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Abstract

Technological and scientific advancements have promoted data gathering across multiple

disciplines emphasizing the necessity for the development of rigorous statistical methods

to draw conclusions. Longitudinal data is a key tool to study temporal changes, however,

with the increasing data complexity, existing methodologies are often unable to capture

non-linear or non-stationary trends. Additionally, irregularly collected, non-continuous

or high-dimensional data make statistical analysis even more challenging. Through this

work, we develop three statistical models to analyse complex longitudinal data from

two real-world databases, the Genomics of Drug Sensitivity in Cancer and the English

Longitudinal Study of Ageing.

The first part of this work is motivated by the Genomics of Drug Sensitivity in

Cancer project and focuses on the prediction and detection of biomarkers associated with

anti-cancer drug dose-response. Here, the longitudinal data available are characterised

by complete observed trajectories of drug response over multiple drug dosages which are

potentially associated with high-dimensional covariates (these include expression profiles

of tens of thousands of genes) in a non-stationary manner. These trends are not easily

amenable to analysis by classic parametric or semi-parametric mixed models, especially

if high dimensionality is present. We built a dose-varying regression model combined

with a two-stage variable selection algorithm (variable screening followed by penalised

regression) to identify genetic factors associated with drug response and estimate their

effect over the varying dosages.

The second part of this work is motivated by the English Longitudinal Study of

Ageing data set. The longitudinal data available in this study are characterised by

irregularly collected and, often, incomplete trajectories and many response variables of

ordinal type which measure only a small number of ageing domains (data are derived

from multiple questionnaires measuring multiple aspects of older peoples’ life). The
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ultimate aim is to understand the ageing dynamics and study the interrelationships

between factors associated with it. To do so, we first explore the theoretical foundations of

ageing and the data set itself. Next, we adopt and extend the methodological framework

of Dawson and Müller (2018) to estimate the quantile dynamics and derive predictions for

a common surrogate of ageing, frailty, addressing the problem of incomplete individual

responses over the age interval of interest. Finally, we develop a bivariate Gaussian

process framework for ordinal and potentially irregularly sampled data which allows the

available questionnaire responses to be modelled directly. Here, the unobserved ageing

domains are assumed to be smooth functions of age. This method allows the assessment

of the interrelationships between several ageing domains after adjusting for individual

variation across the observed longitudinal trajectories.
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Chapter 1

Introduction

In pharmacokinetics and pharmacodynamics, drug response data are collected over

multiple doses and across multiple individual patients to understand the biochemical,

physiological, and molecular effects of drugs on the human body, i.e., “what the drug does

to the body”; as well as, drug absorption, distribution, metabolism, and excretion, i.e.,

“what the body does to the drug”. In social sciences, frailty data are usually collected over

time to study the mental and physical changes that old people experience over time. This

repeated collection of independent subject responses and relevant covariates over multiple

occasions, also known as longitudinal design, is common across many scientific fields and

provides an essential tool to study change over time. Although longitudinal studies can

provide a unique insight on real-world processes, development and lifespan issues which

could not be studied otherwise, longitudinal data collection involves many challenges

such as high cost, poor participant recruitment and selective attrition. Therefore, it is

essential to develop robust statistical methods that can make good use of the available

information and handle any arising problems.

Figure 1.1, illustrates an example of dose response measurements from the Genomics

of Drug Sensitivity in Cancer (GDSC) data where multiple cancer cell lines were treated

with five different BRAF targeted compounds to explore in vitro drug efficacy. This

is a case of longitudinal data where the measurement points are not time but dose.

Before analysis, typically such data are summarised into cross-sectional drug response

data (e.g., IC50) for each experimental unit (in this case that is each cancer cell line) to

reveal drug response trends. However, for drugs with potentially severe cytotoxic effects

these summary measures are inappropriate and focusing on the full dose response curve
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Figure 1.1: Dose response measurements after treating human cancer cell lines with
five BRAF targeted compounds. Data were derived from the GDSC website (https:
//www.cancerrxgene.org/).

becomes essential. Non-linear mixed effects (NLME) models are often used to assess the

dose response functional form and estimate drug efficacy over the varying drug doses

whilst accounting for individual cancer cell line heterogeneity (Abbas-Aghababazadeh

et al., 2019). Yet, when cancer cell line characteristics are expected to affect drug efficacy

over different doses, NLME models are ineffective. That is because non-stationary

trends and the dose varying effect of covariates on drug efficacy cannot be accounted

for. In pharmacogenetics, more challenges are introduced since these covariates are often

ultra-high dimensional; for instance, gene expression data.

As a tool to analyse longitudinal data, mixed effects models are a popular method for

studying the change of biological processes over time. Figure 1.2, shows longitudinal frailty

data collected through aggregating individual responses from the English Longitudinal

Study of Ageing (ELSA) questionnaires. In this case, time can be either the data collection

wave (Figure 1.2A) or the (true) process time which is the participants’ age (Figure 1.2B).

As shown in the plots, depending on the time measure chosen different statistical

challenges occur. In the first case, analysis can be performed using mixed effects models.

Missing data are, then, addressed through the model structure (Rogers et al., 2017)

and model implementation is straightforward. This approach does not provide sufficient

information on the dynamics of frailty over age and results’ interpretation becomes

challenging. On the other hand, the frailty data as shown in Figure 1.2B are irregularly

collected with large missing data intervals occurring per each individual trajectory. Such

data resembles sparse functional data which introduces further modelling challenges, for

instance, increased model complexity and, sometimes, inference infeasibility (Yao et al.,

2005; Kraus, 2015; Kneip and Liebl, 2020; Liebl and Rameseder, 2019). Notice that most

of these methods focus on modelling the mean process trajectory without considering
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Figure 1.2: Frailty index longitudinal trajectories plotted over (data collection) wave (A)
and age (B) for a random sample of 500 individuals. Frailty index data were produced
using individual responses to the ELSA questionnaires.

the population dynamics and distributional changes over time.

In ageing studies, longitudinal data are usually collected using multiple choice question-

naires. Summary measures, such as the frailty index, can then be created by aggregating

individual responses to groups of questions measuring specific traits. However, this

method can overlook important information regarding individual trait change (Jabrayilov

et al., 2016) and latent growth curve models along with item response theory models are

often more appropriate (Wang and Nydick, 2020). However, the underlying assumptions

of these models make it impossible to analyse irregularly collected multivariate longitudi-

nal data where age is perceived as the time component. That is due to the large number

of missing responses which makes estimation of the covariance matrix impossible. At the

same time, these models often make strong assumptions about the functional form of the

underlying trend of the examined process. Recent developments have extended the latent

Gaussian process modelling framework to analyse intensive and irregularly collected

longitudinal data (Chen and Zhang, 2020). This framework allows modelling multivariate

longitudinal data with inherited flexibility into the functional form of the underlying

process under study. If extended, this framework can provide the opportunity to model

a single or multiple traits’ change over time without making any strong assumptions for

the underlying trends whilst addressing the problem of irregularly collected longitudinal

data.

The aforementioned examples highlight the need for flexible modelling approaches

which can improve the explanatory power while maintaining good model fit, results

validity and prediction power. Non-parametric approaches promote statistical model

flexibility and data driven inference. Motivated by two real-world problems, i.e., dose

finding in cancer research and ageing, we develop three statistical modelling frameworks to
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analyse complex longitudinal data while addressing the statistical challenges arising. Some

of the tackled issues include model definition, multivariate and high-dimensional data

handling, computational intensity of the developed algorithms and model implementation

using highly complex data extracted from two large databases. Many of the available

longitudinal data analysis tools have been rigorously systematised in Fitzmaurice et al.

(2008), Diggle et al. (2002) and Hedeker and Gibbons (2006), however, the handled

problems have not been extensively explored across the literature yet.

Outline of the Thesis and Contributions

In the current work, we focus on modelling complex longitudinal data collected from

one experimental and one observational study. The main contributions of this work

are summarised as follows. In the first study, we examine the dose varying effect of

anticancer drugs to cancer cell line survival while adjusting for cancer cell line genetic

characteristics. This study involves longitudinal data with non-linear trajectories over

dose and dose varying covariate effects. The data come along with ultra-high dimensional

gene expression data which need to be screened and whose effect need to be accounted

for during inference. Statistical challenges tackled include ultra-high dimensional variable

screening under a varying coefficient modelling framework, results interpretation and

association to biological mechanisms. In the second study, we tackle the problem of

irregularly collected continuous longitudinal data where the population under study is

characterised by large heterogeneity. Multivariate questionnaire data are summarised in a

single index to create frailty trajectories, a widely used surrogate of ageing. These data are

then analysed using a dynamic conditional quantile regression framework while accounting

for baseline participant covariates. In the third study, we go a step further by handling

multivariate and irregularly collected ordinal longitudinal data collected from the same

highly heterogeneous population. Here, we develop a model which handles longitudinal

data with the aforementioned characteristics, but also allows the analysis of more than

one underlying concepts measured through multiple questionnaires simultaneously.

This thesis is organised as follows. Chapter 2 aims to provide a better understanding of

the background of the two main studies of the thesis, the cancer genomics project and the

ageing project. In its first part, we briefly review the cancer research background which
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motivated us to model the full dose response trajectories and explore dose-dependent

associations to high-dimensional genetic data. The second part is dedicated to ageing.

Specifically, we review the core studies on the ageing field which were determinative for

our variable selection process and ageing domains’ definition later in this work. Chapter

3 gives an overview and presents the key features of the selected longitudinal data sets.

The exploratory analysis performed for the ELSA data using variables measuring all

ageing domains as defined in ageing literature is the first large contribution of this

thesis. In Chapter 4, we extend the methodology proposed by Chu et al. (2017) to

the objective of assessing the transcriptomic effect on anti-cancer drug response, where

coefficient functions are allowed to vary with dosage. This is the second contribution of

this thesis. Chapter 5 adopts and extends the methodological framework of Dawson and

Mueller (2018) to estimate the quantile dynamics and derive predictions for a common

surrogate of ageing, frailty. The third contribution of this thesis is that by employing this

methodology to model survey data and extending it to allow for time-invariant categorical

and continuous covariate adjustment, we manage to address the problem of incomplete

individual responses, get a comprehensive view on the distribution of frailty over time

and predict frailty trajectories for population subgroups. In Chapter 6, we present the

fourth contribution of the thesis. We build a bivariate latent Gaussian process model for

multivariate longitudinal survey data of ordinal type. The proposed model allows for the

description of changes in latent constructs measured via multiple choice questionnaires

in longitudinal surveys. Finally, we conclude this work and propose directions for further

extensions in Chapter 7.

How to Read this Thesis

This thesis follows the traditional Single Volume Format of Lancaster University thesis

submission regulations1. However, parts of this document constitute a series of contribu-

tions already published as a journal paper in the PLoS Computational Biology journal

appearing in Koukouli et al. (2021), or submitted for publication. Chapters 2 and 3

function as accompanying background chapters for the methods presented in Chapters 4,

5 and 6. Readers will notice that in both Chapters 2 and 3, we dedicate a longer part

1https://www.lancaster.ac.uk/media/lancaster-university/content-assets/documents/

student-based-services/asq/marp/PGR-Regs.pdf
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to ageing and the ELSA data exploration. That is due to the larger complexity of the

ageing concept which was key for the evolution of this research and the larger amount of

work needed to explore the available data from this study. Overall, approximately two

thirds of this thesis focus on ageing and one third is focused on cancer research.

Since the main methodological chapters of the current document were developed as

journal papers and handle different statistical challenges while addressing different types

of complex longitudinal data, each chapter has its own introduction, literature review

and discussion section. A summary section at the end of each chapter functions as a

link-up for the research presented in adjacent chapters.

List of Publications

Some parts of the contributions in this thesis have been presented in the following journal

publication and a submitted paper.

[i] Koukouli, E., Wang, D., Dondelinger, F. & Park, J. (2021). A regularized functional

regression model enabling transcriptome-wide dosage-dependent association study of

cancer drug response. PLoS computational biology, 17(1).

[ii] Koukouli, E., Park, J., Titman, A., & Doebler, S. (2022). Dynamic modelling and

prediction of frailty in ageing English adults.

In all the aforementioned work, Koukouli had the main responsibility in develop-

ing the methods, developing the code for model implementation, performing the data

pre-processing and analysis, and writing each paper. Revisions of the writing were

incorporated by the co-authors directly or by Koukouli after discussions with the other

authors. For publication [i], Wang helped with the biological interpretation of study

findings. All projects were supervised by Juhyun Park. The first publication was also

supervised by Frank Dondelinger, whereas [ii] (corresponds to Chapter 5) and Chapter 6,

were co-supervised by Andrew Titman and Stefanie Doebler.

Software availability

All analyses have been conducted using R version 3.6.3. Simulation studies of Chapters 4,

5 and 6 were performed using The High End Computing Cluster at Lancaster University.

Model implementation of Chapters 4 and 6 were also performed using The High End
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Computing Cluster at Lancaster University. Code for applying the two-stage variable

selection algorithm of Chapter 4 is available online as an R package at https://github.

com/koukoulEv/fbioSelect.
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Chapter 2

Background

2.1 Introduction

In Chapter 1, we discussed applications of longitudinal data analysis focusing on the

methodological challenges arising due to the data generation process in each of the

presented scientific fields. In this chapter, we focus on reviewing the literature in cancer

pharmacogenetics and ageing to highlight current statistical needs and challenges due to

the nature of the problems handled within each scientific field. The following section

outlines some key concepts and highlights major developments in cancer pharmacoge-

netics which motivated us to build the functional regression model of Chapter 4. By

discussing limitations in the previous literature, we emphasise potential research gaps and

directions for future advancements. Next, in Section 2.3, we review the most extensively

studied ageing concepts and their theoretical and operational definitions. Specifically,

in Section 2.3.1, we outline four key ageing concepts (frailty, successful ageing, active

ageing and healthy ageing) and discuss their conceptualisation and literature definitions,

whereas in Section 2.3.2, we provide an overview of the measurement tools used to aid

ageing quantification. In Section 2.4, we explain the value of the identified gaps and

presented concepts to the current study; and, finally, in Section 2.5, we summarise the

main scientific conclusions which motivated and contributed to the remaining of this

thesis.
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2.2 Advancements in Cancer Pharmacogenetics

Following cardiovascular diseases, cancer is the second leading cause of morbidity and

mortality globally, with lung cancer being the primary cause of cancer death (Siegel et al.,

2022). Cancer is a heterogeneous disease and individual tumours sometimes show very

different mutational and molecular profiles. This is due to the various aberrations taking

place at a cellular and molecular level previous to cancer development (Zhang et al.,

2012). This uniquely complex genetic makeup of a tumour determines how it reacts to a

given anti-cancer drug. However, due to lack of predictive markers of tumour response,

often patients with very different tumour genetic makeup will receive the same therapy,

resulting in high rates of treatment failure (Chang et al., 2003).

Large clinical trials in rapidly lethal diseases are expensive, complex and often lead

to failure due to lack of efficacy at a given dosage (Cook et al., 2014). One major issue

for some cancer treatments, e.g., chemotherapies, are cytotoxic effects that result in the

collateral damage of the healthy host tissue (Corrie, 2008). Patient remission depends not

only on the selection of the right drug but also on the determination of the optimal dosage,

especially when drugs with a narrow therapeutic index, high toxicity levels or both are

administered. Research has shown that genetic factors can help fine-tune the dosage for

individual patients so that the minimal effective dosage can be delivered (Relling and

Dervieux, 2001). Pharmacogenetics of anti-cancer drugs focuses on exactly this purpose:

optimising cancer treatment to limit adverse effects while maintaining efficacy (Quaranta

and Thomas, 2017). Below, we review key concepts in cancer pharmacogenetics literature

and point out key findings within this field.

2.2.1 Cancer Cell Line Drug Screening

Treatment response in patients with specific cancers has been intensely examined in

relation to the molecular characteristics of the tumours (Zhang et al., 2013). However,

cellular heterogeneity within the tumour and the lack of standard metrics for quantifying

drug response in patients can make it difficult to computationally model response as

a function of molecular features. Cancer cell line drug screens can provide valuable

information about the effect of genetic features on drug dose response and facilitate

detection of predictive biomarkers at a preclinical stage in a controlled setting. Cancer
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cell lines are cancer cell cultures that are kept under certain conditions in a laboratory to

divide and grow over time. These are often treated with selected anti-cancer compounds

and screened to monitor changes in cancer cell proliferation and survival. Following

the advancements of high-throughput large scale cancer genomic technologies, there

have been several data collection initiatives aiming to examine pharmacogenetics and

pharmacogenomics relationships (Barretina et al., 2012; Yang et al., 2012; Lamb et al.,

2006; Hyman et al., 2017). The constructed databases contain information from a wide

range of common and rare types of human cancer cells isolated from affected tissues,

grown in vitro and treated with a large number of anti-cancer inhibitors. The Cancer Cell

Line Encyclopedia [CCLE; Barretina et al. (2012)], the Connectivity Map [CMAP; Lamb

et al. (2006)] and the GDSC (Yang et al., 2012) are within the largest public resources

for information.

2.2.2 Detection of Pharmacogenetics Interactions

Reviews on recent developments in genome-driven oncology highlight the additive value

of integrating molecular information from databases in in vitro anti-cancer drug response

prediction (Hyman et al., 2017; Ben-David et al., 2018; Vamathevan et al., 2019; Tavas-

soly et al., 2019). During the last decade, there have been several systematic studies

that examined the relationship between genetic variants and drug response in cell lines.

An example is the work of Iorio et al. (2016) where the investigators have associated

cancer-driven alterations to anti-cancer drug sensitivity using cancer cell line data from

The Cancer Genome Atlas [TCGA; Tomczak et al. (2015)] and the International Cancer

Genome Consortium [ICGC; Zhang et al. (2011)]. In their work, they have identified

hundreds of pharmacogenomics interactions, explained variation in drug response ac-

cording to various molecular data types, such as gene expression data, whole-exome

sequencing data, DNA methylation data etc., and employed machine learning algorithms,

including elastic-net regression and random forests, to reveal key genetic features and

assess the power of the built models in predicting anti-cancer drug response. One of

their key findings was that gene expression data had the highest power in predicting

drug response after anti-cancer drug administration reinforcing previous assumptions

about the association between genetic markers and anti-cancer drug efficacy (Ross et al.,

2000). As a measure for drug response, they have utilised the half-maximal inhibitory
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concentration, also known as IC50, and so, they have overlooked the effect of genetic

features on drug efficacy under various dose concentrations. Other studies, such as Ji

et al. (2009) and Delpuech et al. (2016), measured transcriptional profiles and by com-

paring multiple genomic features of cell lines to drug response, they were able to identify

gene signatures for drug responsiveness in specific cancer types. In these studies, dose

response curves were summarised using the concentration effective in producing 50% of

the maximal response, also known as EC50.

While the aforementioned papers inform about existing signatures of drug response

and provide a way towards selecting the right drug for a patient, none of them characterise

gene-dose relationships that may ultimately identify the optimal dose for a drug to use

in the clinic. That is because these signatures were selected based on a single summary

statistic of dose response, i.e., the IC50 or the EC50, which, under the current framework,

indicate how much of an anti-cancer agent is required to reduce cell survival by half or

reach a response between the baseline and the maximum after a specified exposure time

respectively (Aykul and Martinez-Hackert, 2016). Clearly, these may not always be the

most useful metrics for differentiating drugs since they only provide information on one

dose concentration (Keshava et al., 2019).

Falcetta et al. (2013) and Silverbush et al. (2017) have explored changes in cancer

cell proliferation and survival after administering various dosages of certain anti-cancer

compounds. Their work highlights the potential benefits of exploring the entire dose

response curve instead of only the half maximal inhibitory or effective concentration.

However, as discussed in the previous chapter, looking at the entire dose response curve

introduces further challenges to the already complex problem of high-dimensional feature

screening. To the best of our knowledge, there are no studies exploring dose-dependent

associations between gene expression and drug response so far which is a fundamental

gap to the current literature.

2.3 The Theoretical Foundations of Ageing

Due to the recent advancements in medicine, there has been a dramatic change in world

population, even in the low and middle-income countries (World Health Organization,

2017). In fact, the global population aged 65 years or over has almost tripled since
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1980 and is expected to double by 2050, reaching nearly 2.1 billion (United Nations,

2021). Nowadays, according to the World bank, the average global life expectancy is

72.6 years (https://data.worldbank.org/indicator/SP.DYN.LE00.IN), whereas the

global birth rate experiences a steady drop with the current rate being around 18.5

births per 1,000 total population globally. In most western countries particularly, life

expectancy exceeds 80 years. Soon the old population will outnumber the young, leading

to a demographic shift with tremendous societal implications (Christensen et al., 2009).

These additional life years are not always expected to be healthy years (World Health

Organization, 2017). Even though frailty and health decay are both normal parts of

the ageing process, healthy behaviours and habits lead to healthier old years (Li et al.,

2020). Yet, old adults often neglect them leading to higher potential for experiencing

disease and disability. Simultaneously, health systems are often not aligned with the

older adults’ needs and, in many countries, environments are not adjusted to serve the

old populations. Although efforts to adopt a positive attitude towards ageing strengthen,

old age stereotypes, prejudicial views and discrimination prevail. Initiatives to tackle the

inflation of the population aged 60 years or over and prevent negative experiences at old

age are needed in order to sustain society’s well-being and people’s quality of life. To do

so, it is essential to understand the dynamics of the ageing process and the relationships

between the factors that affect ageing progression.

Since the second half of the last century, scientists have examined to what extent

disease and disability at old age are age-associated and the factors promoting positive

ageing experiences (Kusumastuti et al., 2016). Frailty, healthy ageing and successful

ageing are only a few of the concepts used across the ageing literature to study and reveal

the ageing dynamics (Rowe and Kahn, 1987; Searle et al., 2008; Michel and Sadana, 2017;

Stephen et al., 2014; Marshall et al., 2015; McPhee et al., 2016; Gale et al., 2014).

2.3.1 Towards a Universal (Healthy) Ageing Definition

The word “ageing” is used to describe a person or thing that is getting old (Hornby,

2005) and by “old” we refer to anyone or anything that have lived or existed for many

years (Hornby, 2005). Attempts aiming to find a precise and universal definition for the

ageing process have come from various scientific fields such as evolutionary biology (Rose,

1991), gerontology (Strehler, 1962; Rowe and Kahn, 1987) etc. Bernard Strehler describes
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ageing as “the changes which occur in the post-reproductive phase of life that result

from a decrease in the ability of the body to maintain homeostasis, i.e., to regulate the

functions of the body within the very precise limits required for efficient functioning and

survival” in his book Time, Cells, and Aging published in 1962. In his work, the ageing

process is perceived as the physiological changes that take place over a period of human

body’s gradual “collapse”. Loss of body’s ability to maintain health and well-being is

highlighted as an indicator of getting older. However, the underlying reasons triggering

this degradation are not made clear.

In 1991, an evolutionary biologist, Michael R. Rose, described ageing as the constant

degeneration of health due to gradual failing of internal physiological components of the

human body (Rose, 1991). This particular definition, even though successful in capturing

the nature of the changes taking place while individuals are getting older, lacks the ability

of pointing out any potential causal associations between internal or external factors

affecting the human body and the ageing mechanisms. To fill this gap, a more recent

view coming from the same author refers to the process of getting old as “a decline or

loss of adaptation with increasing age caused by a time-progressive decline of Hamilton’s

forces of natural selection” (Rose et al., 2012). In this case, the reasons associated with

this loss of ability to preserve body’s health after a particular time point are associated to

the forces of natural selection acting on individuals’ survival and fecundity (Rose, 1991).

From a biological perspective, the ageing process is, thus, viewed as an age-progressive

decrease in survival and reproductive rate. This degradation, even though constant, it is

believed not to be steady and, although assumed as moving towards zero level (death),

there is evidence for a natural selection plateau which leads to plateaus in individual

physiological state, reproduction and mortality declines (Flatt, 2012).

In this section, we review recent definitions of ageing concepts coming from gerontology,

sociology and psychology. Even though, researchers in these fields recognise that negative

health outcomes might be associated to advanced age, they believe that pathology is not

an age-related disease and can be avoided or even reversed by adopting and adjusting

individual behaviours and lifestyle. In fact, from the late 1980s, the distinction between

non-pathological and pathological ageing was further enriched by a third ageing state:

the one that is “successful” (Rowe and Kahn, 1987). Thereafter, positive ageing attitudes

became popular and research focused on understanding why and how “successful” ageing
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is achieved. The following sections discuss the theoretical foundations behind the concepts

of frailty, successful, active and healthy ageing.

Ageing in Terms of Deficits Accumulation

In the biological literature ageing is often viewed as the natural process of cellular and

functional senescence (Johnson et al., 1999). Recognising the heterogeneity of the ageing

process, research focused on the factors that accelerate this senescence and cause loss

of physiologic function and autonomy at old age. This promoted the development of a

deficits-model based on which policy changes, such as early exit from the labour force,

are encouraged (Boudiny, 2013). The age-associated risk of experiencing multi-system

physiological changes leading to often (not always) negative health outcomes due to

functionality and autonomy loss is defined in the literature as “frailty” (Hogan, 2003;

Fisher, 2005). The last two decades, the concept of frailty is used as a tool to identify

vulnerable individuals with increased risk of experiencing negative health outcomes or

death. In other words, it is a tool to distinguish between pathological and non-pathological

ageing. Frailty is conceptualised in relation to deficits accumulation in health, and by

deficits we refer to symptoms or signs of poor health and decreased physical or mental

functionality, disabilities and diseases (Searle et al., 2008; Rockwood and Mitnitski, 2007).

However, without questioning the value of the concept of frailty in ageing studies, we can

argue that even though frailty predicts mortality and successfully captures the process of

senescence as people are getting old, it does not capture the positive aspects of ageing

and does not encourage research on the factors that promote better old age experiences;

it rather supports research only on those that protect individuals against life-threatening

outcomes.

Successful Ageing

During the late 80s, research moved its focus from ageing “bad” to ageing “well” (or

“successful”) aiming to propose strategies that can promote living disease and disability-

free lives (Rowe and Kahn, 1987; Strawbridge et al., 2002). Since then, numerous

definitions and models have been proposed aiming to achieve a better understanding of

what successful ageing really is and what are the factors that contribute to this “success”.

As shown in the work of Kusumastuti et al. (2016) and Bülow and Söderqvist (2014),
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successful ageing definitions can be grouped into two main categories: the definitions

allowing for the inclusion of older people opinions and those which solely consider

scientists’ views. Both the Katz and Havighurst clusters [as named by Kusumastuti et al.

