American Mathematical Monthly 121:1

June 15, 2022 11:40 a.m.

Some Inequalities for Power Means; a Problem from "The Logarithmic Mean Revisited"

G.J.O. Jameson

Abstract. We establish some inequalities comparing power means of two numbers with combinations of the arithmetic and geometric means. A conjecture from [1] is confirmed.

Given positive numbers a, b, the arithmetic, geometric and pth power means are

$$A(a,b) = \frac{1}{2}(a+b), \quad G(a,b) = (ab)^{1/2}, \quad M_p(a,b) = \left(\frac{1}{2}(a^p + b^p)\right)^{1/p}$$

for $p \neq 0$. With a, b fixed, we denote these just by A, G and M_p .

Of course, these definitions extend in a natural way to more than two numbers. For any finite set of positive numbers, it is clear that $M_1 = A$, and well known that $G \leq M_p \leq A$ for $0 , <math>M_p \geq A$ for $p \geq 1$ and $M_p \leq G$ for p < 0. (Also, one defines M_0 to be G).

For two numbers, it is easily seen that $M_{1/2} = \frac{1}{2}G + \frac{1}{2}A$. This equality does not extend to more than two numbers: for the triple (4, 1, 1) we have $M_{1/2} < \frac{1}{2}G + \frac{1}{2}A$, while the opposite inequality holds for (4, 4, 1). From now on, we restrict considerations to two numbers a, b. It was shown in the note [1] that $M_{1/3} \leq \frac{2}{3}G + \frac{1}{3}A$, and conjectured that $M_p \leq (1-p)G + pA$ for $0 , together with the opposite inequality for <math>\frac{1}{2} \leq p \leq 1$. As reported in [1], the conjecture was confirmed by Gord Sinnamon; his proof (communicated privately) is ingenious, but it involves some fairly heavy manipulation.

A more complete picture is obtained if at the same time we compare M_p with $G^{1-p}A^p$. Equality holds for p = 1, and it is easily verified that $M_{-1} = G^2/A$ (this is the harmonic mean), so equality also holds for p = -1. The results in [1] imply that $M_{1/3} \ge G^{2/3}A^{1/3}$ (with the logarithmic mean coming between these two quantities), suggesting that a similar inequality holds for 0 , though this was not explicitly stated as a conjecture.

Here we offer a simple unified treatment of both comparisons, based on the substitution that was used in [1]. The results are as follows.

Theorem 1. The inequality $M_p \leq (1-p)G + pA$ holds for $0 and for <math>p \geq 1$. The opposite inequality holds for $\frac{1}{2} \leq p \leq 1$ and for p < 0.

Theorem 2. The inequality $G^{1-p}A^p \leq M_p$ holds for $0 and for <math>p \leq -1$. The opposite inequality holds for $p \geq 1$ and for $-1 \leq p < 0$.

Note first that if x = a/b, then A(a, b) = bA(x, 1) and similarly for G and M_p , so it is sufficient to consider the pair (x, 1): henceforth the notation A, G, M_p applies to this pair. Now substitute $x = e^{2t}$. Then $G = e^t$ and

$$A = \frac{1}{2}(e^{2t} + 1) = e^t \cosh t, \qquad M_p = \left(\frac{1}{2}(e^{2pt} + 1)\right)^{1/p} = e^t (\cosh pt)^{1/p}.$$

January 2014]

SOME INEQUALITIES FOR POWER MEANS

So, for example, the inequality $M_p \ge G$ stated above translates to $(\cosh pt)^{1/p} \ge 1$, which is obvious for p > 0. The inequality in Theorem 1 translates to

$$(\cosh pt)^{1/p} \le (1-p) + p \cosh t.$$
 (1)

For both theorems, we will use the following Lemma, essentially an adaption of the "integrating factor" method to inequalities.

Lemma 3. Let f be a function satisfying f(0) = f'(0) = 0 and $f''(t) \ge f(t)$ for $t \ge 0$. Then $f(t) \ge 0$ for t > 0. The reverse applies if $f''(t) \le f(t)$ for t > 0.

Proof. Let g(t) = f'(t) + f(t) and h(t) = f'(t) - f(t). Then g(0) = h(0) = 0 and

$$g'(t) - g(t) = h'(t) + h(t) = f''(t) - f(t) \ge 0,$$

hence

$$\frac{d}{dt}\left(e^{-t}g(t)\right) = e^{-t}\left(g'(t) - g(t)\right) \ge 0,$$

$$\frac{d}{dt}\left(e^{t}h(t)\right) = e^{t}\left(h'(t) + h(t)\right) \ge 0.$$

Consequently $e^{-t}g(t)$ and $e^{t}h(t)$ are increasing. So for t > 0, we have $g(t) \ge 0$ and $h(t) \ge 0$, hence $f'(t) \ge 0$, so also $f(t) \ge 0$. The inequalities reverse if $f''(t) \le f(t)$.

