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1. Introduction

Network data describing the temporal evolution of interactions among a
population of interest occur in a diverse range of applications, and particu-
lar examples of this data type include social ties among friend groups [41],
academic coauthorship [76] and co-evolution of financial indices [21]. The
latent space network approach of [32], where low-dimensional latent coor-
dinates associated with the nodes of a network express the propensity for
ties to form, is a popular approach for modelling such data (see for example
[60, 66, 21]). In this article, we focus our attention on exact estimation of
a dynamic latent space network (DLSN) model, in which the latent states
evolve over time according to a Markov process, via sequential Monte Carlo
(SMC) methods. Our aim is to be able to dynamically estimate latent state
positions efficiently, without relying on approximations. This is challenging
in this context due to the dimensionality of the state space and the de-
pendence inherent to networked data. This approach is appealing in this
context since we expect SMC to be more scalable than existing techniques
when the number of observations in time is large, SMC facilitates both online
and offline inference and SMC estimates can be conveniently updated given
additional observations.

Latent space network models for temporal data are well-established in the
literature, and both discrete time (see [60, 66, 25]) and continuous time (see
[21, 57]) models have been proposed. It is typical in this approach to assume
that a tie is more likely to form between two nodes whose latent coordinates
are close in terms of Euclidean distance. This assumption allows a practi-
tioner to determine an intuitive visualisation of the data through the latent
positions and encourage transitive relationships to occur. Posterior samples
for parameters of a DLSN model are typically obtained via MCMC [66, 21]
which allows for asymptotically exact inference. However, standard algo-
rithms become increasingly computationally costly as the number of nodes
in the network or the number of observations in time grow. To improve
scalability, several authors have proposed likelihood approximations [56, 58]
whereas others rely on variational inference which targets a computationally
cheaper approximation of the posterior (see [68, 45]).

In this article, we present a SMC scheme for joint state and parameter
estimation of a DLSN model in which the latent trajectories for each node
are assumed stationary. Our approach combines the methodology for high-
dimensional state spaces presented in [51] with the gradient-based parameter
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estimation presented in [49]. Our SMC scheme allows for both online and
offline inference, and we explore the performance of our approach on simu-
lated and real data examples. We present two simulation studies, the first
of which examines the scalability of our approach as the number of nodes
or the number of observations in time grows and the second of which ex-
plores the performance of our methodology under model misspecification.
Additionally, we consider the performance of our approach on a real-world
dataset describing classroom contacts in comparison and demonstrate how it
is straightforward to consider model adaptations within our framework.

Our proposed methodology is closely related to the surrounding literature,
but differs in two key ways. Firstly, our proposed DLSN model builds upon
the SSM formulation of [60, 66] but instead assumes stationarity in the la-
tent trajectories so that properties of the network interactions are preserved
through time. This is advantageous in data settings when the properties
of the observed networks do not change significantly between time points.
Secondly, whilst SMC methodology has previously been used in the context
of latent variable network data [61, 75], we present an inference procedure
which does not rely on particular model forms or approximations, such as in
[61, 75], by appealing to methodology proposed for high-dimensional state
spaces. As a consequence of this, it is straightforward to apply our approach
on modifications of our proposal model, including a model variant in which
the stationarity assumption on the latent coordinates is relaxed. Finally, we
note that our work differs from [9] who focus on the application for SMC to
a sequence of growing graphs.

The remainder of this paper is organised as follows. In Section 2, we
introduce our proposed model and comment further on its context within
the broader literature. In Section 3, we review SMC methodology and detail
our inference procedure. We present two simulation studies in Section 4 and
examine a real world data example describing classroom contacts in Section
5. Finally, we conclude with a discussion in Section 6.

2. Dynamic Latent Space Network Modelling

In this section, we present a latent space model for dynamic networks in
which the latent trajectories are assumed to follow a stationary first order
Markov process and highlight the flexibility of this model by describing a
number of possible variants. When coupled with the assumption that the
latent coordinates follow a Gaussian random walk in the generative model,

3



(Ut−1, σ, φ)

Yt−1

. . . (Ut, σ, φ)

Yt

(Ut+1, σ, φ)

Yt+1

. . .

Figure 1: SSM for DLSNs. The observed adjacency matrices are modelled independently
conditional on the latent coordinates, and the latent coordinates are modelled with a first
order Markov process that is governed by static parameters (σ, φ).

stationarity implies that the variance of the latent coordinate random vari-
ables does not accumulate over time. This allows network properties to be
preserved over time and prevents degeneracy in which networks sampled from
the model are empty given a sufficiently large time horizon.

Our proposed model is most similar to the work of [60] and [66]. However,
in contrast to these works, we impose stationarity on the latent trajectories.
This relates to the work of [31] who consider a latent factor model with
stationarity, but differs since our formulated is based on latent Euclidean
distances. A myriad of extensions have also been discussed in the literature
such as the inclusion of community structures [66], weighted interactions
[67], ranked interactions [65], multiple interaction types [22] and bipartite
networks [25], and we note that our model may also be extended analogously
as appropriate. For a detailed review of dynamic latent space network mod-
elling we refer to [40].

2.1. Proposed Model and Identifiability

Suppose that we observe interactions among a population of size N at
times t = 1, 2, . . . , T . We represent this information as a collection of time-
indexed adjacency matrices Yt = {yijt}i,j=1,2,...,N , where yijt indicates the
connection between nodes i and j at time t. We will consider binary connec-
tions, so that yijt ∈ {0, 1} where yijt = 1 indicates the presence of the (i, j)th

edge. Additionally, we will assume that the connections are symmetric, so
that yijt = yjit, and that there are no self ties, so that yiit = 0.

In the latent space framework, the probability of a connection forming
is expressed as a function of d-dimensional coordinates associated with the
nodes. We let Ut ∈ RN×d represent the N × d matrix of latent coordinates
at time t where the ith row of Ut corresponds to the latent coordinate of the
ith node at time t, uit ∈ Rd. Following [60, 66], we model the observations
{Yt}Tt=1 using a state space model (SSM) (see Figure 1), where we assume that
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the interactions at time t occur independently conditional on the latent states
{Ut}Tt=0 which follow a first order Markov process. We further assume that
the latent trajectories for each node follow independent stationary Gaussian
random walks so that

p(U0|σ, φ) =
N∏
i=1

Nd
(

0,
σ2

1− φ2
Id

)
, (1)

p(Ut|Ut−1, σ, φ) =
N∏
i=1

Nd(φui,t−1, σ
2Id), for t = 1, 2, . . . , T, (2)

where σ ∈ R>0, and |φ| < 1.
Given the latent trajectories, we can now express the probability of ob-

serving connections Yt. Following [32], we assume that, conditional on Ut,
each edge can be modelled independently via logistic regression such that
nodes whose latent coordinates are close in terms of Euclidean distance are
more likely to be connected. More specifically, for t = 1, 2, . . . , T , we let

p(Yt|Ut, α) =
∏
i<j

p
yijt
ijt (1− pijt)1−yijt , (3)

pijt =
1

1 + e−ηijt
, (4)

ηijt = α− ‖uit − ujt‖, (5)

where α ∈ R controls the global tendency for connections to form and ‖ · ‖
denotes the `2-norm.