(2016)] can be divided into further sub-clusters. The variety in the first (lay definitions)

is often observed due to different cultural and psychosocial backgrounds (Bülow and

Söderqvist, 2014). Similarly, expert definitions often vary in different scientific fields due

to different assessment tools and prioritization of study objectives. We can distinguish two

multidimensional definitions of successful ageing-the biomedical and the psychosocial-and

three unidimensional−the psychosocial, cognitive and biological− (Lupien and Wan,

2004).

The term successful ageing was first introduced by Rowe and Kahn (1987). In

their work Successful Aging published in 1997, they distinguish normal ageing into two

subcategories, the “successful” and “usual” ageing. Individuals are characterised as

successful agers if they experience minimal physiologic loss, i.e., they do not have any

disabilities or disease, they remain engaged with life and they maintain their cognitive

and physical functioning (Rowe and Kahn, 1997). This definition became very popular

and was used both in the future ageing research and policy making (Foster and Walker,

2015).

In 1990, Baltes and Baltes introduced the meta-model of selective optimization and

compensation which views ageing as a process of adaptation, meaning that under this

theory successful agers are those who are resilient and can adapt their behaviours, feelings

and thinking to reach their goals in life. This is a psychosocial process-oriented approach

which focuses on the gains and losses experienced at old age and the “tools” people

use to obtain their desired goals (Baltes and Carstensen, 1996). Rowe and Kahn’s and

Baltes and Baltes models complement each other and perceive success in completely

distinct ways: the first, interpret success from a biomedical perspective highlighting the

importance of maintaining good health and high functioning in order to age “successfully”,

while, the second, argues that the successful adaptation of behaviour with regards to

someone personal goals is the most important tool towards this success.

Other successful ageing models distinguish successful agers based on their cogni-

tive performance achievements (cognitive models); life satisfaction and social network

(psychosocial models); or, individual morbidity and longevity (biological models). Specif-
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ically, reviews on how scientists define successful ageing show that its definitions are

achieved through the direct use or combinations of the following concepts: life satisfaction,

longevity, freedom from disability and illness, personal growth, active engagement with

life, maintenance of social networks/support/participation, productive engagement with

social activities, autonomy, maintenance of physical and cognitive functioning, mental

and psychological health (Phelan and Larson, 2002; Lupien and Wan, 2004; Bowling and

Dieppe, 2005; Depp and Jeste, 2006; Depp et al., 2007; Cosco et al., 2014; Martin et al.,

2015; Bowling, 2007).

As opposed to scientific views, views on successful ageing coming from the older

people themselves value more accomplishments in life, having good finances and living

environment, maintaining physical appearance and function, cognitive function and

spirituality (Faber et al., 2001; Bowling and Dieppe, 2005; Bowling, 2007; Lupien and Wan,

2004; Depp and Jeste, 2006; Phelan and Larson, 2002; Cosco et al., 2014; Kusumastuti

et al., 2016). Staying active and autonomous is placed among the most important

things, but, at the same time, having disabilities or disease is not synonymous to not

ageing “successfully” (Faber et al., 2001; Glass, 2003). However, the cultural and societal

background of the population interviewed affect the most how individuals perceive

“success” at old age (Hung et al., 2010; Willcox et al., 2007).

The above views and definitions focus on the present health state of people age over 60

years old, the life-course approach of Schulz and Heckhausen (1996), however, presented

a wider view of successful ageing and highlighted the importance of taking actions

over the whole individual lifespan to achieve successful ageing. According to Schulz and

Heckhausen (1996), a successful life-course inevitably leads to successful ageing if physical,

cognitive, intellectual, affective and creative functioning are maintained throughout the

person’s life, along with their social relations for which the genetic and socio-cultural

background play an important role. For a more comprehensive review, we refer interested

readers to Bülow and Söderqvist (2014).

Due to the dissimilarities between definitions of successful ageing, its operationalisation

often becomes infeasible. Different studies encourage different health-promoting practices,

resource allocation and ageing strategies (Martin et al., 2015) which complicate the

creation and adoption of an international plan of action to promote “success” at old

age. Expert views on successful ageing are often deterministic implying that if disease
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and disability occurs then becoming a “successful” ager is impossible. It is not hard to

see how the above encourages ageism instead of promoting positive attitudes towards

ageing which are essential to boost old people’s confidence and overall health (Lupien

and Wan, 2004). At the same time, flexible models built based on subjective views may

lead to misleading representation of the notion (Baltes and Baltes, 1990). Adopting a

multidimensional approach is essential to create a more comprehensive picture of what

“successful” ageing is, however, the appropriateness of the word “successful” itself raise

additional discussions (Baltes and Baltes, 1990; Bowling, 1993; Boudiny and Mortelmans,

2011).

Active Ageing

The term successful ageing was criticised as being unrealistic suggesting an ideal state of

being at old age which is difficult to reach (Bowling and Dieppe, 2005; Martinson and

Berridge, 2015). In fact, the model of Rowe and Kahn underestimates disease occurrence

in old individuals and labels them as being unsuccessful if illness and disability occurs.

That is restrictive and, as shown in the previous section, does not coincide with subjective

views of successful ageing which support the idea that even if disabled or diseased an old

adult can still be a successful ager if he/she stays active and socially engaged.

The concept of “active” ageing was officially defined by the World Health Organisation

(WHO) in 2002, as “the process of optimizing opportunities for health, participation

and security to enhance quality of life as people age”. Opinions on what constitutes

active ageing vary and, according to Boudiny (2013), they can be grouped into three

categories: the unidimensional view where active ageing implies prolonging employment

years and participation to physical activities; the multidimensional view, where active

ageing become synonym to the continuous participation of older adults in several domains

of life including leisure and social activities; and finally, the group of views which equate

active ageing with good health, great economic circumstances, autonomy and continuing

physical, psychological and social function. Even though, some authors preferred the

term “active” over the term “successful”, a variety of opinions was expressed regarding

its definition and suitability; especially due to the fact that the word “active” can solely

point to physical activity, productivity and occupation.

The concept of “active ageing” was built to promote autonomy and participation at
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old age introducing a broader and less idealized ageing view (World Health Organization,

2002). The variety of active ageing definitions highlight the existing limitations around

its conceptualisation. First, ongoing debate exists on whether this concept neglects

the importance of maintaining high mental capacity by turning the spotlight solely on

physical activity and employment overidealising the productive model of old age (Foster

and Walker, 2015). Second, large discrepancies exist between lay and scientific views,

with the latter setting overambitious standards failing to capture the heterogeneity of

the old population (Boudiny and Mortelmans, 2011). Similar to subjective views on

successful ageing, the older people themselves equate staying active with staying engaged

with life, even if disability and illness exist. Overall, scientific opinions often support the

use of the term “active ageing” over successful ageing (Foster and Walker, 2015), however,

we observed common discussions on how the word “active” can mislead policy making

and prioritize actions that are not always supportive to the group of interest (Boudiny,

2013; De São José et al., 2017).

Healthy Ageing and the HAP

Even though life is synonymous with ageing, disease and disability are not (Franco et al.,

2009). Since the second half of the 20th century, research focus has shifted towards the

positive aspects of ageing and the actions that individuals and countries can take to

encourage a better ageing experience. In the previous sections, we briefly presented the

key historical and conceptual background behind the notions “successful” and “active”

ageing. In 2015 and after many years of research, the WHO formally introduced and

defined the notion “healthy” ageing. However, this is not the first time this term was

mentioned into the gerontological literature. In this section, we discuss the historical and

conceptual background behind the notion “healthy ageing”; the definition and conceptual

framework built by the WHO; how this is linked to previous research and the Healthy

Ageing Phenotype (HAP) concept; and what are the current limitations and challenges

around this concept.

Apart from the terms “successful” and “active”, a wealth of similar terms can be found

in the gerontological literature as an effort to conceptualize quality of life at advanced age.

Ageing “well”, “robust”, “competent”, “vital”, “positive” and “productive” ageing are

some of them (Strawbridge et al., 2002; Garfein and Herzog, 1995; Brehm, 1987; Bowling,
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1993; Kerschner and Pegues, 1998; Caprara et al., 2013). Motivated by the variety

of opinions and vagueness around these concepts, Peel et al. (2004) refers to “healthy

ageing” and defines it as “the lifelong process optimizing opportunities for improving

and preserving health and physical, social and mental wellness, independence, quality of

life and enhancing successful life-course transitions”. In their work, they highlighted the

multidimensionality of this concept, proposed domains that could potentially describe it

and explained how cultural and even chronological age differences can play a tremendous

role in its interpretation.

From 2004, “healthy ageing” was often used interchangeably with “successful” and

“active” ageing (Depp et al., 2007; Zaidi et al., 2017; Bousquet et al., 2015) but efforts

to further clarify it strengthened. Five years later, Franco et al. (2009) presented

the idea of the HAP as a fundamental concept in ageing research, which was defined

as “the condition of being alive, while having highly preserved functioning metabolic,

hormonal and neuro-endocrine control systems at the organ, tissue and molecular levels”.

The HAP was proposed not only as a means to clearly define the notion of healthy

ageing but also to measure it. Five domains were identified as the building blocks of

HAP−psychological and social well-being, metabolic health, cognitive function, and

physical capability−highlighting its multidimensional nature (Lara et al., 2013b).

The effort to build a universal definition for “healthy ageing” was concluded in

2015 by the WHO which describes it as “the process of developing and maintaining the

functional ability that enables well-being in older age”. In other words, healthy ageing is

defined as the multidimensional process consisting of the adaptive mechanisms that take

place during the life-course to preserve functional ability, the ultimate goal of healthy

ageing. Functional ability is the capacity to achieve what people have reason to value

(e.g., maintaining their role in society, relationships, enjoyment, autonomy, security, and

personal growth) and it is built through a combination of individual intrinsic capacity

(genetic, personal−for example, gender, ethnicity, educational level, occupation etc.−and

health characteristics−physiological risk factors, diseases, injuries, and other geriatric

syndromes−) and environment interactions at a particular point in time (World Health

Organization, 2017).

While the HAP concept focuses on the present, the definition given by the WHO, it

perceives ageing as a lifelong process which allows the subject to experience the HAP
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state. Linking it to the life-course approach towards successful ageing (Kuh et al., 2014;

Bülow and Söderqvist, 2014), it highlights the importance of adopting action plans

to support the development of intrinsic capacity early in life and the maintenance of

functional ability at later life stages. The domains of functional ability presented by

the WHO can be linked to the HAP domains, showing that both constructs are built

under the same fundamental ideas. Specifically, maintaining the abilities to move around,

build and maintain relationships, meet someone’s own basic needs, learn, grow, make

decisions, and, contribute is synonymous with maintaining someone’s physical capability,

cognitive function, social and psychological well-being and metabolic health. Defining

and understanding ageing and, more specifically, “healthy ageing” is essential to overcome

some of the challenges brought by the steep increase of the old population. However,

these challenges are different in nature, e.g., challenges to the pensions systems and social

welfare costs (macro-level) to challenges that the older people face during their everyday

life (micro-level). Due to the materialistic interpretations associated with the terms

“successful” and “active” ageing, the term “healthy ageing” became the gold standard

during the last few years. Healthy ageing research aims to identify how old generations

could be supported in becoming resilient and how old age experiences can be improved.

Recently, the WHO, Member States and Partners for Sustainable Development Goals

initiated a Global Strategy and Action Plan for Ageing and Health for 2016–2020 with five

objectives: act to support healthy ageing both nationally and internationally; develop age-

friendly environments to promote autonomy at old age; align healthcare systems to ensure

they meet older adults’ needs; preserve and develop long-term care systems for people

of advanced age; and, promote research on healthy ageing (World Health Organization,

2017). The ultimate aim of this action was to establish evidence and partnerships to

support the Decade of Healthy Ageing 2020-2030 program which focuses on: supporting

national plans and actions promoting Healthy Ageing; creating an international database

hosting research advances and evidence on Healthy Ageing; promoting research and

data collection on Healthy Ageing; aligning health systems and developing long-term

care systems; fighting ageism (discrimination against old people); supporting human

resources to develop robust care systems; examining the economic impact of investment

in older populations; and, promoting age-friendly cities and communities (Rudnicka et al.,

2020). This plan of action is of high significance since it establishes global guidelines and
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directions towards creating age-friendly communities. However, the degree of individual

countries’ adaptation remains uncertain and further research is needed to assess the

effectiveness of the proposed plans across the seven continents.

2.3.2 Ageing Operationalisation

Even though a universal definition of “healthy ageing” has been established, a single

measure to quantify it is yet under investigation (Lara et al., 2013b; Tampubolon, 2016b;

Cosco et al., 2014; Bousquet et al., 2015; Michel and Sadana, 2017; Zaidi et al., 2017;

Sanchez-Niubo et al., 2020). More so, operationalisation of the ageing process and

individual classification can be quite complex. To recommend a representative ageing

metric, the following questions should be answered:

• Is the researcher’s intention to quantify ageing through measuring health “deterio-

ration” (increasing over time) or health “sustainability” (decreasing over time)?

• What kind of information needs to be included to measure either of the two?

• What kind of metrics need to be employed to objectively and universally quantify

concepts like cognitive function, social skills or mental health?

• What should the cut-off points of an ageing score be to classify individuals to

different ageing categories?

These questions show the complexity surrounding ageing quantification. Nevertheless,

even if the above objectives are clear, it is essential to validate any ageing metric and

confirm that the given ageing representation is of high standard. The biological and

conceptual complexity and heterogeneity create challenges around ageing quantification.

Since there is not a unique way to understand it and conceptualise it, people tend to use

surrogates such as mortality or lifespan. In the ageing literature, there are two most widely

used measures of ageing, the first is a conceptualisation of frailty (refers to mortality

and deficits accumulation (Searle et al., 2008)), and the second is a conceptualisation of

healthy (or active or successful) ageing (refers to lifespan and positive old age experiences).

Below we review how ageing operationalisation and measurement are achieved in the

current pulished research.
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The Frailty Index (FI)

Frailty is a state of increased vulnerability to ageing-associated adverse outcomes and is

considered to be a monotonically increasing process as people are getting older (Searle

et al., 2008). It is one of the most popular proxy measures of ageing (Rockwood and

Howlett, 2018; Walston and Bandeen-Roche, 2015) and, as many studies have found, is a

better predictor of survival compared to chronological age (Searle et al., 2008; Rockwood

et al., 2007; Hao et al., 2018; Feng et al., 2017). Even though there is not a single universal

definition of frailty, the most common frailty metric is the Frailty Index (FI) calculated

by accumulating age-related health deficits (Searle et al., 2008; Mitnitski et al., 2001).

These consist of health problems including hearing loss and poor eyesight; cognitive and

psychological problems; as well as, mobility difficulties. Other frailty metrics include the

modified FI, the risk analysis index, the Ganapathi indices, the electronic FI etc. and

they are all used across social and medical sciences as a surrogate of ageing or illness

severeness to predict morbidity and mortality (Shashikumar et al., 2020; Esses et al.,

2018; Clegg et al., 2016). One of the main drawbacks of FI is its reliance on the variables

used for its construction making it unsuitable for comparisons across different ageing

studies. For instance, in Searle et al. (2008) the FI is built using data from the Survey of

Health, Ageing and Retirement in Europe (SHARE) and physical activity level is used

as one of the deficits included into the index construct whereas in Rogers et al. (2017),

the same variable (extracted from the ELSA data) is used as a predictor for the FI score.

Nevertheless, due to its simplicity and its well established properties it remains a concept

worth examined.

Quantifying “Healthy” Ageing

Cosco et al. (2014) showed that common successful ageing constructs employ physiologi-

cal, well-being, engagement with life, personal resources and environment and finances

measures. Zaidi et al. (2017) built an “active ageing” measure by taking the weighted

sum of four domain scores (employment, participation in society, independent, healthy

and secure living, and capacity and enabling environment for active ageing). In 2013,

Lara et al. identified five features of the HAP and listed a number of instruments

to measure them. The selected domains were: physical capability, physiological and

metabolic health, cognitive function, social and psychological well-being. Valid question-
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naires and measurement tools were proposed aiming to improve result agreement among

international ageing studies. Aggregated scores and well-studied scales were some of the

recommended tools which have been deployed in subsequent studies (Tampubolon, 2016b).

Recently, Caballero et al. (2017) developed a measure to quantify health status over time

using Item Response Theory (IRT). The proposed metric summarises questionnaire data

using a multilevel model which deploys both consistently and not consistently measured

items used for gerontological assessment promoting homogeneity and comparisons across

international healthy ageing studies (Caballero et al., 2017; Sanchez-Niubo et al., 2020).

Finally, Beard et al. (2019) developed an “intrinsic capacity” index using a bi-factor

model; they used it as a surrogate for “healthy ageing” and studied its properties and

validity.

Common features of the aforementioned constructs are the nature of the data used

(information is selected using assessment questionnaires, tests and open-ended questions)

and their multi-dimensionality. Additional similarities exist at a composition level, since

the majority deploy aggregated scores and weighted sums. However, the heterogeneity

observed in “healthy ageing” metrics results in large disparity between study outcomes.

An example is the proportion of successful agers which ranges between <1% and >90%

across different ageing studies (Peel et al., 2004; Cosco et al., 2014). This variety of

outcomes is partially justified by the lack of a universal “healthy ageing” definition which

was until recently ambiguous (Michel and Sadana, 2017). Other reasons include the use

of different cut-off points, poor data quality and, cultural and societal differences. The

simplicity and inherent properties of some of the above metrics are what make them

compelling. However, they still fail to portray the multifacetedness of “healthy ageing”

since the information used, even though multidimensional, is combined in such a way

that the resulting constructs are most of the times a single index which does not allow

to study each “healthy ageing” domain separately and the time-dependent changes and

relationships between them.

2.4 Discussion

Through this review, we identified a lack of studies associating dose response to transcrip-

tional profiles of cancer cell lines. Motivated by this gap, later in this thesis (Chapter
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4), we adopt a functional regression approach that takes the dose response curves as

inputs, and uses them to find biomarkers of drug response. One major advantage of

this approach is that it describes how the effect of a biomarker on the drug response

changes with the drug dosage, which is something currently missing from the available

cancer pharmacogenetics literature and can promote better decision making by informing

anticancer research on drug efficacy.

With regards to ageing research, during the last decades, gerontologists diverted

their focus from the age-associated declines towards the positive aspects of ageing and

how these can be promoted through policy. With the old population experiencing the

steepest increase ever, societal changes to support old adults needs are necessary. To do

so, the WHO introduced the concept of healthy ageing and initiated efforts to promote it

internationally. Nevertheless, the topic of how healthy ageing can be measured and studied

to identify healthy ageing predictors and perform country comparisons to assess the

effect of these actions is still cloudy. To this end, ageing studies have been designed and

conducted across the globe, to understand the ageing process, how life domains evolve over

time and identify the factors that contribute to healthy and active ageing. To collect data

on life domains linked to positive health outcomes at old age, modern longitudinal studies

on ageing use a battery of questionnaires or tests. That is because, most of the targeted

life domains cannot be measured directly, resulting in a huge collection of non-continuous

data, collected, often, at irregular age points. Consequently, statistical analysis and

inference based on these data become very demanding and advanced statistical methods

should be employed to achieve meaningful conclusions. In the remainder of this work, we

propose statistical methods aiming to address some of these issues by adopting flexible

approaches to model the healthy ageing domains as conceptualised by Lara et al. (2013b)

and their interrelationships. This will not only provide a more comprehensive picture of

ageing progression through the adoption of this multidimensional approach, but will also

ensure our study’s alignment to the current WHO goals on ageing.

In Chapters 5 and 6, motivated by the data collected from the ELSA, we discuss meth-

ods that could facilitate analysis of complex longitudinal data, such as those gathered in

modern ageing studies. By doing so, we not only develop novel statistical frameworks that

could facilitate complex longitudinal data analysis but we, also, investigate an alternative

healthy ageing operationalisation which is aligned to the international guidelines.
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2.5 Summary

In this chapter, we reviewed key concepts and publications around cancer pharmaco-

genetics and ageing which are essential to follow the rest of this thesis. On one hand,

large-scale assays of drug response in cancer cell line panels are an important part of

the drug discovery and drug repositioning pipeline in oncology. Current state-of-the-art

methods do not allow for detection of biomarkers that act on narrow effective dose ranges.

On the other hand, old population increase creates numerous challenges in society. Just

recently, a universal definition of healthy ageing was established by the WHO. The

ultimate aim was to adopt actions to encourage a healthier, more active and socially

engaged old population internationally. However, the tools to confirm that these actions

are sufficient are not yet clear. Healthy ageing operationalisation is still under research

and there is currently no well established tool to quantify it. In addition, healthy ageing

measures are often data-dependent and unidimensional in practice, meaning that they

cannot portray how healthy ageing domains interact over time. In the following chapter,

we introduce and describe the data extracted from two large databases, the GDSC and

the ELSA. These collections of experimental and observational data will be used next

in Chapters 4, 5 and 6. These along with the theory presented in the current chapter

motivated the methodological developments presented in this thesis.
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Chapter 3

The data sets

3.1 Introduction

In the previous chapter, we introduced key theories and concepts around cancer phar-

macogenetics and ageing. In the current chapter, we present the two databases which

motivated our study, the GDSC data and the ELSA data. Even though both consist

of repeated measurements data, they differ in many ways. First, the GDSC database

contains experimental data whereas the ELSA data are observational. Second, GDSC

data were produced in a controlled environment and so no missing responses occurred

whereas the ELSA data include thousands of missing values due to drop-outs, participants’

death, lost to follow-up, incapacity or unwillingness to respond, etc. Third, even though

both data sets can be considered high-dimensional, they differ in terms of the nature of

this increased dimensionality; the GDSC data are paired with high-dimensional genomic

data whereas the ELSA data include more tha 5,000 measured outcomes per wave and

participant. Below, we go through the key aspects of these two data sets, explore their

structure and present exploratory analysis results which are fundamental for Chapters 4,

5 and 6.

3.2 The Genomics of Drug Sensitivity in Cancer (GDSC)

As mentioned in Chapter 2, since the early 2000s large databases have been built to

facilitate identification of potential biomarkers and molecular targets for cancer therapy.

The GDSC project is a Wellcome-funded collaboration between The Cancer Genome

Project at the Wellcome Sanger Institute in the UK and the Centre for Molecular
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Therapeutics of the Massachusetts General Hospital Cancer Centre in the USA (Yang

et al., 2012). Its main objective was to identify biomarkers that characterise anti-cancer

drug suitability for treating cancer patients. The current database includes drug sensitivity

and molecular measures derived from more than a thousand types of human cancer cell

lines used for the screening of 518 anticancer compounds. Data are publicly available at

https://www.cancerrxgene.org/. In the following sections, we give a brief overview of

the exact data extracted from the GDSC database which were analysed in Chapter 4

and we describe the normalisation procedure undertaken prior to model implementation.

3.2.1 The GDSC1 and GDSC2 data

Drug sensitivity data and molecular measures derived from 951 cancer cell lines used for

the screening of 138 anticancer compounds were downloaded from the GDSC website

(release 2, July 2012). For analysis purposes in Chapter 4, we specifically focused on

cell lines of cancers of epithelial, mesenchymal and haematopoietic origin treated by

five BRAF targeted inhibitors (PLX-4720, Dabrafenib, HG6-64-1, SB590885 and AZ628;

GDSC1 data). The maximum screening concentration for each different drug was: 10.00

uM for PLX-4720 and Dabrafenib, 5.12 uM for HG6-64-1, 5.00 uM for SB590885 and 4.00

uM for AZ628. We, additionally, used the independently generated GDSC2 data set on

drugs targeting the MEK1, MEK2 genes (Trametinib, Selumetinib and PD0325901) and

the PI3K/MTOR signalling pathway (Alpelisib, AMG-319 and AZD8186) for validation

purposes. In Chapter 4, we expound further on this matter. The maximum screening

concentration for the drugs included in GDSC2 data was: 1.00 uM for Trametinib; 10.00

uM for Selumetinib; 0.250 uM for PD0325901; 10.00 uM for Alpelisib; 10.00 uM for

AMG-319; and, 10.00 uM for AZD8186.

In the original experiments, the drug sensitivity measurements were obtained via

fluorescence-based cell viability assays 72 hours after drug administration (Yang et al.,

2012). In GDSC1 data, approximately 66% of drug sensitivity responses were measured

over nine dose concentrations (2-fold dilutions) and 34% were measured over five drug

concentrations (4-fold dilutions). In total, we considered 3805 cancer cell line-drug

combinations. For the remainder of this thesis we refer to these cancer cell line-drug

combinations as experimental units. In Figure 3.1, we show the distribution of different

tissues of origin treated with the drugs. Overall, similar proportion of cell lines have been
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Figure 3.1: Distribution of tissue of origin across the five BRAF compounds used for cell
line screening in the GDSC1 data.

treated with all of the compounds tested. A smaller number of cell lines were treated

with AZ628, Dabrafenib and PLX-4720. A larger number of cell lines in the data set

were originated from the lungs, the gastrointestinal tract and the haematopoietic and

lymphoid tissues. Paired microarray gene expression data (17,737 genes) were available

together with the dose response data.

3.2.2 Data normalisation

The dose response data also included a blank response for cells on the experimental plate

that had not been seeded or treated with a drug. Blank responses have been used to

adjust for the magnitude of the observation error while measuring the amount of cells

in each plate. We used an affine transformation to the reported responses in order to

normalise them within the drug concentration interval, 0 (0% of the maximum dosage)

to 1 (100% of the maximum dosage). In particular, for the normalising procedure, we

have used the formula:

NRij =
Rij −BRi
CRi −BRi

(3.1)

where Rij is the response of the ith experimental unit at the jth dosage level (i.e. amount

of cancer cells after drug administration at the jth dosage), CRi is the response under

no drug administration (i.e. number of cancer cells at zero dose, ni = 1), BRi is the

blank response of the ith experimental unit as described above and NRij is the new

score taken from the transformation, i = 1, . . . , 3805, j = 1, . . . , ni. After this procedure,

data were analysed using the methods developed in Chapter 4.

28



3.3 The English Longitudinal Study of Ageing (ELSA)

Over the last two decades, there has been a huge increase in the number of longitudinal

cohort studies studying ageing worldwide. Recent statistics from the Gateway to Global

Ageing Data show that, globally, there are currently more than 15 longitudinal studies

investigating trajectories of geriatric syndromes (Martin and Romero Ortuño, 2019).

This is, in part, due to a concentrated effort at government level to optimise quality of

life at old age and, if possible, prevent negative ageing outcomes through appropriate

clinical practice and policy.

The ELSA is an ongoing biannual longitudinal study which collects information from

people aged over 50 years old in England starting from 2002 (the total sample size

exceeds 18,000 people). It is a National Institute of Ageing funded project with the

additional support of a consortium of UK government departments coordinated by the

Office for National Statistics, which aims to reveal age-related trends of the growing

English population (Steptoe et al., 2013). It is designed to be directly comparable

with other international ageing studies such as the US Health and Retirement Study

in America (Juster and Suzman, 1995) and the SHARE (Börsch-Supan et al., 2013).

