
Towards Developer-Centered Automatic Program Repair:
Findings from Bloomberg

Emily Rowan Winter
Lancaster University

Lancaster, UK

Vesna Nowack
Lancaster University

Lancaster, UK

David Bowes
Lancaster University

Lancaster, UK

Steve Counsell
Brunel University London

London, UK

Tracy Hall
Lancaster University

Lancaster, UK

Sæmundur Haraldsson
University of Stirling

Stirling, UK

John Woodward
Queen Mary University of London

London, UK

Serkan Kirbas
Bloomberg
London, UK

Etienne Windels
Bloomberg
London, UK

Olayori McBello
Bloomberg
London, UK

Abdurahman Atakishiyev
Bloomberg
London, UK

Kevin Kells
Bloomberg

New York, USA

Matthew Pagano
Bloomberg

Princeton, USA

ABSTRACT
This paper reports on qualitative research into automatic program
repair (APR) at Bloomberg. Six focus groups were conducted with
a total of seventeen participants (including both developers of the
APR tool and developers using the tool) to consider: the develop-
ment at Bloomberg of a prototype APR tool (Fixie); developers’
early experiences using the tool; and developers’ perspectives on
how they would like to interact with the tool in future. APR is
developing rapidly and it is important to understand in greater
detail developers’ experiences using this emerging technology. In
this paper, we provide in-depth, qualitative data from an industrial
setting. We found that the development of APR at Bloomberg had
become increasingly user-centered, emphasising how fixes were
presented to developers, as well as particular features, such as cus-
tomisability. From the focus groups with developers who had used
Fixie, we found particular concern with the pragmatic aspects of
APR, such as how and when fixes were presented to them. Based
on our findings, we make a series of recommendations to inform
future APR development, highlighting how APR tools should ‘start
small’, be customisable, and fit with developers’ workflows. We also
suggest that APR tools should capitalise on the promise of repair
bots and draw on advances in explainable AI.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9413-0/22/11.
https://doi.org/10.1145/3540250.3558953

CCS CONCEPTS
• Software and its engineering;

KEYWORDS
automatic program repair, human factors, qualitative methods
ACM Reference Format:
Emily Rowan Winter, Vesna Nowack, David Bowes, Steve Counsell, Tracy
Hall, SæmundurHaraldsson, JohnWoodward, SerkanKirbas, EtienneWindels,
Olayori McBello, Abdurahman Atakishiyev, Kevin Kells, and Matthew
Pagano. 2022. Towards Developer-Centered Automatic Program Repair:
Findings from Bloomberg. In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE ’22), November 14–18, 2022, Singapore, Singapore.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3540250.3558953

1 INTRODUCTION
Automatic program repair (APR) is a rapidly-growing area of soft-
ware engineering involving the automatic generation of patches to
fix code defects and bugs. APR has significant potential for reducing
the time developers spend manually fixing bugs and freeing up time
for other activities. APR research is currently highly technical in
its focus, considering potential learning techniques and the types
of fixes that can be generated. However, much less is known about
developers’ experience using APR, and how professional developers
want to interact with APR tools. Our prior work found that less than
7% of APR papers feature any research with human participants,
and even fewer research with professional developers [28].

Industrial application of APR is currently nascent; Bloomberg
(alongside Facebook [2]) is one of few companies where APR has
been at least partially implemented. Given the currently limited
knowledge of developer experiences using APR, we conducted
exploratory focus group research at Bloomberg. This research was

https://doi.org/10.1145/3540250.3558953
https://doi.org/10.1145/3540250.3558953


ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Winter et al.

conducted as part of an intensive, longstanding collaboration with
Bloomberg, in which the first and second authors were seconded
to Bloomberg and embedded within a Bloomberg team.

Expanding our knowledge of developers’ experiences and per-
ceptions of APR is vital for successful industrial adoption of APR.
Within software engineering generally, the gap between academic
advances and their industrial take-up has been highlighted [4] [12].
Advances in APR also bring distinct challenges and opportunities.
For successful APR exploitation, developers need to accept the au-
tomation of their previously manual bug fixing tasks and embrace
and use new APR tools and techniques. Developers will need to
change some of their day-to-day tasks. Some tasks may be removed
(for example, manual bug-fixing) and replaced with other tasks (for
example, providing APR tools with specifications [15] or verify-
ing automatically generated patches [6]). In addition, by reducing
the time needed for manual bug fixing, APR may free up time for
other tasks, leading to restructuring of developer workloads and
activities. Overall, APR tools and techniques are likely to change
developers’ working practices and workflow, potentially having an
impact on significant human factors such as developer job satis-
faction and motivation. Developing APR tools and techniques that
are acceptable to developers is critical to successfully capitalising
on the benefits that APR promises, so it is essential that developer
experiences using APR are considered.

Our research questions are:
• RQ1: What user considerations have influenced the develop-
ment of APR at Bloomberg?

• RQ2: What have been the early experiences of developers
using Fixie (a prototype APR tool developed at Bloomberg
in collaboration with academic researchers)?

• RQ3: How do developers want to interact with Fixie?
• RQ4: What are the lessons learnt from developers’ experi-
ences using Fixie for future APR development?

This paper makes the following contributions:
• To the best of our knowledge, we provide the first analysis
from in-depth qualitative research of developers’ experiences
using APR in an industrial setting

• Based on our findings, we present recommendations to in-
form future APR tool development and hopefully lead to
more effective take-up of APR within industry.

The rest of the paper is structured as follows. We provide back-
ground information about the development of APR at Bloomberg
in Section 2. Our methods and findings are reported in Sections
3 and 4, respectively. Sections 5 and 6 provide recommendations
and a discussion of threats to validity. We report on related work
in Section 7. Finally, we conclude in Section 8.

2 BACKGROUND: AUTOMATIC PROGRAM
REPAIR AT BLOOMBERG

2.1 Developing an APR Tool
Bloomberg is one of few companies where APR has been imple-
mented. A small Bloomberg team has been developing a prototype
APR tool called “Fixie” in collaboration with academic researchers.
The team was motivated to explore APR by the prevalence of re-
peated, small bugs/refactorings that Bloomberg developers were

having to fix manually, taking up a lot of time with repetitive work.
The team hoped to develop an APR system that targeted these small
bugs and decrease the manual load on developers. This approach
differed from many academic approaches that aim to automati-
cally generate fixes for ever more complex and challenging bugs.
Bloomberg’s approach was based much more around ‘easy wins’
that nonetheless are seen to offer significant benefit to developers,
removing manual bug-fixing tasks and freeing up developer time.
Our previous work [17] further outlines the approach taken by
Bloomberg and the industry-academia differences this sustained
collaboration brought to light.

In its current form, Fixie provides three different types of fixes:
one, off-the-shelf fixes provided by third-party tools (e.g., clang-
tidy); two, custom fixes — fixes that are provided by Bloomberg
developers for application to other code bases; and three, fixes
learnt through version control history. While only the last of these
would typically be seen as APR, all three types of fixes enable a
more automated bug fixing approach. Custom fixes, for example,
allow for automatic application of particular fixes at scale across
repos, rather than the same bugs or defects being fixed manually in
a more ad hoc fashion. Custom fixes have been particularly useful
for enabling deprecated components to be updated.

