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Phase relationships between two or more interacting processes from one-dimensional
time series. II. Application to heart-rate-variability data
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The recently proposed approach to detect synchronization from univariate data is applied to heart-rate-
variability ~HRV! data from ten healthy humans. The approach involves introducing angles for return times
map and studying their behavior. For filtered human HRV data, it is demonstrated that:~i! in manyof the
subjects studied, interactions between different processes within the cardiovascular system can be considered
as weak, and the angles can be well described by the derived model;~ii ! in someof the subjects the strengths
of the interactions between the processes are sufficiently large that the angles map has a distinctive structure,
which is not captured by our model;~iii ! synchronization between the processes involved can often be de-
tected;~iv! the instantaneous radii are rather disordered.
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I. INTRODUCTION

A general approach has recently been proposed@1,2# for
the detection of phase synchronization~or its absence! be-
tween two or more interacting processes based on the an
sis of univariate data. The approach consists in extrac
return times from a continuous one-dimensional observa
reconstructing the return times map by delay embedding,
extracting phase angles. In the immediately preceding pa
@2#, hereinafter referred to as Part I, we demonstrated a
lytically and numerically that for two interacting process
these angles are in one-to-one correspondence with the
ventional phase difference, and can thus be taken as an
cation of synchronization or otherwise. The same meth
was also extended to the case of several processes intera
in the presence of noise, and its workability was illustra
numerically for the case of three processes.

In the present paper we apply this approach to heart-r
variability ~HRV! data from healthy human subjects in ord
to learn whether or not synchronization occurs for three
the most significant processes operating within the car
vascular system, namely, the main heart rhythm, respirat
and the process whose basic frequency is close to 0.1
The HRV data are in the form ofR-Rintervals extracted from
electrocardiogrammes~ECGs!.

II. DESCRIPTION OF DATA

Figure 1~a! shows a typical human ECG. The so-calledR
peaks, which are the largest ones, are indicated. The
intervalsTi between the two successiveR peaks are usually
called R-R intervals. They represent the time intervals b
tween the two consecutive heart beats and in terms of n
linear dynamics the time intervals between the trajecto
return to a secant plane defined by the value of a thresh
i.e., return times. It is widely accepted that the human E
has rather complex Fourier~and wavelet! spectra with well-
distinguished characteristic peaks, three of them being e
cially noticeable: a schematic Fourier power spectrum fo
typical ECG is shown in Fig. 1~b!. Usually these peaks ar
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associated with the rhythmic activity of certain physiologic
processes within cardiovascular system~CVS!: f ahr defines
the average heart rate;f respis associated with respiration pro
cess; the origin off 2;0.1 Hz is not quite clear at present—
is variously attributed to the sympathetic and parasym
thetic nervous activity@3#, to the baroreflex loop@4#, and to
the intrinsic myogenic activity of the vascular smoo
muscles @5#. At least two more distinguishable spectr
peaks, at frequencies of about 0.01 and 0.03 Hz~not shown
here!, have recently been recognized@5#. However, on the
small observation times with which we deal in the pres
research, they cannot be detected with confidence and, in
framework of this paper, we will treat them as addition
manifestations of nonstationarity.

Qualitatively the same Fourier spectra can be obtained@6#
from R-R intervals using a technique suggested in@7#.

Thus, the dynamics ofR-R intervals result from the com
plex interaction of several processes with different tim
cales. With the exception of respiration and heart rate, th
is usually~but cf. @8#! no possibility of gaining any knowl-
edge about the phase or amplitude relationships betw
them with the use of noninvasive methods. It is, therefo
interesting to find out whether our technique can be help
in order to detect the presence or absence of phase syn
nization between the processes involved based solely
studies of the sequences ofR-R intervals.

