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Phase relationships between two or more interacting processes from one-dimensional
time series. Il. Application to heart-rate-variability data
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The recently proposed approach to detect synchronization from univariate data is applied to heart-rate-
variability (HRV) data from ten healthy humans. The approach involves introducing angles for return times
map and studying their behavior. For filtered human HRV data, it is demonstratedijhiat:many of the
subjects studied, interactions between different processes within the cardiovascular system can be considered
as weak, and the angles can be well described by the derived ntibgil; someof the subjects the strengths
of the interactions between the processes are sufficiently large that the angles map has a distinctive structure,
which is not captured by our moddiiji) synchronization between the processes involved can often be de-
tected;(iv) the instantaneous radii are rather disordered.
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[. INTRODUCTION associated with the rhythmic activity of certain physiological
processes within cardiovascular systé@vsS): f,,, defines

A general approach has recently been propdde#] for  the average heart ratg;,is associated with respiration pro-
the detection of phase synchronizati@r its absencebe-  cess; the origin of ,~0.1 Hz is not quite clear at present—it
tween two or more interacting processes based on the analis variously attributed to the sympathetic and parasympa-
sis of univariate data. The approach consists in extractinthetic nervous activity3], to the baroreflex loop4], and to
return times from a continuous one-dimensional observablghe intrinsic myogenic activity of the vascular smooth
reconstructing the return times map by delay embedding, anahuscles [5]. At least two more distinguishable spectral
extracting phase angles. In the immediately preceding papgreaks, at frequencies of about 0.01 and 0.03(ivtzt shown
[2], hereinafter referred to as Part I, we demonstrated andiere, have recently been recognizgsl]. However, on the
lytically and numerically that for two interacting processessmall observation times with which we deal in the present
these angles are in one-to-one correspondence with the coresearch, they cannot be detected with confidence and, in the
ventional phase difference, and can thus be taken as an indramework of this paper, we will treat them as additional
cation of synchronization or otherwise. The same methodnanifestations of nonstationarity.
was also extended to the case of several processes interactingQualitatively the same Fourier spectra can be obtajiféd
in the presence of noise, and its workability was illustratedfrom R-Rintervals using a technique suggested i
numerically for the case of three processes. Thus, the dynamics dR-Rintervals result from the com-

In the present paper we apply this approach to heart-ratglex interaction of several processes with different times-
variability (HRV) data from healthy human subjects in order cales. With the exception of respiration and heart rate, there
to learn whether or not synchronization occurs for three ofs usually (but cf. [8]) no possibility of gaining any knowl-
the most significant processes operating within the cardioedge about the phase or amplitude relationships between
vascular system, namely, the main heart rhythm, respiratiothem with the use of noninvasive methods. It is, therefore,
and the process whose basic frequency is close to 0.1 Hinteresting to find out whether our technique can be helpful
The HRV data are in the form &®-Rintervals extracted from in order to detect the presence or absence of phase synchro-
electrocardiogramme&CGs. nization between the processes involved based solely on

studies of the sequences RfR intervals.

Il. DESCRIPTION OF DATA

R R R
Figure 1a) shows a typical human ECG. The so-calRed @)
peaks, which are the largest ones, are indicated. The time i
intervalsT; between the two successifRpeaks are usually A
called R-R intervals. They represent the time intervals be- time
tween the two consecutive heart beats and in terms of non- (b) f
. . . . . , ahr
linear dynamics the time intervals between the trajectory’s
return to a secant plane defined by the value of a threshold,
i.e., return times. It is widely accepted that the human ECG
has rather complex Fouri¢and wavelet spectra with well-
distinguished characteristic peaks, three of them being espe-
cially noticeable: a schematic Fourier power spectrum for a FIG. 1. (a) Typical human electrocardiogratECG). (b) Sche-
typical ECG is shown in Fig. (b). Usually these peaks are matic power spectrum in decibels for a typical human ECG.
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Data were recorded from 10 healthy students and young
researchers of Saratov State University. Each ECG was reg-
istered while the subject was resting in an armchair, over a
period of 5—10 min, using a sampling rate of 180 Hz. For a
test example of bivariate data, where both ECG and respira-
tion signals were required, measurements were made at Lan-
caster University during 3 min with a sampling rate of 400
Hz from a young healthy subject undergoing paced respira-
tion with frequency of 0.5 Hz.

