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Abstract: Lithium (Li) is a metal with critical therapeutic properties ranging from the treatment of 
bipolar depression to antibacterial, anticancer, antiviral and pro-regenerative effects. This element 
can be incorporated into the structure of various biomaterials through the inclusion of Li chlo-
ride/carbonate into polymeric matrices or being doped in bioceramics. The biocompatibility and 
multifunctionality of Li-doped bioceramics present many opportunities for biomedical researchers 
and clinicians. Li-doped bioceramics (capable of immunomodulation) have been used extensively 
for bone and tooth regeneration, and they have great potential for cartilage/nerve regeneration, os-
teochondral repair, and wound healing. The synergistic effect of Li in combination with other anti-
cancer drugs as well as the anticancer properties of Li underline the rationale that bioceramics 
doped with Li may be impactful in cancer treatments. The role of Li in autophagy may explain its 
impact in regenerative, antiviral, and anticancer research. The combination of Li-doped bioceramics 
with polymers can provide new biomaterials with suitable flexibility, especially as bio-ink used in 
3D printing for clinical applications of tissue engineering. Such Li-doped biomaterials have signifi-
cant clinical potential in the foreseeable future. 
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1. Introduction 
Tissue engineering and regenerative medicine approaches have a variety of applica-

tions in human healthcare, including bone reconstruction and fertility treatments [1–10]. 
Tissue engineering combines three components, cells, biomaterials, and bioactive mole-
cules (e.g., drugs and growth factors), to repair the body’s damaged tissues and restore 
their normal function [11–14]. Stem cells can self-renew, proliferate, and differentiate into 
target tissue cells in the presence of relevant growth factors when in biomaterials with 
supportive architecture, composition, and mechanics [15,16]. However, some studies have 
shown that stem cells are the cause of pathological conditions and have a role in cancer 
[17–20]. 

Biomimetic biomaterials with similar properties to the extracellular matrix play a cru-
cial role in cell proliferation and differentiation, and consequently tissue regeneration. 
Generally, biomaterials used in tissue engineering can be divided into four main catego-
ries: metal-based, ceramic-based, polymer-based, and their composites [21–30]. Due to 
their structure and similarity to the extracellular matrix of hard tissues (such as bone and 
teeth), bioceramics have been widely investigated for their potential application in the 
regeneration of hard tissues [31,32]; however, by contrast, there has been limited research 
into their application in soft tissue regeneration [33–35], which is in part due to challenges 
related to engineering bioceramics with mechanical properties mimicking the natural tis-
sues in which they will be implanted [24,36–44]. Bioceramic biomaterials can release drugs 
and/or therapeutic metal ions in regenerative medicine applications and cancer treatment 
[45–50], yet doping the right amount of ions/therapeutics and the controlled/sustained 
release of the therapeutic payloads are remaining challenges (Figure 1) [51–53]. 

Li is an essential ion that has a multitude of biological effects on the body, such as 
increasing the activity of chemical messengers in the brain [54–56]. The discovery that Li 
is effective in treating bipolar disorder happened more than 70 years ago, and it is a widely 
prescribed bipolar disorder medication [57–59]. However, it is associated with adverse 
effects and teratogenicity [60]. Li affects hematopoiesis, embryonic development, glyco-
gen synthesis, and other processes [61–63]. Its mechanism of action in mood disorders was 
unknown in the past; it was thought that Li exerts its effect by affecting cation transport 
in nerve and muscle cells [64]. In pharmacy, Li is prepared in the form of carbonate, ace-
tate, citrate, sulfate, and orotate salts, and it is most commonly prescribed in the form of 
carbonate or citrate salts in tablets (up to 2.0 g per day) [55,65]. However, concerns related 
to Li include hand tremor, downbeat nystagmus, and hypothyroidism [66–68]. In acute 
mania, Li doses can reach 1.2 mEq/L. Li is toxic when its concentration exceeds 1.5 mEq/L 
and can be lethal above 3.5 mEq/L [69,70]. The main side effects of Li are dose-dependent; 
thus, therapeutic doses should be employed to reduce any side effects [71–74]. Retrospec-
tive studies showed lower cancer incidence in psychiatric patients treated with Li therapy 
for bipolar disorder than in a control group not receiving Li therapy [75,76], which was 
suggested to be due to Li controlling cancer cell growth via inhibiting GSK-3β [77]. Inter-
estingly, Li can inhibit 17 human magnesium-dependent phosphate transfer enzymes, 
which represents another potential anticancer mechanism of Li. Meanwhile, system biol-
ogy studies demonstrated that 13 KEGG (Kyoto Encyclopedia of Genes and Genomes) 
pathway categories are most statistically enriched in the 265 genes that interact directly 
with GSK-3β. Given that the Li therapy impact is mostly systemic and the ability of Li to 
inhibit cancer cell growth has been shown, Li may also inhibit metastasis [54,76,78]. Li 
monotherapy (or in combination) was effective in inducing cancer cell apoptosis in breast 
cancer [79–81], colon cancer [82–86], esophageal cancer [82,87], glioblastoma [88], ovarian 
cancer [89], pancreatic cancer [88,90], prostate cancer [91–93], and thyroid cancer [94–97]. 
In vitro studies showed that Li induces apoptosis in lung cancer cell lines [98], and 
changes mRNA in leukemia [99,100] and lymphoma [101,102]. Given these studies, Li may 
have an anticancer effect through the induction of apoptosis and autophagy [103–106]. Li-
induced autophagy may have other therapeutic applications beyond cancer treatment and 
regenerative medicine, such as treating autoimmune diseases [107,108]. 
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This review discusses the biological effects of Li ions and prospects for the applica-
tion of Li-doped bioactive ceramics (Li-doped bioceramics) in regenerative medicine (ab-
breviations used throughout the article are summarized in Table 1). Current research 
trends in applications of Li-doped bioceramics are summarized in Figure 2; the bioceram-
ics that have attracted most attention are BGs; bone and osteochondral regeneration are 
the predominant focus of the existing research, and despite the great potential of lithium-
doped bioceramics for cancer treatment, wound healing, and nerve regeneration, these 
are comparatively nascent in their development. 