Data collection started in 2001 as part of a pilot study (wave 0) but the main fieldwork

was officially initiated in March 2002 (wave 1). The data are collected in two-yearly

interviews (waves) and are currently publicly accessible through the UK Data Archive

(https://www.data-archive.ac.uk/).

Answers to hundreds of questions have been encoded into the ELSA data set producing

more than 5,000 variables per wave available for analysis. In the following sections, the

reader can find a detailed overview of the data structure and content of the first eight

ELSA waves. Data description is specifically focused on variables used in subsequent

chapters, in particular, Chapters 5 and 6. To be more specific, in Sections 3.3.1 and 3.3.2,

we give an overview of the study design and sample demographics. Section 3.3.3 presents

more details about its content and data availability, whereas in Section 3.3.4, we discuss

missing data and drop-outs. Sections 3.3.5 and 3.3.6 provide an in depth illustration

of the data used for further analysis and their structure. Appropriate exploratory data

analysis was performed at this stage which acts as a stepping stone for the analysis

presented in Chapters 5 and 6.
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3.3.1 Study design

The ELSA participants were drawn from households that had previously responded to

the Health Survey for England (HSE) between 1998 and 2001 (Mindell et al., 2012).

Due to death, loss to follow-up and participants ageing, since 2002 and until 2017, four

sample refreshments took place in order to maintain balance between younger, middle

and older age groups in the study (Figure 3.2). Individual and household information

was collected using a Computer-Assisted Personal interview (CAPI), tests and a self-

completion questionnaire. During the CAPI both core participants and their partners

were interviewed. There are five main areas for which data were collected across the

first eight waves of ELSA. These include demographics and economics data; health and

disability measures; psychosocial measures; and, cognitive function measures. Besides,

approximately every 4 years recruited nurses were visiting participants to carry out blood

sample collection, physical examination and performance assays. One-off assessments such

as life-history interviews (information about children and fertility, partnerships, education,

employment, migration, accommodation, health events, childhood circumstances, adverse

life effects), risk preferences (performance of study lotteries with the opportunity to

win cash and willingness to postpone reward) and sexual activity and relationships

questionnaires were additionally collected at waves 3, 5, 6 and 8 respectively. Alongside

individual interview data, mortality records (“End of life” data) and data from a genome-

wide association study genotyping 7,412 ELSA participants are available1. At this

point it is important to mention that due to the evolving study objectives and data

collection challenges, questionnaires tend to change over time with new questions/group

of questions being added or substituting old ones, or old questions/group of questions

not being measured or being measured in every future wave.

3.3.2 Sample demographic characteristics

Sample size across waves differs since the response, surviving rates and follow-up rates

vary. Sample sizes fluctuate from ≈7,000 to ≈11,000 individuals, members of ≈6,000

to ≈8,000 English households (Table 3.1). Sample balance between males and females

remains relatively constant across waves with more women than men participating (the

1All participants were of European descent and genotyping was performed at University College
London Genomics in 2013-2014 using the Ilumina HumanOmni2.5 BeadChips (HumanOmni2.5-4v1,
HumanOmni2.5-8v1.3).
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Figure 3.2: Overview of the data collection process in ELSA waves 1 to 8. Sample sizes
are given for the complete study. CAPI stands for Computer Assisted Personal interview.
HSE stands for the Health Survey for England from which the first and subsequent
samples were collected.
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Figure 3.3: (a) Empirical cumulative distribution function for age per wave. The plot
suggests that the age distribution in all waves is highly skewed and due to the differing
number of participants and the sample refreshments the distribution of old people varies
across waves. (b) Empirical age density for each different wave. (c) Empirical cumulative
distribution function for wealth per wave. (d) Empirical wealth density for each different
wave.

proportion of women across all waves varies between 54.51% and 56.40%; for men it

fluctuates between 43.60% and 45.49%). This gives a representative illustration of how

the real population of males and females is distributed with more women surviving for

longer periods compared to men of the same age (Pinkhasov et al., 2010).

The age distribution is highly skewed towards left for all the ELSA waves with the

vast majority of the sample aged between 50 to 75 years old (Figure 3.3a; skewness

ranges between 0.14 and 0.45; kurtosis ranges between 2.23 and 2.62; difference between

mean and median does not exceed 1.57). Even though ELSA design aims to obtain a

representative sample across all different age groups, older population (more than 80

years old) remain under-represented in all waves due to possibly high rates of mortality

or morbidity. In the data, over 90 years old respondents have been classified as 99 years

old for confidentiality reasons. This is not depicted in Figure 3.3a since we classified all

respondents over 90 years as 90 years old. For subsequent longitudinal analysis those

subjects (over 90 years old) have been excluded from analysis.

Economic inequalities and population wealth distribution is well captured in the

ELSA sample (Figure 3.3d and Table 3.1). The percentage of people in debt (negative

wealth) is less than 10% at all waves. In particular, impoverished people percentages
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Figure 3.4: (a) Occupational status distribution across the eight ELSA waves (2002-2017).
(b) Marital status distribution across the eight ELSA waves (2002-2017).

were: 9.18%, 8.87%, 10.00%, 9.30%, 8.61%, 8.59%, 7.39% and 7.31% for Waves 1 to 8

respectively. Between 2006 and 2010, a larger accumulation of people owing money is

observed and economic inequalities become profound [interquartile range (IQR) of wealth

varies between 44,600 and 110,312]. In contrast, social and educational inequalities are

less apparent, especially as we move forward in time (Table 3.1 and Figure 3.4a). People

being in managerial compared to manual occupations are steadily increasing over the

years, whereas the number of people achieving higher educational qualifications follow a

similar rise of almost 10% in 2019 compared to 2002 (1st Wave).

Most of the ELSA participants are married or widowed across all waves (Figure 3.4b).

From 2002, there is an increase of 2% in divorced/separated people as well as a small

decrease in married/cohabiting couples. Finally, individuals from non-white ethnic origin

are underrepresented compared to white participants (less than 4% of the total sample

size across all waves) which should be taken into consideration in future inference and

conclusions.

3.3.3 Questionnaire content

Below, we give a brief overview of the topics covered in the ELSA questionnaires. We

distinguish six key modules which are presented below.

Module 1: Health, disability and health behaviour measures

Physical and mental health have been assessed during the CAPI. Topics covered include:

self-rated health; psychiatric, chronic and cardiovascular disease records (as diagnosed

by a physician); long-standing illnesses; mobility impairment and physical functioning
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Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Wave 6 Wave 7 Wave 8

Individuals 11391 8780 8810 9886 9090 9169 8249 7223

Households 7912 6246 6463 7250 6687 6902 6009 5543

Proxy respondents 1.39% 1.05% 1.9% 2.97% 3.9% 4.18% 4.38% 3.97%

Gender

Men 45.53% 44.98% 44.73% 44.77% 44.62% 44.42% 44.07% 44.05%
Women 54.47% 55.02% 55.27% 55.23% 55.38% 55.58% 55.93% 55.95%

Age

50-59 36.57% 29.57% 34.57% 29.28% 21.65% 22.49% 14.85% 11.07%
60-69 29.83% 32.73% 29.48% 35.5% 38.62% 37.63% 39.65% 39.45%
70-79 22.51% 24.92% 23.14% 23.86% 26.56% 26.65% 30.39% 31.81%
80+ 11.08% 12.77% 12.81% 11.35% 13.18% 13.22% 15.13% 17.67%

Wealth**

Mean 44,654 55,618 62,688 75,201 75,114 89,942 93,738 106,964
Median 12,400 17,000 17,400 20,400 23,567 24,800 30,000 34,000

SD 117,263.3 163,403.1 172,106.5 241,836 176,692.2 319,484.7 239,704.2 237,567.3
Missing 1.76% 1.36% 2.68% 2.84% 2.40% 2.41% 2.67% 1.87%

Education

No qualifications 56.18% 52.87% 43.48% 43.10% 43.48% 41.65% 41.14% 39.93%
Intermediate 21.60% 23.18% 25.27% 25.77% 25.51% 26.78% 27.30% 27.11%

Higher education 21.95% 23.84% 31.15% 30.64% 30.14% 30.74% 30.85% 30.24%
Missing 0.27% 0.11% 0.10% 0.48% 0.87% 0.83% 0.70% 2.73%

Social class based
on occupation

Managerial 29.08% 30.39% 31.8% 32.68% 33.60% 34.54% 39.20% 32.45%
Intermediate 22.50% 24.35% 24.81% 24.57% 25.35% 25.17% 24.80% 25.22%

Routine 44.69% 43.58% 41.79% 39.44% 39.36% 38.66% 34.20% 35.41%
Missing 3.72% 0.09% 0.12% 2.08% 0.59% 0.59% 0.88% 6.09%

Marital Status

Married*/
Cohabiting

68.75% 67.84% 67.56% 68.95% 68.17% 67.77% 67.49% 67.17%

Single 5.05% 4.74% 5.21% 5.53% 5.16% 5.61% 5.16% 5.37%
Widowed 17.13% 18.30% 17.13% 15.51% 16.55% 16.05% 16.61% 16.45%

Divorced/
Separated

9.08% 9.12% 10.10% 10.01% 10.12% 10.57% 10.74% 11.01%

Non-white 2.81% 2.30% 2.72% 3.06% 3.10% 3.51% 3.41% 3.5%

Table 3.1: Demographic characteristics of the ELSA participants for waves 1 to 8.
*Married category includes those in civil partnership from 2006. **Wealth is measured
in British pounds and represents the net total wealth which is the sum of savings,
investments, physical wealth, i.e., satisfaction-generating physical goods, and housing
wealth after subtraction of any financial or mortage debt.
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[difficulties in Activities of Daily Living (ADLs) and Instrumental Activities of Daily

Living (IADLs)]; eyesight; hearing; quality of medical care received; fall incidents and

fractures experienced; pain experienced; urinary incontinence symptoms; depression

symptoms; walking speed performance (if ≥ 60 years old); medication intake records;

respiratory symptoms; ischemic heart pain symptoms; dental health record; balance;

dizziness; quality of sleep; and, menopause symptoms. However, not all of the above

areas are covered in the current ELSA waves (1 to 8). In particular, only the first 12

topics have been consistently reported across all data collection waves. Smoking history,

alcohol consumption and physical activity frequency were also reported across all waves,

whereas information on consumption of fruit and vegetables was collected across the

ELSA waves 3 to 8.

Specific tests and blood assays were used to collect data on physical examination and

metabolic health during the nurse visit (NV) in waves 2, 4, 6 and 8. Individual height,

weight, blood pressure, waist and hip circumference were measured by the nurses, and

chair rise, balance, grip strength and spirometry tests were performed by the participants

to evaluate their physical functioning. Blood samples were also collected by the trained

nurses and, then, sent by post to a laboratory to be processed and analysed. Some of

the biomarkers measured include: triglycerides, total and DHL-cholesterol, C-reactive

protein, fibrinogen, haemoglobin and ferritin, white cell count, fasting lipids, glucose and

glycated haemoglobin. Finally, DNA samples were collected along with the blood assays

between 2013 and 2014 (access with fee).

Module 2: Psychosocial measures

Caring for others motivation; volunteering and unpaid help; civic, social and cultural

participation; social networks (relationship with family, friends, children, partner and

neighbours); social support; loneliness; use and means of transport; access to local ameni-

ties and services; and, TV watching, were some of the areas covered through the CAPI

and self-reported questionnaire on social and civic participation. Additional questions

were handed to evaluate respondents’ relationship between effort and reward, control

and demand, provision of care, altruism and collectiveness. Perceptions of respondents’

life and ageing were also reported through both the self-reported questionnaire and the

CAPI. Records included information on how individuals rate their social and financial
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status, how they perceive life at old compared to middle age and how they experience

ageing. Psychological and social well-being were measured using the CASP-19 question-

naire (Hyde et al., 2003) and the Satisfaction With Life Scale (Diener et al., 1985) at seven

out of the eight waves. Additional well-being questionnaires were used in later waves to

assess positive affectivity, i.e., positive emotions and self-expression, other personality

facts and psychological pain.

Module 3: Cognitive function measures

From 2002 until recently, the ELSA examined many cognitive skills including memory,

executive function, literacy and numeracy abilities. Memory self-rating, orientation

in time, word-list learning, prospective memory and fluid intelligence tests were used

for memory strength assessment. A selection of word-finding, backwards counting and

object naming tests were used for assessing executive function, i.e., the set of cognitive

skills needed to organise thoughts and activities, prioritise tasks, manage time efficiently,

and make decisions. Literacy was assessed by a set of questions evaluating respondents

understanding of the label instructions on a fabricated medication product. Numeracy

was assessed by a set of five questions which required numerical calculations of varying

difficulty.

Cognitive function information is not consistent across the different waves. In

particular, only orientation in time, word-list learning (verbal learning and recall) and

word-finding (verbal-fluency) were measured with high frequency and consistency across

the eight data collection waves. Difficulties in everyday tasks showing cognitive function

skills were also assessed through questions measuring difficulties in ADLs and IADLs, for

example, difficulty in taking everyday medication, navigate using a map, making phone

calls, etc.

Module 4: Economics data

The economics module includes information on individual and family finances; in partic-

ular, household income, wealth and debts, pension arrangements, employment, consump-

tion and expectations about certainty of future events and financial decision-making.

Most of the items in this module were measured across all eight ELSA waves providing

information on respondent’s earnings, benefits and assets; current and past pension plans;
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job details (pay, working hours, job description); retirement details (when applicable);

disabilities affecting work; other income sources or secondary jobs; work limitations

due to health problems or disabilities (when applicable); housing; vehicle and durable

goods ownership; purchases and fuel expenditures; health insurance, leisure and clothing

expenses.

Additional modules

A life-history interview was conducted between 2004 and 2005. Its primary aim was to

understand and record important events that may have played a key role on participants’

health, economic circumstances and quality of life in subsequent years. A risk preferences

module was also added in wave 5 to assess risk tolerance and patience of older adults in

England. Risk tolerance is defined as the willingness to bear risk in pursuit of possible

reward and patience is defined as the willingness to delay in return for a greater reward.

Finally, a sexual health questionnaire was used in waves 6 and 8 to examine sex attitudes,

sexual activities and experiences, partners and lifetime desires and experiences of older

adults in the UK.

3.3.4 Missing data, drop-outs and mortality records

Since the ELSA data can be analysed both cross-sectionally and longitudinally, two types

of missing data can be identified: cross-sectional missingness, i.e., missing responses in

a single ELSA data wave caused by data collection errors, individual unwillingness to

respond, etc.; and, longitudinal missingness, i.e., drop-outs. In ELSA, we can assume that

cross-sectional missingness is a result of a missing at random (MAR) mechanism. This

type of missingness can often be handled by employing specific algorithms or statistical

modelling approaches during inference, e.g., Expectation-Maximisation (EM) algorithm,

to produce valid parameter estimates (Molenberghs et al., 2014). Missing completely at

random (MCAR) would be unrealistic as we cannot be certain that missing responses

are all occurring completely randomly and that they are not related to some underlying

disability, poor health or consistent data collection error. In fact, MCAR requires that

missingness in a particular variable does not depend on the responses for any other

variable (Little, 1988), which as shown later in this chapter, is not the case for ELSA. At

the same time, we cannot be certain for a missing not at random (MNAR) mechanism
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as sometimes non-response can be indeed completely random and occur due to random

and indistinguishable reasons. In principle, a MNAR missingness mechanism is plausible

for the ELSA data, however, it is not possible to distinguish between MAR and MNAR

models from the observed data alone (Molenberghs et al., 2008). Hence, for identifiability

purposes, we pursue MAR. However, longitudinal missingness should be treated with

caution, especially since the sample interviewed by ELSA consists of middle aged or older

individuals who are prone to experience negative outcomes, such as serious illness or

death. Below, we give a detailed overview of the missingness mechanisms observed in the

ELSA data.

Cross-sectional missingness

Looking at each data wave separately, one can observe that there is not any specific

pattern in the missing values mechanism. Since most of the CAPI questions permit

“refusal” and “don’t know” answers, individuals have the chance to omit responding to

some of the questions. There are cases where respondents did not complete the entire

interview but the specific reasons explaining why this happened are not clear. In most of

the ELSA variables missing responses are below 25% with an exception in the biomarker

data where missing rates sometimes exceeded 30% due to errors during blood sample

collection, delivery and analysis, Figure A.1.

In the study, sometimes, cross-sectional missingness was minimised by the study

design itself or by performing imputation techniques. For instance, in the economics

module, non-response was minimised through a system of “unfolding brackets” allowing

respondents to make range-restricted estimates when the exact information was not

given. The bracketed values were then used as a range for subsequent imputation. In

Section 3.3.5, we give a more comprehensive view of the missing responses detected in

the subset of the ELSA data which was used for further analysis.

Drop-outs and mortality

Drop-outs are a major issue in longitudinal data, especially in surveys where the age

of individuals is advanced and there is a large chance of getting ill or dying. In ELSA,

the average age of individuals ranges between 65 and 71 years across the eight waves,

thus suggesting that the probability of participants experiencing adverse health outcomes
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which can make them incapable of completing the study is large. In fact, only 42.5%

completed all eight ELSA waves (around 4,800 individuals−mean age at wave 1: 61;

median age at wave 1: 59−, Figure 3.5A).

More than half of individuals from the initial sample became lost to follow-up by wave

8 (≈63%; mean and median age at wave 1 was 67). However, due to sample refreshments

the missingness rates in between subsequent waves remained balanced between ≈15%

and ≈20% (Figure 3.5B). Similar to the missing rate pattern of the initial sample, the

missing rates for the sample refreshments (waves 3, 4, 6 and 7) follow a steady increase

in future ELSA waves (Figure 3.5B). At this point, we should mention that individuals

sometimes left the study and re-entered a few years later. The missing rates reported

above refer to all individuals without accounting for any study re-entrants.

Mortality records are available in ELSA from wave 6 (2012/13), that is the “End of

Life” data. This is an interview attempted with a proxy respondent (usually a family

member) who could provide information on the circumstances of a deceased participant.

From the 2,886 core ELSA members known to have been deceased by 2012, interview data

were collected for 34% of them (Crawford and Mei, 2018). However, the data accessible

for analysis include information on only 240 deaths (mean death age: ≈79 years). The

primary causes of death is cancer and cardiovascular diseases (CVD), with the percentage

of deaths due to cancer reaching 34% whereas for deaths due to CVDs is close to 25%

(Figure 3.6a).
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Figure 3.6: (a) Death causes of 240 core ELSA members as reported in the “End of Life”
interview conducted between 2012 and 2013. (b) Last reported age distribution of the
240 deceased core ELSA members as reported in the “End of Life” interview.

3.3.5 Variables used to study healthy ageing and frailty trends

In this section, we present the specific variables that have been used to study age-varying

trends of frailty and the domains that constitute a healthy ageing phenotype. The

selection was made based on variable content, consistency in data collection, proportion

of cross-sectional missingness and research objectives. Apart from the demographic and

economic data, we employed variables describing key elements of physical, social, mental,

cognitive and metabolic health in older adults. For all variables presented below higher

scores indicate better health whereas lower scores indicate worse health.

Variables measuring metabolic and physical health

In ELSA, metabolic health was directly assessed through the NV by analysing participants’

blood samples and through the CAPI. We deployed biomarker, medication, cardiovascular

and chronic disease records to evaluate metabolic and physiological malfunctioning in

ELSA participants. Records on medication intake for controlling asthma, other lung

conditions, high cholesterol levels, high blood pressure and diabetes were extracted

from the CAPI data, along with anticoagulant, blood thinning medication records and

Warfarin intake records when applicable. Data on participants’ height and weight, blood

C-reactive protein, blood triglyceride, blood HDL cholesterol, systolic and diastolic blood

pressure, blood fibrinogen, glucose and glycated haemoglobin levels were also extracted
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from the NV data. Using participants’ up to date weight and height, we further calculated

participant Body Mass Index (BMI) to be used as a body composition measure. It was

computed by dividing individual weight by the square of individual height. Since height

information was missing at wave eight, we used height information from the preceding

waves to produce the corresponding BMI.

Cardiovascular disease, chronic disease and medication intake information were

encoded using binary indicators. For biomarker and body composition data, ordinal

indicators and tertiles were used similar to previous literature (Sanders et al., 2014).

Due to the high sensitivity of the blood samples and the poorer consent of the ELSA

participants, missing rates in biomarker data were higher compared to the rest of the

variables used for further analysis. As discussed previously, for some of the metabolic

health variables missing rates were approaching almost 68% in certain waves. For more

details on the specific variable coding and variable missing rates readers can see the

Supplementary Text A.1 in the Appendix.

Previous studies suggested that physical health can be described through a combi-

nation of five physical functions: endurance, balance, strength, dexterity and locomo-

tion (Lara et al., 2013a). Physical ability tests, such as chair rise test (Smith et al.,

2010), provide the appropriate markers for physical capability quantification. The ELSA

captures physical capability in two ways: through endurance, balance, locomotion and

strength tests conducted every four years during the NV interview; or, through the

questions referring to difficulties in ADLs, IADLs and mobility in the self-reported

questionnaire every two years. Although physical function tests better capturing physical

capability, they lack collection consistency–except for the grip strength test– resulting in

a high rate of missingness. Therefore, the self-completion questionnaire data were used

in future applications.

The self-completion questionnaire in ELSA distinguishes three domains of physical

functioning: ADLs or self-care activities; IADLs or activities necessary for independent

living in a community; and mobility (here, lower and upper-limb function). During the

interview, two cards were shown to respondents: the first was asking “Because of a health

problem, [do you/does he/does she] have difficulty doing any of the activities on this

card? Exclude any difficulties that you expect to last less than three months.” (difficulties

with mobility); and the second was asking “Here are a few more everyday activities.
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Please tell me if [you have/he has/she has] any difficulty with these because of a physical,

mental, emotional or memory problem. Again exclude any difficulties you expect to last

less than three months. Because of a health or memory problem, [do you/does he/does

she] have difficulty doing any of the activities on this card?” (difficulties with ADLs and

IADLs). The specific list of the depicted difficulties is given in Supplementary Text A.1

of the Appendix. All responses to ADLs, IADLs and Mobility questions were binary:

yes, if difficulty was present; and, no, if difficulty was absent. Since a positive answer

indicates worse health, reverse coding was used.

Overall physical health variables have low missing rates (less than 2% in every wave).

However, there were a number of difficulties in ADLs, IADLs and mobility that were

not questioned consistently. The most frequently recorded difficulties were climbing

several flights of stairs without resting and stooping, kneeling or crouching, whereas the

least frequent were difficulties in eating, taking medications and recognising when in

physical danger. Since all of those difficulty questions were created to detect different

levels of disability in older adults, we observed smaller variability in variables referring

to difficulties with ADLs and IADLs (easier tasks−most individuals answered no, i.e.,,

no difficulty is experienced) and larger variability in those referring to difficulties with

mobility (more demanding tasks).

Variables measuring cognitive function

Orientation in time, word-list learning (verbal learning and recall) and word-finding

(verbal-fluency) can be used as guides to examine the presence or severity of cognitive

impairment at old age (Lara et al., 2013a). From the ELSA data, we selected six

cognitive health variables (except from wave 6 where one variable was missing) which

were collected across most of the waves. The extracted data include memory-associated

questions, such as whether participants were able to correctly remember current date,

word recall immediately and after delay; memory illness records, such as dementia and

Alzheimer’s disease, and; a verbal fluency question (how many animals the participant

was able to mention in 1 minute). For questions related to verbal fluency and memory, we

used tertiles as cut-off points with lower scores indicating impaired cognitive functioning

(specific coding can be found in Supplementary Text A.1 of the Appendix). Dementia

and Alzheimer’s disease records have been used to minimise missing rates in the cognitive
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function variables by assigning worse scores to participants suffering from these diseases,

since analysis showed that often missing cases occurred due to incapability of participants

to respond caused by some cognitive disorder. Overall missing rates for cognitive function

variables were less than 5% at all waves.

Variables measuring social well-being

Social well-being is a controversial concept and its operationalisation is a challenging

task. Multiple metrics and questionnaires have been used in order to measure it in the

literature (Lara et al., 2013a). However, four main areas related to social well-being can

be identified and measured: social network, social functioning, perceived emotional and

social support, and sense of purpose. In ELSA, there were multiple questions focusing on

social relationships, networks, isolation and social support. In particular, social network

and perceived emotional and social support were assessed by asking participants whether

they have family, friends, children or partner; and, if yes, they were asked to provide more

information on the quality of relationship with them and contact frequency. Societal

involvement and social participation were assessed by collecting data on participation to

organisations, frequency of visiting museums and art galleries (cultural participation)

and frequency of going on holidays, reading newspaper or spending time in personal

hobbies. Finally, as an indicator of unhealthy social functioning responses on the UCLA

Loneliness Scale were used. For more information readers can look at Supplementary

Text A.1. of the Appendix. These data consisted of binary and ordinal variables. Missing

rates varied from 10% to less than 25% at all waves. The only exception was observed in

the third wave in variables referring to cultural participation where missing rates varied

between 18% and 28%. It is not clear though why missing rates are that much higher in

this particular wave so we suspect that this can be due to data collection errors.

Variables measuring psychological well-being

In ELSA, psychological well-being is measured through assessing evaluative−how satisfied

people are with their lives−, affective/hedonic−how people feel, refers to emotions−and

eudemonic−purpose of life−well-being (Steptoe et al., 2015). Therefore, the following

information was extracted from the ELSA data set: Satisfaction with Life Scale responses

[SWLS; ordinal responses; Diener et al. (1985)], CASP-19 questionnaire responses [ordinal
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responses; Hyde et al. (2003)] and CES-Depression Scale responses [binary responses;

(Radloff, 1977)]. Occurrence of any diagnosed psychiatric problem was also taken into

account as recorded in the ELSA health questionnaires. Missing rates varied from 3%

to 7% for the CES-D questionnaire and from 10% to 18% for the SWLS and CASP-19

questionnaires with higher missing rates being associated with the most recent waves.

As for the occurrence of diagnosed psychiatric conditions, the percentage varied from

≈10% to 25% with occurrence becoming larger as we come closer to present. For more

information on the exact questions included into the ELSA questionnaire, readers can

look at Supplementary Text A.1. of the Appendix.

3.3.6 Targeted multivariate exploratory data analysis

The amount of data selected for further analysis exceeds 100. To do some primary data

exploration and analysis we used Multiple Correspondence Analysis [MCA; Greenacre

and Blasius (2006)] and Factor Analysis [FA; Rummel (1988)]. Both are dimensionality

reduction techniques which allow to capture the variance in the observed variables

through a smaller set. MCA is used as an alternative of the Principal Component

Analysis [PCA, Dunteman (1989)], since PCA cannot be used for nominal data. Under

MCA, the multi-dimensional data is projected to a 2 or (sometimes) 3 dimensional

euclidean space to identify similarities between group of variables, individuals or variable

levels (the group of individuals associated with two similar variable levels are themselves

similar). Alternatively, FA was used to relate the variables under study to a small number

of latent factors through a pre-specified measurement model.

