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Abstract

We derive a Matérn Gaussian process (GP) on the vertices of a hy-
pergraph. This enables estimation of regression models of observed or
latent values associated with the vertices, in which the correlation and
uncertainty estimates are informed by the hypergraph structure. We fur-
ther present a framework for embedding the vertices of a hypergraph into
a latent space using the hypergraph GP. Finally, we provide a scheme
for identifying a small number of representative inducing vertices that
enables scalable inference through sparse GPs. We demonstrate the utility
of our framework on three challenging real-world problems that concern
multi-class classification for the political party affiliation of legislators on
the basis of voting behaviour, probabilistic matrix factorisation of movie
reviews, and embedding a hypergraph of animals into a low-dimensional
latent space.

1 Introduction

Gaussian processes (GPs) are a popular type of stochastic process commonly
used in machine learning for modeling distributions over real-valued functions
(Rasmussen and Williams, 2006). In recent years, GPs have been successfully
used in areas such as optimisation (Mockus, 2012), variance-reduction (Oates
et al., 2017) and robotics (Deisenroth et al., 2015). This recent blossoming is due
to the GP’s ability to model complex functional relationships with accompanying
well-calibrated uncertainty estimates.

Careful consideration of the underlying data’s representation has facilitated more
expressive GP priors to be constructed. Examples of this include the modelling
of regular time-series models (Särkkä and Solin, 2019; Adam et al., 2020), spatial
data observed on a uniform grid (Solin and Särkkä, 2019) and multivariate
outputs where inter-variable correlations exists (Alvarez et al., 2012). In this
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work, we develop and implement a GP prior for situations where relationships
between the explanatory variables in the data admit a hypergraph structure.

As a motivating example, consider modelling the party affiliation of a group of
politicians using legislative information. It is natural to expect that politicians
who collaborate on a piece of legislation share some similarity. Since any set
of politicians may work together, this dependence can be represented by a
hypergraph where each politician is a vertex and each hyperedge corresponds
to a piece of legislation. Whilst we may also describe this data structure as
a graph of pairwise collaborations, this representation cannot express the full
structural information encoded in the hypergraph where collaborations occur
between two, or more, politicians. When the relationship between observations
is represented by a hypergraph, the Euclidean measure of distance between pairs
of observations is no longer appropriate and we must instead build a distance
function using the structure of the underlying hypergraph.

The contributions of this paper can be seen as a generalisation of Borovitskiy
et al. (2020a) whereby we introduce a hypergraph kernel to allow higher-order
interactions to be represented in the GP prior. This results in a prior distribution
that is more representative of the underlying data’s structure, and we find that it
leads to significant improvements in the GP posterior’s inferential performance.
In addition to this, we also present a novel approach for embedding hypergraphs
in a lower dimensional latent space through a Gaussian process latent variable
model (GPLVM), present a new scheme for selecting inducing points in a
hypergraph GP and finally show how our hypergraph GP can be used within a
probabilistic matrix factorisation (PMF) framework.

2 Background

2.1 Gaussian processes

For a set X , a stochastic process f : X → R is a GP if for any finite collection
X = {x1,x2, . . . ,xn} ⊂ X the random variable f := f(X) is distributed jointly
Gaussian (Rasmussen and Williams, 2006). We write a GP f ∼ GP(µ, k) with
mean function µ : X → R and θ-parameterised kernel k : X × X → R where k
gives rise to the Gram matrix Kxx such that the (i, j)th entry is computed by
[Kxx]i,j = k(xi,xj). In standard expositions of stationary Gaussian processes,
with X = Rd, k(xi,xj) is a function of the distance between xi and xj , whereas
this article introduces a kernel that is evaluated on vertices of a hypergraph.
Without loss of generality, we assume µ(x) := 0 for all x and drop dependency
on θ for notational convenience.

Assume an observed dataset D = {xi, yi}Ni=1 of N training example pairs with

inputs xi ∈ X and outputs yi ∈ R distributed according to y | f ∼
∏N
i=1 p(yi | fi).

Then the predictive density for latent function values f? at a finite collection of
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N? test points X? = {x?1, . . . ,x?N?} is given by

p(f? | D) =

∫
p (f?, f | D) df =

∫
p (f?|f) p(f |D) df , (1)

where p(f |D) ∝ p(y|f)p(f) is the posterior density of f given the training data.
When the observations are distributed according to a Gaussian likelihood, both
p(f? | f) and p(f | D) are Gaussian densities. The marginal distribution of a
Gaussian is also Gaussian and so the posterior in Equation (1) is a Gaussian
distribution with a closed-form expression for the mean and covariance. When
the likelihood function is non-Gaussian, the posterior distribution over the latent
function p(f | D) has no closed-form expression and inference for Equation (1)
is no longer tractable. Popular solutions that address this problem involve
approximating p(f | D) through a Laplace approximation (Williams and Barber,
1998) or variational inference (Opper and Archambeau, 2008). Alternatively,
the latent function’s values can be inferred directly using either Markov chain
Monte-Carlo (MCMC) (Murray et al., 2010) or Stein variational gradient descent
(Pinder et al., 2020).