Ill. REMOVING THE FLOATING AVERAGE VALUE _FIG. 2 Van de_rSF_>oI system fqrced only by Gaussian white noise
of intensityD =10"°: (a) return times map(b) angles map.

As it was noted in Part (Ref. 45 the return times of a
nonstationary process usually oscillate around some rarfirst need to know how the map of angles of return times
domly floating average value. In terms of the angles of returrbehaves in the case when there are no deterministic interac-
times map it means that the origin of this map is floatingtions between processes being close to periodic, i.e., where
randomly. Angles extracted from such data are usually highl@nly one noisy periodic oscillatory process occurs. Consider
disordered and the useful phase information appears to d8e Van der Pol oscillator in the presence of noise, i.e., Eq.
smeared. We are interested in the oscillations of return time€?) of Part | in the absence of external forcing£0), with
around the average value, thus in order to gain “clean” phas@oise intensityD =0.00001,e=0.1, andw=1. Let us record
information we advocate removal of this floating origin from timest; when the phase trajectory intersects the leweD in
return times prior to the extraction of angles. Any one ofone direction. The map for return times is presented in Fig.
several existing methods can be used for this purpose, b&@ while the map for angles of return times in Figb® It
here we discuss just two of them. We first show how theyis easy to be convinced that the latter map contains no struc-
transform purely noisy data when no interactions take placéure by comparing it with those of Figs. 3 or 6 of Part I,
(Sec. Il1B), and then demonstrate their effect on a typicalrepresenting Eqgl11) or (19), respectively.

example of human HRV datgec. V). In order to check that the distinct structure that may ap-
pear in map for angles is not merely due to the filtration
A. Description of filtering methods procedures that we have used, we now apply the above filters

. to these purely noisy data. The results obtained after filtration
In the present paper we use two different methods. Th%re presented in Fig.(8 and 3b). The presence of some

f'rSt. of _these consists of computing the an_alc_>g of the secon tructure in the resulting angles maps is quite obvious here—
derivative of the original discrete time serief), though it is far from being one dimensional, and neither is
x(i+1)+x(i—1)—2x(i) there any possibility of modeling these maps by means of
. (1 Eqg. (19 in Part I. Note that the points concentrate in very

2 specific regions, namely, between the return functions of Eq.

Let us refer to this method as to theethod of derivatives (1) in Part| fo'r§=% andfz%.shoyvn by gray dashed lines,
The second method is an extension of the well-knowr@nd that they fill densely the interior and the vicinity of this

detrending technique. A local average is defined within a
temporal window moving along the dataset which is then|. %524/
deduced from each datapoint. The only distinction of our
method is that the size of the temporal window is not con-
stant along the dataset. One window includes all points be
tween two successive extrem@aaximum and minimum, «
etc) of a discrete signal, including the extrema themselves |, 4::
After the local average is computed within each window, its =
value is attributed to the time in the middle of the window. [ 72
All such averages are then connected by straight lines byz=
means of linear interpolation. Finally, from each original
datapoint the value of the resultant graph is deducsd
also Fig. 3c)]. In what follows we will call this technique
the method of differences

Further, while plotting the filtered discrete data we will
add them to the average value of the original unfiltered
dataset.

Xde|:

before filtering

local average

after filtering

FIG. 3. Results of the application of the two filtering techniques
to the purely noisy return times illustrated in FigaR Angles maps
are shown after applying differencé® and derivativegb) meth-
ods, respectively. Solid lines i@) and(b) show return functions of

Before attempting to apply our technique in practice toEq.(11) in Part | for é=1/3 (uppers and &= 1/2 (lowers. In (c) the
investigate interactions between oscillatory processes weperation of filtering by differences is illustrated for the noise data.