Proof of Theorem 1. As we have seen, the substitution $x = e^{2t}$ translates $M_p \leq (1-p)G + pA$ to $f(t) \geq 0$ (for all t), where

$$f(t) = p \cosh t + (1-p) - (\cosh pt)^{1/p}.$$

Since f is even, it is enough to consider t > 0. Then f(0) = 0 and

$$f'(t) = p \sinh t - (\cosh pt)^{1/p-1} \sinh pt.$$

So f'(0) = 0 and

$$f''(t) = p \cosh t - p(\cosh pt)^{1/p} - (1-p)(\cosh pt)^{1/p-2}(\sinh pt)^2$$

= $p \cosh t - (\cosh pt)^{1/p} + (1-p)(\cosh pt)^{1/p-2}$
= $f(t) - (1-p) + (1-p)(\cosh pt)^{1/p-2}$.

If $0 , then <math>\frac{1}{p} - 2 \geq 0$, so $(\cosh pt)^{1/p-2} \geq 1$ and $f''(t) \geq f(t)$ for all t. If $p \geq \frac{1}{2}$ or p < 0, then $(\cosh pt)^{1/p-2} \leq 1$. So if $\frac{1}{2} \leq p \leq 1$ or p < 0, then $f''(t) \leq f(t)$, and if $p \geq 1$, then $f''(t) \geq f(t)$. The statements follow, by the Lemma.

Proof of Theorem 2. The inequality $G^{1-p}A^p \leq M_p$ translates to

$$(\cosh pt)^{1/p} \ge (\cosh t)^p \tag{2}$$

© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121

2

(this inequality is perhaps of some interest in its own right). Let

$$f(t) = (\cosh pt)^{1/p^2} - \cosh t.$$

Then f(0) = 0 and

$$f'(t) = \frac{1}{p} (\cosh pt)^{1/p^2 - 1} \sinh pt - \sinh t,$$

$$f''(t) = (\cosh pt)^{1/p^2} + r(t) - \cosh t = f(t) + r(t),$$

where

$$r(t) = \left(\frac{1}{p^2} - 1\right)(\cosh pt)^{1/p^2 - 2}(\sinh pt)^2.$$

If $|p| \leq 1$, then $1/p^2 - 1 \geq 0$, so $r(t) \geq 0$, hence $f''(t) \geq f(t)$, so $f(t) \geq 0$ for $t \geq 0$. This implies (2) if $0 and the reverse of (2) if <math>-1 \leq p < 0$. If $|p| \geq 1$, then $f''(t) \leq f(t)$, so $f(t) \leq 0$ for $t \geq 0$. This implies the reverse of (2) for $p \geq 1$ and (2) for $p \leq -1$.

It remains to compare and combine the inequalities in Theorems 1 and 2. There are five intervals to consider. For 0 , we have

$$G^{1-p}A^p \le M_p \le (1-p)G + pA.$$

For $-1 \le p < 0$, we have

$$(1-p)G + pA \le M_p \le G^{1-p}A^p.$$

In the other cases, we have either two upper bounds or two lower ones. We compare them. For this purpose, write (1-p)G + pA = C. For $\frac{1}{2} \le p \le 1$, we have $G^{1-p}A^p \le C$, so the better estimate is $(1-p)G + pA \le M_p$, given by Theorem 1. (Recall that in this case we have the upper bound $M_p \le A$).

For $p \ge 1$, we have $C \le G^{1-p}A^p$, by the weighted AM-GM inequality applied to $A = \frac{1}{p}C + (1 - \frac{1}{p})G$. So the better estimate is $M_p \le pA - (p-1)G$, again from Theorem 1. (Also $M_p \ge A$).

For $p \leq -1$, we have again $C \leq G^{1-p}A^p$, seen by writing G = [1/(1+q)]C + [q/(1+q)]A, where q = -p. So the better estimate is $G^{1-p}A^p \leq M_p$, given by Theorem 2. (Also $M_p \leq G$).

REFERENCES

1. Jameson, G.J.O., Mercer, P.R. (2019). The logarithmic mean revisited. *Amer. Math. Monthly* 126 (7): 641–645.

Department of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YF, United Kingdom g.jameson@lancaster.ac.uk