The primary cost incurred when computing the GP posterior is the inversion
of the Gram matrix Kxx. Sparse approximations (Snelson and Ghahramani,
2005) temper this cubic in N cost through the introduction of a set of J
inducing points Z = {z1, z2, . . . , zJ} ∈ X and corresponding function outputs
u = f(Z). Letting J � N , this approach reduces the computational requirement
to O(NJ2) from O(N3). Following Titsias (2009), we augment the posterior
distribution with u to give p(f ,u |y) = p(f |u,y)p(u |y) and then introduce
the variational approximation q(f ,u) = p(f |u)q(u). Constraining q to be a
multivariate Gaussian q(u) = N (m, S) and collecting our parameters of interest
ψ = {Z,m, S,θ}, we can determine the optimal parameters ψ? for the variational
approximation as

ψ? = arg min
ψ∈Ψ

KL(q(f ,u)||p(f ,u |y))

≥ arg max
ψ∈Ψ

N∑
n=1

Eq(u,f) [log p(yi | fi)]−KL(q(u)||p(u)) (2)

where Ψ is the space of all possible parameters and p(u) = N (u |0,Kzz) such
that [Kzz]i,j = k(zi, zj). The quantity in Equation (2) is commonly referred to
as the evidence lower bound (ELBO) and is equal to the marginal log-likelihood
when KL(q(u)||p(u)) = 0. For a full introduction to variational sparse GPs see
Leibfried et al. (2020).

2.2 Hypergraphs

A hypergraph (Bretto, 2013) is a generalisation of a graph in which interactions
occur among an arbitrary set of nodes (see Figure 1). This type of data provides
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a flexible and descriptive framework to encode higher-order relationships within
a graph-like structure. Formally, we let G = {V,E} be a hypergraph with
vertices V = {v1, . . . , vN} and hyperedges E = {e1, . . . , eM}. Each hyperedge
ei ∈ E corresponds to a subset of vertices from V with no repeated elements. A
hyperedge ei is said to be weighted when it has a positive value w(ei) assigned
to it and incident to a vertex vj if vj ∈ ei. We represent a hypergraph via a
|N | × |M | incidence matrix H with (j, i)th entry equal to 1 if ei is incident to vj
and 0 otherwise.

Every hypergraph also admits a bipartite representation in which each hyperedge
is assigned a node, and an edge from a node vertex to a hyperedge vertex
indicates incidence (see Figure 1). Since a hypergraph generalises the graph
representation, it follows that these structures coincide when each hyperedge
contains precisely two nodes. Whilst we may obtain a graph from a given
hypergraph (see Appendix A.2), this inevitably loses structural information
which cannot be recovered.

v1
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v4

v5
v6

v2

e1

e2

e3

e4

v1

v2

v3

v4

v5

v6

e1

e2

e3

e4

Figure 1: A hypergraph comprised of four hyperedges among six vertices and
the corresponding bipartite representation. See Section 2.1.2 in Bretto (2013)
for details of this relationship.

The Laplacian of a hypergraph is an important matrix representation which
can be used to study hypergraph properties. This matrix has proven useful as
part of machine learning algorithms, such as spectral clustering, and, due to its
importance, several authors have proposed analogous hypergraph Laplacians
(see Agarwal et al. (2006), Battiston et al. (2020) for examples). We rely on the
hypergraph Laplacian proposed by Zhou et al. (2006) for spectral clustering,
which is given by

∆ = I −D−1/2
v HD−1

e H>D
−1/2
v , (3)

where Dv and De are diagonal matrices with non-zero entries containing the
node and hyperedge degrees, respectively. We write

[Dv]i,i =
∑
e∈E

w(e)h(vi, e) [De]i,i =
∑
v∈V

h(v, ei), (4)
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where h(v, e) = 1 if v is incident to e i.e., v ∈ e. In this work we only considered
unweighted hypergraphs (i.e. w(ei) = 1 for 1 ≤ i ≤M) however extending our
framework to accommodate weighted hyperedges poses no challenge.

3 Gaussian process on hypergraphs

We wish to define a GP prior for functions over the space containing the vertices
of a hypergraph i.e., X = V . We do so by building from a stochastic partial
differential equation (SPDE) formulation of a GP prior over Euclidean spaces.

SPDE kernel representations Defining kernel functions in terms of an
SPDE provides a flexible framework that facilitates the derivation of kernels on
non-Euclidean spaces. To see this, we consider the SPDE

T f =W (5)

where T : X → H is a bounded linear operator on a Hilbert space H, f is a
zero-mean Gaussian random field and W a white noise process (Lototsky and
Rozovsky, 2017). For a Euclidean domain i.e., X = Rd, Whittle (1963) has
shown that the Matérn kernel satisfies Equation (5) through(

2ν

`2
+ L

)ν/2+d/4
f =W, (6)

where L is the Laplace operator Lf(x) = ∇ · ∇f(x); the divergence of the
gradient of f , and ν ∈ R>0 and ` ∈ R>0 are the smoothness and lengthscale
parameters of the Matérn kernel respectively.