Multiple Correspondence Analysis

In this subsection we describe the results of the MCA performed on the extracted ELSA

data presented in Section 3.3.5. As a first step, we excluded variables with a cross-sectional

missing rate larger than 30% (including the metabolic health data). Two types of analysis

were performed since we detected patterns in the occurrence of missing responses: a full

data analysis (A) and a complete case analysis (B). MCA was performed cross-sectionally

for each ELSA wave separately. The total percentage of variance explained from the

first two dimensions in A was between 17.55% and 24.76%, whereas for B, it fluctuated

between 10.34% and 13.07% (Figures B.1 and B.2). In both analyses, dimension 1
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(a) (b)

Figure 3.7: (a) Multiple correspondence analysis eigenvalues for the first three dimensions.
Analysis was conducted on the full data. (b) Multiple correspondence analysis eigenvalues
for the first three dimensions. Analysis was conducted on the complete case data.

explained the larger percentage of variance. The eigenvalues for the first three dimensions

of both analysis are presented in Figure 3.7.

The variables with the larger and lower discriminatory power from both analysis

are depicted in Figures 3.8 and 3.9. Analysis A showed that variables measuring word

recalling ability after delay, social relationships with family members and friends and

respondent’s quality of life had the greatest discrimination power at all waves (square

correlation ratio2 greater than 0.25), whereas those measuring respondent’s blood glucose

levels, difficulties in ADLs, IADLs and mobility had the worst (square correlation ratio

less than 0.15). This discrimination power, though, might be due to the fact that often

individuals who have not responded in one of these questions, for instance, the quality

of life questions, they did not respond to the rest of them. In contrast to analysis A,

some of the variables measuring difficulties in ADLs, IADLs and mobility in the complete

case analysis were classified amongst those with the largest discrimination power, along

with those measuring depression symptoms and quality of life. Variables measuring

cognitive function and social relationships with children, partner, family members and

friends showed low discrimination power along with a small amount of variables measuring

difficulties in eating, making a telephone call and taking medication. These results suggest

that further variable screening and investigation are needed to identify the variables that

might distinguish individual ageing profiles.

2The square correlation ratio is defined as the ratio of the between group level sum of squares over
the total sum of squares; it determines the proportion of the total variability explained by the principal
components for a specific variable.
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(a) (b)

Figure 3.8: (a) Variables with the best discrimination power across the 8 ELSA waves
(loadings greater than 0.25). Analysis performed using the full data. (b) Variables with
the best discrimination power across the 8 ELSA waves (loadings greater than 0.15).
Analysis performed using only the complete cases.

(a) (b)

Figure 3.9: (a) Variables with the worst discrimination power across the 8 ELSA waves
(loadings smaller than 0.15). Analysis performed using the full data. (b) Variables with
the worst discrimination power across the 8 ELSA waves (loadings smaller than 0.15).
Analysis performed using only the complete cases.

A perceptual map of the categories of the variables investigated is illustrated in

Figure 3.10 (complete case analysis). The corresponding map for the full data analysis

is presented in Figure B.3, since we believe that it is not that informative apart from

the fact that the geometric distance between the missing and not missing categories of

variables in the two-dimensional plane suggests an association between missing responses

for some individuals (individuals who have not responded in one question they did not

respond to the rest of the questions). Different colours were used to show the quality of

each point for the indicated dimensions based on their squared cosine value (the lower its

value is the worse the quality). Overall, the quality of the perceptual map is low for most
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Figure 3.10: Perceptual map of categories of variables investigated. Different colours
were used to show the quality of each point for the indicated dimensions based on their
squared cosine value. Analysis was performed using only complete cases.

points suggesting that further analysis is needed to identify the group of variables that

will be informative in further analysis. Ageing profiles cannot be easily distinguished by

observing the association between the proximity of variable categories.

Multiple correspondence analysis revealed candidate variables for exclusion in future

analysis. Since the data consists of answers in groups of questions targeting specific traits

or behaviours, respondents who did not respond to one of the questions in one group

seem to present missing responses to the rest. This is shown from the clusters observed

in the results from analysis A. We conclude that we might consider excluding individuals

with a large number of missing values in a large part of the variables examined.

Exploratory and Confirmatory Factor Analysis

Exploratory Factor Analysis (EFA) was performed to determine the minimum number

of factors required to obtain a good fit to the data whilst maintaining meaningful

interpretation of the identified factors. All variables (or items) were allowed to load to all

factors and factors to be correlated with each other (oblique rotation). Furthermore, the

latent structure restricted to simple structure (i.e only one factor loading per observed

variable being non-zero) to ensure clear interpretation and simpler structure for later

stages. A Confirmatory Factor Analysis (CFA) step was, then, performed to confirm the

latent structure identified through the EFA step by restricting some factor loadings to

be constrained at zero. Goodness of fit was assessed through model fit indices: the Root
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Mean Square Error of Approximation (RMSEA), the Comparative Fit Index (CFI) and

the Tucker-Lewis Index (TLI). An acceptable fit is achieved if RMSEA<0.05, CFI>0.9

and TLI>0.95 (Hu and Bentler, 1999; Hooper et al., 2008; Kaiser, 1960).

The exact number of variables subject to exploration was 150. To decrease model

fit complexity and since the data are characterised by a natural structure (variables

measuring cognitive, mental, physical, metabolic and social health−let us call them

“domains”), we explored the underlying data substructure by handling data from each of

those domains separately. In addition, since our study objective is to examine health

changes as people are getting older, we repeatedly fit the factor model for all age points

in the data3. Individuals aged between 50 and 90 were examined. Data was pooled

across all waves. A large amount of variables were omitted from the EFA step due to

high correlations with other variables loading to the same factors (constructs) or due to

small loadings [less than 0.316, Tabachnick and Fidell (2001)] or cross-loadings. In total,

47 variables were selected for further analysis and 14 latent constructs were identified.

Table 3.2 shows an overall acceptable fit under the assumptions and constructs

specified in CFA step. Figures 3.11 and 3.12 show the estimated measurement models for

the first age group point through path diagrams. Circles represent the latent constructs

and rectangles represent the observed variables. Estimated factor loadings are given on

the arrows between the latent factors and observed variables. Since many of the variables

had more than 2 levels, estimated thresholds are not depicted for better readability.

Residual variances for the factors and observed responses are indicated by the dashed

arrows. Between factor correlation is given on the arrows between them.

Psychological health was measured through 15 variables and a combination of 5

sub-constructs were identified: pleasure, control, self-realisation, satisfaction with life and

negative effect. The first three latent factors were measured through items in the CASP-

19 questionnaire. The rest consist of variables from the SWLS and CES-D questionnaires.

For most constructs, factor loadings were relatively large (>0.8; Figure 3.11). Overall,

an acceptable fit was achieved for all age points (Table 3.2).

Episodic memory and executive function were identified as sub-constructs measured

through the cognitive function test results and the reported difficulties in managing

money, reading a map, taking medication and making phone calls as part of the cognitive

3We originally had 40 age points but we decreased them to 20 age points to facilitate EFA and CFA
implementation, i.e., t1 = [50, 51], t2 = [52, 53], etc.
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1.00

0.200.290.33

QLA QLB QLD

Control

0.43 0.59 0.65

1.00

0.580.650.81

QLQ QLR

Self-
realisation

0.86 0.62 0.85

1.00

0.620.25

QLS

0.27

SLA SLB SLC SLD SLE PSA PSB PSG PSH

Satisfaction 
with life

Negative 
effect

1.001.00

0.280.310.230.210.510.340.130.160.18

0.850.830.880.890.700.820.930.920.91
(0.75, 0.95)

(0.75, 0.91)

(0.68, 0.83)

(0.64, 0.87)

(0.86, 0.93)

(0.85, 0.93)

(0.88, 0.95)

(0.74, 0.84)

(0.55, 0.74)

(0.68, 0.89)

(0.55, 0.85)

(0.82, 0.95) (0.11, 0.57)

(0.02, 0.59)

(0.33, 0.76) (0.77, 0.93)

(0.35, 0.65)

(0.41, 0.85)

(0.48, 0.58)

(0.32, 0.57)

(0.37, 0.60)

(0.58, 0.68) (0.35, 0.76)

(0.66, 0.79)

(0.23, 0.80) (0.61, 0.69) (0.32, 0.46)

(0.35, 0.76)

0.79

0.43 0.47

0.51

0.64 0.350.290.47
0.58

0.61

Figure 3.11: Path diagram for the estimated measurement model of psychological health
for the first age point. Minimum and maximum values for each parameter estimate across
all age points are shown in blue. The variables shown include information on: QLJ-how
often individuals look forward to each day; QLK-how often individuals feel that their
life has meaning; QLL-how often individuals enjoy the things they do; QLA-how often
individuals feel age prevents them from doing things they like; QLB-how often individuals
feel what happens to them is out of their control; QLD-how often individuals feel left out
of things; QLQ-how often individuls feel satisfied with the way their life has turned out;
QLR-how often individuals feel that life is full of opportunities; QLS-how often individuls
feel the future looks good to them; SLA-whether they believe that in most ways their
life is close to their ideal; SLB-whether they believe that the conditions of their life
are excellent; SLC-whether they are satisfied with their life; SLD-whether, so far, they
have got the important things they want in life; SLE-whether they would not change
anything, if they could live their life again; PSA-whether individuals felt depressed much
of the time during past week; PSB-whether individuals felt that everything they did was
an effort; PSG-whether individuals felt sad during past week; PSH-whether individuals
could not get going much of the time during past week.
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health domain. An equality constraint was applied between items measuring episodic

memory to improve model fit. All factor loadings were very large (>0.82, Figure 3.12)

with small standard errors (<0.05).

Metabolic health and cardiovascular health were the latent constructs measured

through a combination of items in the NV tests and CVD CAPI questionnaire as part of

the general metabolic health domain. Smaller factor loadings with larger standard errors

were found. Finally, five sub-constructs were identified after analysing the social and

physical health data. In particular, a small amount of difficulties in mobility questions

were kept whilst most of the variables measuring difficulties in ADLs and IADLs were

omitted through the EFA step (small factor loadings). Social isolation, desire for social

change and cultural participation were the resulting sub-constructs after performing EFA

on the social health variables examined. An equality constraint was used to improve

model fit, resulting in large factor loadings with relatively small standard errors. Similar

results were found after performing EFA and CFA for the rest of the age points. In

fact, the narrow range of the estimated factor loadings and correlations in Figures 3.11

and 3.12 show consistent patterns of the latent structure for all domains over all age

points.

Cognitive
function

Physical
capability

Social
well-being

Psychological
well-being

Metabolic
health

RMSEA
0.004
[0, 0.026]

0.006
[0, 0.031]

0.028
[0, 0.046]

0.032
[0.007, 0.039]

0.032
[0.023, 0.039]

CFI
0.999
[0.997, 0.999]

0.999
[0.999, 1]

0.998
[0.995, 1]

0.997
[0.994, 1]

0.965
[0.933, 0.984]

TLI
1.003
[0.996, 1.058]

1
[0.998, 1.006]

0.997
[0.993, 1.004]

0.996
[0.993, 1]

0.951
[0.908, 0.978]

Table 3.2: The Root Mean Square Error of Approximation (RMSEA), the Comparative
Fit Index (CFI) and the Tucker-Lewis Index (TLI) mean values along with minimum and
maximum values in the brackets of CFA fit for the selected variables and the specified
sub-constructs that have been identified through EFA acros all age points.
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Figure 3.12: Path diagrams for the estimated measurement model of cognitive, metabolic, social, and physical health for the first age point. Minimum and maximum
values for each parameter estimate across all age points are shown in blue. A single parameter which was fixed to the same value across all age points to improve model fit is
shown in grey. The variables shown include information on: DMC-difficulty in making phone calls; DTM-difficulty in taking medications; DUM-dIfficulty in using a map;
DMM-difficulty in managing money; RI-ability to recall words immediately; RD-ability to recall words after delay; CHOL-cholesterol levels; HYPT-whether individual has
hypertension; DIAB-whether individual is diabetic; HA-whether individual has ever experience a heart attack; ANG-whether individual has angina; STR- whether individual
has ever experienced stroke; AHR-whether individual has abnormal heart rhythm; HM-whether individual has ever experienced heart murmur; CHF-whether individual has ever
experienced congestive heart failure; ISO-whether individual feels isolated; LO-whether individual feels left out; LC-whether individual feels lack of companionship; MTH-desire
of going more often to the theatre, a concert or the opera; MART-desire of going more often to art gallery or museum; MCIN-desire of going more often to the cinema;
TH-frequency of going to the theatre, a concert or the opera; ART-frequency of going to art gallery or museum; CIN-frequency of going to the cinema; OFS-difficulty in
climbing one flight of stairs without resting; SFS-difficulty in climbing several flights of stairs wihout resting; W100-difficulty in walking 100 yards; W10-difficulty in lifting or
carrying weights over 10 pounds; PUSH-difficulty in pulling or pushing large objects.
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3.4 Summary

In this chapter, we provided a detailed overview of the data handled across the different

studies of the current thesis. These data came from two major databases: the GDSC and

the ELSA. In the first part of the chapter, we presented the GDSC data, an online publicly

accessible resource for therapeutic biomarker discovery in cancer cells; we described the

specific data fraction extracted for study purposes in Chapter 4; and, we discussed the

performed data pre-processing. Subsequently, the ELSA data were presented where a

selection of statistical tools and background literature were used to explore and screen

the available information. This second part of the chapter gives a general overview of

the quality of the ELSA data and basic characteristics. The analysis performed is a

preliminary step towards revealing ageing trends over time. The ELSA sample was, first,

characterised through some simple descriptive statistics. We, then, focused on a fraction

of the ELSA variables which were selected based on relevance to ageing and health and

some additional quality criteria. The latent structure of the data was, finally, explored

and assessed using a number of multivariate statistical methods such as MCA, EFA and

CFA. We concluded that even though there was a large amount of available variables in

the data, due to overlapping information, it would be possible to select a subset of them

for further analysis without much loss of information.
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Chapter 4

A regularized functional

regression model enabling

transcriptome-wide

dosage-dependent association

study of cancer drug response

4.1 Introduction

As discussed in Chapter 2, cancer treatments can be highly toxic and frequently only a

subset of the patient population will benefit from a given treatment. Previous research

shows that tumour genetic makeup plays an important role in cancer drug sensitivity.

Therefore, we suspect that gene expression markers could be used as a decision aid for

treatment selection or dosage tuning.

With regards to the high-dimensional nature of genomic data sets, it is worth noting

that highly-complex data sets with non-stationary trends are not easily amenable to

analysis by classic parametric or semi-parametric mixed models. Such effects, e.g., the

effect of genes on drug response over different drug dosages (dose-varying effect), can

be examined using varying coefficient models which allow for the covariate effect to be

varying instead of constant (Hastie and Tibshirani, 1993). Methods to estimate varying
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covariate effects include global and local smoothing, e.g., kernel estimators (Wu et al.,

1998; Wu and Chiang, 2000), basis approximation (Huang et al., 2004) or penalized

splines (Qu and Li, 2006). Although non-parametric techniques can reduce modelling

biases (Fan et al., 2011), they often suffer from the “curse of dimensionality” (Geenens

et al., 2011). Inference in these models becomes impossible as the number of predictors

increases, and often selecting a smaller number of important variables for inclusion into

the model is clinically beneficial. Sparse regression has enabled a more flexible and

computationally “inexpensive” way of choosing the best subset of predictors (Song et al.,

2014). However, these methods cannot handle ultra-high dimensional problems without

losing statistical accuracy and algorithmic stability, since they handle all of the predictors

jointly. Consequently, there is a need of prior univariate tests focused on filtering out the

unimportant predictors by estimating the association of each predictor to the outcome

variable separately (Chu et al., 2016; Fan et al., 2011, 2014). The advantage of using

varying coefficient models along with a variable screening algorithm on genomic data sets

was first introduced to explore the effect of genetic mutations on lung function (Chu et al.,

2016). Recently, Wang et al. (2020) and Tansey et al. (2018) independently proposed

methods for modelling drug response curves via Gaussian processes and linking them to

biomarkers. In both cases, the authors did not use their models for dosage-dependent

inference of biomarker effects. Additionally, the highly non-linear neural network model

in Tansey et al. (2018) makes interpretation of biomarker effects challenging.

In this chapter, we extended the methodology of Chu et al. (2016) to the objective of

assessing the transcriptomic effect on anti-cancer drug response, where our coefficient

functions were allowed to vary with dosage. We developed a functional regression

framework to study the effectiveness of multiple anticancer agents applied in different

cancer cell lines under different dosage levels, adjusting for the transcriptomic profiles

of the cell lines under treatment. We considered a dose-varying coefficient model,

along with a two-stage variable selection method in order to detect and evaluate drug-

gene relationships, and then applied this method to data extracted from the GDSC

project (Yang et al., 2012). To compare and differentiate similar treatments, we examined

a case study of five BRAF targeted compounds under different dosages to almost 1,000

cancer cell lines. We used baseline gene expression measurements for the cancer cell

lines to investigate gene-drug response relationships for almost 18,000 genes. Gene
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rankings were obtained based on the estimated effects of the genes on the drug response.

The resulting model describes the whole dose response curve, rather than a summary

statistic of drug response (e.g., IC50), which allowed us to identify trends in the gene-drug

association at untested dose concentrations.

In the following section, we present an efficient two-stage variable selection algorithm

for complete repeated measures response data and high-dimensional covariates. This

consists of variable screening followed by sparse estimation of the dose-dependent covariate

functions. This allows for the dose-dependent associations to be taken into account while

selecting potential genetic markers influencing the drug response. In Section 4.3, we

present simulation study results. Section 4.4 discusses all study findings highlighting

their biological significance. Section 4.5 highlights the contributions of this work and

study implications. Finally, we summarise the key study findings in Section 4.6. Notice

that within the current chapter, symbols for genes are italicised, e.g., BRAF.

4.2 Methodology

Below, we introduce the two-stage variable selection algorithm used for selecting genes

that are associated to anti-cancer drug dose response in human cancer cell lines. We

present in great detail the considered varying coefficient model and each one of the

algorithm steps. Parameter tuning and software availability are also discussed.

4.2.1 A two-stage algorithm for identification of gene-drug associations

Non-parametric techniques are a great tool for reducing modelling bias and producing

data driven inference. However, flexible modelling techniques applied on high-dimensional

genomic data sets can often cause real problems in statistical inference. Sparse regression

techniques, such as the Least Absolute Shrinkage and Selection Operator (LASSO), can

be used as dimensionality reduction techniques, but cannot handle ultra-high dimensional

problems without introducing statistical inaccuracies, algorithmic instability and a huge

computational burden (Song et al., 2014). Hence, the need for a feature screening

algorithm which will marginally filter unimportant variables becomes essential. Below

we further explain the two-stage algorithm that has been built in order to detect and

explore dose-dependent gene-response associations.
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Let the repeated measures data {(dij , yij , zi, xi) : j = 1, . . . , ni, i = 1, . . . , n},

where yij is the response of the ith experimental unit (corresponds to a drug sensitivity

assay of a specific drug on a specific cell line) at the jth drug dosage level dij and zi along

with xi are the corresponding vectors of scalar (dose-invariant) covariates. The covariate

vector zi = (1, zi1, . . . , zip)
T is a low-dimensional vector of predictors that should be

included in the model, whereas xi = (xi1, xi2, . . . , xiG)T is a high-dimensional vector, i.e.,

17,737 gene expression measurements, that needs to be screened. We assumed that only

a small number of x-variables (in our case, genes) are truly associated with the response

while most of them are expected to be irrelevant (sparsity assumption).

To explore potential dose-varying effects between the covariates and the drug response,

we consider the following varying coefficient model:

yij =

p∑
k=0

zikβk(dij) +
G∑
g=1

xigγg(dij) + εij (4.1)

where {βk(·), k = 0, . . . , p} and {γg(·), g = 1, . . . , G} are smooth functions of dosage level

d ∈ D , where D is a closed and bounded interval of R. The errors εij were assumed to

be independent across subjects and potentially dependent within the same subject with

conditional mean equal to zero and variance Var(ε) = σ2(d) = V (d).

Methods for estimating the coefficient functions in Eq. 4.1 include local and global

smoothing methods, such as kernel smoothing, local polynomial smoothing, basis approx-

imation smoothing etc. For computational convenience, in this application we used basis

approximation smoothing via B-splines.

Let the sets of basis functions {Blk(·) : l = 1, . . . , Lk} and {B′lg(·) : l = 1, . . . , Lg}

and constants {ζlk : l = 1, . . . , Lk} and {ηlg : l = 1, . . . , Lg} where k = 0, . . . , p and

g = 1, . . . , G such that, ∀d ∈ D , βk(d) and γg(d) can be approximated by the expansion

βk(·) ≈
Lk∑
l=1

ζlkBlk(·) for k = 0, . . . , p (4.2)

γg(·) ≈
Lg∑
l=1

ηlgB
′
lg(·) for g = 1, . . . , G. (4.3)

Substituting βk(·) and γg(·) of Eq. 4.1 with Eq. 4.2 and Eq. 4.3, we approximated Eq. 4.1
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by

yij ≈
p∑

k=0

zik

Lk∑
l=1

ζlkBlk(dij) +

G∑
g=1

xig

Lg∑
l=1

ηlgB
′
lg(dij) + εij (4.4)

If Bk(·) and B′g(·) are groups of B-spline basis functions of degree qk and qg respectively,

and δ0 < δ1 < . . . < δKk < δKk+1 and δ0 < δ1 < . . . < δKg < δKg+1 are the corresponding

knots, then Lk = Kk + qk and Lg = Kg + qg.

Using the approximation Eq. 4.4, the coefficients ζ = (ζ0, ζ1, . . . , ζp)
T and η =

(η1, η2, . . . , ηG)T can be estimated by minimizing the squared error

`w((ζ,η)T ) =

n∑
i=1

ni∑
j=1

wij

[
yij −

p∑
k=0

zik

Kk∑
l=1

ζlkBlk(dij)−
G∑
g=1

xig

Lg∑
l=1

ηlgB
′
lg(dij)

]2

(4.5)

where wij are known non-negative weights.

In cases where p+G >> n though, minimisation of Eq. 4.5 is infeasible. Our aim

was to identify factors of the covariate vector x = (x1,x2, . . . ,xG)T (genes) that are truly

associated with the response (cancer cell line sensitivity to the drug). In addition, we

wanted to explore potential dose-varying effects on the drug response.

We make the following sparsity assumption: any valid solution γ̂(d) will have γ̂g(d) =

0, ∀d ∈ D for the majority of components g. To detect non-zero coefficient functions, we

applied a two-stage approach which incorporated a variable screening step and a further

variable selection step.

Screening

The sparsity assumption applies only to components of x, the high-dimensional covariate

vector in Eq. 4.1.

Let the set of indices

M0 = {1 ≤ g ≤ G : ||γg(·)||2 > 0} (4.6)

where || · ||2 is the L2-norm. In order to rank the different components of x, we fitted
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the marginal non-parametric regression model for the gth x-predictor:

yij ≈
p∑

k=0

zik

Kk∑
l=1

ζ
(g)
lk B

(g)
lk (dij) + xig

Lg∑
l=1

η
(g)
lg B

(g)′
lg (dij) + ε

(g)
ij (4.7)

where: {B(g)
lk (·) : l = 1, . . . , Lk} and {B(g)′

lg (·) : l = 1, . . . , Lg} are sets of coefficient

functions; {ζ(g)
lk : l = 1, . . . , Lk} and {η(g)

lg : l = 1, . . . , Lg} are constants to be estimated,

k = 0, . . . , p; and, ε(g) is the error term similar to Eq. 4.4. We then computed the

following weighted mean squared error for each g ∈ {1, . . . , G},

ûg =
1

n

n∑
i=1

(yi − ŷ
(g)
i )TWi(yi − ŷ

(g)
i ) (4.8)

to quantify the importance of the gth variable. Here,

W i =
1

ni
V̂
− 1

2
i R−1

i (φ̂)V̂
− 1

2
i (4.9)

where V̂ i is the ni × ni diagonal matrix consisting of the dose-varying variance

V̂ i =



V̂ (di1) 0 . . . 0

0 V̂ (di2) . . . 0

...
...

. . .
...

0 0 . . . V̂ (dini)


(4.10)

and Ri(φ) = (Rjk) the ni × ni working correlation matrix for the ith subject. By φ, we

denoted the s× 1 vector that fully characterizes the correlation structure. The estimate

of φ, φ̂, was obtained by taking the moment estimators for the parameters φ in the

correlation structure based on the residuals obtained from fitting the following model

yij =

p∑
k=0

zikβk(dij) + εij where i = 1, . . . , n, j = 1, . . . , ni. (4.11)

The variance function V (d) in Eq. 4.10 was estimated using techniques described in Chu

et al. (2016).

After having obtained {ûg : g = 1, . . . , G}, we sorted gene utilities in an increasing

order, where smaller ûg values indicate stronger marginal associations. The x-predictors
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included in the screened submodel are, then, given by

M̂τn = {1 ≤ g ≤ G : ûg ranks among the first τn(ν)} (4.12)

where τn(ν) corresponds to the size of the submodel which is chosen to be smaller than

the sample size n, i.e., τn(ν) = ν[ n
log(n) ] with ν ∈ {1, 2, 3, . . .}.

Variable selection using a group SCAD (gSCAD) penalty

Screening algorithms aim to discard all unimportant variables but tend to be conservative.

In order to preserve only the most important x-predictors in the final model, we considered

a model including the first τn(ν) outranked genes and we applied a gSCAD (group

Smoothly Clipped Absolute Deviation) penalty by minimising the following criterion:

1

2

n∑
i=1

ni∑
j=1

wij

{
yij −

p∑
k=0

zik

Lk∑
l=1

ζlkBlk(dij)− (4.13)

∑
g∈M̂τn

xig

Lg∑
l=1

ηlgB
′
lg(dij)

}2

+
∑

g∈M̂τn

pλ,α(||ηg||) (4.14)

where

pλ,α(u) =


λu if 0 ≤ u ≤ λ

− (u2−2αλu+λ2)
2(α−1) if λ ≤ u ≤ αλ

(α+1)λ2

2 if u ≥ αλ

,

α is a scale parameter, λ controls for the penalty size and || · || is the Euclidean `2-norm.