B. Noisy oscillatory process without any interaction
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Time series Maps Spectra right is shown the Fourier power spectrum of the original
FTie) T alx K HRV data[6,7]. The largest peak corresponds to the main
N heart rhythmf ;.. Both this and the others of smaller ampli-
tude are rather broad, presumably due to the nonstationarity.
Correspondingly, the map of successReRintervals, being
just the return times maf¥ig. 4, first row, second column
usually has no distinct structure.

=) The anglesg; are extracted from the return times map

] (Fig. 4, second row, first columphaving placed the origin at
the center of mass. A typical map for angles is as shown in
Fig. 4 (second row, second columrwhere the points fall
close to the diagonal near coordinate positiong; #/4) and
(—=37/4; —3n/4) due to the predominance of very low-
frequency oscillations influencing the heart rdt®mpare
with Fig. 6(a) of Part I.

In order to concentrate on interactions of the main rhythm
with respiration and the process with frequene.1 Hz, we
need to reduce the effect of very low frequencies and subject
the original sequence d®-Rintervals to filtration. The re-
sults of applying two filters described in Sec. Il A usually
differ slightly, and so in practice we compute the power
spectrum for the each of the filtered data sejs or X in
order to control the effect of filtering. In Fig. 4, rows three

FIG. 4. This figure illustrates the successive stageR-&data  and four show the results of filtering by means of differ-
processing and compares the two filtering techniques for a healthgnces, while rows five and six illustrate the workability of
subject at rest. Details are discussed in the text. derivatives technique. The corresponding power spectra are
shown at the end of each pair of rows. To compute the Fou-

region. A typical feature of these maps is the existence ofi€" Spectrum from filteredR-Rintervals we just add t6(ge,
relatively sharp cusps pointing away from the diagonal. TheP" Xair the average value of unfilteréRintervals, and then

origin of this structure can be explained phenomenologicallyProceed in the same way as for original, nonfiltered ¢éja
using the basic property of white noise, namely, the nondif.l e methods of differences and derivatives both remove the

ferentiability of its time series. That means that differencedrénd from the data, leading to return times maypsvs three
between the subsequent points change from negative to pod@nd five of similar appearance. However, the noisy back-
tive very quickly. The probability of finding two successive 9round of the power spectrum seems on average to be more
local maxima(or minima being separated by only one or uniform after filtration by d(_erlvatlves, than by dlffe_ren_c_es,
two points is much larger than the probability of finding g although the use of derivatives leads to a more significant
wider separation. An illustration of how thifferencegech- ~ decrease of the lower-frequency rang@eound 0.1 Hz and
nique works in this case is given in Fig(c3 In the upper less. .In poth cases, two domlnatlng frequenmes and_thelr
plot the original dataset is shown together with the localcOMbinations are clearly seen after filtration, but the ratios of
average. After subtracting the latter one obtains a time serie%‘e'_r amplitudes appear to be slightly different. Note, that the
oscillating around zero with the current period varying ran-d€rivatives technique is dangerous for data where the respi-
domly between 2 or 3. In terms of angles maps this meantation frequency is less than a quarter of average heart rate.
random (and rapid jumping between the return functions For such data we would recommend the use of differences as
shown in Figs. &) and 3b). Of course, due to total random- P€ing the safer method. _

ness of the data, the whole map appears to be very noisy. The 1"€ angles¢; are extracted from the maps of filtered
performance of derivatives technique can be explained in 56t times, and the map for anglés from Part | is plotted
similar way. Thus, if the shape of the angles map is similar tdFi9- 4, rows four and six For the case considered, both

that presented in Fig. 3, we will consider these data as pure[jndl€s maps seem fo lie in the vicinity of the same curve
noisy. eing the return function of Eq11) for in Part | =7 (com-

pare with Fig. 4. So both methods of filtration allow the
structure of angles map in this example to be revealed more
or less equally. Both of the “filtered” angles maps represent

The stages in the processing of the measiRed inter-  smearedcontinuouscurves, and are definitely not formed by
vals are illustrated in Fig. 4. isolated clouds of points, thus testifying to the absence of

An original sequence oR-Rintervals is plottedFig. 4,  synchronization between heart rate and the most dominant of
first row, first column. As usual, there is a slow variation of the other processdsvhich in the present case seems to be
the average value, attributable to processes of very low frerespiration. The rotation numberéy, is estimated from
guency (less than 0.1 Hzwhich, over small observation Egq. (21) of Part | to be(¢)=0.246 ... for differences
times, can often be treated as nonstationarity. On the topnd(&)=0.264 ... for derivatives.