Specifying the connection probabilities as a function of the Euclidean dis-
tance has two primary advantages. Firstly, this implies that the coordinates
Ut provide an intuitive visualisation of the network at time t and, secondly,
this encourages transitive relationships which are often observed in social
networks. Additionally, there exist many possible variants of this model.
For example, we may mimic the projection model of [32] by expressing (5)
as a function of uTi uj or we may adapt (3) and (4) to express non-binary
connections. These adaptations will be illustrated in Section 5.

Since (3) only depends onUt through the pairwise distances, p(Yt|Ut, σ, φ)
is invariant to distance-preserving transformations of Ut. This is a key issue
associated with latent space network models and, to resolve this, many au-
thors rely on a Procrustes transformation (for example see [32], [66]) which
finds the coordinates Û that minimise the sum of squared differences between

5



U and some pre-specified reference coordinates U0. Following [21], we opt
to examine the model in terms of the connection probabilities which do not
suffer from non-identifiability.

3. Model Inference

In this section we present details of our estimation procedure for the
DSLN detailed in Section 2.1. The state space model formulation presents a
natural setting for the application of SMC methodology and this is appealing
for three key reasons. Firstly, this class of algorithms is based on recursive
estimation and so SMC is more scalable than MCMC methods when the num-
ber of time steps T is large. Secondly, in contrast to variational Bayes tech-
niques, SMC does not require model approximations. Finally, SMC methods
facilitate both online and offline inference and allow posterior samples to be
updated given additional observations.

A brief review of SMC methodology is presented in Appendix A for
the unfamiliar reader. We obtain our inference procedure by combining the
Guided Intermediate Resampling Filter of [51] with the gradient ascent ap-
proach of [49] for static parameter estimation. Details of our state and pa-
rameter estimation procedure are presented in Sections 3.1 and 3.2, respec-
tively. We note here that, since the dimension of the state spaces for our
model of interest is equal to N × d, we must consider methodology for high-
dimensional state space even for moderate N . Furthermore, as commented
in Appendix A.4, the dependence present in network data restricts the set
of high-dimensional SMC methodology that is appropriate for our model.

3.1. State Estimation

Uτt,0

Yt

. . . Uτt,1 Uτt,2
. . . Uτt,S−1

Uτt,S

Yt+1

. . .

Figure 2: Intermediary steps {Uτt,s}Ss=0 between observations Yt and Yt+1, where Uτt,0 =
Ut and Uτt,S = Ut+1.

To estimate the latent coordinates we rely on the Guided Intermediate
Resampling Filter (GIRF) of [51]. This scheme introduces artificial interme-
diary states in order to guide particles to regions of the state space with high
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probability via a guide function, typically taken as the predictive likelihood.
We opt to use this scheme since it is appropriate for our modelling assump-
tions, is straightforward to implement and can be adapted to model variants,
such as those described in Section 2. It is important to stress that the depen-
dence in our likelihood (3) makes it challenging to consider many alternative
high-dimensional particle filtering schemes proposed in the literature, such
as [59, 7].

Our goal is to estimate {Ut}Tt=1 given the observed connections {Yt}Tt=1.
For each pair of observations {Yt,Yt+1}T−1

t=1 , the GIRF introduces S − 1 in-
termediary time steps which we denote by {τt,s}Ss=0. Then, we rely upon the
following decomposition for the latent transitions.

pθ(Ut+1|Ut) = p̃θ(Uτt,1|Ut)p̃θ(Uτt,2|Uτt,1) . . . p̃θ(Ut+1|Uτt,S−1
), (6)

where θ denotes model parameters and {τt,s}Ss=0 satisfy τt,0 := t < τt,1 <
· · · < τt,S−1 < τt,S := t + 1, and τt,0 and τt,S correspond to the times t and
t + 1, respectively. Figure 2 provides a depiction of the intermediary states
and a derivation of p̃θ(Us|Uτt,s−1) for the transition equation in (2) is given
in Appendix B. Note that, for this intermediary transition to be valid, we
require φ ∈ (0, 1) but this does not affect the expressivity of our model since
connections are modelled in terms of the latent distances.

At each intermediary time step, the particles are weighted according to
an assessment function ντt,s(u) which guides particles towards future obser-
vations. This function must be specified so that ντ0,0(u) = 1 and ντT,0(u) =
p(YT |u), and we will discuss particular choices below. Given this function,
particles at time step τt,s are then weighted according to

ωτt,s

(
Uτt,s , Ũτt,s−1

)
=


ντt,s(Uτt,s)

ντt,s−1(Ũτt,s−1)
if τt,s−1 6∈ 1 : T

ντt,s(Uτt,s)

ντt,s−1(Ũτt,s−1)
p(Yt|Ũτt,s−1) if τt,s−1 ∈ 1 : T

. (7)

Using (7), we see that the likelihood `(Y1:T ) = E
[∏T

t=1 p(Yt|Ut)
]

can be

approximated by ˆ̀=
∏T

t=0

∏S
s=1

1

M

∑M
i=1 ωτt,s

(
U

(i)
τt,s , Ũ

(i)
τt,s−1

)
.

Algorithm 1 details the GIRF for the DLSN model in Section 2.1 where
L = log ˆ̀. To implement this procedure we must specify ντt,s(x) and the
number of intermediary states S. [51] suggest choosing ντt,s(u) so that par-
ticles are guided towards B future observations and then demonstrate that
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Algorithm 1 GIRF for DLSN with θ assumed known

Initialise: L = 0, sample Ũ
(i)
τ0,0 ∼ p(·|θ) for i ∈ 1 : M

For t = 0 : T − 1
For s ∈ 1 : S
U

(i)
τt,s ∼ p(·|Ũ (i)

τt,s−1 , θ) for i ∈ 1 : M

w
(i)
τt,s = ωτt,s(U

(i)
τt,s , Ũ

(i)
τt,s−1) for i ∈ 1 : M

L = L+ log(
∑

j w
(i)
τt,s)

Sample b(i) such that P(b(i) = j) ∝ w
(j)
τt,s for i ∈ 1 : M

Set Ũ
(i)
τt,s = U

(bi)
τt,s

End
End

S should scale linearly according to the dimension of the latent states. In
our setting, a straightforward option is to take ντt,s(U) = p(Yt+1|U) or, to
incorporate B future observations,

ντt,s(U) =

min{B,T−t}∏
b=1

(
ντt,s,τt+b(U)

)ητt,s,τt+b , (8)

where ντt,s,τt+b(U) approximates pYt+b|Uτt,s (Yt+b|U) and ητt,s,τt+b controls the

contribution of ντt,s,τt+b(U) in the assessment function. We let

ητt,s,τt+b = 1− (bS − s)
S [(t+ b)−max(t+ b−B, 0)]