At this point, note that grouping is applied for the coefficients ηg that correspond to

the same coefficient function. In addition, in order to reduce the bias introduced when

applying a LASSO penalty, we alternatively chose the SCAD, which coincides with the

LASSO until u = λ, then transits to a quadratic function until u = αλ and then it

remains constant ∀u > αλ, meaning that it retains the penalization and bias rates of the

LASSO for small coefficients but at the same time relaxes the rate of penalization as the

absolute value of the coefficients increases.

R version 3.6.3 was used to perform all analyses within the current chapter. Both
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the simulation study and the data application were performed using The High End

Computing Cluster at Lancaster University. R code was developed to implement the

marginal screening, whereas R package grpreg was used for the implementation of the

gSCAD step. doParallel and foreach R packages were also used to improve computational

times of the marginal screening step of the proposed algorithm. Analysis of the GDSC1

data takes approximately five hours to complete. Code for algorithm implementation is

available on GitHub as an R package (https://github.com/koukoulEv/fbioSelect).

4.2.2 Tuning parameter selection

For the GDSC data application, we used knots placed at the median of the observed data

values along with cubic B-splines with 1 interior knot. The suitable number of interior

knots was calculated using the formula Nn = [n
1

2p+3 ] proposed and applied by Huang

et al. (2004); Xue et al. (2010) and Xue and Qu (2012). Due to the computational burden

this would add, we did not apply cross-validation.

As for the screening threshold τn, its magnitude could be determined by the fraction

ν[ n
log(n) ], ν ∈ {1, 2, 3, . . .}. We conducted a pilot simulation study in order to decide

the most appropriate size (for further details see Section 4.3). We also considered an

automated algorithm for its selection [Greedy Iterative Non-parametric Independence

Screening (Greedy INIS); Fan et al. (2011)]. Finally, the penalty size for the gSCAD step

λ was determined using a 5-fold cross-validation.

4.3 Simulation study

Monte Carlo simulations were conducted to examine the ability of our model to detect

the genes that are truly associated with the drug response. Due to the computational

burden associated with a simulation of the same scale as the original GDSC1 dataset, we

conducted a simulation using a smaller simulated dataset. This had a key role in tuning

model parameters and simultaneously assessing model goodness-of-fit. Responses over

different dosage levels were generated based on a subset of genes, the corresponding low-

dimensional GDSC data covariates (drug and cancer type) and some prespecified smooth

coefficient functions. In particular, within each iteration, a random sample without

replacement of size ns = [p1n] experimental units and Gs = [p1G] genes (p1 ∈ [0, 1]) is
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extracted from the original data set. Responses over different dosage levels are then

generated based on a subset of Gs, G
A
s = [p2Gs], and some low-dimensional covariates

from the original GDSC data (drug type and cancer cell line histology):

ysij =

p∑
k=0

zikβk(dij) +

GAs∑
g=1

xigγg(dij) + εij with i = 1, . . . , ns, j = 1, . . . , ni (4.15)

where {zik : i = 1, . . . , ns, k = 0, . . . , p} are the dose-invariant low-dimensional covariates

and {xig : i = 1, . . . , ns, g = 1, . . . , GAs } represent the genetic information truly associated

with the drug response (active genes). Coefficient functions {βk(d) : k = 0, . . . , p} and

{γg(d) : g = 1, . . . , GAs } are, then defined as follows:

β0(d) = 15 + 20 sin

(
30πd

15

)
, β1(d) = 15 + 20 cos

(
30πd

15

)

β2(d) = 2− 3 cos

(
π(30d− 25)

15

)
, β3(d) = 2− 3 sin

(
π(30d− 25)

15

)

β4(d) = 6− 0.2(30d)2, β5(d) = −4
(20− 30d)3

2000
, β6(d) = sin(0.3π) + 0.4d2

β7(d) = 3 +
(1− d)2

5
, β8(d) = 0.1 exp

(
−(1− d)2

2

)
, β9(d) = 0.1 exp

(
(1− d)2

2

)

β10(d) = sin

(
πd

15

)
+ cos

(
πd

15

)
, β11(d) = 1 + 52d+ 4d2, β12(d) = d3 − 1

γg(d) = (d+ 1)
rg
100 where rg ∼ Unif(1, GAs ), ∀g ∈ GAs .

For any g ∈ GIs, G
I
s = Gs \ GAs we assume γg(d) = 0. We, also, consider a ratio-

nal quadratic covariance structure Cov(εi(d), εi(s)) = σ2 1

1+(
|d−s|
r

)2
and a dose-varying

variance V (d) = σ2 sin2 d
1+( cos d

10
)2

+ sin d
5 where σ2 = 0.001.

We set p1 = 0.05 resulting in an analytic sample of 190 experimental units and
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886 genes. We considered three different scenarios for the number of active genes:

p2 ∈ {0.1, 0.05} and GAs = 1. We repeatedly sampled experimental units and genes, and

generated responses over five or nine dosage levels as described above. The performance

of the employed methodology has been assessed based on 1,000 simulations using different

screening thresholds [τn(ν) = [ n
log(n) ], τn(ν) = [ 2n

log(n) ] and τn(ν) chosen using the

greedy-INIS algorithm (Fan et al., 2011)] and estimated covariance structure scenarios

(independence and rational quadratic covariance structure). Cubic B-splines and knots

placed at the median of the observed data values have been used for estimating the

coefficient functions. To evaluate the performance of the proposed procedure we used

the following summary measures: TP−number of genes correctly identified as active;

FP−number of the genes incorrectly identified as active; TN−number of the genes

correctly identified as inactive; FN−number of the genes incorrectly identified as inactive.

Our method has utility for drug development if it robustly identifies genes truly associ-

ated with drug response. Figure 4.1 illustrates gene selection results from simulated drug

responses that were generated by varying numbers of gene predictors. Our simulation

shows that the sparser the vector of high-dimensional predictors, the better the perfor-

mance of the algorithm. This result is justified by the presence of sparsity assumption

which needs to be satisfied in both stages of the algorithm. As for the screening threshold

selection, we observed that higher thresholds demonstrate better algorithm performance.

The largest differences were observed when the signal to noise ratio increases whereas

the automatic screening threshold selection [Greedy-INIS algorithm; Fan et al. (2011)]

seems not to be efficient enough. Small differences were observed when the covariance

structure is not correctly specified, however, larger differences are expected when it comes

to prediction accuracy. There were a few cases where the employed algorithm failed to

identify the truly associated genes; however, this happened to less than 0.01% of the

simulations.

To sum up, a screening threshold of size [ 2n
log(n) ] and regression weights adjusted for

the covariance structure of the data were identified as the scenario where our method

reached its maximum accuracy. Consequently, for the GDSC application, we chose the

screening threshold to be the maximum possible, i.e., 923 genes derived from the formula

[ 2n
log(n) ], and weights derived by assuming a rational quadratic covariance structure for

the repeated measures.
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Figure 4.1: Accuracy of detecting drug-gene associations using simulated data under
different screening thresholds, covariance structure andGAs scenarios. Screening thresholds
considered were: n

log(n) ; 2n
log(n) , and; a threshold proposed by applying the automated

Greedy-INIS algorithm (Fan et al., 2011)−here, n is the number of experimental units
in the data. The covariance structure scenarios were independence (IND) and rational
quadratic (RQ). The number of active genes scenarios were: either one single gene; 0.5%
of the genes in the data, or; 1% of the genes in the data.

4.4 Application to the GDSC data

In the previous section, we presented simulation study results which were critical for

algorithm implementation. Below, we present the results and biological interpretation

of the findings, along with additional analysis to assess the biological importance and

relevance. This section is organised as follows. In the first two paragraphs (4.4.1 and 4.4.2),

we present the results after model implementation using the GDSC1 and GDSC2 data

(both overviewed in Chapter 3), and we assess the biological significance of our findings

by grouping the selected genes into common functional classes or pathways. In the third

paragraph (4.4.3), we applied the variable selection algorithm to a data subset containing

only cell lines with mutations activating resistance mechanisms to BRAF inhibitors to

further highlight our method’s utility. Finally, in Paragraph 4.4.4, we assess the predictive

power of the proposed methodology as opposed to current state-of-the-art methods in

pharmacogenetics.

4.4.1 Dose-dependent associations with gene expression in a large-

scale drug sensitivity assay

We applied the two stage variable selection algorithm under the dose-varying coefficient

model framework described above. Gene rankings and predicted mean drug effects over

different dosage levels were obtained. Our algorithm identified 230 candidate genes

associated with drug response. The effect of each of those genes was assessed with respect
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to:

1. the area under the estimated coefficient curve (AUC) and its corresponding standard

deviation (estimated using bootstrapping);

2. the effect on cell survival (overall positive, overall negative, mixed);

3. Spearman correlation between the coefficient function value and the dosage level;

4. the mean fold change of the expression of cell lines carrying BRAF mutations with

respect to wild type; and,

5. the protein-protein interaction network distance between the BRAF gene and the

selected genes using the Omnipath database (Türei et al., 2016).

The 230 genes were ranked based on the estimated AUC value (Table C.1), and the

top 30 genes were highlighted for further analysis (Table 4.1). The higher the AUC, the

larger the effect of the gene on the drug response. The overall effect on cell survival

can be either positive, negative or vary over the different dosage levels as determined by

the range of the estimated coefficient function. Spearman’s rank correlation was used

as an indicator of the coefficient function’s monotonicity by characterising the progress

of the genetic effect over different dosage levels. For instance, high expression of the

C3orf58 gene at baseline has a positive effect on cancer cell survival, which becomes

stronger as the dosage increases (Spearman correlation=0.922). In other words, high

expression of this gene can be an indicator of drug resistant cell lines. On the other

hand, the DLC1 gene has an overall decreasing and negative effect on cancer cell survival

(Spearman correlation=-0.928) which suggested that as the dosage increases, higher

baseline expression of this gene can indicate higher drug sensitivity at higher dosage.

Elevated expression of DLC1 has been observed in melanoma and is a well known tumour

suppressor that could be a novel marker of BRAF inhibition (Yang et al., 2020). Finally,

in cases where the overall effect varies (changes between positive and negative), the

effect of gene expression on the drug response depends on the drug dosage. In particular,

the effect of DLX6 increases and then decreases at higher dosages (Figure 4.2). Given

the biological and technical variation in drug screens, we should treat the mean effect

estimates with caution and consider the confidence intervals of the coefficient functions
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in order to derive conclusions about the exact effect of the selected genes on the dose

response (Figure 4.2).

Gene Name Area SD Sign
Spearman’s
Correlation

Mean fold change
in BRAF mutant

vs wild-type cell lines

Protein-protein
interaction network
distance to BRAF

KIR3DL1 0.370 0.107 - -0.874 0.978 3

CHST11 0.257 0.092 - -0.817 0.899 NI

APOC1P1 0.247 0.09 - -0.918 1.190 NI

PLEKHA6 0.239 0.086 - -0.908 1.037 3

PPM1F 0.223 0.068 + 0.910 0.883 3

BFSP1 0.222 0.074 - -0.800 1.217 NI

PPP1R3A 0.217 0.082 + 0.774 1.078 3

C16orf87 0.207 0.087 + 0.851 0.977 NI

PARVA 0.203 0.081 + 0.890 0.984 2

SLC39A13 0.202 0.079 - -0.461 1.055 NI

UCN2 0.198 0.07 - -0.928 0.979 NI

STMN3 0.198 0.087 + 0.834 1.201 2

RNF130 0.197 0.083 - -0.927 1.153 NI

C3orf58 0.196 0.076 + 0.922 1.133 NI

CXXC4 0.188 0.079 + 0.866 0.995 NI

THBD 0.179 0.093 0 -0.967 1.231 4

SIRT3 0.173 0.066 - -0.760 1.013 3

PLAT 0.172 0.092 - -0.878 1.322 4

MPPED1 0.168 0.066 + 0.430 0.978 NI

INSL3 0.162 0.068 - -0.973 0.965 NI

FAM163A 0.159 0.078 - -0.983 1.106 NI

CNIH3 0.153 0.08 - -0.918 0.938 NI

GJA3 0.153 0.067 0 -0.940 0.933 NI

BTG2 0.152 0.078 + 0.959 1.035 2

DLX6 0.152 0.059 0 0.686 0.987 NI

DLC1 0.151 0.053 - -0.928 0.974 3

GAPDHS 0.150 0.077 + 0.886 1.232 NI

JAG2 0.149 0.069 - -0.994 0.981 3

SMOX 0.146 0.057 0 0.816 1.070 NI

ZMYND8 0.145 0.091 + 0.907 1.020 3

Table 4.1: Gene rankings of the top 30 selected genes based on the magnitude of the
genetic effect on drug response. A positive (+) sign translates to a positive effect on cell
survival after drug administration, a negative (-) sign translates to a negative effect on
cell survival and a mixed (0) effect translates to a varying effect on cell survival which
depends on drug dosage. Spearman correlation is calculated between drug dosage and
gene estimated coefficient function values as an indicator of the magnitude change of the
gene effect over the increasing dosage. Area corresponds to the area under the estimated
coefficient curve and the SD corresponds to the standard deviation of the area based
on bootstrapping. Mean fold change is calculated between the selected gene expression
values of the cell lines carrying BRAF mutations with respect to wild type. Protein-
protein interaction network distance is computed based on the shortest interaction path
between the BRAF gene and each of the selected genes. Here, NI denotes absence of any
interaction.

Coefficient function estimates provide a lot of information about the dosage, cancer
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Figure 4.2: Estimated coefficient functions for the low-dimensional predictors and three
of the selected genes. Estimated coefficient functions for the intercept, different drugs,
tissue of origin and three of the selected genes along with 95% bootstrap confidence
intervals. Baseline corresponds to BRAF mutant cell lines treated with Dabrafenib in
skin tumours.

type and genetic effects on drug response. Figure 4.2 illustrates the estimated coefficient

functions for different drugs, cancer types and three genes in relation to the model

intercept, Dabrafenib response in BRAF mutant cell lines originating from the skin

(melanoma). Except from HG6-64-1, all other BRAF inhibitors (AZ628, SB590885

and PLX4720) showed no additional effect compared to the intercept. Similar patterns

can be observed for cancer cell lines coming from most of the tissues examined. This

result indicates that the examined drugs may have similar or worse behaviour over the

different dosages for most of the examined cancer types. We observed greater efficacy

(negative values of the coefficient function) for cell lines originating from the endocrine

system, autonomic ganglia and heamatopoietic and lymphoid tissues at lower dosages.
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The observed effect in endocrine system cell lines reflects the Dabrafenib responses

observed in anaplastic thyroid cancer patients (Subbiah et al., 2018). Interestingly, the

drug Trametinib, taken in combination with Dabrafenib is a MEK inhibitor, and genes

interacting with MEK (MAP2K1 ) were selected features from our model (Figure 4.3A).

Together these results provide important insights into the effectiveness of the five BRAF

targeted drugs examined on different cancer types, highlighting the potential for effective

treatment of a wide range of cancers given the tumour genetic characteristics.

Figure 4.3: Protein-protein interaction network for the genes selected from the two-stage
variable selection algorithm. (A) Undirected protein-protein interaction network between
the 230 selected (blue) and the BRAF (red) genes (full scale analysis). (B) Undirected
protein-protein interaction network between the 65 genes selected from the two-stage
variable selection algorithm for the cell lines resistant to BRAF inhibitors (blue) and the
BRAF (red) gene. In both panels genes depicted with black are the interaction mediators.
Common mediators include the HRAS, MAPK1, MAP2K1 and BAD genes.

Since the BRAF gene is the target of the drugs, mean fold change and protein-protein

interaction network distance were used to examine whether and how the selected genes

are related to the target of the inhibition. From the selected genes, 120 genes had a

mean fold change greater than 1 whereas the rest had a mean fold change between 1 and

0.792. Some of the genes with the highest mean fold change of BRAF mutation were

PSMC3IP, KIF3C, UBE2Q2, SERPIND1 and PLAT, however only PLAT is displayed

in Table 4.1. From the genes identified through the two-stage algorithm, 35% of them

encode proteins interacting with the BRAF gene, though none of them directly. Most
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of the selected genes interact with the BRAF gene via pathways mediated by HRAS,

MAPK1 (ERK ), MAP2K1 (MEK ) and BAD (Figure 4.3A).

Since HRAS mutations are frequent in patients receiving BRAF targeted thera-

pies (Sharma, 2012), we examined the mean estimated trajectory over different dosages

under treatment with BRAF inhibitors tested in six cancer cell lines with and without

BRAF and HRAS mutations (Figure 4.4). As stated previously, we observed that in

most cases HG6-64-1 seems to be the most effective drug. The estimated coefficient

functions facilitate drug examination and response prediction under the different dosages.

In some instances, we observed different drugs having similar behaviour for lower drug

dosages and larger divergence for higher dosages. In most cases, regardless of the cell

line origin, our method successfully estimates the expected survival rates of the cancer

cell lines for the different drugs given their gene expression information.

Figure 4.4: Estimated mean drug response trajectories for six cancer cell lines with BRAF
and HRAS mutations. Observed responses (points) and estimated mean trajectory (lines)
of cell concentration for cancer cell lines with and without BRAF and HRAS mutations
after treatment with the five anticancer compounds examined.

For validation purposes, we performed the same analysis using the independently-

generated GDSC2 data set, with a different set of drugs. Note that the drug set in

GDSC2 only partially overlaps with the one used in GDSC1. The results are reported in

Figure B.4, and show similar properties to the analysis of the BRAF drugs in Figure 4.4.

As the GDSC2 dose responses are produced from independently-generated experiments,
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the measured drug response is different for some of the drug-cell line combinations.

We observe some divergences between GDSC1 and GDCS2 estimated trajectories for

Dabrafenib and PLX-4720, which can be explained due to measurement error in the

GDSC experiments themselves.

4.4.2 Variable selection algorithm identifies cancer pathways associ-

ated with BRAF inhibitor response

Using our functional regression approach, we identified 230 genes that were selected via

the SCAD step (observed gene set). We used the Enrichr (Chen et al., 2013; Kuleshov

et al., 2016) and WikiPathways (Slenter et al., 2017) databases to see if the selected genes

can be grouped into common functional classes or pathways. In total, 183 were identified,

of which 11 were statistically significant at 5% level, including apoptosis modulation,

NOTCH1 regulation, and MAPK signalling (Table C.2). The model identified genes

(IKBKB, RASGRF1, DUSP16, DUSP8, DUSP6, MAPT and IL1R2 ) downstream of the

MAPK signalling pathway targeted by BRAF inhibitors.

Previous studies of these pathways have found associations with tumourgenesis and

cancer treatment (Rangaswami et al., 2006; Sharma and Jha, 2016; Whyte et al., 2009;

Mortezaee et al., 2019). Genes in more than one of these pathways include IKBKB, PLAT,

IL1R2 and PDPK1. The IKB kinase composed of IKBKB had previously been suggested

as a marker of sensitivity for combination therapy with BRAF inhibitors (Colomer et al.,

2019). Taken together, these results suggest that the identified associations between

the drug response and the observed genes may reveal new predictive markers of tumour

response to the examined BRAF inhibitors.

In addition to the pathway enrichment analysis, we used the Molecular Signatures

Database [MSigDB database v7.0 updated August 2019; Subramanian et al. (2005)]

to compute overlaps between the observed gene set and known oncogenic gene sets.

Figure 4.5A and Table C.3 display the 29 overlaps found. Interestingly, we identified

three instances where the observed gene set significantly overlapped with gene sets

over-expressing an oncogenic form of the KRAS gene.

We further explored potential biologically relevant pathways using the Reactome

database (Wilke, 2012; Jassal et al., 2020). More than 40 enriched pathways were

identified at a 5% significance level. The top 40 pathways are depicted in Figure 4.6 along
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Figure 4.5: Overlaps between the observed gene set and oncogenic signatures in the
Molecular Signatures Database (full data analysis); signalling pathways enriched for
genes predictive of BRAF inhibitor response (resistant cell lines). (A) Full gene set
names can be found in Table C.3. Overlaps have been detected using gene set enrichment
analysis performed using a hypergeometric distribution. The false discovery rate analog
of the hypergeometric p-value is displayed after correction for multiple hypothesis testing
according to Benjamini and Hochberg (1995). (B) Top 20 enriched signalling pathways
along with the adjusted p-values and the number of overlapping genes obtained after
pathway enrichment analysis to the resistant cell line analysis results (for the full list of
the pathways identified see Table C.6).

with the pathway-gene network of the top 5 pathways (for the full list, see Table C.4).

Interestingly, axon guidance and VEGF signalling were among the enriched pathways,

confirming relevance of the selected genes to the intended role of the examined compounds,

since BRAF kinase activity drives axon growth in the central nervous system (O’Donovan

et al., 2014) and VEGF blockade has potential anti-tumour effects when combined with

BRAF inhibitors (Comunanza et al., 2017). Note that axon growth has not, thus far,

been directly implicated in BRAF inhibitor activity, and, consequently, our analysis

provides important evidence towards this theory.
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Figure 4.6: Pathway enrichment analysis using the Reactome database. (A) Top 40
enriched signalling pathways along with the adjusted p-values. For the full list, see
Table C.4. (B) Pathway-gene network of the top 5 enriched signalling pathways as found
using Reactome (Wilke, 2012; Jassal et al., 2020).

4.4.3 Identifying dose-dependent genes in drug-resistance conditions

Acquired resistance to BRAF inhibitors is often observed in the clinic (Solit and Rosen,

2011). To further examine the utility of the employed methodology, we applied the

variable selection algorithm to a data subset containing only cell lines with mutations

activating resistance mechanisms to BRAF inhibitors (Manzano et al., 2016). Out of the

951 cell lines in the data, 191 had some mutation in any of the following: RAC1 gene,

NRAS gene, cnaPANCAN44 or cnaPANCAN315. We identified 65 genes associated

with dose response, though none of them were directly associated with the MAPK/ERK

pathway. However, from these, 25 genes have been found to indirectly interact with

the BRAF gene (Figure 4.3B) and 21 to overlap with three oncogenic gene sets in the

Molecular Signatures Database (genes down-regulated in NCI-60 panel of cell lines with
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mutated TP53 ; genes up-regulated in Sez-4 cells (T lymphocyte) that were first starved

of IL2 and then stimulated with IL21, and; genes down-regulated in mouse fibroblasts

over-expressing E2F1 gene; Table C.5). Finally, we found 34 pathways enriched for genes

predicting drug response of the mutated cell lines to the examined BRAF inhibitors, of

which the top 20 are depicted in Figure 4.5B (for the full list of the pathways identified

see Table C.6).

Table 4.2 presents gene rankings based on the AUC and the overall coefficient function

effect (sign) for the 42 genes in either the enriched pathways, the three oncogenic gene

sets discussed above or the protein-protein interaction network with the BRAF gene (full

list available in Table C.7). Eight of the selected genes in the current implementation

were also selected from the algorithm implemented on the full data: ASB9, PRSS33,

GJA3, PLAT, KLF9, BFSP1, MTARC1 and UCN2.

4.4.4 Predictive performance of dose-dependent models

As discussed above, the employed methodology gives a good overview of the baseline

genetic effect on drug response. We assessed the overall predictive performance of our

method using 10-fold cross validation under two different scenarios. For the first, we split

the data into training and test set holding out the experimental units (cancer cell line-drug

combinations) and for the second, holding out cancer cell lines. The Mean Absolute

Error (MAE) for both cases was around 0.12. Our analysis showed robust cross-validated

performance when it comes to predicting sensitivity to the administered drugs, as shown in

Figure B.5 which displays the correlation between predicted and true response. This result

was further validated by repeating the analysis on the independently-generated GDSC2

data set, using a different set of drugs (Figure B.6), which demonstrated comparable

predictive performance.

Predictive accuracy for the dose response curves was evaluated under four different

sub-scenarios: prediction of the most effective drug-dosage combination for the 951 cell

lines in the data set; prediction of the most effective drug given a cell line; prediction

of the most effective dosage given treatment with a particular drug and prediction of

the most effective dosage range given treatment with a drug (Table 4.3). The proposed

model performs well when it comes to predicting the most effective drug or dosage range

(≈79% in both scenarios). Results are less reliable when it comes to prediction of the
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Gene Name Area SD Sign
Spearman

Correlation

Mean fold change
in BRAF mutant

vs wild-type cell lines

Protein-protein
interaction network
distance to BRAF

MYO5A 0.531 0.261 + 0.955 1.358 4

S100A1 0.488 0.189 + 0.812 1.263 NI

GPNMB 0.424 0.196 + 1 1.169 3

ACP5 0.359 0.149 - -0.998 1.039 NI

FCGR2A 0.341 0.158 - -0.588 1.25 3

CITED1 0.28 0.348 0 -0.603 1.63 3

SPRY4 0.274 0.127 - -0.611 1.228 2

CD44 0.239 0.164 + 0.868 1.413 3

RAP2B 0.236 0.179 0 0.927 1.254 NI

KCNJ13 0.205 0.094 0 -0.604 1.101 3

ALX1 0.202 0.099 - -1 1.104 NI

PLAT 0.201 0.121 - -0.405 1.312 4

RETSAT 0.201 0.142 0 0.689 1.127 NI

GSN 0.196 0.109 + 0.588 1.079 4

CDH19 0.185 0.102 0 0.943 0.933 NI

ATP1B3 0.178 0.115 - -1 1.063 NI

BAZ1A 0.173 0.105 + -0.29 1.109 4

SLC16A4 0.166 0.117 - -0.298 1.234 NI

ST6GALNAC2 0.164 0.102 0 -0.815 1.264 NI

MFSD12 0.16 0.148 0 -0.788 1.13 NI

GJA3 0.157 0.075 0 -0.85 1.071 NI

CYP27A1 0.156 0.09 - -0.743 1.373 NI

EGLN1 0.15 0.119 - -0.442 1.053 3

TRPV2 0.147 0.118 0 0.769 1.074 NI

MITF 0.146 0.106 + 1 0.743 2

TBC1D7 0.146 0.118 0 -0.603 1.304 NI

SLC6A8 0.144 0.111 0 -0.263 0.941 NI

PTPRZ1 0.139 0.138 - -0.808 1.074 4

PLOD3 0.132 0.135 0 0.696 1.166 NI

ANKRD7 0.131 0.12 + 0.92 1.241 NI

KANK1 0.107 0.113 0 -0.493 1.345 NI

GYPC 0.105 0.092 + -0.3 1.072 NI

TYR 0.1 0.098 - 0.467 1.11 4

TYRP1 0.1 0.097 0 0.457 1.326 3

IGSF8 0.09 0.129 0 -0.668 1.313 5

SPRED1 0.067 0.116 0 -0.556 1.239 4

ITGA9 0.056 0.111 0 0.785 1.154 4

KREMEN1 0.053 0.086 0 -0.555 1.123 4

LAMA4 0.038 0.083 - 0.344 1.151 4

MLANA 0.037 0.097 0 0.534 1.147 NI

KLF9 0.011 0.074 0 0.932 1.064 NI

Table 4.2: Table notes rankings of the genes found to have some biological importance. A positive
(+) sign translates to a positive effect on cell survival after drug administration, a negative (-) sign
translates to a negative effect on cell survival and a neutral (0) effect translates to a varying effect on
cell survival which depends on drug dosage. Spearman correlation is calculated between drug dosage
and gene estimated coefficient function values as an indicator of the magnitude change of the gene effect
over the increasing dosage. Area corresponds to the area under the estimated coefficient curve and the
SD corresponds to the standard deviation of the area based on bootstrapping. Pearson’s correlation is
calculated between the selected gene microarray expression values and the BRAF expression across all
the cell lines. Protein-protein interaction network distance is computed based on the shortest interaction
path between the BRAF gene and each of the selected genes. Here, NI denotes absence of interaction.
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exact dosage or drug-dosage combination (≈48-49% and ≈57-58% in both scenarios) but

this can be due to either the large variability observed in the observed responses or due

to the small number of cell lines for some predictor level combinations. Results were

similar for both cross-validation scenarios (differences range from 0 to <2%, Table 4.3),

meaning that as long as a cell line has similar genetic characteristics to those observed,

the model can be reliable in predicting the outcome after anticancer drug administration.