 
Figure 1. Common loading techniques for therapeutic inorganic ion entrapment in nanoparti-
cles/microparticles, granules, hydrogels, and fibers. Reproduced from [53] with permission. 

Table 1. Abbreviations used in this review. 

Abbreviation Word or Phrase 
ALP Alkaline phosphatase 
AP-1 Activator protein-1 
BG Bioactive glass 
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BMSC Bone marrow mesenchymal stem cell 
β-TCP Beta-three calcium phosphate 
cAMP Cyclic adenosine monophosphate 
CNS Central nervous system 

CREB Response element binding protein 
DEXA Dual-energy X-ray absorptiometry 
Dspp Dentin sialophosphoprotein 
EPO Erythrogenin 
ERK Extracellular signal-regulated kinase 
5-FU Fluorouracil 
GAG Glycosaminoglycan 

GIONFH Glucocorticoid-induced osteonecrosis of the femoral head 
GSK-3β Glycogen synthase kinase-3 beta 

HA Hydroxyapatite 
Hh Hedgehog pathways 

HIF-1α Hypoxia-inducible factor 1-alpha 
HSC Hematopoietic stem cell 

HUVEC Human umbilical vein endothelial cell 
IGF1 Insulin growth factor 1 

iTENG Ionic triboelectric nanogenerator 
KEGG Kyoto Encyclopedia of Genes and Genomes 
Klk4 Axin2, Kallikrein 4 
LCS Lithium-doped calcium silicate 
LD Lithium disilicate 

Li-BG Lithium-doped bioactive glass 
Li-BBG Lithium-doped borate-based bioactive glass 
Li-MBG Lithium-doped mesoporous bioactive glass 
LMNS Lithium-doped mesoporous silica nanosphere 

Li-
nHA/GMs/rhEP

O 

Gelatin/lithium-doped-hydroxyapatite nanoparticles/gelatin micro-
spheres/rhEPO 

Li-PBG Lithium-doped phosphate-based bioactive glass 

LPPEEK Lithium-doped silica nanospheres coated on polyetheretherketone sur-
face 

LSN Lithium-doped silica nanosphere 
MACI Matrix-associated autologous chondrocyte implantation 
MAPK Mitogen-activated protein kinase 

micro-CT Micro-computed tomography 
MSC Mesenchymal stem cell 
MSN Mesoporous silica nanosphere 

NPWT Negative pressure wound therapy 
OA Osteoarthritis 

OIM Osteoimmunomodulation 
p38MAPK P38mitogen-activated protein kinase 

PCL Poly-ε-caprolactone 
PDA Polydopamine 
PEEK Polyetheretherketone 
PI3-K Phosphatidylinositol 3 kinase 
PNS Peripheral nerve system 

qPCR  Quantitative polymerase chain reaction 
rBMSC Rabbit mesenchymal stem cell 
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ROS Reactive oxygen species 
Runx2 Runt-related transcription factor 2 

SBF Simulated body fluid 
SCI Spinal-cord injury 

TGF- β Transforming growth factor beta 
VEGF Vascular endothelial growth factor 
ZLS Zirconia-reinforced lithium silicate 

 
Figure 2. Current trends of research on the application of Li-doped bioceramics. 

2. Lithium and Its Biological Effects 
2.1. Lithium and Stem Cell Fate 

Li affects stem cells in various ways, mainly related to the inhibition of glycogen syn-
thase kinase-3 beta (GSK-3β) and the activation of other pathways, such as activator pro-
tein-1 (AP-1), cyclic adenosine monophosphate (cAMP) response element binding protein 
(CREB), mitogen activated protein kinase (MAPK), WNT, and β-catenin signals. WNT and 
MAP kinase activation have a significant role in stem cell proliferation, wound healing, 
neural, and bone regeneration. Hence, Li affects stem cell fate, such as differentiation, pro-
liferation, and regeneration. The neuroprotective and anti-inflammatory effects of Li are 
mainly related to GSK-3β inhibition, the deterrence of the pro-inflammatory cytokine re-
sponse, and the production of reactive oxygen species (ROS), and they are stimulated by 
polymicrobial sepsis [109–113]. 

Angiogenesis-related gene expression can be attributed to the crosstalk between the 
canonical WNT and hypoxia-inducible factor 1-alpha (HIF-1α) signaling pathway [114]. 
The enhancement in vascular endothelial growth factor (VEGF) expression was observed 
through phosphatidylinositol 3 kinase (PI3-K)/(GSK-3β)-dependent and independent 
pathways in the brain endothelium and astrocytes, respectively, in the presence of Li 
[115]. Activating the WNT/ β-catenin signaling impelled proliferation, survival, and mi-
gration, which are normal procedures in angiogenesis. These features were observed in 
vitro in human microvascular endothelial cells with LiCl [116]. A study demonstrated that 
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Li improved self-renewal, stem cell homing, ability to build colonies, and self-renewal of 
hematopoietic stem cells (HSCs). Li can positively affect the maintenance and prolifera-
tion of mesenchymal stem cells (MSCs) [117], and Li impacts stem cells fate by enhancing 
autophagy, which has a crucial role in tissue development, remodeling, and regeneration 
[103,118,119]. 

2.2. Lithium and Osteogenesis 
The mechanical properties of bone are of fundamental importance to its biological 

role [120,121] and a key property of tissue scaffolds for bone tissue engineering [122,123]. 
Li boosts β-catenin signaling, which stimulates bone growth in reply to mechanical load. 
In expanding sutures, Li enhances cell proliferation and β-catenin expression; the initial 
retardation in the differentiation of osteoprogenitors cells into mature osteoblasts by Li 
therapy was associated with the development of preosteoblasts, which pave the way for 
the enhancement of new bone regeneration in the vicinity of sutures. β-catenin influences 
osteoprogenitors proliferation and osteoblast maturation during mid-palatal suture oste-
ogenesis. Li enhances β-catenin expression, boosting bone repair. Therefore, Li may boost 
the durability of orthodontic therapies, such as rapid palatal dilatation [124]. Evaluating 
the impact of GSK-3β deficiency in the mice model demonstrated that in vivo bone healing 
can be accelerated by GSK-3β inhibition; moreover, the results may be attributed to the 
impact of the higher activity of WNT/β-catenin in deficient mice [125]. In a similar study, 
rats were treated daily with LiCl or NaCl from 7 days before socket extraction up to 14 
days after surgery. New bone development after tooth extraction was 37.5% (control), 
23.8% (continuously treated), 53.9% (post-treated), and 63.2% (pre-treated) groups. Before 
or after socket extraction, Li enhances bone healing, and tooth removal during Li therapy 
may slow bone repair [126]. 