, (9)

so that the contribution of observations decreases as a function of distance
from τt,s. This ensures that the potentially less accurate approximations
have a smaller contribution to ντt,s(U). It may be possible to approximate
pYt+b|Uτt,s (Yt+b|U) via simulation, however this will be computationally ex-

pensive for our setting. Instead we take ντt,s,τt+b(U) = g(Yt+b|mτt,s(U)),
where mτt,s(U) = E

[
Ut+b|Uτt,s = U

]
= φU , which can be conveniently cal-

culated.
Appendix D provides an example of the GIRF on simulated data with

known θ. From this, we find that the choice of S significantly impacts the
performance of the filter, with larger values improving the estimated effective

sample size (ESS) given by ÊSS = 1
/∑M

i=1(w
(i)
t )2 at time t. We also found

little difference in practice between choosing p(Yt+1|U) versus (8) as the
assessment function for this example.
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3.2. Parameter Estimation

We now consider estimation of static parameters θ = (σ, φ, α) using the
gradient ascent approach of [49]. This allows both online and offline esti-
mation, is flexible to variants of the model and has been shown to exhibit
favourable performance when compared with other well known algorithms.
We begin by discussing their approach for offline estimation of θ.

A gradient ascent procedure obtains the kth estimate of θ by taking

θk = θk−1 + γk∇ log p (Y1:T |θ) |θ=θk−1
, (10)

where γk is a sequence of decreasing steps such that
∑

k γk =∞ and
∑

k γ
2
k <

∞. A typical choice for this sequence is γk = k−α with 0.5 < α < 1.
Following [49], we can rely on a particle approximation of the score

ζT = ∇ log p(Y1:T |θ)|θ=θk−1
to evaluate (10). Details of this approximation

are given in Algorithm 2, where {m(i)
t , w

(i)
t }Mi=1 denotes the particle approx-

imation of ζt = ∇ log p(Y1:t|θ). An implementation of Algorithm 2 returns
an estimate of ζT which can then be used to update θ according to (10).
An offline procedure for joint estimation of θ and the latent states therefore
requires Nθ runs of the PF , and an outline of our implementation using the
GIRF is presented in Algorithm 3.

An online implementation can be obtained by assuming

∇ log p(Yt|Y1:t−1, θt) ≈ ∇ log p(Y1:t|θt)−∇ log p(Y1:t−1|θt−1), (11)

which typically holds for small changes between θt−1 and θt. Then, at the tth

iteration, we approximate the score ζT by ∇ log p̂(Yt| Y1:t−1, θt) = ζt − ζt−1,
where ζt is obtained via Algorithm 2. The details of this online procedure
for joint estimation of θ and the latent states are given in Algorithm 4.

Since we require σ > 0 and φ ∈ (0, 1) we opt to estimate θ̃ = (σ̃, φ̃, α)
where

σ̃ = log(σ) ∈ R and φ̃ = log

(
φ

1− φ

)
∈ R. (12)

Details of the necessary gradient calculations and parameter initialisations
are provided in Appendix C and Appendix E, respectively.

4. Performance for Simulated Examples

We now explore the performance of the GIRF when additionally estimat-
ing static parameters, as detailed in Section 3. First, we will consider the
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Algorithm 2 Estimate the score ζt via Rao-Blackwellisation

Initialise: set m
(i)
0 = 0 for i = 1, 2, . . . ,M , ζ0 = 0.

For t = 1, 2, . . . , T
1) Run one iteration of a PF to obtain {U (i)

t }Mi=1, {a
(i)
t−1}Mi=1 and

{w(i)
t }Mi=1 (see Algorithm 1 or 5)

2) Update the mean approximation

m
(i)
t = λm

(a
(i)
t−1)

t−1 + (1− λ)ζt−1 +∇ log p(Yt|U (i)
t , α)

+∇ log p(U
(i)
t |U

(a
(i)
t−1)

t−1 , θ)

3) Update the score vector ζt =
∑M

i=1w
(i)
t m

(i)
t

End

Algorithm 3 Offline joint estimation of θ and {Ut}Tt=1using the GIRF

Initialise: set θ0 and number of iterations Nθ

For l ∈ 1 : Nθ

1) Run the GIRF (Algorithm 1) with Rao-Blackwellisation (Algorithm
2) to estimate ζT = ∇ log p(Y1:T |θ)|θ=θl−1

2) Update theta according to θl = θl−1 + γlζT
End

performance of this approach when the data are simulated according to dif-
ferent mechanisms in Section 4.1. Then, we will consider the scalability of
this approach as N and T increase in Section 4.2.

4.1. Simulated Data

In this section our focus will be on the performance of the GIRF for
networks simulated according to the following data generating mechanisms.
Throughout, we fix N = 30, d = 2 and T = 25.

(S1) Simulate from the model in Section 2.1 with α = 0.75, σ = 0.4 and
φ = 0.9.

(S2) Partition the nodes into two groups with latent centres µc ∈ Rd, for
c ∈ {1, 2}. Suppose that the ith node belongs to group c, then we let

ucit = (1− q)uci,t−1 + qµc + ε, (13)
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Algorithm 4 Online joint estimation of θ and {Ut}Tt=1using the GIRF

Initialise: set ζ0 = 0, θ0,m
(i)
0 = 0 and Ũ

(i)
τ0,0 ∼ p(·|θ) for i = 1, 2, . . . ,M .

For t = 1, 2, . . . , T
1) Run S intermediary steps of the GIRF to obtain {U (i)

t }Mi=1,

{a(i)
t−1}Mi=1 and {w(i)

t }Mi=1 (innermost loop in Algorithm 1)
2) Update the mean approximation

m
(i)
t = λm

(a
(i)
t−1)

t−1 + (1− λ)ζt−1 +∇ log pθt−1(Yt|U
(i)
t , α)

+∇ log fθt−1(U
(i)
t |U

(a
(i)
t−1)

t−1 , θ)

3) Update the score vector ζt =
∑M

i=1w
(i)
t m

(i)
t

4) Update theta according to θt = θt−1 + γk(ζt − ζt−1)
End
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Figure 3: Figure 3a shows the effective sample size and Figure 3b shows the mean square
error in probability (see (15)) for the online estimation procedure run with B = 1 (green,
solid), B = 2 (orange, dashed) and B = 3 (purple, dot-dashed) look ahead steps. For each
figure, left, middle and right correspond to data simulated according to models (S1), (S2)
and (S3), respectively.
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(a) ROC curve for observations at time 1 to time T − 1.
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Figure 4: Figures 4a and 4b show the ROC curves for observations 1 to T − 1 and for the
predicted probabilities at time T , respectively. Each figure reports the ROC for the online
estimation procedure run with B = 1 (green, solid), B = 2 (orange, dashed) and B = 3
(purple, dot-dashed) look ahead steps. For each figure, left, middle and right correspond
to data simulated according to models (S1), (S2) and (S3), respectively. The line y = x is
shown in red and the ROC curve for the true probabilities is shown in black.
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Figure 5: Estimates of α (blue), σ (orange) and φ (grey) obtained via online procedure
with B = 1 (solid), B = 2 (dashed), B = 3 (dot-dashed). Left, middle and right figures
correspond to the data generated according to (S1), (S2) and (S3), respectively.

where q ∈ (0, 1) and ε ∼ Nd(0, σ2Id). We take α = 0.75, σ = 0.4, q =
0.25, µ1 = (2, 0) and µ2 = (−2, 0), and note that this is similar to the
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model of [68].