Scenario Accuracy EU Accuracy CL

Model predicts the more effective drug-dosage combination 57.85% 57.42%

Model predicts the more effective drug given a cell-line 78.21% 78.21%

Model predicts the more effective dosage given a drug 48.44% 48.65%

Model predicts the most effective dosage range (> or ≤ 31.25% of the maximum dosage) 79.47% 79.28%

Table 4.3: Predictive performance of the employed model (mean absolute error=0.121).
Table notes the predictive performance of the model based on the percentages for
correctly identifying the most effective drug, dosage or drug-dosage combinations. Results
obtained based on 10-fold cross-validation of the final model (based on holding out either
experimental units−EU− or cancer cell lines−CL−)

We additionally compared the performance of our two-stage algorithm approach

to a penalized linear (LASSO) regression for predicting the IC50 and area under the

dose response curve (AUC). Note that our functional regression model is not directly

predicting either of these values, but rather predicts the full drug response curve. As this

is a harder problem, we would expect the LASSO to have a natural advantage; however,

our method has the added benefit of being able to detect dose-dependent associations,

which is not possible when predicting summary statistics of the dose response curve

directly. We employed 10-fold cross-validation to evaluate the predictive error in terms of

root mean squared error (RMSE), and we used a sigmoid curve fit for estimating the IC50

values from the predicted dose response curves with our two-stage method. Our method

outperformed standard LASSO in terms of predicting the AUC (RMSE2−stage = 0.176;

RMSELASSO = 0.347) and performed well on predicting the IC50, although the LASSO

performed better (RMSE2−stage = 1.969; RMSELASSO = 1.134). This could be expected,

as estimating the IC50 from the predicted dose response curve adds a further level of

complexity, compared to directly predicting this value using the LASSO.
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4.5 Discussion

Genetic alternations and gene expression in tumours are known to affect disease progres-

sion and response to treatment. In the current chapter, we studied dosage-dependent

associations between gene expression and drug response, using a functional regression

approach which adjusts for genetic factors. We analysed data from the GDSC project

relating to drug effectiveness for suspending cancer cell proliferation under different

dosages, and examined five BRAF targeted inhibitors, each applied in a number of

common and rare types of cancer cell lines. Our implementation of a two-stage screening

algorithm revealed a number of genes that are potentially associated with drug response.

Gene, drug and cancer type trajectories have been modeled using a varying coefficient

modelling framework. The proposed methodology allows for dose-dependent analysis of

genetic associations with drug response data. It enables us to study the effect of different

drugs simultaneously, which results in high accuracy of drug response prediction. Drug

comparisons using the proposed methodology could support drug repositioning, especially

in diseases where existing treatment options are limited. In addition, our methodology

can help to reveal unknown potential relationships between genetic characteristics and

drug efficacy. Hence, the good predictive performance of our method could be due to the

fact that some genes may act as proxies for unmeasured phenotypes that are directly

relevant to drug sensitivity.

This work relies on two major assumptions. First, that out of tens of thousands genes

regulating protein composition only a small proportion is actually associated with cancer

cell survival in a dosage-dependent manner. In other words, transcriptomic profiles exert

influence on disease progress after drug administration in a sparse and dynamic way.

However, if a large number of genes is associated with the drug response, our method may

produce biased results, and some important information about the biological mechanisms

can be lost. Secondly, we assume that the different drugs are comparable on the scale of

maximum dosage percentage level for our joint model. We acknowledge that different

drugs have different chemical structure and maximum screening concentrations. Our

focus is to identify genetic components that could be informative for dose response given

drugs that belong to a particular family, for example BRAF targeted therapies. However,

our methodology is flexible enough to allow each drug to be examined separately if it
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appears to be clinically appropriate.

Drug response prediction from gene expression data has been widely studied in the

literature. Sparse regression methods, gene selection algorithms such as the Ping-pong

algorithm (Kutalik et al., 2008), or a combination of network analysis and penalized

regression, e.g., the sparse network-regularized partial least squares method (Chen and

Zhang, 2016), have all been employed to simultaneously predict drug response and select

genetic factors that seem to be associated with the drug response. However, none of

these methods are able to quantify the effect of drug dosage on the response, which

is one of the main contributions of this work. Employing the proposed dose-varying

model gives a detailed picture of different drug effects and can be extremely valuable

in predicting drug response for agents with small therapeutic range and high toxicity

levels. Our algorithm showed moderate predictive performance due to the complexity of

predicting whole drug response curves. Methods for further enhancing the performance

of the proposed methodology, such as judicious use of prior information and leveraging

information sharing across multiple data sources should be explored in the future in order

to overcome this issue and make good use of its full potentials.

4.6 Summary

In this chapter, we develop methodology to examine the dose-dependent associations

between genes and drugs. The proposed algorithm uses the raw drug dose response

data to infer the effects of interest, handles high-dimensional gene expression data and

allows to obtain a more comprehensive picture of the biological mechanisms that undergo

cancer treatment and the role of drug dose on it. Due to its simple structure, it, also,

permits extension to different types of molecular data (e.g., RNA-seq gene expression,

methylation or mutational profiles) and enrichment with further information, such as

drug chemical composition.

In the following chapter, we jump to a completely different problem: ageing. We will

use data from the ELSA and develop a dynamic conditional quantile modelling framework

to model incomplete frailty trajectories and get predictions for ageing individuals and

population subgroups.
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Chapter 5

Dynamic modelling and

prediction of frailty in ageing

English adults

5.1 Introduction

In the previous chapter, we developed a regularised functional regression model for com-

plete experimental longitudinal data to model non-stationary dose-varying trends in the

presence of high-dimensional data. The current chapter is motivated from ageing research

and focuses on incomplete longitudinal survey data where the increased dimensionality1

lies on the outcome variables. This type of data are characterised by high subject

heterogeneity and population diversity. In the current chapter, the multidimensional

variables are used to construct one of the most common ageing metrics, the FI. The

proposed method represents a major step forward for modelling longitudinal survey data

on ageing and predicting frailty trajectories of ageing population subgroups.

Background on frailty is provided in Paragraph 2.3.2. In brief, frailty is a typical

ageing surrogate and describes the state of increased vulnerability to ageing-associated

diseases. It is a monotonically increasing process over age and remains one of the

best predictors of morbidity and mortality (Searle et al., 2008). Advanced age, low

or no physical activity, obesity, smoking, low income, low socioeconomic position and

1In this context, by “increased dimensionality” we mean tens of outcome variables considered for
simultaneous analysis.
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lack of education are only a few of the factors that contribute to frailty development

and progression (Rogers et al., 2017; Niederstrasser et al., 2019; Franse et al., 2017;

Szanton et al., 2010). Contrary to the aforementioned objective indicators, there is little

research on how subjective experiences of inequality influence frailty. A collection of past

studies have found that focusing on how individuals feel about what they have is equally

important to what people have, due to the impact that self-esteem has on individual

emotions, behaviour, and even mental and physical health (Smith and Huo, 2014; Mishra

and Carleton, 2015). In fact, positive self-perceptions of ageing have been linked to better

health at advanced age (Moser et al., 2011; Mendoza-Núñez et al., 2018; Demakakos

et al., 2006), whereas feelings of relative deprivation have been associated to poor health

and unhappiness (Chen, 2015). In this study, we summarise multivariate questionnaire

data from ELSA to a single index to create frailty trajectories and investigate whether

and how subjective indicators, in particular relative deprivation and self-perceived social

class, affect health at old age and, therefore, frailty. Interested readers can look at

Supplementary Text A.1 of the Appendix for more information on the exact variables

extracted from the ELSA data.

Longitudinal survey data are the most common resource utilised by social scientists to

extract information on person-specific and population circumstances. Common challenges

when analysing data coming from these studies include: the mixed types of variables

measured; the complex longitudinal trajectories with large variations between individuals;

the, sometimes, large amount of missing data or dropouts; and, the fact that some

variables may be measured with error (Dean et al., 2009; Blattman et al., 2016; Blackwell

et al., 2017; Biemer et al., 2013). However, depending on the outcome of interest and

the available information, overcoming those challenges is not always straightforward. To

deepen our understanding of frailty and, in general, ageing, we require flexible statistical

methodology which not only takes into account population variation and heterogeneity,

but deals with the short lengths of observed trajectories relative to the period of interest.

Common parametric mean models often overlook the distributional variation and trend

complexity over time (Raudenbush and Chan, 1992; Rogers et al., 2017), while parametric

quantile regression models are completely determined by the choice of distribution for the

random effects parameters, which is often assumed to be a Gaussian distribution (Koenker

et al., 1994). Incomplete longitudinal data introduce additional complexity and standard
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non-parametric smoothing methods are not suitable since estimation of the covariance

function becomes challenging and, under severe sparseness scenarios, even impossible (Yao

et al., 2005; Kraus, 2015; Kneip and Liebl, 2020; Liebl and Rameseder, 2019).

A novel approach for limited longitudinal data has been proposed by Dawson and

Müller (2018) under the assumption of monotone trajectories. Directly utilizing the

functional relation between the trend and its slope, a dynamic conditional quantile

modelling framework suitable for experimental longitudinal data without covariates was

developed. Motivated by this work, we treat the observed frailty trajectories as being

partially observed functional data and assume that they come from realisations of a

monotone stochastic process where the instantaneous time where frailty is computed

is not necessarily informative for the observations’ rate of change. We propose the

conditional quantile modelling framework to resolve the problem of missing values in

longitudinal survey data and extend it to allow for covariate adjustment. We investigate

the performance of the proposed model under varying missing at random scenarios and

sample sizes. Model implementation is then performed using the ELSA data. Our

objective is to obtain a comprehensive view on the distribution of frailty over time

and predict frailty trajectories for individual groups based on their self-perceived social

and relative deprivation status. Our results highlight the relationships between frailty

progression and socioeconomic inequalities and illustrate the utility of the employed

methodology in assessing and detecting ageing adults’ needs in a dynamic and personalised

manner.

The rest of the chapter is structured as follows. In the following section, we present

the ELSA data, describe how the FI is built and develop the extended conditional quantile

methodology. Simulation studies in Section 5.3 illustrate the strengths and utility of this

methodology under multiple data scenarios. The results from our analysis are presented

in Section 5.4, whereas findings, study implications, limitations and future work are

discussed in Section 5.5.

5.2 Methodology

This study uses longitudinal data from the ELSA study. A detailed overview of the

background, objectives and data of the study has already been presented in Chapter 3.
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In this chapter, we use CAPI and NV data from the first 8 waves of the study covering

the period 2002 to 2017.

5.2.1 Participants

We consider only individuals recruited in 2002 (ELSA Wave 1). Individuals with missing

demographic information as well as proxy respondents have been excluded from the

analysis. The total number of individuals available in Wave 1 was 10,602 subjects.

However, this number decreases over time due to deaths, patient lost to follow-up and

data collection errors.

5.2.2 The Frailty Index (FI)

To build the FI, we followed the methodology presented in Searle (2008). In total, 56

variables were selected based on five inclusion criteria and previous literature (Rogers

et al., 2017; Niederstrasser et al., 2019; Searle et al., 2008), and referred to the following

categories: mobility and daily life activities’ difficulties; self-reported health; depressive

symptoms; self-reported health conditions including cardiovascular and chronic diseases,

eyesight and hearing capabilities; and cognitive function. A detailed overview of the

variables used along with their coding within ELSA and cut-off points can be found at

Supplementary Text A.2 of the Appendix. Generally, for binary variables a score of 1

was assigned if a deficit was present and 0 if not. For continuous, ordered or nominal

variables, cut-off points between 0 and 1 were assigned describing the degree of health

decline present. The frailty score was created using only individuals with a sufficient

number of variables (at least 30 out of 56 variables).

5.2.3 Dynamic modelling of the FI scores

Below, we present the conditional quantile methodology introduced by Dawson and

Müller (2018) and extend it to allow for the conditional quantiles to be dependent

on time-invariant covariates. As shown in previous literature, frailty monotonically

increases over time. However, we can argue that time (either chronological age or

instantaneous time when frailty is measured) is not always informative of the rate of

frailty increase (Clegg et al., 2013). In particular, if the observed longitudinal trajectories

are very short compared to the time interval of interest, the available data may not carry
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information beyond the local level and slope. The authors argued that, even under these

circumstances, if the underlying process is monotonic, one can still obtain trajectory

information over time as long as information about local level and slope is known for a

subject (Abramson and Müller, 1994; Vittinghoff et al., 1994). This is a major strength

compared to other modelling approaches used for the analysis of frailty longitudinal data,

e.g. growth curve modelling, since it allows the recovery of the underlying functional

and quantile dynamics of frailty by modelling longitudinal measurements which are short

relative to the domain of interest (chronological age span which ranges from 50 up to 90

years old). In that manner, the problem of missing data is resolved whilst information of

the underlying functional dynamics is maintained.

Let the set of longitudinal data of the scores be denoted by

{(ynj , tnj) : n = 1, . . . , N, j = 1, . . . , Jn} (5.1)

where ynj refers to the jth response of the nth subject associated with time tnj ∈ T . We

consider the case where the observed window of time [tn1, tnJn ] where the longitudinal

responses have been collected is too narrow to recover the underlying functional dynamics

of the process under study over the interval of interest. By transforming these data to

pairs of levels and slopes of the underlying target process (e.g. frailty) for each subject n,

we can obtain insights into the probabilistic dynamics of this underlying data generation

process.

Model specification

Let us assume that the original observed trajectories in Eq. 5.1 are generated by an

underlying (k + 1)-times continuously differentiable random process Y : T →J , where

k ≥ 1 and both T and J are closed and bounded subsets of R. We further assume that

the measurement times (T ) are independent of the value of the process (Y ). Individual

level and slope data can, then, be generated by obtaining

Xn := Yn(Tn) and Vn := Y ′n(Tn) (5.2)

at some potentially unobserved random subject-specific time Tn, n ∈ {1, . . . , N}. For

n1 6= n2 and conditional on the trajectories, (Xn1 , Vn1 , Tn1) have a joint distribution
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and are independent of (Xn2 , Vn2 , Tn2). For the rest of this section, we assume that the

quantities Xn, Vn are directly observed. If not, then surrogates can be used. For instance,

estimates for individual local level and slope can be obtained through least-square line

fits to the observed individual trajectories (Dawson and Müller, 2018). Later in this

work, this type of surrogates are used to obtain local level and slope information from

the observed longitudinal trajectories within ELSA.

Under the aforementioned assumptions, the conditional distribution of slope given

the level can be expressed in a way that does not explicitly depend on T . In fact,

F (v|x) = P (Y ′(T ) ≤ v|Y (T ) = x) = P (Y ′(Y −1(X)) ≤ v|X = x) , (5.3)

which holds since the process Y is assumed monotone. This conditional distribution

informs about where the subjects generally are headed in the immediate future given

that they are currently at a certain level, not only in the mean but in distribution.

For full functional trajectories available, we would aim to estimate the cross-sectional

distribution of Y for some amount of time s ∈ T after Y (T ) = x, that is

Gs(y|x) = P (Y (T + s) ≤ y|Y (T ) = x), (5.4)

and the cross-sectional α-quantile trajectory

qα,x(T + s) = G−1
s (α|x) (5.5)

where 0 < α < 1. However, the estimation of Eq. 5.4 explicitly depends on observing

Y (T + s) for all s ∈ T , therefore, direct estimation is an infeasible target.

Dawson and Müller (2018) introduced the instantaneous α-quantile of the slope for a

given level x as

ξα(x) = F−1(α|x) , (5.6)

and the longitudinal α-quantile trajectory, zα,x(T + ·), as the solution function that
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satisfies

dzα,x(T + s)

ds
= ξα(zα,x(T + s)). (5.7)

Here, zα,x depends only on α and x, hence, given an estimate for ξα, we can obtain an

estimate for the full longitudinal α-quantile trajectory by solving the differential equation

Eq. 5.6. It is worth mentioning that in most cases zα,x and qα,x do not coincide. However,

under the smoothness and uniqueness assumptions of our framework and Proposition 1

in Dawson and Müller (2018), we have that

qα,x(T + s) = zα,x(T + s). (5.8)

This demonstrates that we can model the conditional quantile trajectories by estimating

the conditional distribution of slope given the process local level.

Estimation of the Conditional Distribution and Quantiles (CQ)

In this section, we extend the above framework to allow the rate of change of the process

to be dependent on time and other time-invariant covariates. In this regard, we consider

the set of longitudinal data introduced in Eq. 5.1 along with some subject specific

time-invariant covariates

{(ynj , tnj , cn) : n = 1, . . . , N, j = 1, . . . , Jn} (5.9)

where ynj refers to the jth response of the nth subject, and cn is a d-dimensional vector

of time-invariant covariates (continuous, discrete or both) of subject n.

In order to estimate the α-quantile trajectory, we need information on individual

trajectory’s slope and level. We represent the observed individual trajectories as pairs of

level and slope, (Xn, Vn) for all n = 1, . . . , N . To do so, we regress individual responses

yn = (yn1, yn2, . . . , ynJn)T against time tn = (tn1, tn2, . . . , tnJn)T using linear least-

squares fits. Individuals’ slope and level are, then, obtained using the corresponding

trajectory slope and responses’ mean. Specifically for each subject, we get vn = β̂1 and

xn = (1/Jn)
∑Jn

j=1 ynj obtained by fitting the model ynj = β0n − β1ntnj . As follows, we
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get the set of data points

{(xn, vn, cn) : n = 1, . . . , N}. (5.10)

We can, now, estimate the conditional distribution of slope given the level and the

covariates by kernel smoothing methods with adaptive weights incorporated. As the

weights are normally defined on the continuous scale, the smoothing methods need

some adjustments to incorporate discrete variables. Specifically, let the covariate vector

cn = (con, c
m
n ) where con ∈ Rq is a q-dimensional continuous random vector, cmn ∈ Rr is

a r-dimensional discrete random vector with both ordinal and nominal variables and

cn ∈ Rd where q + r = d. The estimator of the conditional distribution of the slope is

F̂ (v|x, c) =

∑N
n=1HhH (v − vn)KhK (x− xn)WhW (con, c

o)LhL(cmn , c
m)∑N

n=1KhK (x− xn)WhW (con, c
o)LhL(cmn , c

m)
(5.11)

where H(·) is a smooth distribution function scaled with a bandwidth hH , K(·) is

a smooth and symmetric kernel function scaled with a bandwidth hK , in particular,

KhK (u) = hK
−1K(u/hK) with K(·) being a Gaussian kernel, and W (·) along with L(·)

are kernel functions for the covariates in the model with variable-specific bandwidths

hW , hL. Following Li and Racine (2008), we define the kernel

WhW (con, c
o) =

q∏
s=1

KhW (cos − cons) (5.12)

where KhW is a kernel function as defined before and cons is the sth continuous covariate

of the nth subject. In addition, for the discrete variables in cn we define the following

kernel function

LhL(cmn , c
m) =

r1∏
s=1

h
(|cmns−cms |)
Ls

r∏
s=r1+1

h
I(|cmns 6=cms |)
Ls (5.13)

where the first kernel product corresponds to the first r1 ordered variables in cmn and the

second corresponds to the rest (nominal covariates).

Given estimators F̂ (v|x, c), an estimate for the instantaneous α-quantile trajectory
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ξα can be obtained. That is,

ξ̂α(x|c) = inf{v : F̂ (v|x, c) ≥ α}. (5.14)

Subsequently, for the estimation of zα,x,c(T + t), we use ξ̂α as a plug-in estimate for ξα in

Eq. 5.14 and then we solve the resulting differential equation using numerical methods,

such as the Euler’s method, with initial condition zα,x,c(T + 0) = x.

R version 3.6.3 was used to perform all analyses within the current chapter. The

simulation study was performed using The High End Computing Cluster at Lancaster

University. R code was developed to implement the CQ model. Analysis of the ELSA data

and estimation of the lower, median and upper quantile trajectories takes approximately

20 minutes to complete using a laptop (Intel Core i5-8265U CPU 1.60GHz, RAM 16GiB,

Ubuntu 18.04.6 LTS). However, computational time changes relative to the bandwidth

choice and number of covariates.

5.2.4 Bandwidth selection

We used the least squares cross-validation method proposed by Li and Racine (2008)

to select the kernel function bandwidths. Since there does not exist an automatic data-

driven method for optimally determining the bandwidths when estimating the conditional

cumulative distribution function, they suggest to use a data-driven least squares cross-

validation method which is based on the conditional probability distribution function

estimation (Li and Racine, 2008; Hall et al., 2004). This methodology not only suggests

optimal bandwidth values but also identifies which variables are needed or not to be

included into the final model by over-smoothing of the irrelevant variables.

5.3 Simulation study

To ensure CQ methodology provides valid estimates and explore the method’s overall

performance under multiple data scenarios, we simulated longitudinal data and investi-

gated estimation accuracy under varying lengths of the observed individual trajectories;

estimates’ validity in the presence of time-invariant covariates; and, predictive ability

when compared to state-of-the-art methods, such as random effects models.
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We assessed the degree to which the conditional quantile estimates vary from the true

quantile trajectories by simulating longitudinal data from the following exponential process

Y (t) = exp{−bt− 1}, where b is a random variable and has a Uniform distribution over

the interval [0.3, 0.5] and t ∈ [0, 8]. First, a sample of N curves Yn(t) was generated. Next,

for each n, the length of the longitudinal observations’ window ∆n was determined along

with the corresponding sampling time Tn, which was drawn uniformly and independently

over the interval [0 + ∆n
2 , 8 −

∆n
2 ]. Over the observation window [Tn − ∆n

2 , Tn + ∆n
2 ],

we, then, drew Jn equally spaced measurements Yn(tn1), Yn(tn2), . . . , Yn(tnJn), where Jn

was an integer in {2, 3, . . . , 8} and depended on the length of ∆n, i.e. the longer the

observation window, the larger the number of repeated measurements observed. We did

that to simulate data with a structure similar to what we have observed in ELSA. Finally,

independent random noise ε ∼ N(0, σ2) was added to each Yn(tij) measurement. The

performance of the CQ methodology was evaluated under varying noise, sample size and

∆n scenarios. For the sample size and noise, we considered N ∈ {100, 1000, 5000} and

σ ∈ {0, 0.001, 0.01} respectively. For the ∆n, we considered four sub-scenarios (S1-S4).

For the first three (S1-S3), ∆n = ∆ for all n and ∆ ∈ {0.8, 0.16, 4}. For the fourth

sub-scenario (S4), we wanted to see how estimation and prediction will be affected if the

simulated data have identical observation window lengths to what was observed in ELSA,

i.e. 17% of the sampled ∆n equal to 0.4 (5% of the length of the interval under study),

12% equal to 0.8, 10% equal to 1.2, 10% equal to 1.6, 12% equal to 2.4, 15% equal to

2.8 and 25% equal to 3.2 (40% of the interval under study). All estimation trajectories

were conditioned on a starting level of x = 0.36 and the considered quantile levels α were

0.10, 0.25, 0.50, 0.75 and 0.90. We chose hH = 0.001 and hK = 0.01. For each of the

above scenarios, we replicated the simulation R = 1000 times using different seeds. An

illustration of the generated data under the fourth ∆n scenario, N = 100 and varying σ

can be found in Figure B.7 of the Appendix.

As a measure of estimation quality, we used the Sum of the Mean Integrated Squared

Error (SMISE) across all data replications, that is

SMISE =
1000∑
r=1

∫ 8

0
(zα,x(s)− ẑ(r)

α,x(s))2ds (5.15)

where ẑ
(r)
α,x(s) is the estimate of zα,x(s) in the rth replication. Tables 5.1 and 5.2 illustrate
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Noise scenario
(σ)

∆
Sample size

(N)
α = 0.10 α = 0.25 α = 0.50 α = 0.75 α = 0.90

0.000

0.8
100 1.136 1.074 0.748 0.323 0.205
1000 0.976 1.160 1.024 0.581 0.273
5000 0.692 0.937 0.837 0.474 0.288

1.6
100 4.250 4.132 2.497 1.881 0.659
1000 4.428 4.352 3.125 1.415 0.907
5000 3.296 3.265 2.353 1.229 0.919

4.0
100 28.526 24.924 15.441 11.198 8.159
1000 26.654 24.144 18.351 11.958 8.164
5000 27.064 24.800 18.843 11.917 8.811

0.001

0.8
100 3.086 3.393 1.450 0.447 0.189
1000 0.592 0.754 0.734 0.321 0.265
5000 0.550 0.798 0.744 0.542 0.390

1.6
100 5.740 7.196 5.550 2.170 1.144
1000 4.105 4.121 3.368 1.867 1.048
5000 3.794 4.114 3.030 1.695 0.961

4.0
100 40.437 39.620 27.666 17.697 13.403
1000 33.626 31.950 24.674 16.421 12.042
5000 25.619 23.547 17.449 11.149 7.650

0.010

0.8
100 2.172 1.823 0.958 3.544 10.830
1000 1.572 0.774 0.586 3.696 14.359
5000 1.887 0.820 0.400 4.069 15.171

1.6
100 4.118 3.229 1.377 1.016 2.569
1000 2.756 2.838 2.396 2.347 3.404
5000 2.887 3.166 2.606 2.222 3.647

4.0
100 23.969 21.268 14.253 8.421 5.958
1000 29.586 27.096 20.896 14.678 11.377
5000 22.733 20.605 15.689 10.285 7.582

Table 5.1: SMISE across all replications for the scenarios where ∆n = ∆ ∈ {0.8, 0.16, 4}.
Here, R = 1000.