In a study on rats, it was observed that the administration of Li carbonate (45 mg/kg 
/day) caused bone deterioration in sexually mature healthy rats [127]. Another study re-
ported that Li chloride (LiCl) debilitates BMP-2 signaling and creates a hindrance for os-
teogenic differentiation through an independent novel GSK-3β/WNT during the early 
stages of osteogenic differentiation [128]. In contrast to this study, others showed improv-
ing bone regeneration by the administration of Li, for example, it was reported that pro-
liferation and osteogenic differentiation were enhanced at 4 mM and 10–12 mM of LiCl, 
respectively [129]. An important aspect of bone tissue is its mechanical properties and its 
ability to withstand forces exerted on it [120,121]. The effect of a 28-day Li therapy (140 
mg/kg/day) on the mechanical properties of the bones of estrogen-deprived rats was in-
vestigated and, although a remarkable increase in the mechanical properties of cancellous 
bone was observed, increases in the mechanical properties of compact bone were small; 
this suggests that the use of Li in improving the mechanical properties of bone holds 
promise for long-term clinical applications [130]. A comparable study revealed that 150 
mg/kg/2 days of LiCl could enhance bone regeneration substantially in osteoporotic mice. 
Higher bone volume, trabecular thickness, trabecular number, and osseointegration were 
assessed with Micro-CT, and the maximum push-out force (N) and implant−bone contact 
shear strength (N/mm2) were stronger in the LiCl group (36 ± 6 N vs. 105 ± 12 N, 1.9 ± 0.4 
vs. 5.6 ± 0.7 N/mm2, respectively) [131]. The effects of systemic LiCl administration on the 
socket healing of estrogen-deficient rats were evaluated, finding that LiCl improved bone 
regeneration in rats with estrogen deficiency, especially in the initial healing [132]. Bone 
regeneration by Li treatment is therefore dose-dependent and the dosage may be depend-
ent on the stem cell source [133]. 

Li acts via hedgehog pathways (Hh). By simultaneously impacting the Hh and WNT 
pathways, LiCl diminishes adipogenesis and improves osteogenesis in bone marrow mes-
enchymal stem cells (BMSCs) [134]. The adipogenic gene (CEBPA, CMKLR1, and 
HSD11B1) expression of human mesenchymal stem cells (hMSCs) after exposure to Li was 
reduced, while the expression of alkaline phosphatase (ALP), Runt-related transcription 
factor 2 (Runx2), bone sialoprotein (BSP), and collagen 1 synthesis were elevated [135]. A 
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key clinical challenge is fracture healing, which can be a lengthy process and fails in 5–
10% of cases. Femoral fracture in rats was used as a model to optimize Li administration 
variables (such as onset time, curing duration, and dose); administrating a low dose of Li 
(20 mg/kg) for two weeks after fracture revealed the most promising results [136]. Fur-
thermore, another effect of Li on bone regeneration is increasing bone mineral density 
after the administration of Li. Dual-energy X-ray absorptiometry (DEXA) at the lumbar 
spine and hip in 75 normal participants and 75 Li-treated patients showed that bone den-
sity was raised by 5.3% at the femoral neck, 7.5% at the trochanter, and 4.5% at the spine. 
Li-treated patients had reduced ALP, osteocalcin, and serum CTX [137]. 

The immune system plays a significant role in bone regeneration. Osteoimmuno-
modulation (OIM) is an area of focus that has been developed to study the immune re-
sponse during osteogenesis [138,139]. Li modulates immune cells, especially macrophages 
through chemokine gene expression [140]. Osteal macrophages (osteomacs), especially 
CD169+ osteomacs pro-anabolic support contribute to osteoblasts during bone hemostasis 
and regeneration [141]. In vitro studies revealed that Li reprograms macrophages to the 
M2 phenotype, leading to improvement in osteogenic differentiation in rat BMSCs. Addi-
tionally, LiCl prevents p38mitogen-activated protein kinase (p38MAPK) and extracellular 
signal-regulated kinase (ERK) from phosphorylation. Hence, it accelerates bone regener-
ation, for which these studies help to find new treatments wearing debris-induced osteol-
ysis [142,143]. 

The results of computerized tomography and bone histomorphometry showed that 
the local Li2CO3 administration can accelerate bone healing in rat tibia defective lesions by 
raising lamellar bone ratios versus controls, and the acceleration in the recovery of bone 
damage through boosting osteoblastogenesis and preventing osteoclastogenesis was 
achieved effectively by the local delivery of Li [144]. However, decreasing immune-re-
sponsive genes (CXCL1, CXCL12, CCL20, IL7, and IL8) and osteoclastogenic factors were 
reported before [135]; therefore, increasing bone mineral density can result from inhibit-
ing osteoclastogenesis caused by Li. The crucial roles of Li in different stages of bone re-
generation is summarized in Figure 3 [145]. 
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Figure 3. Influence of metal ions on the variety of processes involved in bone regeneration. Repro-
duced from [145] with permission (open access, Attribution 4.0 International (CC BY 4.0)). 