Nonfiltered

Differences

Derivatives
frequency (Hz) <

>

200 400, 0 -15 -30
beat number (i) S (dB)

IV. STAGES OF DATA PROCESSING
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Time series Maps Spectra 5
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FIG. 5. Map of radii of return times for the subject illustrated by a0
Fig. 12 for(a) nonfilteredR-Rintervals,(b) R-Rintervals filtered by " j 2
differences/(c) R-Rintervals filtered by derivatives. 8 ]
=
<
Bt
For further analysis of real data we select whichever filter &:
leads to the more pronounced structure in the map for angles. = .
Of course, neither of the filtration techniques described is :
perfect, and other techniques could be used instead to obtain =3
similar or perhaps even better results. 2 1<
Along with angles, the instantaneous radii were also ex- % 1z
tracted from the humaR-R intervals at each stage of pro- = 1
cessing. In Fig. 5 the maps for radij are shown for the g ] §
same human data as in Fig. 4: for nonfilteiReR intervals ¢ 4 £
(@), for those filtered by difference) and by derivatives bt Eoo 50
(c). Unlike the anglesp;, the radiir; usually behaved in a 400 0 -15 -30

200
rather disordered way, thus smearing the majReR inter- beat number (i) 5 (X

vals significantly. This remained true regardless of whether g 6. This figure illustrates the successive stages of processing
raw or filtered HRV data were used. of surrogate data for the dataset illustrated in Fig. 4 and compares
As shown in Part I, the map for angles of return timesthe two filtering techniques. Details are discussed in the text.

allows one to make a judgement about synchronizatan

its absencebetween the main rhythm and the other processiiffer markedly from the corresponding maps derived from

with smaller amplitude, interaction with which is dominant. the reference data in Fig. 4.

In the CVS the role of this second rhythm is usually played

by respiration. '_rhe third rhythm o_ften presentin human HRV  \, ANGLES OF RETURN TIMES MAP AND PHASE

data _has a basic frequen_(:y that is close to 0.1 Hz and an _ DIFEERENCE FOR HRV DATA

amplitude comparable with or lower than that due to respi-

ration. In order to obtain information about interaction be- In Part | an explicit correspondence between the conven-

tween respiration and the latter process, if it manifests itselfional phase difference and the angles of return times map

in the power spectrum, we may finally proceed as suggestedas derived analytically and, what is of particular impor-

in Sec. lll C of Part |, namely: extract the local maxima from tance for us here, confirmed for a simulated nonstationary

the sequences d®-Rintervals; filter the set of maxima by process with floating eigenfrequency of oscillations. Here we

one or another technique; and then plot their map. attempt to establish the same correspondence for real bio-
logical data. In order to evoke a regime of effective phase
synchronization with the same rotation numier1/3 as in

V. TESTING FILTERING ON SURROGATE DATA the numerical simulation illustrated in Fig. 7 of Part I, we

¢ asked a healthy volunteer to breath at a frequency of 0.5 Hz,

and measured both the ECG and respiration signals simulta-

Lnﬁously. The Fourier power spectrum of the HRV for this

subject is given in Fig. 7, where the two main processes

xhibit themselves through the presence of the peakg at
§resp, and their combinations 2= fap— fresp. Thus, we