Hypergraph domain We transfer the construction Equation (6) into the
hypergraph domain by taking W to be a multivariate spherical Gaussian and
replacing the Laplace operator L with the hypergraph Laplacian ∆. (We can
also drop the term d/4 in the exponent, since it is not required for smoothness
concerns in the discrete space X .) Since we have a discrete space X , Equation (6)
becomes (

2ν

`2
+ ∆

)ν/2
f =W, (7)

where f is the vector of function values at the vertices of the hypergraph. We
can rearrange Equation (7) to give the hypergraph GP prior

f ∼ N

(
0,

(
2ν

`2
+ ∆

)−ν)
. (8)
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Hypergraph dual For a given hypergraph, we can construct a hypergraph
dual whose vertices correspond to the hyperedges in the original hypergraph. This
relationship is made clear through the bipartite representation in Figure 1. We
can leverage this duality to facilitate inference on either the vertices or hyperedges
in our initial hypergraph, and we make use of this feature in Section 5.3.

Connection to graph GPs If we consider hypergraphs of order 2, i.e. |e| = 2
for all e ∈ E, then we recover the GP formulated in Borovitskiy et al. (2020a) as
a special case of the hypergraph GP.

3.1 Sparse hypergraph GPs

Revisiting the ELBO term in Equation (2), we can see that for GPs defined on
continuous domains, the inducing points Z = {z1, z2, . . . , zJ} are treated as a
model parameter that we optimise. Despite this, poor initialisation can lead
to significantly slower convergence and often a poor variational approximation
(Burt et al., 2020). For hypergraphs, such an optimisation is not possible as
the notion of an inducing point is now a discrete quantity that corresponds
to a specific vertex’s index in the hypergraph. We hereafter refer to inducing
points in a hypergraph as inducing vertices. As we cannot optimise our inducing
vertices, it is important that we initialise them effectively as a poor initialisation
cannot be rectified through an optimisation scheme.

Our approach is a three-stage process where we first assign each vertex a globally
measured importance score γ ∈ [0, 1]. We use this measure to ensure that
the most influential vertices in our hypergraph are present in the inducing set.
Second, we cluster the vertices of the hypergraphs by using k-means clustering
on the Laplacian matrix’s eigenvalues. Finally, using the clustered vertices, we
first sample a cluster with probability equal to the the cluster’s normalised size,
then select the vertex with the largest importance score in the respective cluster.

Vertex importance To compute importance scores for each vertex we project
our hypergraph onto a graph and calculate the eigencentrality (see Kolaczyk,
2009) of each vertex. We first calculate the adjacency matrix Av = HH> with
diagonal entries equal to the vertex degrees and off-diagonals equal to the number
of times two vertices are incident to one another. If we now define the stochastic
matrix Q = AvD

−1
v that scales the adjacency matrix by the vertices’ degree,

then we can obtain centrality measures through λγ = Qγ. We can determine γ
by identifying the eigenvector that corresponds to the largest eigenvalue λ, and
the centrality score for the vth vertex is then given by γv. We note that H and
Dv are non-negative matrices and therefore Q is also non-negative. Consequently,
the Perron-Frobenius theorem guarantees the existence of a unique γ.
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Clustering To cluster the vertices of our hypergraph, k-means clustering is
carried out on the eigenvectors of the hypergraph’s Laplacian matrix Equation (3).
In the absence of informative prior information, such as the number of observation
classes, we suggest selecting a conservative value of k � J .

Inducing vertex selection A set of J inducing vertices can now be identified
by a two-step procedure. Let ki denote the ith cluster that contains |ki| vertices
and cat be the categorical distribution with k categories with corresponding
probabilities p = {p1, p2, . . . , pk}. The jth element of Z can then be selected by

Sample: s ∼ cat(p), where p ∝
{
|k1|
N

,
|k2|
N

, . . . ,
|ks|
N

}
Select: zj = arg max

v∈s | v/∈Z1:(j−1)

γv. (9)

This process is repeated until |Z| = J .

Unlike uniform random sampling, the approach outlined here is more robust
to situations where a class imbalance in the observations’ labels is present due
to the clustering step performed. Further, we are able to identify the most
influential vertices within the graph through the assignment of an eigen-based
importance measure to each vertex; a metric which captures a vertex’s global
importance. Despite this, the framework presented here is highly modular,
and the practitioner is free to use alternative clustering methods, such as the
popular DBSCAN (Ester et al., 1996), or alternative centrality measures on the
hypergraph’s vertices (Benson, 2019).