2.3. Lithium and Bone and Cartilage Regeneration 
The majority of the work on Li focuses on bone regeneration. Given the similarity in 

the development of bone and cartilage, Li may also induce cartilage regeneration. An in 
vitro study showed the growth of cartilage on LiCl-polydopamine (PDA)-coated 3D-
printed poly-ε-caprolactone (PCL)-based scaffolds, and glycosaminoglycan (GAG) pro-
duction was increased as was chondrogenic marker gene expression [146]. Teeth are an-
other hard tissue and activating WNT/β-catenin signaling affects the rate of dentin secre-
tion and cementoblastic differentiation [147–150]. An in vivo study in a rat pulp capping 
model showed that the local administration of LiCl leads to the induction of compensatory 
dentin formation through WNT/β-catenin signaling [151]. Another study reported that 
the WNT signaling pathway is crucial in regulating dentin sialophosphoprotein (Dspp) 
expression, and LiCl promotes mRNA levels of Axin2, Kallikrein 4 (Klk4), and Dspp while 
attenuating the expression of osteopontin. Therefore, using LiCl as a capping-material for 
dentine regeneration may be promising [152]. Since Li effects are dose-dependent, the 
overuse of Li can result in severe dental putrefaction and deterioration in the tooth struc-
ture, which is linked with dentin mineral loss [153]. Therefore, using Li in dentistry still 
requires extensive studies [154]. 
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2.4. Lithium and Wound Healing 
Li activates the WNT pathway; WNT7a has a crucial role in wound healing, espe-

cially regenerating damaged vessels and diminishing the inflammatory response in dia-
betic wounds (with or without obesity) and epithelial differentiation [155]. The size of the 
wound is regulated by canonical WNT/β-catenin signaling, which also mediates the role 
of transforming growth factor beta (TGF- β) in cutaneous healing [156–158]. Therefore, Li-
ions are a suitable target for wound healing. In live animals, initiating the WNT signaling 
pathway by employing a pump specialized for negative pressure wound therapy (NPWT) 
and LiCl promoted the migration of cells into simulated wound sites. The minimum LiCl 
demanded to fill the simulated wound is 10 mM [159]. Similar results were achieved by 
loading LiCl in chitosan hydrogel wound dressings in male C57BL/c mice [160]. 

One of the most important applications of Li is in energy storage as Li-ion batteries, 
which are the most promising electrochemical energy storage devices [161]. Electrother-
apy creates new opportunities in wound healing [162], and wearable ionic triboelectric 
nanogenerator (iTENG) patches (created from a stretchable platform based on LiCl-
loaded organogels and elastomeric microtubular structures) utilized the therapeutic ef-
fects of Li-ions in wound healing, and moreover contributed to creating and transmitting 
electrical stimulation (Figure 4) [163], which is very promising in wound healing applica-
tions [164]. 

2.5. Lithium and Nerve Regeneration 
Li was shown to promote the proliferation of progenitor cells in the hippocampus’s 

dentate gyrus and to boost the mitosis of Schwann cells; neurogenesis is connected to Li’s 
neuroprotective and neurotrophic effects, synaptic plasticity improvement, cell survival 
enhancement, and apoptosis reduction [117]. GSK-3β inhibitors, especially mood stabi-
lizers such as LiCl, could be neuroprotective or anti-inflammatory agents. Li can enhance 
remyelination by boosting the expression of MPZ and PMP22 promoter activity, as well 
as transcripts, and protein levels. LiCl promotes myelin gene expression, maintains mye-
lin integrity, and catalyzes the recovery of mouse’ whisker movements following facial 
nerve compression injury; it also promotes the remyelination of sciatic nerves. Moreover, 
the mechanism of LiCl interaction with Schwann cells can be attributed to raising the 
amount of β-catenin and provoking its nuclear localization [165]. 

The hypothesized neuroprotective effects of Li include the inactivation of N-methyl-
D-aspartate receptors, the activation of PI3-K/Akt cell survival pathway, boosting expres-
sion of cytoprotective Bcl-2, and the suppression of GSK-3β [166]. Schwann cell viability 
and proliferation rates were increased at 5, 10, 15, and 30 mM LiCl. Wound healing was 
due to suppressing the migration of Schwann cells [167]. Thus, in peripheral nerves, Li 
improved remyelination by enhancing the expression of peripheral myelin genes, result-
ing in their proliferation and attenuating the migration of Schwann cells. In addition to 
peripheral nerves, Li has a significant neuroprotective role in central nervous system 
(CNS). For example, it has been reported that Li attenuates neuronal damage after acute 
spinal cord injury (SCI) and promotes neurological recovery by inducing autophagy [168]. 
Brachial plexus damage is one of the most common spinal cord injuries that often involves 
intense root avulsion resulting in the permanent paralysis of the innervated muscles. The 
impaired regeneration of motoneurons from the spinal to the peripheral nerve system 
(PNS) is one of the leading causes of inadequate treatment. By inhibiting GSK-3, Li ther-
apy can improve motoneuron regeneration from the CNS to the PNS [169]. The outcomes 
of daily intraperitoneal LiCl administration after a 20-week rehabilitation on the immedi-
ate reimplantation and avulsion of the C7 and C8 ventral roots were studied, and Li along 
with reimplantation permitted 45.1% of motoneurons to be rescued from the injury as well 
as improving the quantity and median diameter of nerve fibers [170]. Another study 
demonstrated that Li, started during the early remyelination phase, preserved it, despite 
the late stage of the process [171]. Locally releasing Li from hyaluronic acid in a silicon 
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conduit on a rat sciatic nerve injury was observed to increase nerve regeneration in rats 
[172]. 

 
Figure 4. An ionic TENG (iTENG) patch and its potential wound-healing applications. (A) Sche-
matic illustration of an iTENG patch for accelerated wound healing based on tribotronics. (B) Sche-
matic depiction of accelerated wound healing due to the secretion of biological molecules and the 
formation of new cutaneous tissue under a self-powered EF driven by an iTENG patch. (C) Optical 
image of the ionic fabric (scale bar: 1 cm. Inset: Schematic diagram of a cross-section of the ionic 
fabric and magnified image of a fiber.) Conductive organogel is injected into an HDFS-treated sili-
cone tube (scale bar: 500 μm). (D) Schematic illustration of the biomechanical energy harvesting 
mechanism of the iTENG, which relies on friction between the iTENG and skin. (E) Voltage gener-
ated upon bending at 30°, 60°, and 90° (scale bar: 3 cm. Inset: Optical image of wearable ionic fabric 
on a bent index finger). (F) Voltage generation of a self-motion-driven iTENG patch applied to the 
back of a BALB/c nude mouse. Reproduced from [163] with permission. 