FIG. 1. ~a! Typical human electrocardiogram~ECG!. ~b! Sche-
matic power spectrum in decibels for a typical human ECG.
©2002 The American Physical Society12-1
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Data were recorded from 10 healthy students and yo
researchers of Saratov State University. Each ECG was
istered while the subject was resting in an armchair, ove
period of 5–10 min, using a sampling rate of 180 Hz. Fo
test example of bivariate data, where both ECG and resp
tion signals were required, measurements were made at
caster University during 3 min with a sampling rate of 4
Hz from a young healthy subject undergoing paced resp
tion with frequency of 0.5 Hz.

III. REMOVING THE FLOATING AVERAGE VALUE

As it was noted in Part I~Ref. 45! the return times of a
nonstationary process usually oscillate around some
domly floating average value. In terms of the angles of ret
times map it means that the origin of this map is floati
randomly. Angles extracted from such data are usually hig
disordered and the useful phase information appears to
smeared. We are interested in the oscillations of return tim
around the average value, thus in order to gain ‘‘clean’’ ph
information we advocate removal of this floating origin fro
return times prior to the extraction of angles. Any one
several existing methods can be used for this purpose,
here we discuss just two of them. We first show how th
transform purely noisy data when no interactions take pl
~Sec. III B!, and then demonstrate their effect on a typic
example of human HRV data~Sec. IV!.

A. Description of filtering methods

In the present paper we use two different methods. T
first of these consists of computing the analog of the sec
derivative of the original discrete time seriesx( i ),

xder~ i !5
x~ i 11!1x~ i 21!22x~ i !

2
. ~1!

Let us refer to this method as to themethod of derivatives.
The second method is an extension of the well-kno

detrending technique. A local average is defined within
temporal window moving along the dataset which is th
deduced from each datapoint. The only distinction of o
method is that the size of the temporal window is not co
stant along the dataset. One window includes all points
tween two successive extrema~maximum and minimum,
etc.! of a discrete signal, including the extrema themselv
After the local average is computed within each window,
value is attributed to the time in the middle of the windo
All such averages are then connected by straight lines
means of linear interpolation. Finally, from each origin
datapoint the value of the resultant graph is deduced@see
also Fig. 3~c!#. In what follows we will call this technique
the method of differences.

Further, while plotting the filtered discrete data we w
add them to the average value of the original unfilte
dataset.

B. Noisy oscillatory process without any interaction

Before attempting to apply our technique in practice
investigate interactions between oscillatory processes
03621
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first need to know how the map of angles of return tim
behaves in the case when there are no deterministic inte
tions between processes being close to periodic, i.e., w
only one noisy periodic oscillatory process occurs. Consi
the Van der Pol oscillator in the presence of noise, i.e.,
~2! of Part I in the absence of external forcing (C50), with
noise intensityD50.000 01,e50.1, andv51. Let us record
timest i when the phase trajectory intersects the levelx50 in
one direction. The map for return times is presented in F
2~a! while the map for angles of return times in Fig. 2~b!. It
is easy to be convinced that the latter map contains no st
ture by comparing it with those of Figs. 3 or 6 of Part
representing Eqs.~11! or ~19!, respectively.

In order to check that the distinct structure that may a
pear in map for angles is not merely due to the filtrati
procedures that we have used, we now apply the above fi
to these purely noisy data. The results obtained after filtra
are presented in Fig. 3~a! and 3~b!. The presence of som
structure in the resulting angles maps is quite obvious her
though it is far from being one dimensional, and neither
there any possibility of modeling these maps by means
Eq. ~19! in Part I. Note that the points concentrate in ve
specific regions, namely, between the return functions of
~11! in Part I forj5 1

3 andj5 1
2 shown by gray dashed lines

and that they fill densely the interior and the vicinity of th

FIG. 2. Van der Pol system forced only by Gaussian white no
of intensityD51025: ~a! return times map;~b! angles map.

