from the start, 

but would be more advantageous than being assigned the non-superior treatment 

only. Accounting for this will increase the TEAVPB in each of the scenarios 

discussed above, but is also likely to result in different optimal sample sizes. 

Another assumption which limits our approach is how we think about patient benefit 

in equation (2). Throughout this manuscript we assume patient benefit is the 

proportion of patients assigned their superior treatment. However, we explore 

continuous outcomes and, hence, it may be more appropriate to think about 

maximizing patient benefit in terms of minimizing the mean loss in a patient’s 

outcome, for the whole population, N. For example, 

1
( ( ) ( ) )

[ ] .

N

i i i i

N

y k y k
E A B

N




 

  (14) 

Where, 
( )

i i
y k

 is the actual outcome of patient i given treatment ki and 
( )

i
y k



 is the 

potential outcome of patient i if they were assigned the superior treatment, k


. 

Again, this sum can be split into the difference in outcome of patients within the trial 

and outside it. This set up would be of particular importance when thinking about the 

TEIPB, especially if the clinical trial not only determined the superior treatment on 

average, but also if the trial looked at which patients within the trial, each treatment 

was superior for. 
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A Comparison of the three boundaries 

The optimal sample sizes 1 2
n n

 


, which maximize the TEAVPB, 

1 2
[ | , , , , ]

N
E A B n n   

, and the TEIPB, 1 2
[ | , , , , ]

N
E IB n n   

, for each scenario are 

listed in Table A.1. We can also calculate the expected overall trial size if we were to 

have a two-stage sequential design using the optimal sample sizes, 1
n



 and 2
n



. The 

expected total trial size, [ ]E n


, is calculated using, 

1 1 2
[ ] (s to p  a fte r  f irs t  s tag e )· (1 (s to p  a fte r  f irs t  s tag e ))·( )E n P n P n n

   
   

. 

These optimal sample sizes for the first stage, 1
n



, are over half of the optimal 

sample sizes n


 found for the one-stage design, listed in Table 1. In addition, these 

two-stage designs produce larger maximum TEAVPB and TEIPB, than the one-

stage design. The smallest optimal sample sizes are given by the O’Brien Fleming 

boundaries and the largest optimal sample sizes are produced from the triangular 

boundaries. Even though the O’Brien Fleming boundaries have the smaller optimal 

sample sizes, because they are less likely to stop after the first stage, the O’Brien 

Fleming boundaries give the larger expected sample size and therefore, they 
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produce a smaller TEAVPB. The largest TEAVPB is produced by the Pocock 

boundaries. 

As the true treatment effect increases, the probability of the trial stopping early 

increases and thus, the difference between the optimal first stage sample size 1
n



 

and expected total sample size [ ]E n


 decreases. Table A.1 also shows the high 

power produced in each scenario for these optimal sample sizes, 1 2
n n

 


 for all 

boundaries.  

 

Fig. 1 Total expected average patient benefit for three scenarios, when using a 

point estimate (dotted lines) and a distribution (normal-dashed lines, uniform-

horizontal line) on the prior treatment effect for total patient population N = 500. 

 

Fig. 2 Total expected average patient benefit (a) and power (b) for trial in case 

study, when using a distribution on the prior treatment effect for total patient 

population N = 6680. 
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Fig. 3 Total expected average patient benefit for the null scenario (

5, 5, 0 .7 5
E C

    
) with Pocock (a) and triangular (b) boundaries, when using a 

distribution on the prior treatment effect for total patient population N = 500. 

 

Fig. 4 Total expected average patient benefit averaged across all six scenarios, 

when using a point estimate (dotted lines) and a distribution (normal-dashed lines, 

uniform-horizontal lines) on the prior treatment effect, with Pocock (a), O’Brien 

Fleming (b) and triangular (c) boundaries, for total patient population N = 500. 
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Fig. 5 Power averaged across all six scenarios, when using a point estimate 

(dotted lines) and a distribution (normal-dashed lines, uniform-horizontal lines) on the 

prior treatment effect, with Pocock (a), O’Brien Fleming (b) and triangular (c) 

boundaries, for total patient population N = 500. 

 

Fig. 6 Total expected average patient benefit (a) and power (b) for trial in case 

study, when using Pocock boundaries and a distribution on the prior treatment effect 

for total patient population N = 6680. 
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Table 1 Optimal sample sizes and the total expected patient benefit and power 

they produce in six scenarios for patient population N = 500. 

   

Scenario  n


 for n


 for TEAVPB  TEIPB  Power  

μE μC σ θ TEAVPB  TEIPB  for n


 for n


 for n


 

5  5  0.75  0  1  -  0.9750  0.5000  -  

5.5  5.25  0.75  

1

3   
283  283  0.6305  0.5243  0.8006  

5.75  5.25  1  

1

2   
183  183  0.7679  0.5740  0.9225  

5.75  5.25  0.75  

2

3   
125  125  0.8460  0.6255  0.9614  

6  5  1  1  68  68  0.9188  0.7179  0.9847  

6  5  0.75  

4

3   
43  43  0.9497  0.7942  0.9921  
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Table A.1 Optimal sample sizes and the total expected patient benefit, expected 

sample sizes and power they produce in six scenarios for a two-stage design with 

Pocock, O’Brien Fleming and triangular boundaries for total patient population N = 

500. 

Boundary  Scenario  
1

n


 
TEAVPB (s to p  a f te rP  [ ]E n



 
Power  

 

μE μC σ θ 

  

f irs t  s ta g e )  

 

for 1
n



 

Pocock  5  5  0.75  0  1  0.9731  0.0294  2  -  

 

5.5  5.25  0.75  

1

3   
186  0.6932  0.5377  272  0.8642  

 

5.75  5.25  1  

1

2   
122  0.8246  0.7201  156  0.9624  

 

5.75  5.25  0.75  

2

3   
82  0.8907  0.7996  98  0.9838  

 

6  5  1  1  43  0.9461  0.8644  49  0.9939  

 

6  5  0.75  

4

3   
27  0.9678  0.9007  30  0.9971  

O’Brien Fleming 5  5  0.75  0  1  0.9731  0.0052  2  -  

 

5.5  5.25  0.75  

1

3   
160  0.6631  0.2456  281  0.8438  

 

5.75  5.25  1  

1

2   
108  0.8043  0.4214  170  0.9556  

 

5.75  5.25  0.75  

2

3   
75  0.8780  0.536  110  0.9826  

 

6  5  1  1  41  0.9405  0.6573  55  0.9947  

 

6  5  0.75  

4

3   
25  0.9649  0.7043  32  0.9969  

Triangular  5  5  0.75  0  1  0.9739  0.7837  1  -  

 

5.5  5.25  0.75  

1

3   
192  0.6765  0.5932  270  0.8663  

 

5.75  5.25  1  

1

2   
126  0.8169  0.7399  159  0.9608  

 

5.75  5.25  0.75  

2

3   
85  0.8856  0.8125  101  0.9821  

 

6  5  1  1  45  0.9431  0.8757  51  0.9928  
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Boundary  Scenario  
1

n


 
TEAVPB (s to p  a f te rP  [ ]E n



 
Power  

 

6  5  0.75  

4

3   
28  0.9657  0.9068  31  0.9961  
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