Some Inequalities for Power Means; a Problem from "The Logarithmic Mean Revisited"

G.J.O. Jameson

Abstract. We establish some inequalities comparing power means of two numbers with combinations of the arithmetic and geometric means. A conjecture from [1] is confirmed.

Given positive numbers a, b, the arithmetic, geometric and p th power means are

$$
A(a, b)=\frac{1}{2}(a+b), \quad G(a, b)=(a b)^{1 / 2}, \quad M_{p}(a, b)=\left(\frac{1}{2}\left(a^{p}+b^{p}\right)\right)^{1 / p}
$$

for $p \neq 0$. With a, b fixed, we denote these just by A, G and M_{p}.
Of course, these definitions extend in a natural way to more than two numbers. For any finite set of positive numbers, it is clear that $M_{1}=A$, and well known that $G \leq M_{p} \leq A$ for $0<p \leq 1, M_{p} \geq A$ for $p \geq 1$ and $M_{p} \leq G$ for $p<0$. (Also, one defines M_{0} to be G).

For two numbers, it is easily seen that $M_{1 / 2}=\frac{1}{2} G+\frac{1}{2} A$. This equality does not extend to more than two numbers: for the triple $(4,1,1)$ we have $M_{1 / 2}<\frac{1}{2} G+\frac{1}{2} A$, while the opposite inequality holds for $(4,4,1)$. From now on, we restrict considerations to two numbers a, b. It was shown in the note [1] that $M_{1 / 3} \leq \frac{2}{3} G+\frac{1}{3} A$, and conjectured that $M_{p} \leq(1-p) G+p A$ for $0<p \leq \frac{1}{2}$, together with the opposite inequality for $\frac{1}{2} \leq p \leq 1$. As reported in [1], the conjecture was confirmed by Gord Sinnamon; his proof (communicated privately) is ingenious, but it involves some fairly heavy manipulation.

A more complete picture is obtained if at the same time we compare M_{p} with $G^{1-p} A^{p}$. Equality holds for $p=1$, and it is easily verified that $M_{-1}=G^{2} / A$ (this is the harmonic mean), so equality also holds for $p=-1$. The results in [1] imply that $M_{1 / 3} \geq G^{2 / 3} A^{1 / 3}$ (with the logarithmic mean coming between these two quantities), suggesting that a similar inequality holds for $0<p \leq 1$, though this was not explicitly stated as a conjecture.

Here we offer a simple unified treatment of both comparisons, based on the substitution that was used in [1]. The results are as follows.
Theorem 1. The inequality $M_{p} \leq(1-p) G+p A$ holds for $0<p \leq \frac{1}{2}$ and for $p \geq$ 1. The opposite inequality holds for $\frac{1}{2} \leq p \leq 1$ and for $p<0$.

Theorem 2. The inequality $G^{1-p} A^{p} \leq M_{p}$ holds for $0<p \leq 1$ and for $p \leq-1$. The opposite inequality holds for $p \geq 1$ and for $-1 \leq p<0$.

Note first that if $x=a / b$, then $A(a, b)=b A(x, 1)$ and similarly for G and M_{p}, so it is sufficient to consider the pair $(x, 1)$: henceforth the notation A, G, M_{p} applies to this pair. Now substitute $x=e^{2 t}$. Then $G=e^{t}$ and

$$
A=\frac{1}{2}\left(e^{2 t}+1\right)=e^{t} \cosh t, \quad M_{p}=\left(\frac{1}{2}\left(e^{2 p t}+1\right)\right)^{1 / p}=e^{t}(\cosh p t)^{1 / p}
$$

So, for example, the inequality $M_{p} \geq G$ stated above translates to $(\cosh p t)^{1 / p} \geq 1$, which is obvious for $p>0$. The inequality in Theorem 1 translates to

$$
\begin{equation*}
(\cosh p t)^{1 / p} \leq(1-p)+p \cosh t \tag{1}
\end{equation*}
$$

For both theorems, we will use the following Lemma, essentially an adaption of the "integrating factor" method to inequalities.

Lemma 3. Let f be a function satisfying $f(0)=f^{\prime}(0)=0$ and $f^{\prime \prime}(t) \geq f(t)$ for $t \geq 0$. Then $f(t) \geq 0$ for $t>0$. The reverse applies if $f^{\prime \prime}(t) \leq f(t)$ for $t>0$.

Proof. Let $g(t)=f^{\prime}(t)+f(t)$ and $h(t)=f^{\prime}(t)-f(t)$. Then $g(0)=h(0)=0$ and

$$
g^{\prime}(t)-g(t)=h^{\prime}(t)+h(t)=f^{\prime \prime}(t)-f(t) \geq 0
$$

hence

$$
\begin{aligned}
\frac{d}{d t}\left(e^{-t} g(t)\right) & =e^{-t}\left(g^{\prime}(t)-g(t)\right) \geq 0 \\
\frac{d}{d t}\left(e^{t} h(t)\right) & =e^{t}\left(h^{\prime}(t)+h(t)\right) \geq 0
\end{aligned}
$$

Consequently $e^{-t} g(t)$ and $e^{t} h(t)$ are increasing. So for $t>0$, we have $g(t) \geq 0$ and $h(t) \geq 0$, hence $f^{\prime}(t) \geq 0$, so also $f(t) \geq 0$. The inequalities reverse if $f^{\prime \prime}(t) \leq$ $f(t)$.