The Fixie architecture (see Figure 1) involves several components.
Fixie-learn is the learning part of the system able to generate
fix patterns automatically from version control history and other
data sources. The generation of fix patterns in Fixie-learn occurs
through Bloomberg’s implementation of the GumTree [10] and anti-
unification [19] algorithms (also used by Facebook’s Getafix [2]).
Fixie-learn takes a code change (as a commit from version control
history) and finds the differences between two ASTs (before and
after the code change). To generate a fix pattern, Fixie-learn takes a
pair of code changes (two commits), anti-unifies them and extracts
the richest AST fix pattern that can reproduce both original code
changes. A fix pattern is composed of a before pattern and an after
pattern and it is chosen as a fix candidate if the before pattern
matches a targeted part of code. The situation requiring attention
can be any chunk of code, but is usually in the context of an error
code or lint warning, as opposed to a program crash; this can sig-
nificantly improve the outcome, by filtering the fix patterns to only
those learned from such situations. Multiple fix candidates for the
same targeted code need to be ranked. Unlike Getafix (where rank-
ing is based on the relevance of the fix patterns to the code changes
they were generated from), Fixie-learn ranks the fix candidates
according to their success in producing a correct fix in the past. The
fix generated from the top fix pattern is then provided as a report to
software developers who view one fix at a time, each of which they
can then either accept or reject. Fixie-apply offers fixes to devel-
opers in the form of pull requests (PRs). Fixie-analytics measures
software engineers’ acceptance of fixes provided by Fixie-apply.

2.2 Academia-Industry Collaboration
This research came out of a sustained collaboration with Bloomberg.
Their interest in APR had been prompted by early collaboration
with academic researchers, and this relationship was then consol-
idated by the first and second authors (researchers at Lancaster
University) being seconded to Bloomberg for a year, working closely



Towards Developer-Centered Automatic Program Repair: Findings from Bloomberg ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Figure 1: The Fixie architecture

with a small Bloomberg team developing APR technologies. The
two researchers became embedded in the team, one focusing on
the technical side, and the other on researching the socio-technical
dimension. The researchers met with the team regularly, usually
two or three times a week, and had access to Bloomberg platforms.

3 METHODOLOGY
3.1 Choice of Focus Group Method
For this research, we chose to use focus groups, a qualitative method
well suited to explorative research. Focus groups are not widely used
in software engineering, though they are common in marketing
and social sciences. One exception is [18], which reports on the
use of focus groups for requirements prioritisation and usability
evaluation studies. Kontio et al. identify several strengths of focus
groups: facilitating discussion of new and unexpected insights;
providing the researcher with in-depth understanding; and aiding
participant recall and being generally beneficial for participants.

Though Kontio et al. consider the existence of group dynamics a
challenge, another key benefit of focus groups is the insight they
offer into interaction and negotiation of perspectives. Given the
importance of team dynamics and group norms in software devel-
opment practice [25], we consider focus groups’ insight into group
dynamics as especially valuable in software engineering research.
In particular, focus groups that bring together participants who

already know each other (e.g., software teams) may be able to cap-
ture group dynamics-related factors that impact tool adoption. An
individual’s attitudes do not exist in a vacuum and are likely to be
shaped by colleagues’ views [8]. In our focus groups, there were
several instances in which participants changed their minds about
a topic or, following discussion, reached agreement. This shows
how attitudes are not static, but dynamic and contextual. Under-
standing these group dynamics may be helpful in contextualising
tool adoption.

Focus groups that bring together participants who know each
other may be more comfortable and familiar for developers to
participate in. Team-based focus groups might also feel similar to
software development process activities, such as retrospectives. In
both focus groups and retrospectives, for example, individuals share
their views on the strengths and weaknesses of a past experience.

3.2 Focus Group Structure and Participants
The focus groups were semi-structured — there were some pre-
determined questions, but also openness to follow-up on unex-
pected themes. The focus groups were also adapted to the particular
nature of the participants. One focus group was carried out with
the Bloomberg team developing Fixie, in order to understand their
intentions and goals. The other four focus groups were carried out
with different teams who had at least some interaction with Fixie,



ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Winter et al.

Figure 2: Prototype dashboard for applying fixes across
multiple repos

though the extent of this interaction varied. These differences in
focus group composition meant that the questions differed between
focus groups.

The focus group with the Bloomberg team developing Fixie
started with an initial introduction by one researcher and was then
focused around the following key open-ended questions:

• What were the origins of Fixie at Bloomberg?
• What were your original aims? Did these aims change?
• How would you like developers to use and interact with
Fixie?

• What is your vision for the future?
The other focus groups were tailored to the specific user group;

each group had a slightly different experiencewith Fixie (see Section
4.2). However, each focus group followed a similar structure.

• Introduction to the research and the focus group.
• Section 1: Questions about participant knowledge of and
experience with Fixie, including benefits and challenges ex-
perienced so far.

• Section 2: Questions about how participants would like to
interact with Fixie in its current form (provision of fixes as
PRs), including how and when participants would like to be
informed about fixes.

• Section 3: Questions about how participants would like to
interact with Fixie under different possible future directions.
Participants were shown a prototype dashboard (see Figure
2), which would allow developers to apply a particular fix at
scale across multiple repos. Participants were also prompted
about other possible Fixie future developments, such as Fixie
as an automated reviewer of developers’ own PRs.

• Section 4: The focus groups concluded by asking partici-
pants to consider the opportunities and challenges for rolling
out Fixie across Bloomberg more widely.

The focus groups were facilitated by the first author who has
several years’ experience in conducting qualitative research, in-
cluding focus groups. The second author also attended to aid in
facilitation and, given her close involvement in Fixie’s technical
development, to answer more technical questions that participants
might have. This integration of social and technical expertise was
useful for carrying out the research.

Table 1: Focus group participants

Focus group Relationship with Fixie Participants

A Developers of Fixie A1, A2, A3
B Providers of custom fixes B1, B2, B3
C Security experts C1, C2
D Users of Fixie D1, D2
E Users of Fixie E1, E2, E3, E4, E5
F Users of Fixie F1, F2

Potential focus group participants were identified through discus-
sion between the researchers and members of the Bloomberg Fixie
team. Participants were then contacted by email or Bloomberg’s
instant messaging platform. All participants were given an infor-
mation sheet about the research and returned a consent form. The
project had approval from the researchers’ University Research
Ethics Committee and Bloomberg’s Legal and Compliance teams.

Each focus group was made up of people who knew each other,
recruited through their teams. Table 1 outlines each of the partici-
pants, their team, and the team’s relationship with Fixie.

Each focus group took place online, using Bloomberg’s video
conferencing software, and was audio recorded. Each focus groups
lasted between one and one and a half hours, and together they
yielded over 40,000 words of transcribed material.