3.2 Hypergraph embedding

The task of embedding the vertices of a hypergraph into a lower-dimensional
latent space is a common approach to understanding the relational structure
within a hypergraph (Zhou et al., 2006; Turnbull et al., 2019). Here we establish
a connection between the Gaussian process latent variable model (GPLVM)
(Lawrence, 2003) and the Matérn hypergraph GP Equation (8), and demonstrate
how this synergy can be leveraged to infer a hypergraph latent space embedding
in a computationally-efficient manner.

Working under the assumption that our hypergraph can be embedded in a
low-dimension latent space, the aim here is to learn the position of each vertex
in the latent space through a GP. We let X = {x1,x2, . . . ,xN}, represent our
Q-dimensional latent space, such that the ith vertex’s latent space coordinate is
given by xi ∈ RQ.

We wish to learn the posterior distribution of the vertices’ latent positions
conditional on the hypergraph incidence matrix H, i.e. p(X|H) ∝ p(H|X)p(X).
We can use our hypergraph Gaussian process model (Section 3) to create a
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mapping between the latent positions and the hypergraph structure using the
following model,

p(H |X)p(X) =

(∫
p(H |F )p(F |X)dF

)
p(X), (10)

where F is an unobserved matrix with the same dimensions as the incidence
matrix H, with each column fj sampled independently from a GP prior, such
that

p(H |F ) = N (F, σ2IN ), p(fj |X) = N (0,KxxKV V ) and p(X) = N (0, IN ).

The Gram matrix Kxx is calculated using a Euclidean kernel, e.g., the squared
exponential, on the domain RQ × RQ, IN is a N × N identity matrix, and
KV V is the hypergraph kernel from Equation (8), which uses the hypergraph
Laplacian to inform the prior model in an empirical Bayes approach analogous
to using a spatial variogram to fix the kernel parameters in a Euclidean model
e.g., Diggle et al. (1998). The incidence matrix H is a binary matrix, however, in
this section we make the assumption that H|F follows a Gaussian distribution.
This assumption allows us to solve the integral Equation (10) analytically,

H|X ∼ N (0,KxxKV V + σ2IN ).

Without this assumption, approximate inference techniques such as MCMC or
variational inference would be required.

The model described here is incredibly flexible as it enables the practitioner
to posit their beliefs around the smoothness of the latent space through the ν
parameter in Equation (8). Larger values of ν will result in a more dispersed
latent space and larger degrees of separation will be enforced between clusters.
Further, covariate information at the vertex level can easily be incorporated
into the embedding function by specifying a second kernel that acts across the
covariate space of the vertex set and then computing the product of this covariate
kernel with the base graph kernel.

4 Related work

To the best of our knowledge, this is the first work to consider GP inference
for hypergraphs. However, the SPDE representation of a Matérn kernel has
been successfully used by Lindgren et al. (2011) to allow for highly scalable
inference on Gaussian Markov random fields (GMRFs) (Rue and Held, 2005)
and more recently Riemannian manifolds (Borovitskiy et al., 2020b). Parallel
to this line of work, (Zhi et al., 2020) derive graph GP priors by extending the
multi-output GP prior given in van der Wilk et al. (2020). Finally, Opolka and
Liò (2020) derive a deep GP prior (Damianou and Lawrence, 2013) that acts
on a vertex set using the spectral convolution of a graph’s adjacency matrix, as
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given by Kipf and Welling (2017). Inference on graphs using GPs, as shown in
the aforementioned works, is effective. However, as we show in Section 5, such
models can be greatly improved by utilising the full hypergraph structure.

Within the deep learning community, graph neural networks (GNNs) (Bronstein
et al., 2016) have been studied in the context of hypergraphs from both an
algorithmic (Feng et al., 2019) and theoretical (Bodnar et al., 2021) perspective.
More recently, hypergraph GNN architectures have been extended to incorporate
attention modules (Bai et al., 2021). Unfortunately, GNNs are currently incapable
of quantifying the predictive uncertainty on the vertices of a hypergraph. In
contrast, the hypergraph GP presented here is able to produce well-calibrated
uncertainty estimates (see Section 5.1).

Analysis of hypergraph data appears much more broadly in the statistics and
machine learning literature (see Battiston et al. (2020) for contemporary review),
and typical tasks involving hypergraphs include label prediction, classification
and clustering (Gao et al., 2020). Within the GP, the hypergraph informs
the dependence structure among the variables associated with the vertices and
we note that this departs from a common hypergraph modelling set-up in
which there is uncertainty on the hyperedges. Finally, whilst we rely on the
hypergraph Laplacian proposed in Zhou et al. (2006), we note the existence of
other Laplacians which may be used in our context (for example, see Chung
(1993); Hu and Qi (2015); Saito et al. (2018) for examples), depending on the
suitability of the assumptions for a given hypergraph.

5 Experiments

In this section we illustrate the variety of modelling challenges that can be
addressed through a hypergraph Gaussian process. A full description of the
experimental set up used below can be found in Appendix A.1. Further, we release
a Python package that enables GP inference on hypergraphs using GPFlow1

(de G. Matthews et al., 2017) and HyperNetX (HyperNetX, since 2019) along with
code to replicate the experiments at https://github.com/RedactedForReview.