FIG. 3. Results of the application of the two filtering techniqu
to the purely noisy return times illustrated in Fig. 2~a!. Angles maps
are shown after applying differences~a! and derivatives~b! meth-
ods, respectively. Solid lines in~a! and~b! show return functions of
Eq. ~11! in Part I forj51/3 ~uppers! andj51/2 ~lowers!. In ~c! the
operation of filtering by differences is illustrated for the noise da
2-2
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PHASE RELATIONSHIPS BETWEEN . . . . II. . . . PHYSICAL REVIEW E65 036212
region. A typical feature of these maps is the existence
relatively sharp cusps pointing away from the diagonal. T
origin of this structure can be explained phenomenologic
using the basic property of white noise, namely, the non
ferentiability of its time series. That means that differenc
between the subsequent points change from negative to
tive very quickly. The probability of finding two successiv
local maxima~or minima! being separated by only one o
two points is much larger than the probability of finding
wider separation. An illustration of how thedifferencestech-
nique works in this case is given in Fig. 3~c!. In the upper
plot the original dataset is shown together with the lo
average. After subtracting the latter one obtains a time se
oscillating around zero with the current period varying ra
domly between 2 or 3. In terms of angles maps this me
random ~and rapid! jumping between the return function
shown in Figs. 3~a! and 3~b!. Of course, due to total random
ness of the data, the whole map appears to be very noisy.
performance of derivatives technique can be explained
similar way. Thus, if the shape of the angles map is simila
that presented in Fig. 3, we will consider these data as pu
noisy.

IV. STAGES OF DATA PROCESSING

The stages in the processing of the measuredR-R inter-
vals are illustrated in Fig. 4.

An original sequence ofR-R intervals is plotted~Fig. 4,
first row, first column!. As usual, there is a slow variation o
the average value, attributable to processes of very low
quency ~less than 0.1 Hz! which, over small observation
times, can often be treated as nonstationarity. On the

FIG. 4. This figure illustrates the successive stages ofR-Rdata
processing and compares the two filtering techniques for a hea
subject at rest. Details are discussed in the text.
03621
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right is shown the Fourier power spectrum of the origin
HRV data @6,7#. The largest peak corresponds to the ma
heart rhythmf ahr. Both this and the others of smaller amp
tude are rather broad, presumably due to the nonstationa
Correspondingly, the map of successiveR-R intervals, being
just the return times map~Fig. 4, first row, second column!,
usually has no distinct structure.

The anglesf i are extracted from the return times ma
~Fig. 4, second row, first column!, having placed the origin a
the center of mass. A typical map for angles is as shown
Fig. 4 ~second row, second column!, where the points fall
close to the diagonal near coordinate positions~p/4; p/4! and
~23p/4; 23p/4! due to the predominance of very low
frequency oscillations influencing the heart rate@compare
with Fig. 6~a! of Part I#.

In order to concentrate on interactions of the main rhyt
with respiration and the process with frequency;0.1 Hz, we
need to reduce the effect of very low frequencies and sub
the original sequence ofR-R intervals to filtration. The re-
sults of applying two filters described in Sec. III A usual
differ slightly, and so in practice we compute the pow
spectrum for the each of the filtered data setsxder or xdiff in
order to control the effect of filtering. In Fig. 4, rows thre
and four show the results of filtering by means of diffe
ences, while rows five and six illustrate the workability
derivatives technique. The corresponding power spectra
shown at the end of each pair of rows. To compute the F
rier spectrum from filteredR-R intervals we just add toxder
or xdiff the average value of unfilteredR-Rintervals, and then
proceed in the same way as for original, nonfiltered data@6#.
The methods of differences and derivatives both remove
trend from the data, leading to return times maps~rows three
and five! of similar appearance. However, the noisy bac
ground of the power spectrum seems on average to be m
uniform after filtration by derivatives, than by difference
although the use of derivatives leads to a more signific
decrease of the lower-frequency range~around 0.1 Hz and
less!. In both cases, two dominating frequencies and th
combinations are clearly seen after filtration, but the ratios
their amplitudes appear to be slightly different. Note, that
derivatives technique is dangerous for data where the re
ration frequency is less than a quarter of average heart
For such data we would recommend the use of difference
being the safer method.