Now, let us test filtering more thoroughly with the help o
surrogate datf9]. We are interested in the application of our
method to data possessing the same Fourier power spectr
as realR-R intervals, but which is otherwise random. We
obtained a set of surrogates for the dataset illustrated in Fi
4 using the progransurrogatesfrom the TISEAN complex
developed by the authors of this methdd], and then sub-
jected it to all the same stages of processing. The results are
presented in Fig. 6. Fourier spectra of either original or fil-
tered surrogate data possess peaks at the same frequencies as
the spectra of the reference data. They are of similar ampli-
tude (compare the spectra in Figs. 4 any &lthough not

exactlythe same, possibly due to the method of computing o frequency (lliz)l BE
the spectrum used hefd], which is not the fast Fourier
transform used in10]. FIG. 7. Fourier power spectrum of a datafile of a subject under-

The angles maps look similar to those obtained for theyoing paced respiration at frequency 0.5 Hz. Two rhythmic pro-
purely random data of Figs.(8 and 3b), and obviously cesses dominate: the main cardiac rhythm and respiration.
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FROM BIVARIATE DATA

S (dB)

3= .|.k..|....l.
frequency (Hz) 2

FIG. 9. Example of a datafile where three time scales are im-
portant, but no pair of them is synchronoua). Map of angles of
R-Rintervals.(b) Map of angles extracted from the map of all local
maxima ofR-Rintervals.(c) Fourier power spectrum.

FROM UNIVARIATE DATA

K R " |'" .'-' M .... .../.
0 50 100 150 200

beat number (i) extract essentially the same information about synchroniza-
FIG. 8. Comparison of different methods used for the detectior‘F!On from the unlvarlat_e time series as we obtained from two
Hame series analyzed in the conventional way.

of phase synchronization in the human cardiovascular system. T
first two rows of plots were derived fromivariate data(ECG and

respiration: (a) the conventional phase differencded; between VIl. SOME EXAMPLES OF EXPERIMENTAL ANGLE
respiration and ECG(b) relative phaseV;; (c) map of relative MAPS

phase¥;,,; vs ;. The third and fourth rows were obtained from

univariate data: (d) angles of map oR-Rintervals with removed In this section we present and discuss two examples of

floating average valuée) map of angles(f) angles transformed by ~different phase and amplitude relationships between the three
means of(8) of Ref.[1]; (g) map of transformed angles. Note the processes interacting within the CVSs of particular subjects.
striking similarity between plotéo) and(f), and(c) and(g), respec- The first example is illustrated by Fig. 9. TReR inter-
tively. vals are subjected to filtering by differences here, and the
corresponding angles map in given in Figa® The Fourier

can suppose that if any synchronization between heart rapectrum Fig. 9(c)] reveals three distinct frequency compo-
and respiration takes place it has the order 1/3. We nowentsf,p,, f.esp andf,, and the angles maa) is not close
proceed to analyze these data in exactly the same way as any one-dimensional curve. Neither does it contain iso-
described in Sec. Il A of Part I. lated clouds of points, so one can be confident that there is

First, we undertake a conventional type of synchronizano phase locking between the main heart rhythm and respi-
tion analysis, computing from thkivariate data the phase ration. Since there are three rhythms involved in the interac-
difference A®;= ¢ n(ti) —3resfti) [Fig. 8@]. The mo- tion, there are two independent rotation numbers, nardgly,
mentst; correspond to the appearanceRypeaks in the ECG for the interaction between heart beat and respiration égnd
when its phase changes byr2and the phase of respiration for the interaction between respiration and the process with
signal is taken as the phase angle of a phase portrait recofrequencyf,. Formula(21) of Part I, which is suitable for
structed by a suitable delay embedding from the respiratiomnly two interacting processes, is not expected to provide a
signal. We then construct the relative phaegand its map reliable estimate for any of the true “partial” rotation num-
[Figs. 8b) and &c), respectively. In Figs. 8a) and 8b) we  bers. However, the average rotation numb&r=0.2060...
can notice several horizontal segments testifying to the ocseems to lie close to the ratio of the heart rate and respiration
currence of phase locking, and intervals where two phasesequency.
slide against each other, i.e., are not locked. Now, consider the interaction between respiration and the