3.3 Focus Group Analysis
The focus groups were transcribed by the first author. They were
then thematically coded. The first and second authors read the tran-
scripts and then met to discuss coding. It was decided initially to ap-
ply broad brushstroke coding by role and time. The thematic codes
for role were: developing (related to developing Fixie); contributing
(related to contributing to Fixie, e.g., providing custom fixes); and
using (relating to receiving fixes from Fixie). The time codes were
past, present, future, and general. Both authors then independently
coded three transcripts with these broad codes, while also using
open coding to identify emerging and more granular themes. The
unit of analysis was generally each separate unit of speech, i.e.,
what a person said before another person spoke. If speech was
more fragmented (i.e., participants said just a few words each), we
thematically coded multiple units of speech.

After both authors had independently coded three transcripts,
wemet to discuss disagreements and establish agreement. The emer-
gent thematic codes were finalised and written up in a code book.
We then coded the remaining three transcripts using the code book
as reference but continued to use open coding to capture further
emerging themes. We then met again to negotiate any disagree-
ment and agree upon new codes. All transcripts were dual-coded
independently and there was at least partial agreement in the case
of 77.5% units of analysis coded by both authors.

To aid analysis, the transcripts were then uploaded into NVivo,
thematic analysis software. This enabled quotations attached to the
same themes to be clustered, facilitating further organisation of the
data. From these clusters, key findings were identified.



Towards Developer-Centered Automatic Program Repair: Findings from Bloomberg ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

4 FINDINGS
In this section, we report on our findings for RQs 1, 2 and 3. Our
recommendations in response to RQ4 are reported in Section 5. For
each RQ, our key findings and indicative supporting quotations are
also presented in a table (see Tables 2, 3, and 4).

4.1 RQ1: What User Considerations Have
Influenced the Development of APR at
Bloomberg?

The key finding from focus group A (with the developers of Fixie)
was that APR development had become increasingly user-
centered, representing a shift away from a predominantly technical
approach. A3 identified a ‘huge mindset shift’: ‘[we] realised that if
we want this to go into production and actually be used by developers,
this [technical details] shouldn’t be the only focus [...] We have to find
a way to make developers trust the fixes and to know [...] when we
should provide fixes’.

One key feature of the user-centered approach was an
emphasis on putting Fixie users in control: ‘if we put the
developer in the driving seat, we believe that it will increase interaction
and also the confidence of the developer in the solution’ (A1). The
team was open to Fixie being shaped by the developers using it:
‘developers are shaping [Fixie] in [...] the way they want to interact’.

A user-centered approach was characterised, in practical
terms, by a strong focus on how and when fixes are presented
to developers. As A2 commented, ‘what’s very important is about
how and when changes are presented to the developer. Maybe that’s
even more important than the correctness of the change in some
way’. This is in contrast to much academic research that targets fix
correctness as a key objective. Our RQ2 and RQ3 findings confirm
this: developers were happy to use Fixie-provided fixes as ‘starting
points’, rather than needing them to be fully accurate, but they
needed fixes to be presented to them in the right way.

The provision of relevant information and metrics along-
side fixes was seen as important to aid developers reviewing
the fix. This was especially significant ‘when a fix is suggested but
the developers don’t really understand what it’s supposed to do or
how it will interact in the code’ (A3). In such cases, it was important
to provide ‘very concrete and empirical metrics to show that this is
actually a good modification, so the most obvious example would be
to fix a test in that case. So if developers know that their current code
is failing a test and with that fix the test is now working they will
have direct proof that this is actually solving something’ (A3).

Several future directions for Fixie development were identified
in focus group A. One future direction is Fixie as a developer’s
assistant, potentially using speech recognition or ‘agent-based’
models to enable the tool to respond to ‘high-level objectives’ (A1).
This vision corresponds with nascent APR research on repair bots
[27] [22]. We discuss this further in Section 5.

Another future direction identified in focus group A was
to enhance Fixie’s customisability, allowing developers to cus-
tomise Fixie according to their needs. This could be based upon
developers’ understanding of other compensating controls in their
environment that reduce the risk being presented. A3 echoed that
Fixie should be customisable according to how open developers are

‘to new ideas and new features’. This suggests that human values are
important for how developers want to interact with an APR tool.

One other future possibility identified was to develop Fixie as a
PR reviewer, motivated by the fact that ‘it is a very natural place to
interact with people, and to raise the problems and also relationship
between a fix and the problem detection’ (A1). A3 agreed: ‘PRs are
good [...] because you know that the developer has been working on
some parts and you know that if you suggest a fix on this part they
will be very likely to engage with the suggestion, so I think that’s a
very good time’. A3 highlighted how this meant they would be able
to provide ‘fixes on what was written during the last modification so
that it doesn’t even get to the code base’.

Currently, Fixie operates as part of CI processes, fixes being
offered as PRs. Focus group A also discussed implementing Fixie
in the IDE as an alternative future direction. A2 explained, ‘so
right now [...] you still have to push your changes before Fixie will
get involved’. A3 agreed: ‘I think that 95% of bug fixing goes on
before reaching the commit phase [. . . ] that means we are missing
a lot of potential bug fixes’. From a technical perspective, an IDE-
based system could expand Fixie’s learning context to incorporate
potentially more valuable fixes: ‘right now [...] most of the fixes we
are trying to address are mainly things that aren’t code-breaking
[...], so if we [were] seeing the entire story of the developer working
locally, and modifying their code to fix tests, we would have much
more patterns I think, and much more useful ones as well, because we
could actually provide fixes that do fix a test and not just marginally
improve the code’ (A3). An IDE-based system could also offer better
user workflow fit, as A2 explained: ‘if I own a code base but I’m not
working on it and someone suggests a PR, I’m going to say ‘why do
we need this change now?’ [...] whereas if I’m working on something
and someone suggests something, even if it’s not as important, even if
it’s not as correct, I’m more willing to pay more attention to it because
I see it as adding more value to what I’m currently doing’.

4.2 RQ2: What Have Been Developers’ Early
Experiences Using Fixie?

The experiences developers had with Fixie varied between focus
groups, related to the role of participants. Participants in focus
group B were involved in providing custom fixes to Fixie, while
participants in focus group C offered a security perspective based
on their roles as senior security experts. Participants in both these
focus groups offered more high-level, strategic insight, whilst the
participants in focus groups D, E and F had all received fixes from
Fixie in the form of pull requests.

One key strategy employed by Fixie developers is user-goal
alignment. This was implemented partly by pushing fixes gener-
ated by Fixie at scale during large events or project milestones, like
migration events. These events involved a degree of gamification
to motivate developers to review PRs, as teams ‘competed’ against
each other over the course of a one-day hackathon. This seems to
be something that worked well. A1 explained that ‘half of the PRs
(at one migration event) were accepted and merged [...] as opposed to
10% in general’ [61 out of 127 changes were accepted - 48%].

Participants who had received PRs from Fixie as part of
migration events were generally positive about the experi-
ence. However, they also identified thatmanual work was still



ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Winter et al.

Table 2: Summary of key findings for RQ1 - what user considerations have influenced the development of APR at Bloomberg?