The anglesf i are extracted from the maps of filtere
return times, and the map for angles~1! from Part I is plotted
~Fig. 4, rows four and six!. For the case considered, bo
angles maps seem to lie in the vicinity of the same cu
being the return function of Eq.~11! for in Part Ij5 1

4 ~com-
pare with Fig. 4!. So both methods of filtration allow the
structure of angles map in this example to be revealed m
or less equally. Both of the ‘‘filtered’’ angles maps represe
smearedcontinuouscurves, and are definitely not formed b
isolated clouds of points, thus testifying to the absence
synchronization between heart rate and the most dominan
the other processes~which in the present case seems to
respiration!. The rotation numberj01 is estimated from
Eq. ~21! of Part I to be ^j&50.246 . . . for differences
and ^j&50.264 . . . for derivatives.

hy
2-3
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JANSON, BALANOV, ANISHCHENKO, AND McCLINTOCK PHYSICAL REVIEW E65 036212
For further analysis of real data we select whichever fi
leads to the more pronounced structure in the map for ang
Of course, neither of the filtration techniques described
perfect, and other techniques could be used instead to ob
similar or perhaps even better results.

Along with angles, the instantaneous radii were also
tracted from the humanR-R intervals at each stage of pro
cessing. In Fig. 5 the maps for radiir i are shown for the
same human data as in Fig. 4: for nonfilteredR-R intervals
~a!, for those filtered by differences~b! and by derivatives
~c!. Unlike the anglesf i , the radii r i usually behaved in a
rather disordered way, thus smearing the map ofR-R inter-
vals significantly. This remained true regardless of whet
raw or filtered HRV data were used.

As shown in Part I, the map for angles of return tim
allows one to make a judgement about synchronization~or
its absence! between the main rhythm and the other proc
with smaller amplitude, interaction with which is dominan
In the CVS the role of this second rhythm is usually play
by respiration. The third rhythm often present in human H
data has a basic frequencyf 2 that is close to 0.1 Hz and a
amplitude comparable with or lower than that due to res
ration. In order to obtain information about interaction b
tween respiration and the latter process, if it manifests it
in the power spectrum, we may finally proceed as sugge
in Sec. III C of Part I, namely: extract the local maxima fro
the sequences ofR-R intervals; filter the set of maxima b
one or another technique; and then plot their map.

V. TESTING FILTERING ON SURROGATE DATA

Now, let us test filtering more thoroughly with the help
surrogate data@9#. We are interested in the application of o
method to data possessing the same Fourier power spec
as realR-R intervals, but which is otherwise random. W
obtained a set of surrogates for the dataset illustrated in
4 using the programsurrogatesfrom the TISEAN complex
developed by the authors of this method@10#, and then sub-
jected it to all the same stages of processing. The results
presented in Fig. 6. Fourier spectra of either original or
tered surrogate data possess peaks at the same frequenc
the spectra of the reference data. They are of similar am
tude ~compare the spectra in Figs. 4 and 6!, although not
exactly the same, possibly due to the method of comput
the spectrum used here@7#, which is not the fast Fourie
transform used in@10#.

The angles maps look similar to those obtained for
purely random data of Figs. 3~a! and 3~b!, and obviously

FIG. 5. Map of radii of return times for the subject illustrated
Fig. 12 for~a! nonfilteredR-Rintervals,~b! R-Rintervals filtered by
differences,~c! R-R intervals filtered by derivatives.
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differ markedly from the corresponding maps derived fro
the reference data in Fig. 4.