Proof of Theorem 1. As we have seen, the substitution $x=e^{2 t}$ translates $M_{p} \leq$ $(1-p) G+p A$ to $f(t) \geq 0$ (for all t), where

$$
f(t)=p \cosh t+(1-p)-(\cosh p t)^{1 / p}
$$

Since f is even, it is enough to consider $t>0$. Then $f(0)=0$ and

$$
f^{\prime}(t)=p \sinh t-(\cosh p t)^{1 / p-1} \sinh p t
$$

So $f^{\prime}(0)=0$ and

$$
\begin{aligned}
f^{\prime \prime}(t) & =p \cosh t-p(\cosh p t)^{1 / p}-(1-p)(\cosh p t)^{1 / p-2}(\sinh p t)^{2} \\
& =p \cosh t-(\cosh p t)^{1 / p}+(1-p)(\cosh p t)^{1 / p-2} \\
& =f(t)-(1-p)+(1-p)(\cosh p t)^{1 / p-2}
\end{aligned}
$$

If $0<p \leq \frac{1}{2}$, then $\frac{1}{p}-2 \geq 0$, so $(\cosh p t)^{1 / p-2} \geq 1$ and $f^{\prime \prime}(t) \geq f(t)$ for all t. If $p \geq \frac{1}{2}$ or $p<0$, then $(\cosh p t)^{1 / p-2} \leq 1$. So if $\frac{1}{2} \leq p \leq 1$ or $p<0$, then $f^{\prime \prime}(t) \leq$ $f(t)$, and if $p \geq 1$, then $f^{\prime \prime}(t) \geq f(t)$. The statements follow, by the Lemma.

Proof of Theorem 2. The inequality $G^{1-p} A^{p} \leq M_{p}$ translates to

$$
\begin{equation*}
(\cosh p t)^{1 / p} \geq(\cosh t)^{p} \tag{2}
\end{equation*}
$$

(this inequality is perhaps of some interest in its own right). Let

$$
f(t)=(\cosh p t)^{1 / p^{2}}-\cosh t
$$

Then $f(0)=0$ and

$$
\begin{gathered}
f^{\prime}(t)=\frac{1}{p}(\cosh p t)^{1 / p^{2}-1} \sinh p t-\sinh t \\
f^{\prime \prime}(t)=(\cosh p t)^{1 / p^{2}}+r(t)-\cosh t=f(t)+r(t)
\end{gathered}
$$

where

$$
r(t)=\left(\frac{1}{p^{2}}-1\right)(\cosh p t)^{1 / p^{2}-2}(\sinh p t)^{2}
$$

If $|p| \leq 1$, then $1 / p^{2}-1 \geq 0$, so $r(t) \geq 0$, hence $f^{\prime \prime}(t) \geq f(t)$, so $f(t) \geq 0$ for $t \geq 0$. This implies (2) if $0<p \leq 1$ and the reverse of (2) if $-1 \leq p<0$. If $|p| \geq 1$, then $f^{\prime \prime}(t) \leq f(t)$, so $f(t) \leq 0$ for $t \geq 0$. This implies the reverse of (2) for $p \geq 1$ and (2) for $p \leq-1$.

It remains to compare and combine the inequalities in Theorems 1 and 2. There are five intervals to consider. For $0<p \leq \frac{1}{2}$, we have

$$
G^{1-p} A^{p} \leq M_{p} \leq(1-p) G+p A
$$

For $-1 \leq p<0$, we have

$$
(1-p) G+p A \leq M_{p} \leq G^{1-p} A^{p}
$$

In the other cases, we have either two upper bounds or two lower ones. We compare them. For this purpose, write $(1-p) G+p A=C$. For $\frac{1}{2} \leq p \leq 1$, we have $G^{1-p} A^{p} \leq C$, so the better estimate is $(1-p) G+p A \leq M_{p}$, given by Theorem 1. (Recall that in this case we have the upper bound $M_{p} \leq A$).

For $p \geq 1$, we have $C \leq G^{1-p} A^{p}$, by the weighted AM-GM inequality applied to $A=\frac{1}{p} C+\left(1-\frac{1}{p}\right) G$. So the better estimate is $M_{p} \leq p A-(p-1) G$, again from Theorem 1. (Also $M_{p} \geq A$).

For $p \leq-1$, we have again $C \leq G^{1-p} A^{p}$, seen by writing $G=[1 /(1+q)] C+$ $[q /(1+q)] A$, where $q=-p$. So the better estimate is $G^{1-p} A^{p} \leq M_{p}$, given by Theorem 2. (Also $M_{p} \leq G$).

REFERENCES

1. Jameson, G.J.O., Mercer, P.R. (2019). The logarithmic mean revisited. Amer. Math. Monthly 126 (7): 641-645.

Department of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YF, United Kingdom g.jameson@lancaster.ac.uk