Key finding Indicative quotation(s)

APR development at Bloomberg has become increasingly user-
centered

‘We have to find a way to make developers trust the fixes’ (A3)

‘What’s very important is how and when changes are
presented to the developer’ (A2)

Fixie users need to feel in control ‘If we put the developer in the driving seat, we believe that it will
increase interaction and also the confidence of the developer in
the solution’ (A1)

It is important to provide relevant information and metrics with
fixes to help users review the fix

‘Very concrete and empirical metrics to show that this is actually
a good modification, so the most obvious example would be to
fix a test in that case’ (A3)

Fixie users need to be able to customise Fixie to meet their needs ’This could be based upon developers’ understanding of other
compensating controls in their environment that reduce the
risk being presented’(A1)

Ideas for future development include Fixie as a ‘developer’s
assistant’ and an IDE-based system

‘I imagine maybe Fixie as a developer’s assistant’ (A1)

‘If I’m working on something and someone suggests
something [...], I’m more willing to pay more attention to it
because I see it as adding more value to what I’m currently
doing’ (A2)

Table 3: Summary of key findings for RQ2 - What have been developers’ early experiences using Fixie?

Key finding Indicative quotation(s)

Manual work is still required when using Fixie ‘I had to manually modify the file generated by Fixie’ (F2)

‘You still need manual work [...] sometimes you need to
fix the unit test and I don’t think Fixie can do that for you’ (F1)

‘Fixie-generated fixes offer a helpful starting point Fixie has done the heavy lifting [...] even if the PR is not func-
tioning, one can still make some small changes, small fixes, to
make it production worthy or improve the style of it’ (E5)

required. F1 explained, ‘the overall structure of the migration looks
good but you still need manual work [...] you need to fix the path [...]
and sometimes you need to fix the unit test and I don’t think Fixie can
do that for you’. F2 discussed the need to manually modify the code
changes generated by Fixie: ‘I was using a special version of a library
[that] was not detected when Fixie was run, so I had to manually
modify the file generated by Fixie, so to point at the correct library’.

However, the Fixie-provided fixes still offered a helpful
starting point. E5 explained that Fixie had ‘done the heavy lifting
[. . . ] even if the PR is not functioning, one can still make some small
changes, small fixes, to make it production worthy or improve the
style of it. So even if the Fixie PRs can do most of the job, so like 90%
of the job, but 10% require [a] tweak, that will still be good progress, a
good contribution by an automatic tool for me’. Again, this reveals a

pragmatic approach to automatically generated fixes, rather than
a focus purely on technical precision.

4.3 RQ3: How Do Developers Want to Interact
with Fixie?

4.3.1 Fixie-Generated PRs. As Fixie-generated fixes are currently
presented to developers as PRs, there was much discussion in focus
groups D, E and F of how the PR workflow was best managed.
Participants identified that within Bloomberg generally (not just
related to APR), there could be a delay getting PRs approved,
particularly for very large changes involving many lines of code.

One implication of this challenging context was that Fixie PRs
should be carefully timed. B3 explained that ‘the best way to
guarantee [PR review] is if the team is on board’, because unexpected
PRs might be deprioritised: ‘maybe they have much more important



Towards Developer-Centered Automatic Program Repair: Findings from Bloomberg ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Table 4: Summary of key findings for RQ3 - How do developers want to interact with Fixie?

Key finding Indicative quotation(s)

Fixie-generated PRs should be well timed and incorporated into
existing processes

‘We have a weekly build already, [...] so if at the same time they
can run Fixie and then said “oh by the way, Fixie found those
things that we would like to change"’ (F2)

Processes are needed to support developers if they do not un-
derstand a Fixie-generated PR

‘I think it did happen a few cases where I saw a Fixie PR
and I maybe didn’t really understand why it’s needed [...]
and then I just ignore it, because I don’t have anyone to ask’ (E1)

It would be useful to have ‘a link to some Wiki page or
whatever of why you are doing the changes’ (F2)

Who PRs are assigned to is a key question, provoking different
opinions

‘The one who merged the last PR’ (E3)

‘The one who will most want to take action on it [but]
how do you find out who is most interested in it?’ (E2)

The team lead should ‘distribute the workload’ (E5)

PRs should be small and easy to code review ’If it is relatively small size then I can read it within 5 minutes,
then that’s a good one’ (F1)

PRs should be ‘easy to code review, so they’re simple
and you can easily determine that they’re safe’ (E2)

Automatically merging PRs was a controversial idea for devel-
opers

‘I wouldn’t go for auto-merge in any case’ (E5)

Pre-requisites for automatically merging PRs included high test
coverage and high confidence

‘I think if we have really good test coverage [...] then I would
feel more confident in auto-merging’ (E2)

There would need to be ‘a really high confidence rate-
like, for the past 6 to 8 months, 99% of fixes were approved
without hesitation’ (C1).

Fixie should start with small fixes ‘The way I would do it is I would start with small things and
then you’ll build confidence and people will be more and more
willing to use it’ (F2)

Developer awareness of Fixie activities is paramount ‘If there were communication about it and I was aware of the
change, then there wouldn’t be an issue at all’ (E4)

things to do [...] so they will completely deprioritise the Fixie PRs or
maybe even close them’. One possible solution was to incorporate
Fixie-generated PRs into existing processes, as F2 identified:
‘we have a weekly build already, [...] so if at the same time they can
run Fixie and then said “oh by the way, Fixie found these things that
we would like to change; would you be ok?"’.

The PR-based APR system also raised questions of what to do
if the PR was difficult to understand. E1 explained, ‘if there’s an
open PR by a developer I either just merge it or, if I’m not sure, I reach
out to that person. But in Fixie – I think it did happen a few cases
where I saw a Fixie PR and I maybe didn’t really understand why it’s
needed, or why it should be added, and then I just ignore it, because I
don’t have anyone to ask’. One solution would be a description of

‘what is this for, what is it trying to fix’ (E1), or a ‘a link to some Wiki
page or whatever of why you are doing the changes’ (F2).

Another key discussion theme was who PRs should be as-
signed to. Participants identified various solutions, including ‘the
last person who committed to that PR’ (E3) or the ‘team lead’ (E2,
E3). E2 felt that PRs should be assigned to ‘who will most want to
take action on it [but] how do you find out who is most interested in
it?’. E2 suggested that assigning PRs to the team lead, who would
then assign to a relevant team member, might work: ‘you want to
involve the team leader somehow so that they’re involved in the pri-
oritisation of work’. E5 agreed that the team lead should ‘distribute
the workload’. In another focus group, B3 suggested that PRs should
be auto-assigned based on ownership or previous PR reviewers.



ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Winter et al.

As well as who PRs should be assigned to, there was much
discussion of how and when people should be notified about
Fixie-generated PRs. Participants didn’t want to be notified about
PRs too frequently unless a fix was urgent: ‘I’m a bit worried of
getting a message every day saying “ok, you have a new PR from
Fixie", because there’s already a lot of PRs to review’ (F2). E2 agreed
that they would want ‘one message approximately per week, with
a link to the webpage where I can see my matrix of what’s going on
and I can do my assignments’. In addition, it was important that
participants did not receive an overwhelming number of PRs: E2
explained that developers should ‘get only a certain number at a
time, that they don’t pile up’.