VI. ANGLES OF RETURN TIMES MAP AND PHASE
DIFFERENCE FOR HRV DATA

In Part I an explicit correspondence between the conv
tional phase difference and the angles of return times m
was derived analytically and, what is of particular impo
tance for us here, confirmed for a simulated nonstation
process with floating eigenfrequency of oscillations. Here
attempt to establish the same correspondence for real
logical data. In order to evoke a regime of effective pha
synchronization with the same rotation numberj51/3 as in
the numerical simulation illustrated in Fig. 7 of Part I, w
asked a healthy volunteer to breath at a frequency of 0.5
and measured both the ECG and respiration signals sim
neously. The Fourier power spectrum of the HRV for th
subject is given in Fig. 7, where the two main proces
exhibit themselves through the presence of the peaks atf ahr,
f resp, and their combinations 2f resp5 f ahr2 f resp. Thus, we

FIG. 6. This figure illustrates the successive stages of proces
of surrogate data for the dataset illustrated in Fig. 4 and comp
the two filtering techniques. Details are discussed in the text.

FIG. 7. Fourier power spectrum of a datafile of a subject und
going paced respiration at frequency 0.5 Hz. Two rhythmic p
cesses dominate: the main cardiac rhythm and respiration.
2-4
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can suppose that if any synchronization between heart
and respiration takes place it has the order 1/3. We n
proceed to analyze these data in exactly the same wa
described in Sec. III A of Part I.

First, we undertake a conventional type of synchroni
tion analysis, computing from thebivariate data the phase
difference DF i5fahr(t i)23f resp(t i) @Fig. 8~a!#. The mo-
mentst i correspond to the appearance ofR peaks in the ECG
when its phase changes by 2p, and the phase of respiratio
signal is taken as the phase angle of a phase portrait re
structed by a suitable delay embedding from the respira
signal. We then construct the relative phaseC i and its map
@Figs. 8~b! and 8~c!, respectively#. In Figs. 8~a! and 8~b! we
can notice several horizontal segments testifying to the
currence of phase locking, and intervals where two pha
slide against each other, i.e., are not locked.

Secondly, we perform the new type of synchronizati
analysis proposed in Part I, restricting ourselves tounivariate
data only. We choose for the latter theR-Rintervals extracted
from the ECG. We filter them by the derivatives metho
extract anglesf i and plot their map@Figs. 8~d! and 8~e!,
respectively#. Finally, we transformf i using Eq.~8! of Part
I to ‘‘reconstruct’’ the relative phaseC i* whose temporal
dependence and map are shown in Figs. 8~f! and 8~g!, re-
spectively@11#.

The striking similarity between the plots in Figs. 8~b! and
8~f!, and 8~c! and 8~g! provides a convincing demonstratio
that the angles of a return times map are able to provide
same information as conventional phase difference and r
tive phase. In other words, we have indeed been able

FIG. 8. Comparison of different methods used for the detec
of phase synchronization in the human cardiovascular system.
first two rows of plots were derived frombivariate data~ECG and
respiration!: ~a! the conventional phase differenceDF i between
respiration and ECG;~b! relative phaseC i ; ~c! map of relative
phaseC i 11 vs C i . The third and fourth rows were obtained fro
univariate data: ~d! angles of map ofR-R intervals with removed
floating average value;~e! map of angles;~f! angles transformed by
means of~8! of Ref. @1#; ~g! map of transformed angles. Note th
striking similarity between plots~b! and~f!, and~c! and~g!, respec-
tively.
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extract essentially the same information about synchron
tion from the univariate time series as we obtained from t
time series analyzed in the conventional way.

VII. SOME EXAMPLES OF EXPERIMENTAL ANGLE
MAPS

In this section we present and discuss two examples
different phase and amplitude relationships between the t
processes interacting within the CVSs of particular subje

The first example is illustrated by Fig. 9. TheR-R inter-
vals are subjected to filtering by differences here, and
corresponding angles map in given in Fig. 9~a!. The Fourier
spectrum@Fig. 9~c!# reveals three distinct frequency comp
nentsf ahr, f resp, and f 2 , and the angles map~a! is not close
to any one-dimensional curve. Neither does it contain i
lated clouds of points, so one can be confident that ther
no phase locking between the main heart rhythm and re
ration. Since there are three rhythms involved in the inter
tion, there are two independent rotation numbers, namely,j01
for the interaction between heart beat and respiration, andj12
for the interaction between respiration and the process w
frequencyf 2 . Formula~21! of Part I, which is suitable for
only two interacting processes, is not expected to provid
reliable estimate for any of the true ‘‘partial’’ rotation num
bers. However, the average rotation number^j&50.2060...
seems to lie close to the ratio of the heart rate and respira
frequency.