(S3) Let the density α decrease over time, so that (5) is replaced by

ηijt = αt − ‖uit − ujt‖, (14)

where α = (α1, α2, . . . , αT ) is a decreasing sequence sequence starting
at 2 and ending at −2. We also take σ = 0.4 and φ = 0.9.

(S1) corresponds to simulating from the generative model, (S2) corresponds
to simulating from a variant of the generative model in which the nodes
belong to one of two communities that evolve jointly, and (S3) corresponds
to simulating from a variance of the generative model in which the density of
the networks evolves from more to less connected. Note that (S1) allows us
to verify our approach is behaving as expected, whereas (S2) and (S3) allow
us to explore the performance of our approach under two specific forms of
model misspecification.

For each of (S1), (S2) and (S3), we fit our model using both an online
and offline procedure. We take S = 1.5N,M = 5000 and d = 2, and consider
the two different choices of assessment function discussed in Section 3.1.
For B = 1, we take ντt,s(U) = p(Yt+1|U), and for B ∈ {2, 3} we take the
assessment function given by (9). For the online procedure, the results are
summarised in Figures 3, 4 and 5 and corresponding figures for the offline
procedure can be found in Appendix F. To assess the performance Figure 3
depicts the ESS, mean square error in probability, given by

MSE
(t)
prob =

1(
N
2

)∑
i<j

(pijt − p̂ijt)2 , (15)

and Figure 4 shows ROC curves. Figure 5 shows the parameter estimates.
Overall, we see that increasing the number of look-ahead steps B does

not offer much improvement in terms of the performance of the filter. This
is likely due to the observations being binary, and setting B > 1 may offer
improvement for more informative observations. The cases (S1) and (S2)
exhibit the most stable performance throughout and this is particularly clear
in Figure 5 where we see that the estimates of α and σ for case (S3) vary
according to the decreasing density of the observed networks. We also see in
Figure 3b that the MSE in probability is larger for case (S3), however this
is somewhat obscured by the variability in the parameter estimates. In the
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offline setting, we find that the parameter estimates are more stable which
results in a larger MSE (see Appendix F). Online estimation is challenging
in general, and so it is unsurprising that we find that the performance is
generally much more stable in the offline setting. Finally, we comment that
suitable modifications of our model may be made in order to express the
structures present in (S2) and (S3) if appropriate.

4.2. Scalability

In this section we explore the scalability of our approach as the dimension
of the state space increases in terms N and T . We simulate data according
to the model in Section 2.1 under the following two settings.

1. Increasing T : Simulate a dataset with T = 1000 and N = 20, d =
2, α = 1.25, σ = 0.2, φ = 0.9, and restrict the number of observations
to t = 50, 100, 500, and 1000.

2. Increasing N : Simulate a dataset for each of N ∈ {50, 75, 100} and
T = 25, d = 2, α = 1, σ = 0.2, φ = 0.9.

For each case we implement online inference with M = 5000 and the
timings are shown in Figure 6. We choose the number of intermediary states
as S = N for increasing T and S = 0.5N,N, and 2N for increasing N . From
Figure 6a we see that the computational cost grows quadratically with the
number of nodes N and this is due to the

(
N
2

)
terms in the expression (3).

Whilst we may reduce the overall computational cost through decreasing S,
this will affect the performance of the filter (see Figure G.13a in Appendix
G). From Figure 6b we see that there is a linear increase in the computational
cost as T grows. The filter is much more stable in this setting (see Figure
G.13b in Appendix G), and so is much more appropriate for network data
with a large number of observations in time.

5. Classroom Contact Data

In this section we consider the application of our proposed methodology
to a dataset describing face-to-face contact among primary school children.
Students are equipped with sensors and a connection is recorded if two stu-
dents face each other within a 20 second interval. The data are available
from www.sociopatterns.org and have been published in [71] and [27]. We
analyse interactions among a class of 25 school children on an aggregate level,
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Figure 6: Time taken for online SMC procedure for increasing N (left) with S = 0.5N
(green), S = N (orange) and S = 2N (purple), and increasing T (right).

where we record whether each pair of students interacted within a 4 minute
interval. In Section 5.1 we analyse the data with binary interactions whereas
in Section 5.2 we analyse the data with integer interactions. Furthermore, a
discussion of the stationarity assumption for this data example is presented
in Appendix H.

5.1. Binary Interactions

We now apply our model to the contact network where the connections are
binary, so that yijt = 1 if students i and j interact within the tth interval and
yijt = 0 otherwise. We compare our model to the approach of [21] who model
the latent trajectories according to a Gaussian process and, throughout this
section, we report estimates obtained via the offline procedure. In addition
to the formulation presented in Section 2.1, we also fit our model with the
linear predictor (5) replaced by

ηijt = α + uTitujt. (16)

Similarly to the Euclidean distance formulation, uit captures the probability
of the ith node interacting with the remaining nodes at time t relative to the
base-rate parameter α. In contrast to the Euclidean distance assumption,
the dot-product assumption imposes that nodes whose latent positions lie in
similar directions from the origin are more likely to be connected.

Since [21] model the connection probabilities as a function of the dot-
product between latent variables, the formulation (16) makes for a more
reasonable comparison than the Euclidean distance formulation in presented
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(a) Posterior mean connection probabilities for the dot-product DLSN model (blue) and the GP model of
[21] (grey).
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(b) Connection rates for the dot-product DLSN model.

Figure 7: Fitted model obtained via offline procedure for a selection of student pairs.
Figure 7a shows the connection probabilities for binary data and Figure 7b shows the rate
for count data. Left, middle and right correspond to the same node pairs for each plot.

in Section 2.1. We note that these models differ in how the latent trajectories
and the base-rate parameter α are modelled. More specifically, [21] assume
that the latent coordinates evolve according to a Gaussian process and allow
α to vary with time.

We fit our model with S = 2N,M = 5000 and d = 2 and, similarly to [21],
we assess the model on the connection probabilities to avoid identifiability
issues associated with the latent representation. Figure 7a shows the esti-
mated connection probabilities for the first T − 1 observations for a selection
of node pairs, where the blue line represents the dot-product DLSN model
fitted and the grey line represents the model of [21]. We see that there is
a reasonable correspondence between the two models, however the model of
[21] returns a smoother estimate of the probability trajectory. Our approach
instead is able to obtain estimates at a lower computational cost, particularly
when online inference is implemented. More precisely, the MCMC scheme of
[21] involves update steps for each time point and node at every interaction,
whereas our online GIRF scheme requires S ×M likelihood evaluations at
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(c) AAE for predictive rates.