5.1 Multi-class classification on legislation networks

In this first section we demonstrate the additional utility that is given from a
hypergraph representation by comparing our proposed model to its simpler graph
analogue. To achieve this, we consider data that describes the co-sponsorship of
legislation within the Congress of the Republic of Peru in 2007 (Lee et al., 2017).
To represent this dataset as a hypergraph, we form a hyperedge for each piece of
legislation and the constituent vertices correspond to the members of Congress
responsible for drafting the respective legislation. In the 2007 Congress there

1Licensed under Apache 2.0.
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were three distinct groups2: the government, opposition and minority groups.
Our task here is to predict the group affiliation of a member of Congress given
only the hypergraph structure.

Table 1: The performance of the GP models from Section 5.1 on a graph and
hypergraph structure. Results are reported for the 40 held-out vertices, split
by the underlying (hyper)graph representation. Bold values denote the best
performing model and standard errors are computed across 10 random partitions
of the data. For every metric, excluding expected calibration error (ECE), a
larger value is better.

Metric Hypergraph Graph
Binary expansion

Graph
Weighted expansion

Accuracy 0.9± 0.002 0.7± 0.015 0.75± 0.009

Recall 0.89± 0.002 0.74± 0.002 0.78± 0.006

Precision 0.9± 0.002 0.73± 0.033 0.79± 0.007

ECE 0.13± 0.001 0.29± 0.003 0.2± 0.002

Log-posterior density −0.34± 0.017 −0.89± 0.001 −0.45± 0.005

As far as we are aware, this is the first piece of work to consider GP modelling
on hypergraphs, so no directly comparative method is available. Therefore, to
establish suitable benchmarks, we represent our hypergraph as a graph using both
a weighted and binary clique expansion (Agarwal et al., 2005); a process we briefly
outline in Appendix A.2. From thereon, GP modelling can be accomplished using
the graph kernel provided in Borovitskiy et al. (2020a). Although additional
mappings from a hypergraph to a graph are commonly used in the literature,
such as the star expansion, we focus on the clique expansion since this preserves
the roles of the vertices.

We employ the categorical likelihood function of Hernández-Lobato et al. (2011)
and a multi-output GP f : V → P2, where P2 is the probability 2-simplex
and each output dimension corresponds to the probability of the respective
vertex being attributed to one of the three political groups. As can be seen in
Table 1, the hypergraph representation yields significantly fewer misclassified
nodes with equally compelling precision and recall statistics. GPs are commonly
used due to their ability to quantify predictive uncertainty and, as can be seen
by the expected calibration error (ECE) values in Table 1, the hypergraph
representation facilitates substantially improved posterior calibration.

In addition to the universally superior predictive measures reported in Table 1,
the ELBO curves in Figure 2 show that the hypergraph representation facilitates
more efficient optimisation. This result is particularly noteworthy as a common
criticism of GPs is the computational demands invoked by their optimisation.
Therefore, being able to achieve more efficient optimisation is critically important
if we hope for these GP models to be more widely adopted by machine learning

2Groups in the Republic of Peru’s Congress are collections of political parties
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Figure 2: Convergence of the ELBO throughout optimisation. A larger value
is better. Maximising the ELBO is analogous to minimising the Kullback-
Leibler divergence from our approximate GP to the true GP. We can see that
representing the data as a hypergraph in our GP yields substantially more
efficient optimisation, and the resultant model gives a tighter bound on the true
log-likelihood.

practitioners.

5.2 Hypergraph latent embeddings

In this example we demonstrate the enhanced utility provided by the hypergraph
GPLVM outlined in Section 3.2 in comparison to traditional spectral models
that exist in the hypergraph literature, namely the work of Zhou et al. (2006).
The dataset under consideration is the Zoo data from the UCI Machine Learning
Depository (Dua and Graff, 2017) and our goal is to embed the animals’ relational
structure into a 2-dimensional latent space. We represent the dataset as a
hypergraph, such that each vertex corresponds to a specific animal, and each
hyperedge corresponds to an animal’s attribute e.g., number of legs, presence of
a tail. There are seven possible labels within the dataset that roughly describe
an animal’s taxonomic class. We remove this attribute from the dataset and only
use it for the colouring of the vertices’ latent space positions in Figure 3. We
use a squared exponential kernel to compute the Gram matrix over the latent
spaces’ coordinates (denoted Kxx in Section 3.2).

We can visually see from Figure 3 that the hypergraph GPLVM is better able to
uncover the latent group structure that is present in the data through the more
homogeneous group clustering. Further, using the convex hulls in Figure 3 we are
able to measure the degree to which each latent space representation has been
able to recover the original classes. We report the adjusted mutual information
(Nguyen et al., 2009), homogeneity and completeness (Rosenberg and Hirschberg,
2007) in Table 2 where it can be seen that our hypergraph GPLVM outperforms
the approach of Zhou et al. (2006) for all considered metrics.
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Figure 3: Visualisation of the latent space projections learned using our hy-
pergraph based GPLVM and the method outlined in Zhou et al. (2006) titled
spectral. Observations are coloured based upon their respective class and the
shadings denote the convex hull of the entire class. To avoid a cluttered layout,
we randomly label four animals per class and provide fully labelled plot in
Appendix B.1.