Other participants were less worried about frequency and num-
ber of PRs, and more concerned about the size of the PRs, as F1
expressed, ‘the frequency doesn’t matter that much to me but the size
of the PR matters – [...] if it is relatively small size then I can read it
within 5 minutes, then that’s a good one’. E3 agreed that PRs should
not be too large: ‘the only reluctance a developer may run into is if it
generates a PR which has changes to let’s say hundreds of files’.

As well as small in size, PRs should be easy to code review :
‘so they’re simple and you can easily determine that they’re safe’ (E2).
E2 expanded on what would make a PR easy to code review: ‘that it
does one thing only at a time, that what it’s doing is clearly a fix [. . . ]
and that you know won’t have side effects, and that [won’t] get in the
way of business logic [...] So if Fixie wants to fix an if statement for me,
I’ll say “ok, I’ll postpone that and look at that later" *laughs*, but if
Fixie says “actually, the way you’ve done this, here’s the better way to
do it, and I look at it and I know that“‘oh yeah, this is a transformation
that I understand will have no side effects", then I can approve that
more quickly’.

A contentious issue in the focus groups was whether PRs
should ever be automatically merged to a code base. Some
participants felt that it would always or mostly be necessary for
a developer to check the fix: ‘I wouldn’t go for auto-merge in any
case’ (E5); ‘it does depend very heavily on the change but most of the
time it’s good to just get one last sanity check before it gets merged’
(E4). Other participants felt that certain circumstances might allow
for auto-merge, such as ‘very minor changes’ (E1), in circumstances
where a change had remained unmerged ‘for a long duration’ (E3)
or in conditions of very high test coverage: ‘I think if we have
really good test coverage [...] then I would feel more confident in
auto-merging happening’ (E2). Auto-merge had several prerequi-
sites. These included good communication: ‘I think if there were
communication about it and I was aware of the change, then there
wouldn’t be an issue at all [...] rather than just auto-merge and figure
out what happened after’ (E4); and proven success: developers need
to manually review fixes until there is ‘a really high confidence rate-
like for the past 6 to 8 months, 99% of fixes were approved without
hesitation’ (C1).

Aside from the particular case of auto-merging PRs, high test
coverage was seen as generally important for PR acceptance. F1
recommended that PRs were generated first for ‘higher coverage
repos’, F2 confirming that ‘I have that peace of mind if I have high
coverage in regression and unit tests’.

4.3.2 Trust in Fixie. The notion of automatically-generated fixes
raised various issues related to trust, particularly in the security

focus group, whose members were worried about automatically
generated fixes making code less secure. C2 explained ‘my
biggest fear [...] if someone fixes something the wrong way and either
breaks things or makes it less secure’, and C1 agreed: ‘yes, I was about
to say that too [...] not only not fix the vulnerability, but make it less
secure in the process’.

Trust was also raised as an issue in the other focus groups and
starting with small fixes was seen as an important way to build
trust among Fixie users. F2 explained: ‘the way I would do it is I
would start with small things [...] and then you’ll build confidence
and people will be more and more willing to use it’. Another way of
building trust was for developers to have awareness of what
Fixie was doing. E2 talked about the need for developers to have
‘situational awareness’ and to have Fixie communicate its actions to
the team: ‘so it’s not so much that we’re aware of the syntax changes
that happened, but we’re aware of the theme, in the same way that we
would be aware of something that says ‘ok, this week we’re building
in this or that into the parser’.

4.3.3 Future Directions - Dashboard. Participants in focus groups
D, E and F were presented with a prototype Fixie dashboard to elicit
their responses. The dashboard is a simple web page, which would
allow a developer to pick a specific fix type and then apply this at
scale to a repo, or to multiple repos. The focus groups provided
feedback on the idea itself and its implementation. Regarding the
idea, participants were not fully convinced of its value. This was
partly because they were unsure about the value of triggering
Fixie themselves. Asked if they would be interested in applying
a fix for a deprecated API across multiple repos, one participant
replied ‘but shouldn’t Fixie proactively look for old usages of this
library and open PRs for other repos in the organisation that have
this’ (E1). E1 continued that they didn’t see how this would be
useful for ‘machine generated changes’: ‘if it’s machine generated,
the machine part should also be proactive in searching where this
change is needed and suggesting it’. The proposed dashboard was
only seen as useful for human-created, or ‘custom’ fixes, not for
automatically-generated fixes.

There was also some feedback on the dashboard’s interface. E2
suggested that more visual cues were needed: ‘give me a visual so
I understand how important this change is, and how big of a change
it is [. . . ] I think that will be really helpful to want to interact with
it’. E2 also suggested that a ‘try’ button was needed as well as an
‘apply’ button, which would ‘let you visually inspect the results and
to do it as many times as you want starting from scratch’. Though the
apply button would only generate PRs rather than actually apply
the change to the codebase, E2 still felt that a try button would be
useful: ‘I don’t want to generate PRs that aren’t what I wanted, aren’t
what I thought they were, aren’t what I expected’.

4.3.4 Future Directions - Fixie as a PR Reviewer. As well as the
dashboard, we also asked developers what they felt about the idea
of Fixie as a PR reviewer, receiving a fairly positive response.
E4 could see value in this idea if suggestions were related to code
formatting: ‘something that would maybe catch [formatting errors]
and give a suggestion for that could be useful’. E2 was also positive
about ‘Fixie coming in and saying “ok, I see what you’re doing here,
there’s a better way to do it, or there’s a better syntax for that, or here’s
some options for you"’, and felt that developers could be incentivised



Towards Developer-Centered Automatic Program Repair: Findings from Bloomberg ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

by knowing that Fixie had helped them develop ‘great code’ that
code reviewers would pick up on. However, not all participants
felt that Fixie as a PR reviewer would add value. C1 explained
that ‘you get already all the benefits by having the [Fixie-generated]
PR making the change and then that can be reviewed’. F2 felt that
recommendations about ‘trivial things’ could also ‘upset’ people.

5 DISCUSSION AND RECOMMENDATIONS
5.1 Developer-APR Interaction
There are several important considerations for developer-APR in-
teraction. One of these is how APR can respond to the problem of
what developers should do if they don’t understand an automati-
cally generated fix. Advances in explainable AI offer one potential
solution, as does the idea of repair bots, which has already had some
attention within APR [22] [27]. Monperrus, for example, envisages
‘conversational systems for patch explanation; developers would be
able to ask questions about the patch behaviour, and the program
repair bots would answer those questions’ [22]. Such solutions also
respond to another significant consideration that emerged in the
focus groups – how APR communicates its activities and intentions
to developers, leading to developer situational awareness.

The focus groups with Fixie users found that the idea of automat-
ically applied fixes was controversial for developers and unpopular
with many of them. In addition, the developers of Fixie were clear
that it was important for developers to be involved in the process
and to feel in control. This suggests that, for the time being at least,
APR development should focus upon APR tools that continue to
involve the developer in reviewing and approving patches, rather
than aiming to remove the developer completely, a goal for some
APR research (for example, [29]).