Now, consider the interaction between respiration and
process withf 2 . Extract local maxima from the original se
quence ofR-R intervals, filter them by derivatives; extrac
angles, and create their map@Fig. 9~b!#. A one-dimensional
structure is quite evident here, although it cannot be
scribed by Eq.~11! in Part I ~cf. the plots in Fig. 3 of Part I!.
The probable reason is that the amplitude of the process
f 2 is not much less than that of respiration, but is compara
with it. Thus approximation of Eq.~11! in Part I is no longer
valid, and we have no right to apply formula~21! of Part I to
estimate the rotation number. The observed map contain
isolated groups of points and can be taken as evidence fo
absence of phase locking between respiration andf 2 . Thus,
in the example considered no two of the three processes
volved are synchronized with each other.

n
he

FIG. 9. Example of a datafile where three time scales are
portant, but no pair of them is synchronous.~a! Map of angles of
R-Rintervals.~b! Map of angles extracted from the map of all loc
maxima ofR-R intervals.~c! Fourier power spectrum.
2-5
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JANSON, BALANOV, ANISHCHENKO, AND McCLINTOCK PHYSICAL REVIEW E65 036212
The second example is illustrated by Fig. 10. The pow
spectrum@Fig. 10~c!# contains distinguishable components
the main rhythmf ahr and respirationf resp, and much less
pronounced combination frequenciesf ahr6 f 2 . The first
angles map@Fig. 10~a!# reveals a structure that is close
being one dimensional but which is not, however, captu
by model~11! in Part I ~compare with plots in Fig. 3!. The
reason is that, as in case of Fig. 10~b!, interaction between
the main process and respiration cannot be treated as w
the latter conclusion is supported by the presence at r
tively large amplitude of second harmonics of the respirat
frequency 2f resp and also the combination frequency (f ahr
22 f resp). In this case too we cannot estimate the rotat
numberj01 by means of Eq.~21! of Part I. However, in spite
of the rather strong interaction, no synchronization betw
the basic process and respiration can be detected, sinc
angles map is close to a continuous curve. We now elimin
the main rhythm by selecting local maxima ofR-R intervals,
filter them by derivatives, and plot the corresponding m
for angles@Fig. 10~b!#. It clearly contains several isolate
clouds of points, whose exact number will be discussed
low: they constitute evidence of phase locking between
processes considered. The average rotation numberj12 can
be estimated aŝj&50.3936 . . . that is close to 2/5.

Since the numerator of the rotation number, if synchro
zation exists, seems to ben52, let us apply the techniqu
used in Ref.@12# to detect phase locking. Namely, unwra
the angles allowing them to increase monotonically, and t
wrap them into an interval@22p ; 2p# that is twice as large
as @2p; p# @Fig. 11~a!#. Now, compute the probability den
sity for this dependence@Fig. 11~b!#. We find that it possese
5 distinct peaks. This allows us to infer the existence of
synchronization between respiration and the process withf 2 ,
at least in the statistical sense@12#.

VIII. MODELING ANGLES OF R-R INTERVALS

Let us apply the theoretical map~19! of Part I to simulate
the observed angles maps. For simplicity we set all ph