Table 2: Adjusted mutual information, homogeneity and completeness of the
latent spaces produced by our proposed hypergraph GPLVM and the spectral
embedding of Zhou et al. (2006). Each score is defined on the domain [0, 1] and
a higher score is better. A description of these three measures is provided in
Appendix A.

Hypergraph GPLVM Spectral embedding

Adjusted mutual information 0.689 0.606

Homoegeneity 0.774 0.668

Completeness 0.683 0.633

5.3 Kernelised probabilistic matrix factorisation

In this section we study the effect of a hypergraph kernel when used for kernel
probabilistic matrix factorisation (KPMF) (Zhou et al., 2012). Given a partially
observed matrix R ∈ RNU×NW , for example a matrix of movie ratings, our aim
is to predict the missing values of R using the assumption that the outer product
of two latent matrices U ∈ RNU×D and W ∈ RNW×D generates R where D is
the latent factors’ dimension. We place zero-mean GP priors over the columns
of U and W ,

U:,d ∼ GP(0, κU ), W:,d ∼ GP(0, κW ). (11)
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A factorised Gaussian likelihood is placed over R such that

p(R |U,W, σ2
n) =

N∏
n=1

M∏
m=1

N
(
Rn,m |Un,:W>m,:, σ2

)δn,m
(12)

where δn,m = 1 if Rn,m is not empty, and 0 otherwise. We then learn the optimal
pair of latent matrices by optimising the model’s log-posterior with respect to U
and W .

To employ this model we use the MovieLens-100k dataset that consists of 100,000
reviews on 1682 movies from 943 users (Harper and Konstan, 2016). We define
the GP priors in Equation (11) as our hypergraph prior from Equation (8).
Letting R ∈ R943×1682 be the matrix of movie ratings, we can construct the
incidence matrix H of the hypergraph for which users represent vertices and
the collections of users who review the same movie as hyperedges by calculating
[H]n,m = δn,m for 1 ≤ n ≤ NU and 1 ≤ m ≤ NW from Equation (12). Through
the hypergraph’s dual representation (see Section 3), we are able to define
incidence matrices where movies are vertices and hyperedges contain the set of
movies that an individual user reviewed by H>.

Table 3: Root-mean-square error (RMSE) for our hypergraph GP KPMF model
in Section 5.3 and comparative diffusion model from Zhou et al. (2012). We
report RMSE on the held-out data where a lower RMSE indicates a better model.
All models are fit to datasets whereby 20% and 80% of the data is held back
for testing. The sparse variant of our model uses an inducing point set with
size equal to 1/20th of the U and W matrices. Standard errors reported here
are across 10 random partitions of the data and are significant after the third
decimal place.

Testing proportion Diffusion Hypergraph KPMF
Full

Hypergraph KPMF
Sparse

20% 1.39± 0.0 1.21± 0.0 1.40± 0.1

80% 1.51± 0.0 1.27± 0.0 1.56± 0.1

In Table 3 we compare our hypergraph-based KPMF to the KPMF model given
in Zhou et al. (2012) which uses a diffusion kernel (Kondor and Lafferty, 2002)
that we describe fully in Appendix A.3. Further, we test the effect of our
inducing point scheme described in Section 3.1 by approximating κU and κW
with 45 and and 80 inducing vertices respectively. As can be seen by the smaller
RMSE in Table 3, the hypergraph kernel offers substantial improvements in
comparison to the regular KPMF model. Whilst attaining a larger RMSE than
the dense hypergraph KPMF model, the sparse approximation is able to compute
Equation (12) 4.3 times faster than the both diffusion and dense KPMF models.
We note that a sparse approximation is not strictly necessary in this example,
however, selecting a dataset where fitting full rank kernels is possible allows us
to quantitatively assess the difference in predictive RMSEs. Furthermore, this
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sparse approximation allows us to scale this model to datasets where U and/or
W contains millions of observations. In such a setting, fitting a dense kernel
would yield an intractable likelihood Equation (12) due to the requirement of
inverting κU and κW . However, using our sparse kernel approximation would
permit scaling to datasets of this size.

6 Concluding remarks

Limitations Whilst we have found the hypergraph Laplacian from Equation (3)
to perform well experimentally, we are aware of several criticisms of this in the
literature (Agarwal et al., 2005; Ren et al., 2008). Despite the limitations this
could cause, we see this as an illuminating potential pathway for future research
through the consideration of alternative hypergraph Laplacians.