2.6. Lithium and Antibacterial and Antiviral Activities 
The antibacterial and antiviral activities of biomaterials are beneficial because infec-

tion and the presence of pathogens are among the most critical problems that inhibit tissue 
regeneration [173–176], and moreover, it is recognized that bacteria and viruses are rec-
ognized to have the potential to induce carcinogenesis [177–180]. The main metal-medi-
ated antibacterial mechanisms are membrane disruption, ROS generation, macrophage 
activation, and protein/DNA damage [181,182]. In the case of Li, immunostimulating, 
anti-prostaglandin actions, inhibiting viral replication, and reducing lymphopenia are re-
ported as being the primary antibacterial and antiviral mechanisms [183,184]. Moreover, 
Li affects autophagy, and it has been reported that autophagy has a vital role in virally 
infected cells; hence, further studies to investigate the antiviral mechanism of Li are im-
portant [103,185]. 
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Given the impact of SARS-CoV-2 in global health, various anti-inflammatory and an-
tiviral treatments are under investigation, including Li [186–192]. To date, the antiviral 
activity of Li in different viruses (including porcine epidemic diarrhea, pseudorabies her-
pesvirus, Orthoreoviruses, and Coxsackievirus B3 virus) has been proved [193–196]. Ad-
ditionally, its antibacterial activity against Gram-negative bacteria (including Porphyromo-
nas gingivalis, Francisella tularensis, Aggregatibacter actinomycetemcomitans, Klebsiella pneu-
moniae, Escherichia coli, Burkholderia pseudomallei, and Pseudomonas aeruginosa) and Gram-
positive bacteria (including Streptococcus pneumoniae, Streptococcus mutans, and Staphylo-
coccus aureus) has been reported [197–202]. A summary of the biological effects of Li and 
the relation between these effects and autophagy is presented in Figure 5. 

 
Figure 5. An overview of the biological effects of lithium. (A) Regenerative effects and their main 
signaling pathways that are activated in each tissue. Lithium can cause regeneration in several tis-
sues, including bone, cartilage, dentin, nerve, skin, and vascular system. A WNT/β-catenin signaling 
pathway is the primary signaling pathway activated by lithium. Additionally, it has an anti-inflam-
matory response by inhibiting the GSK-3β pathway. (B) The anticancer effects of lithium in several 
types of prevalent cancers with a high mortality rate, including pancreatic cancer, thyroid cancer, 
esophageal cancer, colon cancer, prostate cancer, ovarian cancer, breast cancer, lung cancer, leuke-
mia, and glioblastoma. Lithium has shown an anticancer effect and has been used as a singular or 
adjunct treatment. Hence, lithium can be considered a chemosensitizer in chemotherapy. (C) Anti-
bacterial properties. Lithium has antibacterial properties against both Gram-positive and Gram-
negative bacteria. (D) Lithium has antireplicative effects against several types of viruses. (E) The 
crucial point of the biological properties of lithium, including its antiviral, anticancer, and regener-
ative effects, is the effect of lithium on autophagy. 
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3. Lithium-doped Bioceramics in Regenerative Medicine 
Bioceramics can be used in both hard and soft tissue regeneration. The three main 

groups of bioceramics that incorporate Li-ions in their structure include bioactive glass 
(BG), calcium phosphates (including hydroxyapatite (HA) and beta-three calcium phos-
phate (β-TCP)), and silicates. 

3.1. Lithium-Doped Bioactive Glasses (Li-BGs) 
Bioactive glasses (BGs) are bioceramics promoting hard tissue regeneration by creat-

ing a layer of HA on their surfaces [203,204]. An advantage of BGs is the inclusion of var-
ious ions to their structure to improve their performance. In recent years, one of the ions 
added to the structure of BG is Li; Li-BG is commonly used in bone regeneration and os-
teochondral repair [205]. For instance, a study investigated the biocompatibility and bio-
activity of 45S5 Li-BG that was prepared by a melt quenching method. Li in low concen-
trations inhibited apatite formation, resulting in the compactness of the structure [206]. 
Additionally, Li-substituted bioglasses caused increasing ALP activity and cell prolifera-
tion in a dose-dependent manner, reducing the rate of ion release and apatite formation 
[207]. Li2O contents within the therapeutic range (below 8.3 ppm) have been reported, 
which should be between 2.5 and 5 wt% in Li silicates, 45S5 Li-BG, and their scaffolds. Li-
BGs generally crystallize into the phases Li6P6O18 and Li3PO4, as well as combeite 
(Na2Ca2Si3O9) and silicorhenanite (SiO4(PO4)2Ca5) [208]. Investigating the effect of Li pre-
cursors on the structure–property relationships of Li–silicate sol–gel BG revealed that ni-
trate, in comparison to citrate, has a higher affinity for Li. In contrast, citrate has a lower 
decomposition temperature that is advantageous [209]. 

One of the areas in which bioceramics have a wide range of applications is dentistry 
[210]. A new class of glass–ceramics based on Li2O-SiO2 called Li disilicate (LD) was con-
ceived for dentistry due to its aesthetics, chemical durability, high fracture strength, and 
inertness in the buccal environment [211,212]. LD bioactivity begins after 14 days, and 
after 21 days, a mineralized matrix develops from a demineralized matrix [213]. Similar 
results were reported in a case report for zirconia-reinforced Li silicate (ZLS) [214]. The 
remineralization process induced by 45S5 Li-BG containing 5-wt% of Li and its great an-
tibacterial activity is prevalent in oral diseases [202]. 