FIG. 10. Example of a datafile where three time scales are
portant. Respiration is not synchronous with heart rate, but is s
chronous with the rhythm whosef 250.1 Hz. ~a! Map of angles of
R-R intervals. Note: the interaction between heart rate and resp
tion is nonlinear, and so the map is not captured by Eqs.~11! or
~19! in Part I.~b! Map of angles extracted from the map of all loc
maxima of R-R intervals ~note the distinct clouds of points!. ~c!
Fourier power spectrum@note the distinct second harmonic of re
piration frequency 2f resp and the combination (f ahr22 f resp)#.
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shifts f j
0 to zero. First, we simulate the map of Fig. 8~e! by

setting frequenciesv051, V151/3, V250.1; amplitudes
A150.1, A250.01; the intensity of Gaussian white noise
modulating the value ofV1 asD50.00002, the noise adde
to the right-hand part of model mapD50.06, and also some
‘‘measurement noise’’ added to the solution with intens
D50.05. Since the number of points in Fig. 8 is about 20
for a good comparison the same number of points of the m
~19! in Part I with the given parameter values are presen
in Fig. 12~a!. The two phase portraits are evidently ve
similar.

Secondly, we simulate the case of Fig. 10~b! by setting:
frequenciesv051, V150.4, V250.112... ~a long random
sequence of numbers from 1 to 9!; amplitudes A150.2, A2
50.05; and theintensityof Gaussian white noise added
the equationD50.001. 100 points of the resulting phas
portrait are given in Fig. 12~b!: the result looks remarkably
similar to that in Fig. 10~b!. Note, that the rotation numbe
j12 here is set to exactly 2/5, and the tendency to merge
the two clouds of points furthest to the right is clearly see
This latter example serves as an argument supporting
inference of 2/5 phase locking between respiration andf 2 .

Thus, the derived general map~18! from Part I @and its
particular case~19!# allows the dynamics of real cardiovas
cular signals to be modeled, at least in those cases wher
main process interacts sufficiently weakly with the others

IX. DISCUSSION

The results presented in some sense contradict to the
lier conclusion@13# that no distinct structure arises in th
angles maps of humanR-R intervals in the case of spontane
ous breathing, and can appear only for paced respiratio

-
n-

a-

FIG. 11. ~a! Angles of the ‘‘secondary’’ return times map for
subject illustrated by Fig. 10, extended to the interval@22p ; 2p#.
The map of these angles is given in Fig. 10~b!. ~b! Probability
distribution of these angles, showing five peaks.

FIG. 12. Two examples of modeling the angles maps by me
of Eq. ~19! of Part I. Model of map in~a! Fig. 8~e!, and ~b! Fig.
10~b!.
2-6
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frequencies close to 0.1 Hz. We have demonstrated ab
that, although structure cannot be seen in the raw res
filtration of the data to remove the floating average va
enables distinct structure to be observed for most hea
subjects. Thus, the deterministic structure revealed in an
map of filteredR-R intervals is the evidence of determinist
interaction between heart rate and, most probably, respira
and the oscillatory process at 0.1 Hz.

X. SUMMARY AND CONCLUSIONS

Based on the results presented above, we arrive at
following conclusions:

~1! In experimental heart-rate-variability data of healt
humans, the instantaneous radiir i are rather disordered
whereas the anglesf i of return times reveal much determin
ism in most of the cases considered.

~2! The majority of the HRV data analyzed were succe
fully modeled by the formulas~11! and~19! of Part I which
was derived for the case of weak interaction. That means
interaction of the processes involved can be conside
weak.

~3! There are some data that contain distinct structure
is not captured by our models, thus revealing the existenc
stronger interactions in some cases.

~4! The technique presented allows one to study synch
E

E

S

wa

o-
u
al
e

03621
ve
ts,
e
y

es

on

he

-

at
d

at
of

o-

nization between at least three processes interacting w
the cardiovascular system.

The cardiovascular system is a particularly striking e
ample of a system within which several oscillatory proces
interact, mutually influencing each other. With the except
of respiration and the main cardiac rhythm, there is no p
sibility of separating the signals from the individual pr
cesses in order to compare them and assess their synch
zation, or the lack of it, using conventional techniques. W
have suggested and justified theoretically a tool@1,2# to
study interacting rhythms in the cardiovascular system us
only heart rate variability data. We expect that the same
proach will be equally applicable to the other kinds of bi
medical signals with less or comparably complex structu
We hope that the proposed approach may prove to have
tential for future applications and the development of n
criteria for use in medical diagnostics.
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