Finally, we only consider hypergraphs that are fixed in the number of nodes
and hyperedges. Whilst valid for the use cases we consider in Section 5, there
exists a large number of hypergraph applications and methodologies whereby the
number of vertices and/or hyperedges is either evolving or considered unknown.

Final remarks In this work we consider the task of performing inference on
the vertices of a general hypergraph. To do so, we establish a connection with
the Matérn graph kernel and provide a detailed framework for positing the rich
structure of a hypergraph into this kernel. We further provide a framework for
embedding high-dimensional hypergaphs into a lower-dimensional latent space
through GPLVMs as well as a principled approach to selecting inducing vertices
for sparse hypergraph GPs. Finally, we demonstrate the enhanced utility of our
work through three real-world examples, each of which illustrate distinct aspects
of our framework. We envision that the techniques presented in this work are of
high utility to both the GP and graph theory communities and will facilitate
the blossoming of future research at the intersection of these two areas.

14



References

Vincent Adam, Stefanos Eleftheriadis, Artem Artemev, Nicolas Durrande, and
James Hensman. Doubly sparse variational gaussian processes. In , The 23rd
International Conference on Artificial Intelligence and Statistics, AISTATS
2020, 26-28 August 2020, Online [Palermo, Sicily, Italy], volume 108 of
Proceedings of Machine Learning Research. PMLR, 2020.

Sameer Agarwal, Jongwoo Lim, Lihi Zelnik-Manor, Pietro Perona, David J.
Kriegman, and Serge J. Belongie. Beyond pairwise clustering. In 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2005), 20-26 June 2005, San Diego, CA, USA. IEEE Computer
Society, 2005.

Sameer Agarwal, Kristin Branson, and Serge J. Belongie. Higher order learning
with graphs. In , Machine Learning, Proceedings of the Twenty-Third Interna-
tional Conference (ICML 2006), Pittsburgh, Pennsylvania, USA, June 25-29,
2006, volume 148 of ACM International Conference Proceeding Series. ACM,
2006.

Mauricio A. Alvarez, Lorenzo Rosasco, and Neil D. Lawrence. Kernels for
Vector-Valued Functions: A Review. Foundations and Trends® in Machine
Learning, 4(3):195–266, 2012.

Shun-ichi Amari. Natural gradient works efficiently in learning. Neural Comput.,
10(2):251–276, 1998.

Song Bai, Feihu Zhang, and Philip H. S. Torr. Hypergraph convolution and
hypergraph attention. Pattern Recognit., 110:107637, 2021.

Federico Battiston, Giulia Cencetti, Iacopo Iacopini, Vito Latora, Maxime Lucas,
Alice Patania, Jean-Gabriel Young, and Giovanni Petri. Networks beyond
pairwise interactions: Structure and dynamics. Physics Reports, 874:1–92,
2020.

Austin R. Benson. Three hypergraph eigenvector centralities. SIAM J. Math.
Data Sci., 1(2):293–312, 2019.

Cristian Bodnar, Fabrizio Frasca, Yu Guang Wang, Nina Otter, Guido Montúfar,
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Felix L. Opolka and Pietro Liò. Graph convolutional gaussian processes for link
prediction. CoRR, abs/2002.04337, 2020.

Manfred Opper and Cédric Archambeau. The Variational Gaussian Approxima-
tion Revisited. Neural Computation, 21(3):786–792, 2008.

Thomas Pinder, Christopher Nemeth, and David Leslie. Stein Variational
Gaussian Processes. arXiv:2009.12141 [cs, stat], 2020. arXiv: 2009.12141.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes
for machine learning. MIT Press, 2006.

Peng Ren, Richard C. Wilson, and Edwin R. Hancock. Spectral embedding
of feature hypergraphs. In , Structural, Syntactic, and Statistical Pattern
Recognition, Joint IAPR International Workshop, SSPR & SPR 2008, Orlando,
USA, December 4-6, 2008. Proceedings, volume 5342 of Lecture Notes in
Computer Science. Springer, 2008.

18



Andrew Rosenberg and Julia Hirschberg. V-measure: A conditional entropy-
based external cluster evaluation measure. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-CoNLL), Prague, Czech Re-
public, 2007. Association for Computational Linguistics.

Havard Rue and Leonhard Held. Gaussian Markov random fields: theory and
applications. CRC press, 2005.

Shota Saito, Danilo P. Mandic, and Hideyuki Suzuki. Hypergraph p-laplacian:
A differential geometry view. In , Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Appli-
cations of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium
on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans,
Louisiana, USA, February 2-7, 2018. AAAI Press, 2018.

Hugh Salimbeni, Stefanos Eleftheriadis, and James Hensman. Natural gradients
in practice: Non-conjugate variational inference in gaussian process models.
In , International Conference on Artificial Intelligence and Statistics, AIS-
TATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain,
volume 84 of Proceedings of Machine Learning Research. PMLR, 2018.

Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using
pseudo-inputs. In Advances in Neural Information Processing Systems 18
[Neural Information Processing Systems, NIPS 2005, December 5-8, 2005,
Vancouver, British Columbia, Canada], 2005.
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A Full experimental details

A.1 Training configurations

Graph representation In Section 5.1 and 5.3 our hypergraph kernel is com-
pared against kernels operating on regular graphs. To represent our hypergraph
as a graph we use a clique expansion (Appendix A.2). In Section 5.1 we use both
a weighted and binary clique expansion and, due to its superior performance,
only a weighted expansion in Section 5.3 to compute the diffusion kernel.

Hardware All experiments are carried out on an Nvidia Quadro GP100 GPU,
a 20 core Intel Xeon 2.30GHz CPU and 32GB of RAM.

Implementation All code is implemented using GPFlow (de G. Matthews
et al., 2017) and is made publicly available at
https://github.com/RedactedForReview.

Optimisation For the experiments carried out in Section 5.1 and Section 5.2
we use natural gradients (Amari, 1998) for optimisation of the variational
parameters with a learning rate of 0.001 as per Salimbeni et al. (2018). For
optimisation of the GP models’ hyperparameters in all experiments, we use the
Adam optimiser with the recommended learning rate of 0.001 (Kingma and Ba,
2015).

Parameter constraints For all parameters where positivity is a constraint
(i.e. variance), the softplus transformation i.e., log(1 + exp(x)). Inference is
then conducted on the unconstrained parameter, however, we report the re-
transformed parameter i.e. the constrained representation.

Parameter initialisation For the graph kernels we initialise the smoothness,
lengthscale and variance parameters to 1.5, 5.0 and 1.0 respectively. For the
Gaussian likelihood used in Section 5.2, the variance is initialised to 0.01.

Reported metrics Given the true test observation y and the predicted value
ŷ, we recall the following definitions: false negative (FN): 1ŷ=1 | y=0, true negative
(TN): 1ŷ=0 | y=0, false positive (FP): 1ŷ=0 | y=1, and true positive (TP): 1ŷ=1 | y=1.
Using these definitions, we report the following metrics across the experiments
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in Section 5.1 for the N heldout observations:

Accuracy: TP + FP

Precision :
TP

TP + FP

Recall :
TP

TP + FN
.

In addition to these, we also report the ECE (Naeini et al., 2015)

ECE: E [Pr (ŷ = y | p̂ = p)− p]

where p̂ is predicted mean.

For the latent space embedding carried out in Section 5.2 we use three metrics
to quantify the quality of the learned latent space: adjusted mutual information,
homogeneity and completeness. Adjusted mutual information (Nguyen et al.,
2009) is an information theoretic measure that quantifies the degree to which the
latent class labels and those generated by the convex hull of each class’ latent
space coordinates align. Additionally, homogeneity measures how homogeneous
each cluster’s constituent vertices are, whilst completeness measures the degree
to which all class members were assigned to the correct cluster (Rosenberg and
Hirschberg, 2007).

A.2 Clique expansion

Considering a hypergraph G, we can build a regular graph representation using
a clique expansion. Let H be the hypergraph’s incidence matrix and Aw and Ab
be the graph’s adjacency matrix for the weighted and binary clique expansion
used in Section 5.1, respectively. The (i, j)th entry of Aw and Ab can be written
as

Weighted: [Aw]ij =
∑
e∈G

1(i, j ∈ G) (13)

Binary: [Ab]ij =
∑
e∈G

1(wij > 0) (14)

Example: Consider the following incidence matrix

H =


1 0 1 0

1 1 1 1

1 0 1 1

1 1 1 1

0 1 1 0

 (15)
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Using the clique expansions in Equation (13) and Equation (14), the correspond-
ing adjacency matrix Aw and Ab can be written as

Aw =


0 2 2 2 1

2 0 3 4 2

2 3 0 3 1

2 4 3 0 2

1 2 1 2 0

 , Ab =


0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

 (16)

A depiction of the matrix representations in Equation (15) and Equation (16) is
given in Figure 4.
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Figure 4: A depiction of the incidence matrix H in Equation (15) and clique
expanded adjacency matrices Aw and Ab stated from Equation (16). The width
of the edges in the graph are proportional to the edge’s weight.

A.3 Diffusion kernel

The corresponding Gram matrix KD of the diffusion kernel (Kondor and Lafferty,
2002) can be written as

KD = lim
n→∞

(
1− β∆

n

)n
(17)

where β ∈ R is the bandwidth parameter and ∆ is the (hyper)graph Laplacian
matrix. Intuitively, the (i, j)th entry of K can be seen as the amount of substance
that has diffused from vi to vj in the original graph. Letting β = 0 corresponds
to zero diffusion and larger values of β will give larger amounts of diffusion. As
advised in Zhou et al. (2012), we set β = 0.01 in Section 5.3.

Computation of the diffusion kernel given in Equation (17) can be achieved
through

KD = exp(−β∆), (18)

as given in Kondor and Lafferty (2002).
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B Additional experimental results

B.1 Latent space embedding
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