Figure 8: Summary of fit for the dot-product DLSN, Euclidean distance DLSN and the
model of [21]. Figure 8a shows the ROC curve for each model. Figures 8b and 8c compare
the average absolute error (AAE) (17) for our model with a dot-product and Euclidean
distance formulations when the interactions are binary and weighted, respectively. We
note the predictive measures are only considered for the DLSN models.

each time point.
Figure 8a reports the ROC curve for the DLSN model and the model of

[21], and the dot-product and Euclidean distance formulations of the DLSN
model have both been included for comparison. We see from this figure that
all the models perform comparably well in terms of this measure, however
we see that the Euclidean distance model is a marginally better classifier.

Finally, we explore the predictive distribution for the T th observation.
To assess the quality of predictions, we simulate Rrep = 5000 observations
according to p̂ijT and record the average absolute error. For {i, j} ∈ {i, j ∈
{1, 2, . . . , N}|i < j}, this is given by

AAEij =
1

Rrep

Rrep∑
r=1

∣∣yijT − ŷrijT ∣∣ , (17)

where ŷrijT is simulated from a Bernoulli distribution with success probability
p̂ijT . Note that (17) is equal to 0 when the data are predicted correctly. The
distribution of the AAE over all node pairs is depicted in Figure 8b for
the dot-product and Euclidean distance DLSN model, and from this we see
that most observations are well predicted. Additionally, we observe that the
Euclidean distance formulation performs better in terms of this measure.
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5.2. Weighted Interactions

Our approach also allows us to straightforwardly analyse networks with
non-binary interactions and, in this section, we consider the classroom data
where yijt represents the number of interactions between nodes i and j in the
tth time interval. To adapt the model in Section 2.1, we model the probability
of connections forming as

p(Yt|Ut, α) =
∏
i<j

e−λijtλ
yijt
ijt /yijt!, (18)

λijt = exp{α− ‖uit − ujt‖}, (19)

with expressions for the latent transitions (1) and (2) specified as before.
The formulation (19) can also be adapted to express λijt in terms of the

dot-product uTi uj, similar to the model considered in Section 5.1. Here, we
consider both formulations and explore the model fit when estimates are
obtained via the offline procedure. Throughout, we fix S = 2N,M = 5000
and d = 2. The estimated rates for a subset of node pairs for the dot-
product formulation is shown in Figure 7b, where each panel corresponds to
the same set of node pairs in Figure 7a. It is clear that modelling the data in
this way allows us to obtain an understanding of the interactions on a finer-
scale. Finally, we assess the predictive distribution for the T th observations
in Figure 8c. We see that the majority of observations are predicted well
and that there is no clear difference between the dot-produce and Euclidean
distance models. Note that we have not compared to the approach of [21] for
this example. Since their inference procedure relies on a data augmentation
scheme for logistic models, it is not immediately straightforward to adapt
their approach to the non-binary setting.

6. Discussion

In this article we have considered sequential estimation of a dynamic
latent space network model and our approach relies on the algorithms intro-
duced in [51] and [49]. Since standard SMC methodology scales poorly as the
dimension of the state space increases, we consider the GIRF of [51] which
allows us to estimate networks with moderate N . Our approach is most ap-
propriate in settings where there are a large number of observations in time,
allows convenient estimation of predictive distributions and, unlike MCMC,
can be updated with additional observations without rerunning the entire
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inference mechanism. We have also shown that, in contrast to related ap-
proaches, our procedure can be adapted to model variations, such as weighted
interactions, and is suited to both online and offline inference. To the best of
our knowledge, we have presented a novel approach for sequential estimation
of dynamic latent space networks which, in contrast to existing methodology,
does not rely on specific model forms or approximations. Since the likelihood
of a latent space network model is of O(N2) computation complexity and a
basic MCMC scheme requires nit×T evaluations of this likelihood, we expect
our SMC scheme to be more computationally efficient when M × S is much
less than nit.

In practical applications, we anticipate our proposed methodology to be
particularly appealing in either data streaming settings or for data examples
with a large number of observations in time. SMC is well-suited to these
settings since the sequential nature of SMC allows estimates to be updated
given additional observations, therefore making this approach amenable to
online inference. In contrast, we stress that estimates obtained via either
MCMC or variational methods would require reestimation of model parame-
ters under further observations. Furthermore, since our inference procedure
is simulation based, our methodology is not sensitive to modifications of the
model. Whilst this is also the case for MCMC methods, we note that for
some model modifications it may be difficult to derive an expression for the
evidence lower bound, needed to update estimates in variational methods,
and this would make application of such techniques challenging.

When implementing our methodology, there are a several choices which
require the practitioners input. Firstly, they must specify the number of
particles M and the number of intermediary steps S given their available
computing resources. As shown in Section 4.2, increasing S will require
more computational resources but, from Appendix D we see that a larger S
does improve the performance of the GIRF. We advise taking M and S as
large as possible and not choosing S less than 1.5N . In our simulations and
data examples we let S = 1.5N and S = 2N , respectively, and found this
to be sufficient. Secondly, depending on the specifics of the data example, a
practitioner must choose between online and offline inference. Here we note
that, as evidenced by the study in Section 4.1, parameter estimation is less
stable for our online implementation and so care must be taken. Furthermore,
we also note that the noise in the log-likelihood approximation utilised in our
gradient descent algorithm may give rise to local modes. However, we did
not find evidence of this in our examples with known static parameters.
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A key limitation of our approach is the scalability in terms of the number
of nodes N and this is due to both properties of SMC methodology and the
O(N2) calculations needed to evaluate the likelihood. The latter contribu-
tion has been addressed via likelihood approximations (see [56] and [58]),
however it is not straightforward to adapt this approach within the context
of SMC. Alternatively, the modelling approach taken in [24], in which the
nodes are partitioned into communities and the within-community connec-
tion probabilities are modelled via a latent space, may allow us to consider
networks with larger N . In this setting, regions of independence in the latent
space may allow us to develop a more scalable approach through a partition
of the state space (for example, as in [59]).

This work may also be considered in the context of changepoint or anomaly
detection, similarly to [42], where the authors rely on approximate inference
via variational methods. However, in contrast to existing DLSN models, our
approach models the latent nodes via a stationary process and so is likely
more appropriate for determining changes in network behaviour. For exam-
ple, the latent space approach may allow for the detection of changes in joint
distributions of motif counts resulting from a change in the variance of the
latent representation.
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Appendix A. Background: SMC review

SMC methods are a class of simulation-based algorithms designed to iter-
atively estimate a posterior distribution (see [20], [46] and [18]). We split our
discussion into state estimation in Appendix A.2, where we focus on particle
filtering, and static parameter estimation in Appendix A.3. To motivate the
algorithm considered in Section 3.1, we briefly discuss high-dimensional SMC
methodology Appendix A.4.