Noise scenario
(σ)

Sample size
(N)

α = 0.10 α = 0.25 α = 0.50 α = 0.75 α = 0.90

0.000
100 0.242 0.261 0.287 0.349 0.493
1000 0.042 0.071 0.144 0.129 0.130
5000 0.038 0.064 0.143 0.141 0.142

0.001
100 0.681 0.329 1.225 4.162 16.628
1000 0.411 0.075 0.134 0.462 1.974
5000 0.397 0.075 0.146 0.494 1.767

0.010
100 43.920 63.932 134.132 260.942 284.034
1000 30.547 50.491 109.869 263.497 449.031
5000 15.327 18.719 80.845 304.990 528.119

Table 5.2: SMISE across all replications for the scenario where the simulated data have
the same observation window lengths to what was observed in ELSA. Here, R = 1000.
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that violations of the length of longitudinal trajectories relative to the interval of interest

do not significantly affect the method’s robustness, even though estimates become slightly

less accurate. Notice that for ∆ = 4, i.e. half of the overall interval length, the method’s

performance significantly worsens. This is possibly due to model misspecification when the

exponential (individual) trajectories are summarised via linear least squares fits to obtain

the level and slope data. Nevertheless, results suggest that, even though performance

is worse, the model still manages to capture the underlying functional dynamics of the

process. Another factor that has a detrimental effect on method’s accuracy is the noise

level and mostly for the upper quantile trajectories. That is because for highly noisy

data the monotonicity of the upper quantile curves is violated creating ceiling effects for

the corresponding estimates. Increasing sample size has a positive impact on accuracy,

especially for the lower quantiles and the scenario with mixed lengths of ∆n. This boosts

our confidence that the obtained estimates after fitting the model to the ELSA data will

be robust even in cases where some individual trajectories cover more than 25% of the

interval of interest.

The main methodological contribution of this work is the extension of the CQ

methodology to allow for covariate-adjustment. We explored estimates’ validity in the

presence of time-invariant explanatory variables of mixed types. Three sub-scenarios of

the initial data generation process where the introduced covariates had a multiplicative

effect on the overall process dynamics were considered (S5-S7). For the first (S5), we

assumed that Y (t) = exp{−bt− 1 + 0.51x=1} and x ∼ Bernoulli(1
2). For the second (S6)

and third (S7) sub-scenarios, we assumed Y (t) = exp{−bt− 1 + 0.5x} where x ∼ B(3, 1
3)

and x ∈ [0, 5] respectively. In all three, b is considered a Uniform random variable over

the interval [0.3, 0.5] as before. Individual observation windows and measurements were

sampled similar to S4. Here, performance was measured using the mean integrated

squared error (MISE) across 1000 data replications and compared over multiple sample

size scenarios, N ∈ {100, 1000, 5000}. Notice that

MISE =
1

1000

1000∑
r=1

∫ 8

0
(zα,x(s)− ẑ(r)

α,x(s))2ds. (5.16)

The noise level was assumed to be fixed at σ = 0.01 and the bandwidths were selected

using the cross-validation methodology presented in Section 5.2.4. Results show that
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Figure 5.1: CQ methodology performance when a multiplicative covariate effect is
assumed under multiple sample size scenarios. The mean integrated squared error (MISE)
was calculated for α equal to 0.10, 0.25, 0.50, 0.75 and 0.90. Noise level was assumed to
be fixed and high at 0.01. Covariate bandwidth was determined using cross-validation as
described in Section 5.2.4. In particular, for the binary variable bandwidth was chosen to
be equal to 0.7, for the ordinal variable bandwidth was chosen to be equal to 0.9 and for
the numeric that was 4.5. For the numeric covariate scenario, estimates were obtained
after having conditioned on x = 2.5. The number of data replications was R = 1000.

valid quantile estimates are produced independent of covariate type and large sample

sizes promote quantile trajectory estimation accuracy for all quantiles (Figure 5.1). In

particular, for the 50% quantile the average MISE across all data replications is found

to be between 4.30 × 10−3 and 4.30 × 10−1 for all covariate types and N = 100; and,

between 3.21× 10−4 and 6.76× 10−3 for all covariate types and N = 5000. Due to the

high noise assumed ceiling effects are observed for the upper quantile estimates which

decrease the overall 90% quantile estimation accuracy for all sample size and covariate

type scenarios.

Finally, 10-fold cross validation was implemented to compare how the CQ method

competes to state-of-the-art methods utilised for longitudinal data analysis in social

sciences when it comes to predictive ability. In particular, we compared the CQ method

to linear mixed effects (LME) and multilevel quadratic growth curve (QGC) modelling.

Three sub-scenarios were considered. For the first (S8), the data generation process was

similar to S4, consequently both LME and QGC were misspecified. In these models,

apart from the fixed effects, a random intercept and random slope were assumed. A log

transformation was, also, used before fitting the LME. For the second (S9), longitudinal

trajectories were produced assuming a linear mixed effects model, i.e. Ylinear(t) =

−b+ (a+ 5.2)t, where a ∼ N(0, 1), b ∼ N(0, 1.5) and a independent of b. For the last
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(S10), Yquadratic(t) = −b + (a + 3.2)t + 0.5t2, with , where a ∼ N(0, 1), b ∼ N(0, 0.5)

and a independent of b. In all above scenarios, individual measurements were drawn

according to S4 and bandwidths were selected using cross-validation. For each fold, the

training set was selected by randomly sampling 90% of the data, leaving the rest 10%

for testing. Performance was assessed using the MAE under multiple noise and sample

size scenarios. Due to the computational burden involved N ranged from 100 up to 1000.

When the linear and quadratic models were misspecified, results showed that the CQ

method outperformed the state-of-the-art methods and produced high quality predictions,

especially in scenarios where noise is high (Figure 5.2). That is possibly due to the use of

least squares fits to individual trajectories which can get rid of some of the noise present.

On the contrary, when the underlying models were correctly specified our method shows

worse predictive ability. This is expected since both linear mixed effects and quadratic

growth curve models can effectively deal with missing at random data problems and,

when it comes to prediction, they perform competently.
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Figure 5.2: Prediction MAE for multiple sample size and noise scenarios for the simulated
data were the length of trajectories are determined based on the length trajectories
observed in the ELSA data. The number of replications was R= 1000. The left panels (A)
correspond to S8 results (misspecified model for LME and QGC) whereas the right panels
(B) correspond to S9 and S10 results (correctly specified LME and QGC models). LME
stands for linear mixed-effects model, QGC stands for quadratic growth curve model,
CQ stands for conditional quantile methodology and CQlm and CQqm correspond to
conditional quantile regression results for data generated through S9 and S10 respectively.
Under the CQ methodology, the estimated quantile for each individual was used to
obtain individual predictions, i.e., the quantile on which we estimate that the subject is
travelling.
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5.4 Application to the ELSA data

We defined the frail subjects as those having a baseline FI larger than 0.25 (Searle

et al., 2008; Rogers et al., 2017). We analysed data from the non-frail at baseline

individuals to avoid introducing additional survival bias into our results. That is because

adults who were frail at baseline had a smaller number of repeated observations overall

(median number of repeated measurements were 3 compared to 6 for the non-frail group;

Figure B.8) and were expected not to have survived long enough to have complete

longitudinal trajectories. We also omitted individuals who participated in only a single

wave, resulting in an analytic sample of 6,563 individuals. An overview of the sample at

wave 1 and how the balance between individual subgroups evolved across later waves

is shown in Table 5.3. Age group, gender, whether in couple, self-perceived social class

and self-perceived relative deprivation are all considered as reported at baseline. An

average FI increase of 0.05 is observed over the 16 year period (mean FI of 0.09 at wave

1 versus a mean FI of 0.14 at wave 8). Younger people (those in the 50-59 group at

baseline) remained in the study for longer and the balance between males and females was

maintained. The majority of individuals reported themselves as being in couple, middle

class and non-deprived at baseline. No major changes were observed in the following

years with fairly similar proportions of individuals carrying on with the study from all

baseline subgroups.
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Figure 5.3: Frailty trajectories for a sample of 100 non-frail at baseline individuals (left)
and corresponding estimates of ξα(x) for α ∈ {0.10, 0.25, 0.50, 0.75, 0.90} (bottom to
top) using the rule-of-thumb bandwidths hH = 2.38× 10−3 and hK = 1.68× 10−2 (right).
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Wave 1 (N = 6,563) 2 (N = 5,941) 3 (N = 4,929) 4 (N = 4,456) 5 (N = 4,318) 6 (N = 3,817) 7 (N = 3,354) 8 (N = 3,044)

FI

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Median (IQR) 0.07 (0.04, 0.12) 0.08 (0.04, 0.14) 0.08 (0.04, 0.14) 0.09 (0.04, 0.15) 0.09 (0.05, 0.16) 0.09 (0.04, 0.16) 0.10 (0.05, 0.17) 0.11 (0.07, 0.18)
Mean ± SD 0.09 ± 0.06 0.10 ± 0.08 0.11 ± 0.09 0.11 ± 0.09 0.12 ± 0.09 0.12 ± 0.09 0.12 ± 0.09 0.14 ± 0.10
Maximum 0.25 0.61 0.61 0.60 0.59 0.71 0.64 0.61

Age Group

50-59 2,767 (42%) 2,497 (42%) 2,136 (43%) 1,966 (44%) 2,017 (47%) 1,885 (49%) 1,741 (52%) 1,660 (55%)
60-69 2,157 (33%) 1,969 (33%) 1,643 (33%) 1,530 (34%) 1,533 (36%) 1,365 (36) 1,222 (36%) 1,102 (36%)
>70 1,639 (25%) 1,475 (25%) 1,150 (23%) 960 (22%) 768 (18%) 567 (15%) 391 (12%) 282 (9%)

Gender

Male 3,061 (47%) 2,762 (46%) 2,285 (46%) 2,049 (46%) 1,968 (46%) 1,722 (45%) 1,505 (45%) 1,344 (44%)
Female 3,502 (53%) 3,179 (54%) 2,644 (54%) 2,407 (54%) 2,350 (54%) 2,095 (55%) 1,849 (55%) 1,700 (56%)

In couple

No 1,664 (25%) 1,478 (25%) 1,246 (25%) 1,075 (24%) 1,020 (24%) 868 (23%) 759 (23%) 662 (22%)
Yes 4,899 (75%) 4,463 (75%) 3,683 (75%) 3,381 (76%) 3,298 (76%) 2,949 (77%) 2,595 (77%) 2,382 (78%)

Social status*

Lower 1,132 (17%) 993 (17%) 805 (16%) 702 (16%) 676 (16%) 585 (15%) 505 (15%) 437 (14%)
Middle 2,994 (46%) 2,712 (46%) 2,234 (45%) 2,032 (46%) 1,930 (45%) 1,686 (44%) 1,461 (44%) 1,326 (44%)
Upper 2,437 (37%) 2,236 (38%) 1,890 (38%) 1,722 (39%) 1,712 (40%) 1,546 (41%) 1,388 (41%) 1,281 (42%)

Deprivation status*

Deprived 1,594 (24%) 1,396 (24%) 1,198 (24%) 1,048 (24%) 1,027 (24%) 924 (24%) 783 (23%) 730 (24%)
Non deprived 4,964 (76%) 4,540 (76%) 3,731 (76%) 3,408 (76%) 3,291 (76%) 2,893 (76%) 2,571 (77%) 2,314 (76%)

Table 5.3: Sample overview. Age group, gender, whether in couple, social status and deprivation status are all shown as they reported at baseline.
*Social status refers to self-perceived social class and deprivation status refers to the self-perceived relative deprivation.
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Frailty is described as a biological process which monotonically increases with age

through the accumulation of age-related deficits in health (Searle et al., 2008). However,

there is considerable individual heterogeneity in frailty trajectories (Figure 5.3) and, as it

has been shown in past studies, chronological age is not their only determinant (Nieder-

strasser et al., 2019; Clegg et al., 2013). Before proceeding with the CQM implementation,

we performed exploratory analysis to confirm the age dependence hypothesis and explore

whether our assumption regarding the association of socioeconomic self-evaluation and

frailty holds.

Least-square fits on each subject’s measurements were used to compute the local frailty

level Xn and slope Vn for all n (Figure 5.3). Exploratory analysis showed that both level

and local slope change significantly over chronological age suggesting that dependence

on age should be accommodated into the final model. We found that adjusting for

individual’s age at baseline significantly improved model fit when regressing slope on

level (F -statistic: 62.8 and ; p-value equal to < 0.001). We also segmented the data set

according to frailty level and mean age and compared the distribution of slopes Vn for

different ages. Evidence indicated that the slope is dependent on chronological age at

baseline and needs to be adjusted into the model (Figure B.9; Kolmogorov-Smirnov test

p-value ranged between < 10−8 and 1.6× 10−3).

We assessed the relationship of the slope with two socioeconomic variables after

having conditioned on level and age group at baseline; these included baseline self-

perceived social class and baseline self-perceived relative deprivation. Exploratory data

analysis showed that differences between the rate of change of frailty across social class

and deprivation groups were weak once conditioned on age group, even though level

differed for all subgroups (Figure 5.4). Association of the rate of change of frailty (slope)

with all aforementioned variables (level, baseline age group, baseline social class and

baseline deprivation status) was confirmed through Kolmogorov-Smirnov tests and the

automatic cross-validation method discussed in Section 5.2.4, so we proceeded with their

inclusion in all forthcoming analysis. We also explored quantile estimates’ sensitivity

under undersmoothing or oversmoothing conditions. Analysis showed that especially for

the middle quantiles even a 100% change in the bandwidth magnitude results in minor

changes to the resulted estimates, with level bandwidth determination being crucial to

model fit (Figure B.10). On top of that, middle and upper quantiles appeared more robust
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Figure 5.4: Boxplots of FI level for individual subgroups based on baseline age group,
social class and deprivation (left). Boxplots of FI slope for individual subgroups based
on baseline age group, social class and deprivation (right).

compared to the quantiles towards the lower tail of the distribution. Undersmoothing

also led to larger changes compared to oversmoothing for most of the covariates.

Figure 5.5 shows the estimated lower, middle and upper population conditional

quantile trajectories for different subgroups of individuals until they become frail given

that they started at the median frailty level for their age group at baseline (left panels).

Pointwise 95% bootstrap confidence intervals confirmed our prior finding that differences

between the social class and deprivation subgroups are small after having conditioned

on level and age group. Overall, the median FI of older people was larger compared to

the younger groups (≈0.15 for those aged over 70 years old) and conditional on this FI

level, frailty (a score over 0.25) is expected to be reached within 10 years for those in

the middle quantile while no significant difference was found across the different social

class and deprivation subgroups. FI acceleration rates change for those at younger age

groups, with people in the 60-69 group at baseline being expected to reach frailty within

25 years conditional to their median FI level (≈ 0.11) and people in the 50-59 group

being expected to reach frailty in double this time (middle quantiles). On the contrary,

smaller differences were found between the 60-69 and 50-59 age groups for the upper and

lower quantiles.

In the right panels of Figure 5.5, we plotted the difference between the estimated 50%

quantile FI trajectories for the non-deprived versus deprived individuals along with 95%

confidence intervals. Feeling non-deprived was not found to be protective against reaching

frailty soon in life. In addition, people in the upper social class are expected to reach

frailty faster compared to the lower class group. Bootstrap confidence intervals showed
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Figure 5.5: The left panels show the estimated quantile trajectories conditioned on the
median per age group level along with 95% pointwise bootstrap confidence intervals. For
the estimation, we used the cross-validation bandwidths: hH = 3.3×10−4, hK = 1.7×10−2

and hL = {7.5×10−2, 4.4×10−1, 3×10−1} for the age group, social status and deprivation
variables. From top to bottom, α varies over 0.75, 0.50 (middle) and 0.25. The right
panels show the difference in trajectories between non-deprived and deprived groups for
all age-group and social class subgroups, along with 95% pointwise bootstrap confidence
intervals for the difference.

that these differences are not strong and are expected to occur at later time points where

estimation is affected by the number of people surviving (or completing the study) up to

this point. These results are counter-intuitive and should be treated with caution since

the amount of data for specific subgroups of individuals, etc. deprived participants at

lower class over 70 years old, was not large. At the same time, for the upper and lower

quantiles as well as later time points uncertainty increases which is supported from the

illustrated confidence intervals. As discussed in Dawson and Müller (2018), looking at

the median trajectory helps in extracting more robust conclusions, however looking at

the difference between the lower and upper quantiles allows conclusions to be drawn for

the FI population distribution over time. We further explored the effect of self-perceived

social class and deprivation by allowing for interaction effects with age group, however

the effect was not significant (Figure B.11).

The left panels of Figure 5.6 provide information on the severity of a given subject’s

trajectory. In particular, we randomly selected 6 middle class individuals with two FI

measurements and plotted their observed trajectories over a range of estimated quantile

trajectories conditional on their first observation and remaining characteristics. By

comparing the observed individual trajectory to the estimated zα,x values we can assess
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Figure 5.6: A subset of 6 individual trajectories from middle class participants (half
deprived, half non-deprived) and their corresponding zα,x trajectories starting from the
first observation point for each subject. The quantile α ranges from 0.05 (bottom) to
0.95 (top) and Jn = 2 for all subjects illustrated. The dots are the observed FI values.

how severe the condition of an individual is. For instance, subjects F and B are in

relatively good condition compared to the rest of the population since their observed

FI measurements coincide with the lowest estimated quantile trajectories. On the other

hand, subjects A and C from the deprived group are in a more severe condition (observed

trajectory coincide to the estimated upper quantiles), suggesting that they might be in

need of additional support sooner than expected.

Predictions of an individual’s future trajectories can be obtained by estimating the

conditional quantile trajectory starting from the subject’s fitted value at the last time

point of measurement. In this way, we can get not only a spectrum of future scenarios

but also an estimate of where the subject is headed based on his/her observed slope and

last fitted FI measurement. In essence, after having determined the quantile on which

the subject is travelling α∗ by comparing the subject’s slope to the estimated conditional

distribution F̂ (v|yi,ni), we estimate a subject’s future trajectories by employing the

quantile trajectories for a wide range of α values under the constraint that early in the

prediction, each α must be close to α∗. We refer interested readers to Dawson and Müller

(2018) for more details on how predictions can be achieved if no further covariates apart

from local level are included into the model. Figure 5.7 shows the observed trajectories

and future scenarios for 18 non-deprived individuals of lower and upper social class.

Those who did not experience a significant increase of their frailty score in the past are

expected to follow an optimistic scenario and there is less uncertainty around their frailty
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Figure 5.7: Prediction trajectories for a random sample of 18 non-deprived at baseline
individuals where the length of the prediction period is chosen to be half the length of
timespan of the subject’s longitudinal trajectory. The dots are the observed frailty scores.
The solid black line up to the last observation time point represents the linear regression
line obtained from the least squares fit on each individual trajectory. After the last time
point of observation is the estimated α-quantile prediction trajectory conditioned on the
subject’s last fitted value if the subject was to remain at the same quantile where he/she
was travelling in the past (black solid line). Additionally, pessimistic and optimistic
future trajectory scenarios are depicted with red (for lower class subjects) and blue (for
upper class subjects).

deterioration in the near future (e.g. subject A, subject D, subject I, etc.). At the same

time, there are cases where even though the past trajectory was relatively stable, there is

much more uncertainty associated to their prediction (e.g. subject B, subject Q, subject

R, etc.).

Finally, to further assess the utility of the current method, we compared its predictive

validity as compared to the state-of-the-art methods, i.e. a QGC model and a LME model,

both common choices for analysing this type of longitudinal data (Rogers et al., 2017). We

built the latter using the same covariates (all of which were statistically significant) and

an interaction term between age group and wave. We performed 10-fold cross-validation

by randomly taking segments of individual observations to create the training and test

sets for every iteration. As in Section 5.3, we evaluated performance based on the MAE.
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Model Mean SD Min. 25% Quant. 75% Quant Max.

CQ 5.65× 10−2 4.47× 10−2 1× 10−8 1.12× 10−2 6.84× 10−2 7.26× 10−2

LME 3.46× 10−2 3.36× 10−2 2.14× 10−6 1.13× 10−2 4.70× 10−2 3.94× 10−2

QGC 3.46× 10−2 3.36× 10−2 3.22× 10−6 1.13× 10−2 4.67× 10−2 3.95× 10−2

Table 5.4: Prediction accuracy based on the MAE after performing 10-fold cross-validation
using the Conditional Quantile (CQ) methodology, Linear Mixed Effects Modelling (LME)
and the Multilevel Growth Curve (QGC) model.

As demonstrated in Table 5.4, our method (CQ) had similar performance to both LME

and QGC methods (MAE equal to 5.65× 10−2 as compared to 3.46× 10−2 for both LME

and QGC respectively), highlighting its additional strength in providing some sort of

“personalised” prediction for each individual.

5.5 Discussion

Frailty progression is known to be affected by various factors such as biological, behavioural

and social factors (Rogers et al., 2017; Niederstrasser et al., 2019). Analysing longitudinal

data on frailty often encompass a lot of difficulties due to population variation, individual

heterogeneity and the short lengths of the observed trajectories relative to the period

of interest which often covers the second half of human lifespan. Here, we studied

the association between frailty and self-perceptions regarding individual socioeconomic

status after controlling for age at baseline using a data driven conditional quantile

regression approach which allows for dynamic modelling of the short observed frailty

trajectories. We analysed data from the ELSA and constructed a FI score based on

56 variables. Our implementation of the conditional quantile methodology revealed

counter-intuitive relationships between self-perceived social class and relative deprivation,

accentuating that once controlled for frailty level and age at baseline, the effect of negative

socioeconomic self-perceptions on frailty progression is minor. We, however, highlight

that the results shown should not be perceived as marginal effects of self-perceived social

class and relative deprivation as the rate of frailty change is mainly affected from the

instantaneous frailty level. So, if there are not many individuals reaching high FI levels

for a particular subgroup, those who do will be expected to experience faster increases

in their FI over time. We, finally, compared our method to multilevel quadratic and
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linear mixed effect modelling, which emphasised the added value of our work for getting

individual predictions facilitating the detection of vulnerable individuals and leading to a

personalised approach against supporting ageing adults. The robustness and prediction

performance of the proposed method were, further, confirmed through simulation studies

under multiple data scenarios.

Our work relies on four major assumptions. First, that frailty is a monotonic process

which is true according to previous literature for the application on target (Searle et al.,

2008; Clegg et al., 2013). However, this methodology is not expected to be particularly

useful for non-monotonic processes. In the ELSA application, frailty is an increasing

process, so an individual with an observed trajectory with a negative slope will fall

into the lowest estimated quantile conditional on his/her local trajectory level and any

predictions will indicate no expected change on individual frailty level in the near future.

Second, we assume that the observed trajectories do not carry information beyond the

local level and slope of the process, as a result if a larger amount of repeated measures is

available we expected to lose information by relying only on the local level and slope.

In this application the average amount of trajectory coverage was 12 years relative to

the examined period of 40 years, and for more than half the individuals the available

trajectory information covered less than a quarter of the period under study. As illustrated

from our simulation studies, the method’s results remain valid and accurate even if this

assumption is violated for some of the observed individual trajectories. Third, we assume

that the missing data are missing at random and if not, then some survival bias could

potentially affect our estimates. For the purpose of this study, we do not explore how

this affects the reported results but we leave it for future work. Finally, it needs further

investigation to what extent our results are biased due to measurement error in the FI

scores. It has been previously shown and confirmed by our simulation studies, that under

noisy data scenarios, the estimation of the lower and upper quantiles can be considerably

affected. Improving the conditional quantile methodology so that it accurately estimates

the upper and lower tail quantiles whilst allowing for measurement error goes beyond

the scope of the current study but we leave that for further investigation.

Modelling incomplete longitudinal data has been widely studied in the literature.

Random effect models (Niederstrasser et al., 2019; Franse et al., 2017; Szanton et al.,

2010; Diggle et al., 2002), growth curve modelling (Rogers et al., 2017) as well as
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functional analysis methods (Fitzmaurice et al., 2008) have all been employed to study

complex processes over time while quantile regression methods have been developed

to study distributional changes on top of the mean trend exploration (Koenker, 2004).

However, none of the methods used to study ageing have explored frailty progression

without making strong assumptions about the underlying trend of the process and its

distributional properties. This is one of the main contributions of this work. We employed

a conditional quantile modelling framework to explore the distributional evolution of

frailty over time. At the same time, we assessed the relationship between these changes

and self-perceived social class and relative deprivation. This is another strength of our

work since even though there are numerous studies looking at the relationships between

socioeconomic factors and frailty, research on how self-perceptions affect the ageing

process are limited. Our investigation gave interesting insights into a potential negative

effect of positive self-perceptions with frailty. There are numerous factors which might

affect this relationship, however further investigation is needed to confirm those findings

since the differences found were not very strong.

5.6 Summary

The main purpose of this chapter is to examine the frailty progression over time and

how self-perceived social class and relative deprivation affect this process. The proposed

methodology allows a more comprehensive picture of the mechanisms that undergo frailty

progression to be obtained, highlighting the need to support not only frail individuals but

also non-frail since the higher the frailty level and age, the larger the expected increase in

frailty over time. This framework provides a dynamic way of estimating individual future

trajectories which can further help in identifying those in need before they even become

frail. The proposed method can be extended to several other longitudinal applications of

ageing with severe missingness and when the available information is very short relative

to the interval of interest. We believe that the findings from this study along with the

additional benefits of the conditional quantile methodology can deepen our understanding

of ageing and frailty and can potentially be used as a dynamic tool to facilitate policy

making.

In the following chapter, we build on the current findings by handling the multidimen-
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sional outcome variables differently. In particular, we model them directly by assuming

that they collectivelly measure the latent ageing domains presented in Chapters 2 and 3.

To do so, we develop a bivariate latent Gaussian process model which not only models

each of these domains separately, but also reveals interelationships between them.
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Chapter 6

A Bivariate Latent Gaussian

Process Model for Analysing

Ordinal Panel Data

6.1 Introduction

In the previous chapter, we analysed longitudinal questionnaire data by aggregating

the multivariate responses into a single continuous index, the FI. However, our study

showed that the produced metric does not reveal or depict the multidimensional nature

of ageing which could potentially promote targeted strategies towards supporting old

people. In this chapter, we move a step further by focusing on the raw questionnaire data

collected in ELSA. The data handled are, thus, multivariate longitudinal and, similar to

the previous chapter, irregularly collected over age. This study highlights not only the

statistical challenges involved but also creates new opportunities towards exploring the

dynamics of the ageing process.