BGs are used in bone regeneration due to release crucial ions [215]. The release of Li 
from different 45S5 BGs, which is designed for bone regeneration, has been explored by 
Da Silva et al. [216]. Similar to LiCl treatment, local Li-ion release upregulated WNT path-
way expression in 17IA4 cells. However, high concentrations of BG may cause cytotoxicity 
due to changes in the pH of the solution. Compared to Li-doped phosphate-based bioac-
tive glasses (Li-PBGs), Li-doped borate-based bioactive glasses (Li-BBGs) release Li at a 
slightly higher rate and amount. The quantitative polymerase chain reaction (qPCR) anal-
ysis of AXIN2 expression found that Li-BBGs had a higher gene expression. Li-BBGs re-
lease more Li, explaining these results [217]. 

The synergistic effect of dopant ions and the ease of preparing polymer composites 
are two significant advantages of BGs. For example, the use of Sr-doped BGs for bone 
regeneration is well established [218]. The impact of single and binary strontium and Li 
doping on BG scaffolds in vivo has been investigated employing histochemical and micro-
computed tomography (micro-CT) analysis of a femoral defect of rabbits as a model at 2, 
4, and 6 months. Li-doped scaffolds have mild bone regeneration, while Sr and Li + Sr-
doped scaffolds had excellent osseous tissue formation. Moreover, micro-CT data showed 
that Li + Sr samples have the highest degree of vascularity, peripheral cancellous tissue 
formation, and cortical tissue inside implanted samples. Thus, doping Sr and Li to BG can 
improve bone regeneration, especially in early in vivo osseointegration [219]. Nanobi-
ocomposite scaffolds consisting of Li-doped mesoporous bioactive glass (Li-MBG) and a 
block copolymer (mPEG-PLGA-b-PLL) were observed to significantly improve MC3T3-
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E1 cell proliferation, attachment, and ALP activity [220]. Thus, doping Li and other bene-
ficial ions for bone regeneration to BGs such as Sr may synergistically enhance its regen-
erative effect. They may also be used to prepare polymeric nanocomposite scaffolds. 

The majority of BGs’ regenerative applications are orthopedic. Osteochondral lesions 
are common worldwide and pose significant treatment challenges for orthopedic special-
ists due to unsatisfactory treatments [221]. Although regenerative medicine has proposed 
new treatment strategies, such as matrix-associated autologous chondrocyte implantation 
(MACI), layered scaffolds in acellular or cellular approaches for use in the clinic [222], the 
most challenging task is to create biomaterials that can regenerate both bone and cartilage. 
These requirements make this field difficult [223]. Gradient scaffolds for osteochondral 
tissue engineering are exciting, but designing them for clinical application is challenging 
[224]. Because of these reasons, simplifying biomaterial system design is critical. Li-releas-
ing BGs derived from sol-gel processes are suitable for cartilage regeneration [146,225]. 
Thus, using Li-doped BGs for osteochondral tissue engineering is promising but not well 
investigated. For example, Li-MBG was used in a rabbit osteochondral defect study. After 
8–16 weeks of implantation in osteochondral defects, Li-MBG scaffolds outperformed 
pure MBG scaffolds in terms of the regeneration of subchondral bone and hyaline carti-
lage-like tissues, suggesting Li-doped BGs have great potential in osteochondral regener-
ation [226]. 

Although bioceramics and BGs appear limited to orthopedics and hard tissue recon-
struction, these materials have found many applications in soft tissue reconstruction due 
to one of their pro-angiogenesis properties. The lack of mature and functional vasculature 
has severely hampered the clinical translation of tissue-engineered constructs [227]. As 
stated previously, Li-ions can induce angiogenesis, making Li-doped BGs promising ma-
terials for improving angiogenesis [114,116]. Exposure to 45S5.5 Li-BG ionic dissolution 
products improved angiogenesis by increasing integrin αvβ3 subunit β3 expression and 
vascular density in quail embryo CAMs. The ionic dissolution products of 45S5.5 Li-
doped BGs can be considered inorganic angiogenic agents, which can be used in place of 
expensive and potentially harmful growth factors [205,228,229]. It has also been claimed 
that Si and Li-ions have synergistic effects on the activation of the WNT/β-catenin canon-
ical pathway and the production of proangiogenic cytokines (insulin growth factor 1 
(IGF1) and TGF- β) [205,230]. A separate study demonstrated that 45S5 Li-BG could im-
prove human umbilical vein endothelial cells’ (HUVECs) pro-angiogenic ability by down-
regulating PTEN protein and activating the AKT pathway, which increases endothelial 
cell proliferation, migration, and tube formation and enhances the expression of pro-an-
giogenic genes [231]. Therefore, it appears that adding Li-ions to BGs can stimulate angi-
ogenesis, though more research is required to fully grasp the mechanism. 

Finally, given Li’s neuroprotective and neurogenic properties and the use of BGs in 
neural regeneration, Li-doped BGs may be helpful in neural tissue engineering scaffolds 
[232,233]. Despite the several neuroprotective advantages of Li, there are relatively few 
studies related to Li-doped bioceramics for neural regeneration. Extensive burns, for ex-
ample, can cause nerve damage, and different Li2O contents have been added to BGs to 
support nerve healing and angiogenesis. In the proper dilution ratio, Li-BG extracts ad-
vanced the proliferation of Schwann cells and HUVECs. Li-BG extracts with adequate Li- 
and Si-ions promoted Schwann cell migration [234]. A new strategy for neural regenera-
tion may be Li-BGs and their polymeric composites. 