Appendix A.1. General SSM

A general SSM is governed by the following equations

X0 ∼ µθ(x0),

Xt|Xt−1 = xt−1 ∼ fθ(xt|xt−1), for t = 1, 2, . . . , T, (A.1)

Zt|Xt = xt ∼ gθ(zt|xt), for t = 1, 2, . . . , T,

where {Xt}Tt=1 are the latent states, {Zt}Tt=1 are the observations and θ is a
vector of parameters. The distributions µθ(·) and fθ(·|·) govern the latent
states and gθ(·|·) controls the observations. Note that the model in Section
2.1 is a special case of (A.1) with θ = (α, φ, σ), Zt = Yt and Xt = Ut and
densities as specified in (1), (2) and (3).

Appendix A.2. Generic Particle Filter

A particle filtering (PF) scheme estimates the latent states {xt}Tt=0 given
observations {zt}Tt=1 by sequentially targeting the filtering densities {pθ(xt|
z1:t)}Tt=1. In general, we cannot obtain analytic expressions for the filtering
densities and so a PF scheme instead relies on approximations obtained via
importance sampling (IS). However we note that, in the special case when
fθ(xt|xt−1) and gθ(zt|xt) are Gaussian, we may determine pθ(xt| z1:t) analyt-
ically and this scheme is the well-known Kalman filter [35].
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Algorithm 5 Generic Particle Filter to obtain estimates {x(i)
t , w

(i)
t }Mi=1 of

pθ(xt|z1:t), for t = 1, 2, . . . , T .

• Iteration t = 0:
Sample M particles {x(i)

0 }Mi=1 from µθ(·) and assign weights w
(i)
0 = 1/M .

• Iteration t = 1, . . . , T :
Assume particles {x(i)

t−1}Mi=1 with weights {w(i)
t−1}Mi=1 that approximate

pθ(xt−1|z1:t−1).

a) Sample parent indices {a(i)
t−1}Mi=1 from F(·|Wt−1), where Wt−1 =

(w
(1)
t−1, w

(2)
t−1, . . . , w

(M)
t−1 ).

b) Propagate the particles according to x
(i)
t ∼ qθ

(
·|zt, x

a
(i)
t−1

t−1

)
, for i =

1, 2, . . . ,M , and set x
(i)
1:t =

(
x
a
(i)
t−1

1:t−1, x
(i)
t

)
c) Calculate the weights

w
(i)
t ∝ pθ

(
x

(i)
1:t, z1:t

)/
qθ

(
x

(i)
t |zt, x

a
(i)
t−1

1:t−1

)
pθ

(
x
a
(i)
t−1

1:t−1, z1:t−1

)
for i = 1, 2, . . . ,M and normalise.

A generic PF scheme for approximating {pθ(xt|z1:t)}Tt=1 is outlined in

Algorithm 5. We let {x(i)
t , w

(i)
t }Mt=1 denote the particle approximation to

pθ(xt|z1:t), where x
(i)
t and w

(i)
t represent the ith particle and ith weight, re-

spectively, for i = 1, 2, . . . ,M . This scheme updates the particles at time
t− 1 according to a proposal distribution qθ(xt|xt−1, zt) and then adjusts the
weights to account for the discrepancy between the tth and (t− 1)th filtering

densities. Algorithm 5 contains a resampling step where parent indices a
(i)
t−1

are resampled according to F(·|·). This step mitigates against particle de-
generacy in which the weights concentrate onto a small number of particles
causing the quality of the approximations to degrade. We refer to [17] and
[20] for details of standard resampling schemes.

Many well-established particle filtering algorithms can be obtained as a
special case of the scheme in Algorithm 5. For instance, we may obtain
the standard SIR filter of [30] by taking qθ(·|xt−1, zt) = fθ(·|xt−1) and wt =
gθ(zt|·). This filter has the advantage of being simple to implement, however
the particles are propagated according to the model dynamics and so do not
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incorporate information about future observations. It has been shown that
the proposal which obtains optimal performance in terms of the variance of
the importance weights is [19] qθ(xt|zt, xt−1) = pθ(xt|zt, xt−1). However, for
many practical applications, we cannot find a tractable expression for this
proposal. Alternative approaches, such as the auxiliary particle filter (APF)
of [53], instead aim to approximate p(xt|zt, xt−1).

To assess the performance of a PF, we can approximate the the effective

sample size (ESS) at time t as ÊSS = 1
/∑M

i=1(w
(i)
t )2. Additionally, a PF

allows us to obtain an estimate of the marginal likelihood pθ(y1:T ) from the
importance weights using

p̂θ(y1:T ) =
T∏
t=1

[
1

M

M∑
i=1

w
(i)
t

]
. (A.2)

Evaluating (A.2) does not incur an additional computational cost and this
estimator has been shown to be unbiased (see Theorem 7.4.2 in [15]).

Appendix A.3. Static Parameter Estimation

The procedure in Algorithm 5 estimates the latent states {xt}Tt=1 con-
ditional on known static parameters θ. However, in practice, we also wish
to estimate static parameters θ, given by (σ, φ, α) in our application. The
existing literature can be divided into offline and online approaches, and we
will briefly discuss these below. For a more in depth discussion, we refer the
reader to [36], [26], [37] and [46].

Offline estimation can be considered within the Bayesian or Frequentist
paradigm. In the Bayesian setting, particle MCMC [4] methods allow joint
state and parameter estimation by utilising an SMC approximation of the
the likelihood which leaves the target distribution invariant. This avoids cal-
culation of complex proposal distributions and, due to the crucial role of the
estimation of the marginal likelihood, attention has been focused on develop-
ing PF schemes which improve the quality of this estimate (for example, see
[3]). Alternatively, [13] develop an iterated procedure which relies on nested
particle filters to estimate the state and parameters jointly in the Bayesian
setting. From the Frequentist perspective, estimating θ is viewed as a like-
lihood maximisation problem (see [47] and [33]). This has been addressed
via gradient ascent in which estimates of θ are updated according to the gra-
dient of the log-likelihood (for example, see [34]). [55] consider estimating
the score and information matrix, which can be used within gradient ascent,
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and [49] extend this to develop a procedure which has a linear computational
cost. Alternatively, θ can be estimated using an expectation maximisation
procedure as in [16].

In the online setting, a natural approach for estimating θ would be to
find a particle approximation to the joint density p(xt, θ|z1:t), similar to the
procedure for estimating {xt}Tt=1 outlined in Algorithm 5. However, since
θ does not evolve in time, the particle set will degenerate under repeated
resampling. Online estimation of θ therefore presents a challenging task and
remains an open problem in the literature. Several Bayesian strategies have
been proposed, such as [30], who include artificial dynamics to reduce the de-
generacy, and [28], who rely on MCMC kernels to add diversity to the particle
set. Other approaches include practical filtering (see [54]), kernel approxi-
mations (see [44]) and estimating θ using sufficient statistics (see [72], [23]
and [12]). More recently, [14] introduced a procedure which relies on nested
particle filters, similarly to the approach of [13]. In the Frequentist setting,
θ can be estimated via likelihood maximisation. For example, see [43], [55]
and [49], for methodology which relies on gradient ascent. Alternatively, [11]
consider estimation via an expectation maximisation procedure.