Secondly, we perform the new type of synchronizationprocess withf,. Extract local maxima from the original se-
analysis proposed in Part |, restricting ourselvesrivariate  quence ofR-R intervals, filter them by derivatives; extract
data only. We choose for the latter tReRintervals extracted angles, and create their mépig. 9b)]. A one-dimensional
from the ECG. We filter them by the derivatives method,structure is quite evident here, although it cannot be de-
extract anglesp; and plot their magFigs. 8d) and 8e),  scribed by Eq(11) in Part I (cf. the plots in Fig. 3 of Part)!
respectively. Finally, we transformg; using Eq.(8) of Part  The probable reason is that the amplitude of the process with
| to “reconstruct” the relative phas&’’ whose temporal f, is not much less than that of respiration, but is comparable
dependence and map are shown in Fig$) &nd §g), re-  with it. Thus approximation of Eq11) in Part | is no longer
spectively[11]. valid, and we have no right to apply formulal) of Part | to

The striking similarity between the plots in Figgb8and  estimate the rotation number. The observed map contains no
8(f), and §c) and &g) provides a convincing demonstration isolated groups of points and can be taken as evidence for the
that the angles of a return times map are able to provide thabsence of phase locking between respiration fgndrhus,
same information as conventional phase difference and relan the example considered no two of the three processes in-
tive phase. In other words, we have indeed been able tgolved are synchronized with each other.
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FIG. 11. (a) Angles of the “secondary” return times map for a
subject illustrated by Fig. 10, extended to the intefvalw; 27].
- > The map of these angles is given in Fig.(H0 (b) Probability
freauency (Hz) distribution of these angles, showing five peaks.

ahr '

35k i 1.

FIG. 10. Example of a datafile where three time scales are im-
portant. Respiration is not synchronous with heart rate, but is synshifts ¢? to zero. First, we simulate the map of FigeBby
chronous with the rhythm whode=0.1 Hz. (a) Map of angles of  setting frequencieswy=1, ,=1/3, Q1,=0.1; amplitudes
R-Rintervals. Note: the interaction between heart rate and respiraA;=0.1, A,=0.01; theintensity of Gaussian white noise
tion is nonlinear and so the map is not captured by E¢l) or  modulating the value of2; asD=0.00002, the noise added
(19) in Part I.(b) Map of angles extracted from the map of all local to the right-hand part of model mdp=0.06, and also some

maxima of R-R intervals (note the distinct clouds of points(c) “measurement noise” added to the solution with intensity
Fourier power spectrurfnote the distinct second harmonic of res- p =(.05. Since the number of points in Fig. 8 is about 200,
piration frequency Zespand the combinationfy,—2 fresp - for a good comparison the same number of points of the map

The second example is illustrated by Fig. 10. The powel_(lg) _in Part | with the given parameter values are presented
spectrun{Fig. 10c)] contains distinguishable components of N Fig. 12a). The two phase portraits are evidently very
the main rhythmf ,, and respirationf s, and much less similar. _ . _
pronounced combination frequencigf,+f,. The first Secondly, we simulate the case of Fig.(ld0by setting:
angles mafFig. 10@)] reveals a structure that is close to fréquencieswo=1, (;=0.4, 0,=0.112... (a long random
being one dimensional but which is not, however, capturegeduence of numbers from 1 t9; @mplitudes A=0.2, A,
by model(11) in Part | (compare with plots in Fig.)3 The =0.05; and thantensity of Gau§5|an white n0|se_added to
reason is that, as in case of Fig.(1Q interaction between the equationD=0.001. 100 points of the resulting phase
the main process and respiration cannot be treated as wedRortrait are given in Fig. 1®): the result looks remarkably
the latter conclusion is supported by the presence at rels&imilar to that in Fig. 1(b). Note, that the rotation number
tively large amplitude of second harmonics of the respiratiorf 12 Nere is set to exactly 2/5, and the tendency to merge for
frequency 2., and also the combination frequency,(, thg two clouds of points furthest to the right is clearly_seen.
—2f,5p. In this case too we cannot estimate the rotation! NS latter example serves as an argument supporting our
numberéy, by means of Eq(21) of Part I. However, in spite inference of 2/5 phase locking between respiration bp_d
of the rather strong interaction, no synchronization between Thus, the derived general mapg) from Part I[and its
the basic process and respiration can be detected, since tR@rticular cas¢19)] allows the dynamics of real cardiovas-
angles map is close to a continuous curve. We now eliminatéUlar signals to be modeled, at least in those cases where the
the main rhythm by selecting local maximaRfRintervals, ~Main process interacts sufficiently weakly with the others.
filter them by derivatives, and plot the corresponding map
for angles[F_ig. 10b)]. It clearly contains_ severgl isolated IX. DISCUSSION
clouds of points, whose exact number will be discussed be-
low: they constitute evidence of phase locking between the The results presented in some sense contradict to the ear-
processes considered. The average rotation nugperan  lier conclusion[13] that no distinct structure arises in the
be estimated a&¢)=0.393% . . . that is close to 2/5. angles maps of humaR-Rintervals in the case of spontane-