3.2. Lithium-Doped Calcium Phosphates 
Calcium phosphates, including HA and β-TCP, have always been considered the first 

bioceramics used in regenerative medicine due to their extracellular matrix nature. HA, 
which is found in the body, is one of the bioceramics whose function is improved by add-
ing ions such as Li [235]. For example, improving fracture bone healing with Li-doped 
calcium phosphate cement (Li/CPC) has been studied; Li/CPC extracts can stimulate the 
in vitro proliferation and differentiation of osteoblasts by releasing Li-ions (Li+) at 25.35–
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50.74 mg/L via the WNT/β-catenin pathway. The effects of the local Li+ release in rat tibia 
defects were also studied in vivo using CPC and Li/CPC. Compared to CPC, Li/CPC 
showed better osteoconductivity, osteogenesis, and osseointegration by increasing bone 
mass and promoting defect repair [236]. Calcium phosphate/Li coatings improved MG63 
cell attachment, early proliferation, and biocompatibility [237], so doping Li-ion to cal-
cium phosphate can improve its potential biomedical application. For example, the glu-
cocorticoid-induced osteonecrosis of the femoral head (GIONFH) affects young people 
and middle-aged adults, and to treat GIONFH, a composite scaffold with Li as a WNT 
signal activator and erythrogenin (EPO) to upregulate the HIF-1/VEGF pathway was de-
signed. To this end, a porous gelatin/Li-doped-hydroxyapatite nanoparticles/gelatin mi-
crospheres/rhEPO (Li-nHA/GMs/rhEPO) composite scaffold was created. The in vitro re-
sults showed increased osteogenic and angiogenic factors and activating factors in the 
WNT and HIF-1/VEGF pathways. Additionally, in the GIONFH rabbit model, this scaf-
fold improved new bone formation and repaired femoral head defects [238]. Conse-
quently, more research on Li-doped HA and its nanocomposites in treating GIONFH or 
similar conditions seems logical. 

Orthopedic implants are another possible application for Li-doped HA. In simulated 
body fluid (SBF), Li-HA scaffolds were hydrolyzed, and they can also be degraded by 
cells. Li-HA scaffolds increased PO43- release in a degradation medium, which increased 
osteoblast physiological activity and sped up Li-HA degradation. The addition of Li to 
HA also increased its compressive strength. Moreover, SEM and MTT assays showed that 
the degradation products of Li-HA scaffolds aided osteoblast proliferation [239]. Alt-
hough adding Li to HA did not affect the degradation rate, doping Li into HA scaffolds 
increased new bone formation by decreasing GSK- 3β and β-catenin mechanisms, but did 
not have a significant angiogenic effect [240]. The incorporation of Li in HA causes densi-
fication [241], with greater crystallinity for Li-doped HA than undoped HA. Li also re-
duces the dielectric constant, which is good for dental and orthopedic applications [242]. 
A study evaluated the physical, mechanical, and biological properties of Li-doped calcium 
phosphates, which showed the growth of an apatite layer in SBF [243]. Metallic implants 
coated with Li-HA thin films have been studied. FTIR spectra revealed the coatings’ high 
biomineralization potential; Li3PO4 and Li2CO3 as doping reagents were observed to in-
crease the growth of hMSCs on film surfaces, suggesting Li-doped bio-derived materials 
as a promising next-generation coated implant material with rapid osteointegration [244]. 

Seeding stem cells on the new generation of implants may improve clinical applica-
tions. For instance, simultaneous nerve and bone tissue regeneration in spinal cord inju-
ries are required (SCI). Hydroxyapatites are bioresorbable materials with good biocom-
patibility and osteoconductivity, so their use in spinal surgery is possible. The theranostic 
agent nanocrystalline calcium HAs, incorporating Li+ (Li-nHA) doped with europium 
(Eu3+), have excellent potential for treating SCI. Human olfactory ensheathing cells 
(hOECs) and adipose tissue-derived multipotent stromal cells were used to assess the bi-
ocompatibility of the nanoparticles. The results show a promising approach to SCI treat-
ment using regenerative strategies [245]. A Li-HA porous scaffold seeded with hypoxia-
preconditioned BMSCs for bone regeneration was also evaluated in vitro and in vivo. The 
data revealed that 1.5%Li-HA had the best in vitro cell proliferation and bone formation, 
with a decrease in GSK-3β and an increase in β-catenin, though Li did not affect angio-
genesis significantly. Hypoxia-preconditioned BMMSCs improved angiogenesis and os-
teogenesis by activating the WNT and HIF-1 signal pathways [246]. A new strategy for 
improving the clinical efficacy of Li-doped HA scaffolds seeded with stem cells appears 
to be emerging. 

Β-TCP scaffolds based on excellent biocompatibility and compositional similarity to 
the natural bone have received attention as ceramic implants for bone repair and augmen-
tation. However, the high solubility of β-TCP may cause refracture due to implant degra-
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dation and inflammatory reactions [247]. Li-doping β-TCP increases dissolution and ther-
mal stability [248,249], so doping β-TCP with Li-ions appears to have potential to improve 
clinical applications. 

3.3. Other Lithium-Doped Bioceramics 
Calcium silicate bioceramics are widely applied in tissue engineering and drug de-

livery [250–253]. The apatite mineralization of a bioactive composite based on poly (do-
pamine) (PDA) and Li-doped silica nanospheres (LSNs) coated on polyetheretherketone 
(PEEK) [254] surfaces (LSN-PDA-PEEK) in SBF was evaluated, and the bioactivity was 
observed to be higher than that of neat PDA coated on PEEK (PDA-PEEK) and PEEK. 
LSN-PDA-PEEK also stimulated rBMSC responses more than PDA-PEEK and PEEK. 
Moreover, in vivo, LSN-PDA-PEEK increased bone tissue responses compared to PDA-
PEEK and PEEK [255]. Adding 5% Li to mesoporous silica nanospheres (MSNs) increases 
their degradability. Moreover, Li-doped mesoporous silica nanospheres (LMSNs) had 
more significant stimulatory effects on BMSC attachment and proliferation than MSNs 
due to Li-ion release. LMSNs may also improve BMSC ALP activity and the expression of 
osteogenesis-related genes (osteopontin (OPN), osteocalcin (OCN), Runx2, and ALP). 
Thus, LMSNs have a potential application in bone regeneration [256]. 