Recommendations:

• APR tools should incorporate explainable AI techniques.
• Repair bots offer an important future step for ensuring effec-
tive developer-APR interaction.

• Development of APR should prioritise systems that still in-
volve the developer in reviewing and approving patches.

5.2 Fit with Workflow
The lengthy discussions about how and when PRs should be com-
municated and to whom they should be assigned reveals that the
introduction of APR is not going to be simple. Much work is needed
to identify how APR tools can be developed so that developers can
incorporate them into their existing workflows. This has similarity
with Erlenhov et al.’s work on software bots, which argues that
‘such systems need to carefully evaluate how often, and when, they
should interrupt the developer with suggestions or requests for
further input’ [9]. Within the focus groups, there was not always
agreement about the best ways in which APR could be incorporated
into developer workflows, indicating that there is no simple ‘one-
size-fits all’ model for effective APR. Not only does workflow-fit
vary among developers, but ‘anything for Bloomberg has to be very
tailored to Bloomberg’, complementing its existing processes (C2).

Recommendation:

• APR tools should be developed so that they are customisable
to company workflow processes and developer workflow

preferences. This might include developing APR tools that
can be used in both CI and IDE contexts

5.3 Developer Trust in APR
Trust in APR was a less frequently occurring theme than discussion
of the practicalities of how and when automatically generated fixes
should be presented. However, it was still important. Developers
expressed the view that an APR tool should ‘prove itself’ by starting
small. Though developers varied in their attitudes towards whether
fixes should be ready to apply or a ‘starting point’ for the developer
to modify where needed, there seemed to be general consensus
that showing proven success with small, straightforward fixes was
desirable for building trust. Whilst fixing complex bugs is a key
imperative for academic APR research, offering fixes for small,
simple bugs is an important way to build developer trust.

In addition, the different kinds of developer risk appetite identi-
fied in focus group A is an important consideration (given other
compensating controls), suggesting that some developers prefer
fully understandable patches, while others — with greater risk ap-
petite — may respond positively to what Monperrus refers to as
‘alien code’ [21].

Recommendations:

• APR tool development should consider how fixes could be
offered in a ‘phased’ way, starting with small fixes and be-
coming more complex. APR tools could learn from accep-
tance metrics when to start offering more complex fixes, or
interact with the developer to ask whether more complex
fixes should be offered (see, for example, advances in APR
bots [22] [27]).

• APR tools should be customisable according to individual
developers’ risk appetite.

5.4 Technical Considerations
Whilst the focus of this work was on the socio-technical dimen-
sions, the focus groups brought to light one particularly significant
technical dimension. Bloomberg, like many companies, has specific
types of bugs, such as bugs that concern business logic. This raises
challenges for APR’s learning context, as it makes it essential to
access proprietary software in order to develop APR tools that are
more effective and useful for different industry settings.

Recommendation:

• Sustained academia-industry collaborations are required to
develop bespoke APR tools for specific industry settings.

6 THREATS TO VALIDITY
Internal validity: One key threat to validity in focus group re-
search is that it may be challenging to capture participants’ ‘actual’
views outside of the social dynamics and pressures present in a
group setting. Whilst we consider the capturing of group dynamics
a strength of focus groups — as these group dynamics are likely to
influence tool adoption and acceptance — the group setting does
pose challenges, such as more dominant participants. To mitigate
this threat and ensure that less dominant voices were heard, the
focus group facilitator intentionally addressed some people directly
for input at various stages during the focus groups.



ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Winter et al.

Another threat to internal validity is that research that inves-
tigates people’s experiences and attitudes is susceptible to social
desirability bias. Our participants may have felt influenced by the
presence of their colleagues and of researchers. Knowing that the
two researchers were working closely with the development team
may have also hindered users in being more critical of Fixie. To
mitigate this threat, we tried to make the focus groups informal and
relaxed; we also stressed that the data would be anonymous and
that only the researchers would have access to the raw transcripts.

To mitigate against interpretive bias in the thematic analysis,
each transcript was independently thematically coded by two au-
thors, and disagreementswere discussed until agreementwas reached.

External validity: Our sample size of 17 is not uncommon for
qualitative research [18], and was purposefully chosen to capture
insights from both developers of Fixie and developers using Fixie.
However, the insights drawn from these focus groups may not apply
to all developers at Bloomberg; in a large and complex organisation,
many factors may influence attitudes towards a new tool and we
would predict different team dynamics and roles to play a part.

This research was embedded in Bloomberg, a specific industrial
setting, and explored a specific prototype APR tool. As a result, our
findings can not be generalised to different industrial settings. How-
ever, we suggest that they are likely to have relevance elsewhere
and we invite further studies to investigate this.

7 RELATEDWORK
Our previous work found that only a very small proportion of APR
research included any type of study with human participants [28].
Past studies include controlled experiments [1] [3] [5] [7] [13] [14]
[24] [26] [30] and surveys [11] [16] [20] [23] [24]. These studies
primarily focus on the degree to which participants are aided by
having access to APR (for example, [7] [24]) and also the degree to
which participants trust APR (for example, [1]).

Past experimental studies have largely focused on how partici-
pants performed a task with or without access to an APR tool or
its automated patches. These studies paint a mixed picture of the
effectiveness of participant interaction with APR, and the degree to
which APR assisted them in their tasks. Daniel et al., for example,
suggest that their participants may have ‘become overly reliant
on the tool’, as more faults were introduced by participants that
had access to the APR tool than those that did not [7]. Parnin and
Orso’s participants were able to perform an easy task quicker when
they had access to the tool, but the tool did not help in the case
of more difficult tasks [24]. In Cambronero et al.’s study [5], two
participant groups were asked to repair defects and were given the
location of the defective lines of code, but one group had access
to five automatically generated patches, of which one was correct.
The results found little difference between the two groups in terms
of time taken to perform the assigned tasks and the number of
correct patches submitted. Cambronero et al. concluded that au-
tomatically generated patches on their own were not enough to
increase developer productivity: ‘subjects spent most of their time
trying to understand the defect and the way the provided patches
related to the original source code containing the defect’ [5]. This

finding suggests that work needs to be done regarding how auto-
matically generated patches are presented to developers, and what
information is required to aid developers in approving patches.

APR human studies have also drawn attention to issues related
to trust. In Tao et al.’s study, for example, participants were wor-
ried that generated patches might be unclear or incorrect, and and
that they might not work if the test suite is not sufficient [26]. The
participants in Liu et al.’s study voiced some concern about the
accuracy of the patches generated by the tools [20], while Böhme
et al.’s study [3] found that ‘practitioners are wary of debugging
automation’, particularly for functional bugs. Böhme et al.’s partici-
pants were unsure how feasible APR was, due to the challenges of
code comprehension. Alarcon et al.’s experimental study also con-
sidered trust in APR, and found that the source of the repair (human
vs. automated) had significant influence on trust perceptions and
intentions, participants having higher trust in human repairs than
automated repairs [1]. These trust issues have implications for APR
adoption, and indeed the participants in Parnin and Orso’s study
‘were quick to disregard the tool if they felt they could not trust
the results or understand how such results were computed’ [24].
By contrast, Noller et al.’s survey of 103 participants found high
willingness from participants to review automatically generated
patches [23]. The survey results also provide indications of what
might increase developer trust in automatically generated patches,
such as test cases, explanations of the patch, and evidence of patch
correctness.