Appendix A.4. High-Dimensional Particle Filtering

It is well-understood that the performance of SMC methods degrade as
the dimension of the state space increases [5, 69, 6, 8] and it has been shown
that the number of particles must increase exponentially with the state di-
mension to avoid particle degeneracy [70]. Developing methodology for high-
dimensional state spaces remains an open problem in the literature, and in
recent years a body of work has developed to address this issue.

A popular strategy involves the utilisation of MCMC techniques, such
as in [29] where MCMC moves are introduced to mitigate against particle
degeneracy. More broadly, MCMC methodology has appeared as part of
sequential MCMC schemes [39, 62, 10] and this idea has been explored further
in, for example, [50] and [64]. Other authors have considered approximate
algorithms, such as the ensemble Kalman filter (see [38]) which approximates
a Kalman filter through a sample, or ‘ensemble’, from the target distribution.
Alternatively, [59] explore local particle filters such as the block particle filter
in which the state space is partitioned into non-overlapping blocks. Finally,
[2] generalise the nudging approach, where a subset of particles are artificially
moved towards the observation (see also [73] and [1]).
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Several algorithms have also been developed for particular classes of mod-
els. [7] introduce the space-time filter which assumes that the likelihood can
be decomposed so that knowledge of the observations can be incrementally
incorporated. [74] introduce artificial process noise to improve the perfor-
mance of the particle filter in high-dimensions for a class of state space mod-
els. [48] consider a nested approach in which an additional particle filter is
introduced to approximate the proposal distribution relied upon in the fully
adapted filter of [53]. [51] introduce artificial intermediary states in order
to handle high-dimensional state spaces. We note that in our application of
interest the form of our network model restricts which of these algorithms
are appropriate. Finally, for a selective review of high-dimensional particle
filtering algorithms, we refer the reader to [63].

Appendix B. Derivation of p̃θ(Uτt,s|Uτt,s−1
)

In this appendix we derive the intermediary transition kernels required to
implement the GIRF. Since all nodes follow the same distribution indepen-
dently, we drop the notation i and derive the transition equation for a single
node.

For ut we have Ut|Ut−1 = ut−1 ∼ N (φut−1, σ
2Id). We require an expres-

sion for p̃θ(uτt,s |uτt,s−1) so that

pθ(ut+1|ut) = p̃θ(uτt,1|ut)p̃θ(uτt,2|uτt,1) . . . p̃θ(ut+1|uτt,S−1
). (B.1)

By properties of the Normal distribution, we know that p̃θ(uτt,s|uτt,s−1) =
N (muτt,s−1 , vId). We determine the values of m and v below.

Determining m
By the law of total expectation we have

E [Ut|Ut−1] = E
[
Uτt,S |Uτt,0

]
= φut−1, (B.2)

= E
[
E
[
. . .E

[
E
[
Uτt,S |Uτt,S−1

]
|Uτt,S−2

]
. . . |Uτt,1

]
|Uτt,0

]
, (B.3)

= mSut−1. (B.4)

⇒ m = φ1/S. (B.5)

We have p̃θ(uτt,s |uτt,s−1) = N (φ1/Suτt,s−1 , vId) and we note that this is valid
for φ ∈ (0, 1).
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Determining v
The law of total variance tells us

Var
[
Uτt,S |Uτt,0

]
= E

[
Var

[
Uτt,S |Uτt,1

]
|Uτt,0

]
+ Var

[
E
[
Uτt,S |Uτt,1

]
|Uτt,0

]
.

(B.6)

For the expectation, we have

E
[
Uτt,s |Uτt,s′

]
= φ(s−s′)/Suτt,s for s′ < s. (B.7)

We then obtain a recursion for (B.6) by writing

Var
[
Uτt,S |Uτt,s

]
= E

[
Var

[
Uτt,S |Uτt,s+1

]
|Uτt,s

]
+ Var

[
E
[
Uτt,S |Uτt,s+1

]
|Uτt,s

]
,

(B.8)

for s = S − 2, S − 3, . . . , 0.

Starting from s = S − 2, we have

Var
[
Uτt,S |Uτt,S−2

]
= E

[
Var

[
Uτt,S |Uτt,S−1

]
|Uτt,S−2

]
+ Var

[
E
[
Uτt,S |Uτt,S−1

]
|Uτt,S−2

]
,

(B.9)

= E
[
vId|Uτt,S−2

]
+ Var

[
φ1/SUτt,S−1

|Uτt,S−2

]
, (B.10)

= vId + φ2/SvId. (B.11)

Then from s = S − 3 we have

Var
[
Uτt,S |Uτt,S−3

]
= E

[
Var

[
Uτt,S |Uτt,S−2

]
|Uτt,S−3

]
+ Var

[
E
[
Uτt,S |Uτt,S−2

]
|Uτt,S−3

]
,

(B.12)

= E
[
vId + φ2/SvId|Uτt,S−3

]
+ Var

[
φ2/SUτt,S−2

|Uτt,S−3

]
,

(B.13)

= vId + φ2/SvId + φ4/SvId. (B.14)

Applying this procedure iteratively, we obtain

σ2 = Var
[
Uτt,S |Uτt,0

]
= vId

[
1 + φ2/S + φ4/S + · · ·+ φ2(S−1)/S

]
, (B.15)

= vId

S−1∑
r=0

(
φ2/S

)r
= vId

(
1−

(
φ2/S

)S
1− φ2/S

)
= vId

(
1− φ2

1− φ2/S

)
,

(B.16)
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⇒ v = σ2

(
1− φ2/S

1− φ2

)
Id. (B.17)

Finally, we have

p̃θ(uτt,s |uτt,s−1) = N
(
φ1/Suτt,s−1 , σ

2

(
1− φ2/S

1− φ2

)
Id

)
. (B.18)

Appendix C. Gradient derivation for parameter estimation

To estimate θ = (α, σ, φ) using the scheme detailed in Section 3, we must

find expressions for
d

dθ
log p(Ut|Ut−1, θ) and

d

dθ
log p(Yt|Ut, θ). For the model

detailed in Section 2.1 we obtain

∂

∂α
log p(Yt|Ut, θ) =

∑
i<j

{
yijt −

1

1 + exp(‖uit − ujt‖ − α)

}
, (C.1)

=
∑
i<j

(yijt − pijt) . (C.2)

∂

∂σ
log p(Yt|Ut, θ) =

∂

∂φ
log p(Yt|Ut, θ) =

∂

∂α
log p(Ut|Ut−1, θ) = 0. (C.3)

∂

∂σ
log p(Ut|Ut−1, θ) =

N∑
i=1

{
−d
σ

+
1

σ3
(uit − φui,t−1)T (uit − φui,t−1)

}
.