As a result of the synergistic interaction of Li and Si-ions, Li-ions can enhance the 
biological effectivity of calcium silicates. This synergistic effect can be seen in osteochon-
dral regeneration. Osteoarthritis (OA) causes cartilage lesions that spread to the subchon-
dral bone. The regeneration of both tissues is required to repair osteochondral OA defects. 
Extracts of biomaterials containing Li and silicon have significantly increased chondrocyte 
proliferation and maturation, and favored the osteogenic differentiation of rabbit mesen-
chymal stem cells (rBMSCs). A histological and micro-CT analysis revealed that Li-doped 
calcium silicate (LCS) scaffolds promoted osteochondral regeneration in vivo; Li- and Si-
ions released from LCS scaffolds are important in osteochondral regeneration, suggesting 
that LCS scaffolds are promising biomaterials for osteochondral repair [257]. In a similar 
study, pure phase LCS (Li2Ca4Si4O13 and L2C4S4) scaffolds were synthesized by the sol–gel 
method and then 3D printed. These scaffolds have controlled biodegradability and good 
apatite mineralization capacity. The ionic products of L2C4S4 also significantly increased 
chondrocyte proliferation and maturation and rBMSC osteogenic differentiation. In oste-
ochondral defects of the rabbit, the L2C4S4 scaffolding favored both cartilage and subchon-
dral bone regeneration (Figure 6) [258]. Three-dimensional-printed LCS and its compo-
sites offer opportunities to generate scaffolds to treat difficult-to-treat disease (such as OA) 
conditions (particularly as the printing process facilitates the inclusion of macropores for 
vascularization). Another study evaluated the in vitro and in vivo osteogenic properties 
of 3D-printed lithium magnesium phosphate (Li0.5Mg2.75 (PO4)2, Li1 Mg2.5 (PO4)2, and 
Li2Mg2 (PO4)2) prepared by the sol–gel method. Interestingly, the lithium magnesium 
phosphate has a lower porosity and higher compressive strength, and raises cellular pro-
liferation, osteogenic differentiation, and proangiogenic activity; moreover, lithium mag-
nesium phosphate significantly improved bone regeneration in critical-size calvarial de-
fects of rats [259]. Recent developments in dental restorations used Li germanosilicate 
glass-ceramics doped with rare-earth oxides [260]. 
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Figure 6. (A) Schematic illustration of the application of Li2Ca4Si4O13 scaffolds for osteochondral 
reconstruction. Pure-phase Li2Ca4Si4O13 powders were successfully synthesized by the sol–gel 
method. Three-dimensional-printed Li2Ca4Si4O13 scaffolds not only promoted cartilage maturation, 
but also stimulated osteogenic differentiation in vitro. On the other hand, Li2Ca4Si4O13 scaffolds sig-
nificantly accelerated cartilage regeneration as well as promoting subchondral bone reconstruction 
in vivo. (B–I) Surface morphology and XRD analysis of Li2Ca4Si4O13 scaffolds. Digital photograph 
(B), optical microscope image (C), and SEM images (D,E) of 3D-printed Li2Ca4Si4O13 scaffolds. The 
prepared porous Li2Ca4Si4O13 scaffolds possessed a controlled pore size (~250 μm). XRD analysis (F) 
of Li2Ca4Si4O13 scaffolds before/after soaking in the simulated body fluids for 14 days, and SEM 
images (G–I) of Li2Ca4Si4O13 scaffolds after soaking in the simulated body fluids for 14 days. 
Li2Ca4Si4O13 scaffolds induced distinct apatite mineralization on their surface. Reproduced from 
[258] with permission. 

3.4. Lithium-Doped Bioceramics for Anticancer Applications 
Drug delivery is an important potential application of bioceramics, especially nano-

bioceramics [261]. Additionally, as previously stated, Li has anticancer properties. Some 
researchers have found that using Li with other drugs has a synergistic effect on cancer 
cells and may be used for combinational therapy [88,262]. Li may cause tumor chemosen-
sitization [106]. Thus, the use of Li-doped bioceramics could be an exciting research area. 
However, there are few reports in the literature exploiting these bioceramics for such ap-
plications. Li-BG nanoparticles loaded with vancomycin or Fluorouracil (5-FU) were de-
signed to deliver Li-ions and drugs simultaneously to treat osteomyelitis, bone cancer, 
and osteoporosis; drugs are released via a diffusion-controlled process, and the release 
profile is dependent on the drug concentration applied in the loading stage (Figure 7) 
[263]. 
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Figure 7. (A) Bioactive glass nanoparticles designed for multiple deliveries of lithium ions and drugs 
as curative and restorative bone treatment. (B) The cumulative concentration of released lithium 
ions shown against the soaking time. (C) The cumulative percentage of vancomycin and 5-FU re-
leased form glass nanoparticles against time. Reproduced from [263] with permission. 

Li-ferrite BGs were prepared using the sol–gel method to assess their use in hyper-
thermia therapy, and these BGs can provide cancer hyperthermia up to 47.2 °C (however, 
they did not test their effects on a cancer cell line or compare the effects of presenting Li-
ions on cell death) [264]. 

4. Conclusions 
Li is widely used to store energy, particularly in batteries [265–268] and capacitors 

[269,270], and we foresee nanogenerators [271] (including stimuli-responsive nanogener-
ators, e.g., photoactivatable nanogenerators [272]) will have broad applications in medical 
fields, such as regenerative medicine, rehabilitation, and cancer treatment [273–276], par-
ticularly as nanogenerators have been shown to increase the efficacy of chemoimmuno-
therapy for non-small-cell lung cancer [277]. Therefore, Li-doped bioceramics may be 
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good candidates for nanogenerators for advanced multifunctional systems in cancer treat-
ments and regenerative medicine [272,278]. Li has anti-replication properties in viruses 
and is anti-mitotic in cancer cells, but it simultaneously stimulates stem cell proliferation, 
which may be an evolved regulatory system. However, more studies on the effects of Li 
on autophagy in cancer cells, virally infected cells, and stem cells and their related signal-
ing are also necessary. 

Li has a variety of biological properties that can be influential in stem cell therapy, in 
the development of the next generation of antibacterial, antiviral, and anticancer agents, 
as well as in tissue regeneration, and opportunities exist for fundamental studies to un-
derstand the role of Li in biological processes. Li is a widely used medication for various 
mental illnesses [279–282], and we foresee significant potential for further clinical appli-
cations of biomaterials incorporating Li in some manner (e.g., doped ceramics and gels), 
supported by the large number of ongoing clinical trials employing Li in some fashion 
(>3000 clinical trials in the Cochrane Central Register of Controlled Trials [283]). The pur-
pose of this review was to provide to interested readers an overview of some of these 
clinical trials. 
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