These studies provide interesting insights, but are all quantita-
tive, providing little, in-depth, qualitative insight into developer
perceptions about APR. In addition, few studies have been con-
ducted with professional developers (exceptions are [3], [23] and
[24]), and none situated in specific industry settings. A study of
the implementation of Getafix at Facebook suggests that auto-fixes
should be integrated into existing development tools and predicted
fast enough so as not to slow down engineers’ work [2], but these
recommendations are not based on a research with developers.

8 CONCLUSION
This paper reports on findings from in-depth, qualitative research
at Bloomberg, where a prototype APR tool, Fixie, has been devel-
oped and implemented. We find that developers using Fixie are
highly concerned with the pragmatic aspects of APR, such as how
and when fixes are presented to them. Such aspects have so far
been given little attention in APR research. From our findings, we
recommend that APR tools should be customisable, start small, and
be designed with greater consideration of workflow issues. We also
identify research in explainable AI and repair bots as useful fu-
ture directions. We suggest that following these recommendations
will help with the adoption of APR in industry, allowing APR’s
considerable potential benefits to be more fully realised.

ACKNOWLEDGMENTS
This work was supported by an Engineering and Physical Sciences
Research Council grant (EP/S005730/1)/ We are very grateful to the
Bloomberg developers who participated in our focus groups and
gave of their time and expertise.



Towards Developer-Centered Automatic Program Repair: Findings from Bloomberg ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

REFERENCES
[1] Gene M. Alarcon, Charles Walter, Anthony M. Gibson, Rose F. Gamble, August

Capiola, Sarah A. Jessup, and Tyler J. Ryan. 2020. Would You Fix This Code for
Me? Effects of Repair Source and Commenting on Trust in Code Repair. Systems
8, 8 (2020), 1–17. https://doi.org/10.3390/systems8010008

[2] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix:
Learning to Fix Bugs Automatically. Proc. ACM Program. Lang. 3, OOPSLA, Article
159 (Oct. 2019), 27 pages. https://doi.org/10.1145/3360585

[3] Marcel Böhme, Ezekiel O. Soremekun, Sudipta Chattopadhyay, Emamurho
Ugherughe, and Andreas Zeller. 2017. Where is the Bug and How is It Fixed?
An Experiment with Practitioners. In Proceedings of the 2017 11th Joint Meet-
ing on Foundations of Software Engineering (Paderborn, Germany) (ESEC/FSE
2017). Association for Computing Machinery, New York, NY, USA, 117–128.
https://doi.org/10.1145/3106237.3106255

[4] L. Briand. 2012. Embracing the Engineering Side of Software Engineering. IEEE
Software 29, 4 (2012), 96–96. https://doi.org/10.1109/MS.2012.86

[5] José Pablo Cambronero, Jiasi Shen, Jürgen Cito, Elena Glassman, and Martin
Rinard. 2019. Characterizing Developer Use of Automatically Generated Patches.
arXiv preprint arXiv:1907.06535 (2019), 1–9. https://doi.org/10.48550/arXiv.1907.
06535

[6] Liushan Chen, Yu Pei, and Carlo A. Furia. 2017. Contract-based program repair
without the contracts. In 2017 32nd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE). 637–647. https://doi.org/10.1109/ASE.2017.
8115674

[7] Brett Daniel, Vilas Jagannath, Danny Dig, and Darko Marinov. 2009. ReAssert:
Suggesting Repairs for Broken Unit Tests. In Proceedings of the 24th IEEE/ACM
International Conference on Automated Software Engineering. 433–444. https:
//doi.org/10.1109/ASE.2009.17

[8] Fred D. Davis. 1989. Perceived Usefulness, Perceived Ease of Use, and User
Acceptance of Information Technology. MIS Quarterly 13, 3 (1989), 319–340.
http://www.jstor.org/stable/249008

[9] Linda Erlenhov, Francisco Gomes de Oliveira Neto, and Philipp Leitner. 2020. An
Empirical Study of Bots in Software Development: Characteristics and Challenges
from a Practitioner’s Perspective. In Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (Virtual Event, USA) (ESEC/FSE 2020). Association for
Computing Machinery, New York, NY, USA, 445–455. https://doi.org/10.1145/
3368089.3409680

[10] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Mar-
tin Monperrus. 2014. Fine-grained and accurate source code differencing. In
ACM/IEEE International Conference on Automated Software Engineering, ASE ’14,
Vasteras, Sweden - September 15 - 19, 2014. 313–324. https://doi.org/10.1145/
2642937.2642982

[11] Hideaki Hata, Emad Shihab, and Graham Neubig. 2018. Learning to Generate
Corrective Patches using Neural Machine Translation. arXiv preprint 1812.07170
(2018), 1–20. https://doi.org/10.48550/arXiv.1812.07170

[12] Vladimir Ivanov, Alan Rogers, Giancarlo Succi, Jooyong Yi, and Vasilii Zorin. 2017.
What Do Software Engineers Care about? Gaps between Research and Practice. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering
(Paderborn, Germany) (ESEC/FSE 2017). Association for Computing Machinery,
New York, NY, USA, 890–895. https://doi.org/10.1145/3106237.3117778

[13] Shalini Kaleeswaran, Varun Tulsian, Aditya Kanade, and Alessandro Orso. 2014.
Minthint: Automated Synthesis of Repair Hints. In Proceedings of the International
Conference on Software Engineering. Association for Computing Machinery, New
York, NY, USA, 266–276. https://doi.org/10.1145/2568225.2568258

[14] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and Bernardo Cuenca-Grau. 2006.
Repairing Unsatisfiable Concepts in OWL Ontologies. In The Semantic Web: Re-
search and Applications. Vol. 4011. Springer Berlin Heidelberg, Berlin, Heidelberg,
170–184. https://doi.org/10.1007/11762256_15

[15] Besma Khaireddine, Matias Martinez, and Ali Mili. 2019. Program Repair at
Arbitrary Fault Depth. In 2019 12th IEEE Conference on Software Testing, Validation
and Verification (ICST). 465–472. https://doi.org/10.1109/ICST.2019.00056

[16] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
Patch Generation Learned from Human-Written Patches. In Proceedings of the
2013 International Conference on Software Engineering (San Francisco, CA, USA)
(ICSE ’13). IEEE Press, 802–811. https://doi.org/10.5555/2486788.2486893

[17] Serkan Kirbas, Etienne Windels, Olayori McBello, Kevin Kells, Matthew Pagano,
Rafal Szalanski, VesnaNowack, EmilyWinter, Steve Counsell, David Bowes, Tracy
Hall, Saemundur Haraldsson, and John Woodward. 2021. On the Introduction
of Automatic Program Repair in Bloomberg. IEEE Software 38, 4 (2021), 43–51.
https://doi.org/10.1109/MS.2021.3071086