(C.4)

∂

∂φ
log p(Ut|Ut−1, θ) =

N∑
i=1

{
1

σ2
uTi,t−1(uit − φui,t−1)

}
. (C.5)

where (C.5) follows from (84) in [52].
Since σ > 0 and φ ∈ (0, 1), we opt to estimate σ̃ and φ̃ as specified in

(12). From the chain rule we have

∂

∂σ̃
=

∂

∂σ

∂σ

∂σ̃
and

∂

∂φ̃
=

∂

∂φ

∂φ

∂φ̃
. (C.6)

Then, we obtain the required expressions using

∂σ̃

∂σ
=

1

σ
and

∂φ̃

∂φ
=

1

φ(1− φ)
. (C.7)

(C.8)

For stability reasons, we scale each of the gradients by a 1/Nd.
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Figure D.9: Performance of GIRF as N increases for varying number of intermediary
states S. The ESS and average MSE in probability are shown in the left and right panels,
respectively, and the number of particles was fixed at M = 10000. Blue, red and grey lines
correspond to N = 20, N = 30 and N = 50, respectively.

Appendix D. Suitability of the GIRF

To assess the suitability of this approach, we fit the GIRF to data simu-
lated from the model in Section 2.1 with α = 1.2, σ = 0.2 and φ = 0.9. Figure
D.9 shows the performance of the GIRF for different choices of S and varying
N when the assessment function is taken as vτt,s(U ) = p(Yt+1|U) and θ is
assumed known. The left plot depicts the ESS (see Section Appendix A.2)
divided by the number of particles and the right hand size shows the mean
square error in probability. For t = 1, 2, . . . , T , this is given by

MSE
(t)
prob =

1(
N
2

)∑
i<j

(pijt − p̂ijt)2 , (D.1)

where pijt and p̂ijt represent the true and estimated probability of nodes i
and j sharing a tie at time t, respectively.

Figure D.9 indicates that the accuracy of the filter remains reasonably
stable as the dimension of the state space increases. We also see that esti-
mation is more challenging as N increases and that S significantly impacts
the performance of the filter. It is clear that too few intermediary states will
result in poor quality approximations. Finally, we comment here that little
difference in the performance was observed when the assessment function was
given by (8) and it is not clear whether this is true more generally. For exam-
ple, we may find that incorporating future observations is more worthwhile
for non-binary interactions.
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Algorithm 6 Procedure for initialising σ

Input: Y1, Y2 and d
For t ∈ {1, 2}:

- Calculate the N ×N distance matrix Dt = {dijt}i,j∈1:N , where dijt
is the graph distance between nodes i and j. We set diit = 0 and,
if dijt =∞, we set dijt to be the maximum finite entry of Dt

plus some constant γ > 0.
- Calculate the MDS coordinates with latent space dimension d, Ût

- Calculate σt =
1

Nd

∑N
i=1 ûit

Let σ = (σ1 + σ2)/2

Appendix E. Static parameter initialisation

To initialise σ we follow [66] and adapt the GMDS approach considered in
[60] and our procedure is detailed in Algorithm 6. We initialise φ at 0.8, and
then choose α via a grid search conditional on σ and φ. More specifically, for
a sequence of candidate α values, we simulate a series of latent trajectories
given σ and φ. Then, we initialise α by taking the value which results in
a network with density that is most similar to the average observed density∑T

t=1

∑
i<j yijt/T

(
N
2

)
.

Appendix F. Alternative Scenarios

Figures F.10, F.11 and F.12 summarise the fit for offline estimation pro-
cedure for the data scenarios considered in Section 4.1. Throughout we fix
S = 1.5N,M = 5000, d = 2 and Nθ = 20. Corresponding figures for the
offline procedure are presented in Section 4.1.

Appendix G. Performance Plots for Scalability Simulation

Figure G.13 shows the performance of the filter as N and T increase
and the data were generated according to the description in Section 4.2.
From Figure G.13a, we see that the problem becomes more challenging as N
grows and choosing S too small will decrease the performance of the filter.
From Figure G.13b we see that the performance of the filter is stable at T
increases. As expected, increasing the dimension of the state space is the
more challenging aspect.
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(a) Effective sample size.
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(b) Mean square error in probability (15).

Figure F.10: Figure F.10a shows the effective sample size and Figure F.10b shows the
mean square error in probability (see (15)) for the offline estimation procedure run with
B = 1 (green, solid), B = 2 (orange, dashed) and B = 3 (purple, dot-dashed) look ahead
steps. For each figure, left, middle and right correspond to data simulated according to
models (S1), (S2) and (S3), respectively.

Appendix H. Stationarity assumption

The assumption of stationarity over the latent trajectories in our model
ensures that the network properties are preserved through time. Without this
assumption, the generative model gives rise to empty networks as T grows
since the variance of the latent positions accrues over time. For the data
example presented in Section 5, we plot some network summary statistics
in Figure H.14 to justify this assumption. Whilst there is some variability
in these summaries, there do not exist significant trends which suggest the
assumption of stationarity to be unreasonable.
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(a) ROC curve for observations at time 1 to time T − 1.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

case 1

FP

T
P

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

case 2

FP

T
P

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

case 3

FP

T
P

B=1
B=2
B=3
true

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

FP

T
P

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

FP

T
P

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

FP

T
P

(b) ROC curve for observations at time T .

Figure F.11: Figures F.11a and F.11b show the ROC curves for observations 1 to T − 1
and for the predicted probabilities at time T , respectively. Each figure reports the ROC
for the offline estimation procedure run with B = 1 (green, solid), B = 2 (orange, dashed)
and B = 3 (purple, dot-dashed) look ahead steps. For each figure, left, middle and right
correspond to data simulated according to models (S1), (S2) and (S3), respectively. The
line y = x is shown in red and the ROC curve for the true probabilities is shown in black.

0 20 40 60 80 100

0.
05

0.
15

0.
25

Density

0 20 40 60 80 100

5
10

15
20

25

APL

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Transitivity

Figure H.14: Summary of the classroom contacts dataset considered in Section 5. Left,
middle and right panels plot the density, average path length (APL) and transitivity of
the observed graphs over time, respectively.
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Figure F.12: Estimates of α (blue), σ (orange) and φ (grey) obtained via offline procedure.
Left, middle and right figures correspond to the data generated according to (S1), (S2)
and (S3), respectively.
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(a) Summary of fit for increasing N with T = 25 and S = 0.5N,N, and 2N . The first row shows the ESS
scaled by M and the second row shows the MSE in probability.
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(b) Summary of fit for increasing T with N = 20 and S = N .

Figure G.13: Summary of performance of online SMC scheme as the dimension of the data
increases in terms of N and T .

39