Since the numerator of the rotation number, if synchroni-ous breathing, and can appear only for paced respiration at
zation exists, seems to be=2, let us apply the technique

used in Ref[12] to detect phase locking. Namely, unwrap r-4 o

the angles allowing them to increase monotonically, and then A A.p..' ."

wrap them into an intervdl—27; 27] that is twice as large {l 1

as[—a; 7] [Fig. 11a@)]. Now, compute the probability den- s .

sity for this dependendé-ig. 11(b)]. We find that it posseses

5 distinct peaks. This allows us to infer the existence of 2/5 ,Af '-95

synchronization between respiration and the processfwith d *

at least in the statistical sengE2]. if ( a) g_“ (b)
s

VIIl. MODELING ANGLES OF R-RINTERVALS )
FIG. 12. Two examples of modeling the angles maps by means

Let us apply the theoretical maph9) of Part | to simulate  of Eq. (19) of Part I. Model of map ina Fig. 8e), and (b) Fig.
the observed angles maps. For simplicity we set all phas&0(b).

036212-6



PHASE RELATIONSHIPS BETWEEN ... . Il. ... PHYSICAL REVIEW BE5 036212

frequencies close to 0.1 Hz. We have demonstrated abowszation between at least three processes interacting within
that, although structure cannot be seen in the raw resultghe cardiovascular system.

filtration of the data to remove the floating average value The cardiovascular system is a particularly striking ex-

enables distinct structure to be observed for most healthgmple of a system within which several oscillatory processes
subjects. Thus, the deterministic structure revealed in anglégteract, mutually influencing each other. With the exception

map of filteredR-Rintervals is the evidence of deterministic Of respiration and the main cardiac rhythm, there is no pos-

interaction between heart rate and, most probably, respiratiofiPility of separating the signals from the individual pro-
and the oscillatory process at 0.1 Hz. cesses in order to compare them and assess their synchroni-

zation, or the lack of it, using conventional techniques. We
have suggested and justified theoretically a tpbP] to
X. SUMMARY AND CONCLUSIONS study interacting rhythms in the cardiovascular system using

Based on the results presented above, we arrive at tHenly heart rate variability data. We expect that the same ap-
following conclusions: proach will be equally applicable to the other kinds of bio-

(1) In experimental heart-rate-variability data of healthy medical signals with less or comparably complex structure.
humans, the instantaneous radiji are rather disordered, We hope that the proposed approach may prove to have po-
whereas the angles; of return times reveal much determin- te_nugl for futur(_e appl@aﬂoqs and Fhe development of new
ism in most of the clases considered criteria for use in medical diagnostics.

(2) The majority of the HRV data analyzed were success-
fully modeled by the formulagll) and(19) of Part | which
was derived for the case of weak interaction. That means that We are much indebted to Dr. Alexander Neiman for valu-
interaction of the processes involved can be consideredble discussions and for his constructive comments on a draft
weak. version of the manuscript. The work was supported by the

(3) There are some data that contain distinct structure tha@Engineering and Physical Sciences Research Co(déi),
is not captured by our models, thus revealing the existence dghe Leverhulme Trust, the Medical Research CoufidK),
stronger interactions in some cases. and the U.S. Civilian Research Development Foundation

(4) The technique presented allows one to study synchrofAward No. REC 008
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