[18] J. Kontio, L. Lehtola, and J. Bragge. 2004. Using the focus group method in
software engineering: obtaining practitioner and user experiences. In Proceedings.
2004 International Symposium on Empirical Software Engineering, 2004. ISESE ’04.
271–280. https://doi.org/10.1109/ISESE.2004.1334914

[19] Temur Kutsia, Jordi Levy, andMateu Villaret. 2014. Anti-unification for Unranked
Terms and Hedges. Journal of Automated Reasoning 52, 2 (2014), 155–190. https:
//doi.org/10.1007/s10817-013-9285-6

[20] Chen Liu, Jinqiu Yang, Lin Tan, and Munawar Hafiz. 2013. R2Fix: Automatically
Generating Bug Fixes From Bug Reports. In Proceedings of the International
Conference on Software Testing, Verification and Validation (ICST). 282–291. https:
//doi.org/10.1109/ICST.2013.24.

[21] Martin Monperrus. 2014. A Critical Review of "Automatic Patch Generation
Learned from Human-Written Patches": Essay on the Problem Statement and the
Evaluation of Automatic Software Repair. In International Conference on Software
Engineering. Association for Computing Machinery, New York, NY, USA, 234–242.
https://doi.org/10.1145/2568225.2568324

[22] Martin Monperrus. 2019. Explainable Software Bot Contributions: Case Study of
Automated Bug Fixes. In Proceedings of the 1st International Workshop on Bots in
Software Engineering (Montreal, Quebec, Canada) (BotSE ’19). IEEE Press, 12–15.
https://doi.org/10.1109/BotSE.2019.00010

[23] Yannic Noller, Ridwan Shariffdeen, Xiang Gao, and Abhik Roychoudhury. 2022.
Trust Enhancement Issues in Program Repair. In Proceedings of the 44th Inter-
national Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE
’22). Association for Computing Machinery, New York, NY, USA, 2228–2240.
https://doi.org/10.1145/3510003.3510040

[24] Chris Parnin and Alessandro Orso. 2011. Are Automated Debugging Tech-
niques Actually Helping Programmers?. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis (Toronto, Ontario, Canada) (IS-
STA ’11). Association for Computing Machinery, New York, NY, USA, 199–209.
https://doi.org/10.1145/2001420.2001445

[25] Viktoria Stray, Tor Erlend Fægri, and Nils Brede Moe. 2016. Exploring Norms in
Agile Software Teams. In Product-Focused Software Process Improvement, Pekka
Abrahamsson, Andreas Jedlitschka, Anh Nguyen Duc, Michael Felderer, Sousuke
Amasaki, and Tommi Mikkonen (Eds.). Springer International Publishing, Cham,
458–467. https://doi.org/10.1007/978-3-319-49094-6_31

[26] Yida Tao, Jindae Kim, Sunghun Kim, and Chang Xu. 2014. Automatically Gen-
erated Patches As Debugging Aids: a Human Study. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
64–74. https://doi.org/10.1145/2635868.2635873

[27] Rijnard van Tonder and Claire Le Goues. 2019. Towards s/engineer/bot: Principles
for Program Repair Bots. In 2019 IEEE/ACM 1st International Workshop on Bots in
Software Engineering (BotSE). 43–47. https://doi.org/10.1109/BotSE.2019.00019

[28] Emily Rowan Winter, Vesna Nowack, David Bowes, Steve Counsell, Tracy Hall,
Saemundur OHaraldsson, and JohnWoodward. 2022. Let’s TalkWith Developers,
Not About Developers: A Review of Automatic Program Repair Research. IEEE
Transactions on Software Engineering (2022), 1–1. https://doi.org/10.1109/TSE.
2022.3152089

[29] He Ye, Matias Martinez, and Martin Monperrus. 2021. Automated Patch Assess-
ment for Program Repair at Scale. Empirial Software Engineering 26, 20 (2021),
1–38. https://doi.org/10.1007/s10664-020-09920-w

[30] J. Yi, U. Ahmed, A. Karkare, S. Tan, and A. Roychoudhury. 2017. A feasibility study
of using automated program repair for introductory programming assignments.
In Proceedings of ESEC/FSE. https://doi.org/10.1145/3106237.3106262

https://doi.org/10.3390/systems8010008
https://doi.org/10.1145/3360585
https://doi.org/10.1145/3106237.3106255
https://doi.org/10.1109/MS.2012.86
https://doi.org/10.48550/arXiv.1907.06535
https://doi.org/10.48550/arXiv.1907.06535
https://doi.org/10.1109/ASE.2017.8115674
https://doi.org/10.1109/ASE.2017.8115674
https://doi.org/10.1109/ASE.2009.17
https://doi.org/10.1109/ASE.2009.17
http://www.jstor.org/stable/249008
https://doi.org/10.1145/3368089.3409680
https://doi.org/10.1145/3368089.3409680
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.48550/arXiv.1812.07170
https://doi.org/10.1145/3106237.3117778
https://doi.org/10.1145/2568225.2568258
https://doi.org/10.1007/11762256_15
https://doi.org/10.1109/ICST.2019.00056
https://doi.org/10.5555/2486788.2486893
https://doi.org/10.1109/MS.2021.3071086
https://doi.org/10.1109/ISESE.2004.1334914
https://doi.org/10.1007/s10817-013-9285-6
https://doi.org/10.1007/s10817-013-9285-6
https://doi.org/10.1109/ICST.2013.24.
https://doi.org/10.1109/ICST.2013.24.
https://doi.org/10.1145/2568225.2568324
https://doi.org/10.1109/BotSE.2019.00010
https://doi.org/10.1145/3510003.3510040
https://doi.org/10.1145/2001420.2001445
https://doi.org/10.1007/978-3-319-49094-6_31
https://doi.org/10.1145/2635868.2635873
https://doi.org/10.1109/BotSE.2019.00019
https://doi.org/10.1109/TSE.2022.3152089
https://doi.org/10.1109/TSE.2022.3152089
https://doi.org/10.1007/s10664-020-09920-w
https://doi.org/10.1145/3106237.3106262

	Abstract
	1 Introduction
	2 Background: Automatic program repair at Bloomberg
	2.1 Developing an APR Tool
	2.2 Academia-Industry Collaboration

	3 Methodology
	3.1 Choice of Focus Group Method
	3.2 Focus Group Structure and Participants
	3.3 Focus Group Analysis

	4 Findings
	4.1 RQ1: What User Considerations Have Influenced the Development of APR at Bloomberg?
	4.2 RQ2: What Have Been Developers' Early Experiences Using Fixie?
	4.3 RQ3: How Do Developers Want to Interact with Fixie?

	5 Discussion and recommendations
	5.1 Developer-APR Interaction
	5.2 Fit with Workflow
	5.3 Developer Trust in APR
	5.4 Technical Considerations

	6 Threats to validity
	7 Related work
	8 Conclusion
	Acknowledgments
	References