Panel studies have become very popular in social sciences, as they enable to study

change in human behaviour and society over time, and explore potential determinants of

this change. Due to the fact that the behaviours and/or traits under study often cannot

be measured directly, it is common to use questionnaires and tests to repeatedly collect

individual observations through time, thus leading to a large collection of multivariate

and potentially non-continuous longitudinal data. Popular methods to analyse this type

of data when they measure a single trait include hierarchical mixed-effects modelling
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[MEM; Chapter 14 in Diggle et al. (2002); Chapter 16 in Fitzmaurice et al. (2008); Proust

et al. (2006); Cagnone et al. (2009); Proust-Lima et al. (2013); Verbeke et al. (2014); Li

et al. (2017)], latent growth curve modelling [LGCM; Chapter 7 in Bollen and Curran

(2006); Byrne and Crombie (2010); Masyn et al. (2014); Burant (2016)] and longitudinal

Item Response Theory [LIRT; Andrade and Tavares (2005); Van der Linden (2016); Wang

and Nydick (2020)]. Multiple traits can be simultaneously examined using extensions of

LGCM for repeated measures categorical data and longitudinal multidimensional IRT

[LMIRT; Bollen and Curran (2006); Marvelde et al. (2006); Reckase (2009); Kline (2015);

Van der Linden (2016); Wang and Nydick (2020)].

All the aforementioned approaches are similar in the sense that they use one or

more latent variables to reduce the dimensionality of the multivariate vector of outcomes

and model change over time at both population and individual level (Muthén, 2002;

Skrondal and Rabe-Hesketh, 2007; Verbeke et al., 2014). Differences are mainly detected

with regards to the assumptions that are made for the dependence structure between

measurements within an item, between items at the same time point and between items

at different time points, as well as, the assumptions regarding the functional form of

the latent concept measured through these items (linear or non-linear). MEM assumes

that observations are realisations of a latent subject specific trajectory and introduces an

hierarchical (or multilevel) random effects model for both individuals and items which

allows a lower-dimensional parametrisation of the variance-covariance matrix of the data.

Even though this method easily handles data with varying number of observations per

subject collected at individually varying time points and enables modelling of complex

time trends, a large number of items quickly leads to computational problems (Verbeke

et al., 2014). Recent work focuses on overcoming these computational problems as well

as modelling longitudinal outcomes of mixed types, however, none of them explores

modelling data involving groups of items which measure more than one underlying

concepts (Cagnone et al., 2009; Proust-Lima et al., 2013; Li et al., 2017).

Both LGCM and L(M)IRT can be viewed as special categories within the structural

equation modelling (SEM) family (Chapters 13 and 15 in Kline, 2016) where atten-

tion concentrates on the latent factors over time, measurement error and parameter

interpretation. LGCM assumes that the repeated outcomes are multiple indicators for

latent growth factor values for each individual. Latent growth curve models consist of a

104



measurement and a structural model. The first describes the relationship between the

observed outcomes and individual growth factor values through time capturing the within

individual change, whilst, the second models the population distribution of the latent

growth factors (between individual change over time) (Bollen and Curran, 2006; Masyn

et al., 2014; Duncan et al., 2013). This methodology has been extensively studied and

applied for categorical outcomes (Duncan et al., 2013; Masyn et al., 2014; Lee et al., 2018).

Nevertheless, complex non-linear trends over time cannot be easily accommodated (Bollen

and Curran, 2006), which is also the case for L(M)IRT. IRT was initially introduced in

the 1980s and mainly used in educational and psychological research to facilitate the

design, analysis, and scoring of tests, questionnaires, and similar instruments measuring

examinee’s abilities and attitudes (van der Linden and Hambleton, 2013). In fact, LGCM

and L(M)IRT only differ in the measurement model, since the second makes additional

assumptions regarding the item parameters or introduces additional guessing parameters

to accommodate for test or questionnaire-specific characteristics affecting individual

responses (Van der Linden, 2016). Especially when it comes to multivariate longitudinal

data analysis these two methods are often used interchangeably since the L(M)IRT can

be seen as a natural extension of LGCM (Hsieh et al., 2010; Paek et al., 2016; Wang and

Nydick, 2020).

Recent developments allow increased flexibility in investigating how behaviours evolve

over time. For instance, Proust-Lima et al. (2013) introduced a latent process model for

multivariate mixed longitudinal data which handled flexible modelling of time trends,

individual varying measurement times and mixed outcomes (including categorical and

non-Gaussian data) but it was designed to enable modelling of items referring to a single

latent process. Hsieh et al. (2010) extended the unidimensional LIRT model for modelling

multidimensional traits but it did not allow for flexible modelling of the underlying

concepts over time. Within the SEM framework, it is difficult to model data considering

the exact (continuous) time of measurement (e.g., individuals’ age), especially if data

are collected over a wide time interval and longitudinal measurements are sparse within

it. Within the MEM framework, even though modelling non-linear relationships over

the exact (continuous) time of measurement is achievable, modelling categorical data

measuring more than one latent constructs becomes cumbersome.

Current approaches to analyse intensive longitudinal, functional and time-series
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data employ latent Gaussian processes (LGPs) to flexibly model non-linear outcome

trends over time (Shi and Choi, 2011; Wang and Shi, 2014; Greven and Scheipl, 2017;

Vandenberg-Rodes and Shahbaba, 2015; Gao et al., 2018; Chen and Zhang, 2020). Within

the machine learning research community, Gaussian process latent variable modelling is

used for regression, dimensionality reduction and clustering purposes due to its inherent

flexibility and distribution-free form which can accommodate the increased complexity of

image and speech recognition, information retrieval and recommender systems data (Li

and Chen, 2016; Rasmussen and Williams, 2006). Hall et al. (2008) employed a LGP model

to analyse sparse and irregularly collected longitudinal data and extended functional

principal components analysis for non-Gaussian repeated measures data by perceiving

longitudinal data as sparse non-Gaussian functional data. In another study, Wang and

Shi (2014) built a LGP framework for sparse non-Gaussian functional data. Recent

work extended the LGP model introduced by Chen and Zhang (2020) for multivariate

intensive longitudinal data to multivariate panel data (Karch et al., 2020). Their work

generalises all LGCM, LIRT and MEM for modelling latent constructs measured in panel

studies allowing classical statistical inference and predictive modelling of the individual

heterogeneous latent trajectories.

In this work, we extend the LGP methodology proposed by Chen and Zhang (2020)

to handle multivariate ordinal longitudinal data measuring more than one underlying

concepts. By relying on a bivariate LGP (BiLGP) approach defined in continuous time,

we manage to handle times and number of measurements that vary from one subject

to another. This allows consideration of the exact time of measurement rather than

the time of follow-up. We validate the proposed model using simulation studies and

we implement it using data from the ELSA to explore how four, out of the five ageing

domains introduced in Chapters 2 and 3, evolve and interrelate over time.

The remainder of this chapter is organised as follows. In the following section, we

provide the necessary background to introduce our LMGP model for ordinal panel data in

Section 6.3. Inference and identifiability considerations are also discussed in Section 6.3.

Simulation studies and the application using the ELSA data are presented in Sections 6.4

and 6.5 respectively. Finally, we conclude with a discussion in Section 6.6 and a summary

of what has been discussed in Section 6.7.
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6.2 Preliminaries

Throughout this chapter, we will stay within the framework of ordinal longitudinal data

and Gaussian processes. In this section, we provide the background for our BiLGP

model which is discussed in Section 6.3. First, in Section 6.2.1, we present the standard

measurement model for ordinal longitudinal data. Then, in Sections 6.2.2 and 6.2.3,

we discuss univariate and bivariate Gaussian processes. Finally, in Section 6.2.4, we

give a short overview of common techniques to build valid and flexible cross-covariance

functions.

6.2.1 Measurement Model for Ordinal Multivariate Longitudinal Data

Suppose there are N individuals responding to I questionnaire items (questions). The

response vector of individual n at some continuous time t will be

Y n(t) = (Yn1(t), . . . , YnI(t))
T,

where t ∈ [0, T ] and T ∈ R>0. Let observations

yn(t) = (yn1(t), . . . , ynI(t))
T

be collected at some distinct time points, t ∈ {tn1, . . . , tnJn}, where Jn is the total number

of measurements for individual n. As in Bartholomew (1980), Wang and Nydick (2020)

and Chen and Zhang (2020), if we assume that there exists an underlying stochastic

relationship

P (yn(tn1), . . . ,yn(tnJn)|θn(t), t ∈ [0, T ])

that relates the observed responses yn(t) with a latent curve θn(·) = {θn(t) : t ∈ [0, T ]},

that is the unobservable latent trait that varies over time, to model the relationship

between the observed responses and the unobservable stochastic process, we make the

following assumptions:

(A1) the observed responses between two individuals are independent to each other, i.e.,

P (y1(t11), . . . ,y1(t1J1), . . . ,yN (tN1), . . . ,yN (tNJN )|θ1(t), . . . , θN (t), t ∈ [0, T ]) =∏N
n=1 P (yn(tn1), . . . ,yn(tnJn)|θn(t), t ∈ [0, T ]);
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(A2) the latent trait level at any other time point is conditionally independent of the

observed responses, given the latent trait level at the corresponding time points of

observation, i.e., P (yn(tn1), . . . ,yn(tnJn)|θn(t), t ∈ [0, T ]) =

P (yn(tn1), . . . ,yn(tnJn)|θn(tn1), . . . , θn(tnJn));

(A3) within-individual responses are assumed to be independent given the corresponding

latent trait levels, i.e., P (yn(tn1), . . . ,yn(tnJn)|θn(tn1), . . . , θn(tnJn)) =∏Jn
j=1P (yn(tnj)|θn(tnj)), and;

(A4) responses between different items are assumed to be independent given the under-

lying latent trait, i.e., P (yn(tnj)|θn(tnj)) =
∏I
i=1 P (yni(tnj)|θn(tnj)).

Hence, someone can write

P (Y = y) =

∫ ∞
−∞

. . .

∫ ∞
−∞

N∏
n=1

Jn∏
j=1

I∏
i=1

P (yni(tnj)|θn(tnj))f(θ)dθ

= E

[ N∏
n=1

Jn∏
j=1

I∏
i=1

P (yni(tnj)|θn(tnj))

]
(6.1)

where θ = [θ1,θ2, . . . ,θN ]T and θn = [θn(tn1), θn(tn2), . . . , θn(tnJn)]T.

Now, if Yni(t) ∈ {0, 1, . . . , Ci} for n ∈ {1, 2, . . . , N}, i ∈ {1, 2, . . . , I} and t ∈ [0, T ],

where 0 < 1 < . . . < Ci are the Ci + 1 ordered categories of item i, we can express an

individual’s probability of answering c (c ∈ {0, 1, . . . , Ci}) to the item i at time t given

his/her latent trait curve θn(t) as

P (Yni(t) = c|θn(t)) = P (Yni(t) ≥ c|θn(t))− P (Yni(t) ≥ c+ 1|θn(t))

= P (Yni(t) < c+ 1|θn(t))− P (Yni(t) < c|θn(t)) (6.2)

with P (Yni(t) ≥ 0|θn(t)) = 1 and P (Yni(t) > Ci|θn(t)) = 0 meaning that any individual

is able to give the minimum response in any question (item) and none can answer more

than the highest category (Ci). The ordinal response model is, then, defined as

P (Yni(t) ≤ c|θn(t)) = F (bi,c + αiθn(t)) (6.3)

where F (·) can be either the standard normal or logistic distribution. The parameters

αi and bi,c represent the corresponding item loadings and category thresholds for the

ordinal responses; in particular, for identifiability purposes, αi is constrained in (0,+∞)
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Figure 6.1: Latent variable formulation of ordinal data. We consider the scenario where
Ci = 2. Then, Y = c if bc ≤ Y ∗ < bc+1 where c ∈ {0, 1, 2}.

and bi,c ∈ (−∞,+∞) with −∞ = bi,0 < bi,1 < bi,2 < · · · < bi,Ci < bi,Ci+1 = ∞ with

i ∈ {1, 2, . . . , I} and c ∈ {0, 1, . . . , Ci}. Therefore, under the probit model for the ordinal

responses, we get

P (Yni(t) = c|θn(t)) = Φ(bi,c+1 + αiθn(t))− Φ(bi,c + αiθn(t)). (6.4)

Note that Eq. 6.4 can be alternatively reformulated as

Y ∗ni(t) = −αiθn(t) + εni(t) (6.5)

where αi and bi,c as in Eq. 6.4, εni(t) ∼ N(0, 1) and Y ∗ni(t) is a continuous latent variable

with n ∈ {1, 2, . . . , N}, i ∈ {1, 2, . . . , I} and t ∈ [0, T ]. Under this formulation, the

response Yni(t) can be seen as a coarsened version of Y ∗ni(t) obtained by

Yni(t) = c if bi,c ≤ Y ∗ni(t) < bi,c+1. (6.6)

Figure 6.1 provides a simple illustration of the above idea under the scenario where

Ci = 2.

6.2.2 Univariate Gaussian Processes

Let the probability space be denoted by (Ω,F , P ) and the index set S. We define a

stochastic process as the finite or real valued function Θ(t, ω) which for every fixed

t ∈ S is a measurable function of ω ∈ Ω and can be written as {Θt(ω) : t ∈ S}. A

Gaussian process is, then, a stochastic process where all finite-dimensional distributions

Ft1,t2,...,tk are themselves multivariate normal distributions for any choice of k ∈ N and
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finite set of indices {t1, t2, . . . , tk} ⊆ S and it can be fully specified by its mean function

µ : S −→ R with µ(t) = E[Θ(t)], and kernel function K : S × S −→ R with K(t, t′) =

Cov(Θ(t),Θ(t′)) = E[(Θ(t)− µ(t))(Θ(t′)− µ(t′)))]] (Billingsley, 2008). We, then, write

Θ(t) ∼ GP(µ(t),K(t, t′)).

Consequently, a continuous time stochastic process on a time interval [0, T ] is a Gaussian

process if for every k ∈ N and t1, t2, . . . , tk ∈ [0, T ]

Θ = (Θ(t1),Θ(t2), . . . ,Θ(tk))
T ∼ Nk(µ,Σ)

where µ = (µ(t1), µ(t2), . . . , µ(tk))T and Σ is a covariance matrix with (i, j)-entryK(ti, tj),

i, j = 1, . . . , k.

Note that the covariance function of a Gaussian process describes how similar neigh-

bouring data points are, however, for K(·, ·) to be a valid covariance function, the

generated matrix should be positive semi-definite for any choice t and t′. Furthermore,

a kernel function, and subsequently, the Gaussian process which it specifies, will be

stationary if K(t, t′) = K(v), where v = t−t′ for any t, t′ ∈ S; and, isotropic, if it depends

on the distance between t and t′ alone, i.e., K(t, t′) = K(|v|) where |v| = |t− t′|. Common

examples of stationary and isotropic kernels are the squared exponential, Matérn, rational

quadratic, Ornstein-Uhlenbeck etc. Linear combinations of the above kernels can be

also result in valid kernel functions. The choice of kernel function is crucial, since it

determines the qualitative beliefs about the underlying signal. For instance, the most

common kernel function is the squared-exponential kernel, which is infinitely differen-

tiable and results in smoother processes but can be unrealistic for modelling a range of

physical processes (Stein, 2012); while the Ornstein-Uhlenbeck is non-differentiable and

it has been firstly introduced to model the velocity of a particle undergoing Brownian

motion (Rasmussen and Williams, 2006). We refer the interested readers to Chapter 4 of

the Rasmussen and Williams (2006) book for a detailed overview of the topic.

In this work, we employ the Matérn class of covariance functions (Figure 6.2), that is

M(v|ξ, ν) =
21−ν

Γ(ν)

(√
2νr

ξ

)ν
Bν

(√
2νr

ξ

)
(6.7)
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(a) Correlation decay over time. (b) Generated Gaussian process.

Figure 6.2: Matérn correlation and Gaussian process generated using a Matérn kernel for
different scale parameter ξ values. Here, ν = 5/2.

where v = |t− t′|, ν is a positive smoothing parameter, ξ is a positive scale parameter

and Bν is a modified Bessel function. Due to its inherent flexibility and nice properties,

e.g., for i = 0, 1, . . . and ν = 1
2 + i the Matérn covariance becomes a product of an

exponential and a polynomial of order i function, the Matérn is preferred over other

types of covariance functions for numerous data applications (Stein, 2012; Rasmussen

and Williams, 2006).

6.2.3 Multivariate Gaussian Processes

Now, let a P -variate Gaussian process be denoted by Θ(t) = (Θ1(t),Θ2(t), . . . ,ΘP (t))T.

Similar to the univariate case, it can be fully specified through its mean µ(t) = E[Θ(t)]

and its cross-covariance matrix function K(t, t′) = Cov(Θ(t),Θ(t′)) = {Kpq(t, t
′)}Pp,q=1

where

Kpq(t, t
′) = Cov(Θp(t),Θq(t

′)), t, t′ ∈ T (6.8)

for p, q = 1, . . . , P . Here, Kpq(·, ·) can be seen as the marginal-covariance function for

p = q and as the cross-covariance function for p 6= q. For the above cross-covariance

function to be a valid the mapping K : T × T −→ MP×P , where MP×P is the set of

P × P real-valued matrices, must be non-negative definite, i.e., for the covariance matrix
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Σ of the random vector (Θ(t1)T, . . . ,Θ(tk)
T)T ∈ RkP ,

Σ =



K(t1, t1) K(t1, t2) · · · K(t1, tk)

K(t2, t1) K(t2, t2) · · · K(t2, tk)

...
...

. . .
...

K(tk, t1) K(tk, t2) · · · K(tk, tk)


(6.9)

and any vector a ∈ RkP we should have aTΣa ≥ 0.

Stationarity and isotropy can be defined similarly to the univariate case. In particular,

a multivariate Gaussian process is stationary if there is a mapping Kpq : T −→ R such

that

Cov(Θp(t),Θq(t
′)) = Kpq(v) where v = t− t′ for any t, t′ ∈ T (6.10)

and isotropic, if it is stationary and invariant under rotations and reflections; in other

words, if there is a mapping Kpq : R+ ∪ 0 −→ R such that

Cov(Θp(t),Θq(t
′)) = Kpq(|v|) (6.11)

Additional properties of the covariance and cross-covariance functions can be found in

Genton and Kleiber (2015); Gneiting et al. (2010); Rasmussen and Williams (2006) and

Abrahamsen (1997).

6.2.4 Cross-covariance Functions for Multivariate Gaussian Processes

There are multiple techniques for building valid and flexible cross-covariance functions.

In this section, we give a brief summary of these techniques, however interested readers

can look at Genton and Kleiber (2015) for a thorough review.

Univariate covariance models can be combined to build valid cross-covariance functions

using the linear model of coregionalisation, convolution techniques or by using the latent

dimensions technique. In particular, when the linear model of coregionalisation is

employed, the multivariate random process is expressed as a linear combination of a

number of independent processes with some pre-specified stationary covariance function.

For this approach, only the univariate covariances must be specified avoiding direct

specification of the cross-covariance function. However, if a large number of processes is

used, the number of parameters to be estimated increases vastly while the cross-covariance
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smoothness is only controlled through the smoothness of each univariate process.

Convolution is another technique which can be used to build valid covariance functions.

Authors distinguish two different types: kernel convolution, where all processes are

generated by the same underlying process; and, covariance convolution. Both necessitate

numerical integration, while the first has the additional disadvantage that it imposes

strong assumptions about the dependence structure between the pairs of the univariate

processes and produces parameters difficult to interpret. A special case of covariance

convolution is the multivariate Matérn covariance model defined as

Cov(Θd(t),Θq(t
′)) = σdσqβdqM(v|νdq, ξdq), (6.12)

where M(·|νdq, ξdq) is univariate Matérn covariance as in Eq. 6.7, σd, σq are the standard

deviations of the two marginal processes, d, q ∈ {1, 2, . . . , D} and βdq is a cross-correlation

coefficient, representing the strength of correlation between Zd and Zq when v = t−t′ = 0.

Conditions on model parameters νdq, ξdq and βdq for all d, q ∈ {1, 2, . . . , D} should be

specified for Eq. 6.12 to result in a valid covariance function. As shown in Eq. 6.12, the

resulting cross-correlation can be written in a closed form and each constituent process

of the multivariate Gaussian process is allowed to have a marginal Matérn covariance,

with Matérns also composing the cross-covariance structures.

Finally, another popular method introduced by Apanasovich and Genton (2010),

employs latent dimensions to transform the cross-covariance function of the multivariate

random field to a valid univariate covariance function. Common extensions of this

technique often allow modelling non-stationary processes (Bornn et al., 2012), however

this is beyond the scope of the current work.

6.3 Methodology

In this section, we introduce the BiLGP modelling framework for ordinal multivariate

longitudinal data measuring more than one concepts over time. In Section 6.3.1, we

extend the measurement model described in Section 6.2.1 when instead of a latent curve

θ(t) we have a two-dimensional latent curve vector θ(t) = (θ1(t), θ2(t))T. We, then

continue, by presenting the bivariate extension of the structural model discussed in Chen

and Zhang (2020) and Karch et al. (2020). Parameter and individual trajectory estimation
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are also discussed in this section. Identifiability, parameter tuning and computational

intensity considerations are discussed in Sections 6.3.2, 6.3.3 and 6.3.4.

6.3.1 Model Specification and Inference

The Measurement Model

Consider the multivariate longitudinal data introduced in Section 6.2.1. We assume that

each individual response vector Y n(t) = (Yn1(t), . . . , Yn1(t))T is, now, associated with

a latent curve vector θn(t) = (θ1n(t), θ2n(t))T so that we can express an individual’s

probability of answering c (c ∈ {0, 1, . . . , Ci}) to the item i at time t under the probit

model for the ordinal responses, as

P (Yni(t) = c|θn(t)) = Φ(bi,c+1 +

D∑
d=1

αidθdn(t))− Φ(bi,c +

D∑
d=1

αidθdn(t)) (6.13)

where D = 2, αid and bi,c represent the corresponding item loadings and category

thresholds for the ordinal responses; in particular, αid ∈ (0,+∞) and bi,c ∈ (−∞,+∞)

with c ∈ {0, 1, . . . , Ci}, −∞ = bi,0 < bi,1 < bi,2 < · · · < bi,Ci < bi,Ci+1 = ∞, d ∈

{1, 2, . . . , D} and i ∈ {1, 2, . . . , I}. Alternatively, one can reformulate Eq. 6.13 using

another level of latency, as in Section 6.2.1, i.e.,

Y ∗ni(t) = −
D∑
d=1

αidθdn(t) + εni(t) (6.14)

with D = 2, αid and bi,c similar to Eq. 6.13 and εni(t) ∼ N(0, 1) with n ∈ {1, 2, . . . , N},

i ∈ {1, 2, . . . , I} and t ∈ [0, T ].

The Structural Model

Consider the framework introduced in Sections 6.2.1 and 6.2.2. We can assume that θn(·)

in Eq. 6.4 is a Gaussian process and we can write

θn(t) = µ(t) + θ̄n(t), (6.15)

where µ(t) is a smooth mean function that can be interpreted as the population mean

trait trend, and θ̄n(t) ∼ GP(0,K) is another zero mean Gaussian process with the kernel

function K describing individual deviation from the population mean function µ(t). Both
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µ(t) and K can be parametrised according to the application needs, taking either known

parametric forms or by allowing more flexibility using alternative parametrisations (Ras-

mussen and Williams, 2006). For example, one can adopt a parametrisation of µ(t) and

θ̄n(t) using basis functions, i.e.,

µ(t) = γ0 + γ1B1(t) + . . .+ γHBH(t)

and

θ̄n(t) =

H1∑
h=1

ωhZnhΦh(t)

where {Bh(·) : h = 1, . . . ,H} and {Φh(·) : h = 1, . . . ,H1} are pre-specified basis

functions on [0, T ]; γh, h = 1, . . . ,H, and ωh, h = 1, . . . ,H1, are model parameters and

Znh, h = 1, . . . ,H1, are i.i.d. standard normal random variables.

The above framework is extensively discussed in Chen and Zhang (2020); Karch et al.

(2020) and Wang and Shi (2014). By allowing θ(·) in the measurement model to be a

bivariate Gaussian process, we enable modelling multivariate longitudinal data which

measure more than one latent traits over time. Below, an appropriate cross-covariance

function is specified and a computational algorithm is developed to estimate model

parameters and individual trajectories.

In particular, the latent bivariate random process θn(t) is assumed to be bivariate

Gaussian, which is fully described by its mean and cross-covariance function, i.e., µ :

T −→ R2 and K : T × T −→M2×2 respectively. Both need to be specified as shown in

Section 6.2.3. Similar to Eq. 6.15, the bivariate Gaussian process θn(t), t ∈ [0, T ], can be

written as

θn(t) = µ(t) + θ̄n(t) (6.16)

where θ̄n(t) ∼MGP2(0,K) is a zero mean bivariate Gaussian process with a covariance

function K.

We parametrise K using a bivariate Matérn model which is defined in Section 6.2.4.

The mean function µ of each constituent process is, then, assumed to be a smooth

function of time and can be parametrised accordingly. For instance, if we use basis
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functions, the mean vector can be written as

µ(t) =

µ1(t)

µ2(t)

 =

γ10 + γ11B11(t) + . . .+ γ1H1B1H1(t)

γ20 + γ21B21(t) + . . .+ γ2H2B2H2(t)

 =

B1(t)γT
1

B2(t)γT
2

 , (6.17)

where {Bdh(·) : h = 1, . . . ,Hd, d = 1, 2} are pre-specified basis functions on [0, T ] of

some degree with Hd number of knots and γdh are model parameters with h = 1, . . . ,H

and d = 1, 2.

Population Level Inference

Let the parameter vector Ψ = ({αid : i = 1, . . . , I, d = 1, 2}, {bi,ci : i = 1, . . . , I, ci =

1, . . . , Ci}, {γdh : h = 1, . . . ,H, d = 1, 2}, {σd : d = 1, 2}, {ξdd : d = 1, 2}, {νdq : d =

1, 2, q = 1, 2}, {βdq; d = 1, 2, q = 1, 2}). We, additionally, let Y = [Y 1,Y 2, . . . ,Y N ]T

and Θ = [θ1,θ2, . . . ,θN ]T, where Y n is the Jn × I matrix of individual n responses

with i ∈ {1, 2, . . . , I} and t1, t2, . . . , tJn ∈ [0, T ]; and, θn = [θ1n,θ2n]T with θdn =

[θdn(t1), θdn(t2), . . . , θdn(tJn)]T, d ∈ {1, 2}.

Under the above formulation, the marginal likelihood L(Ψ;y) is expressed as

L(Ψ;y) =

∫
P (Y = y|Θ,Ψ)f(Θ|Ψ)dΘ (6.18)

which is a high-dimensional integral which cannot be solved analytically (intractable).

To overcome this issue and maximise Eq. 6.18, we can implement an Expectation-

Maximisation (EM) algorithm. However, considering the joint likelihood of y and Θ for

D = 2,

L(Ψ;y,Θ) =
N∏
n=1

{ I∏
i=1

Jn∏
j=1

[
Φ
(
bi,yni(tnj)+1+

D∑
d=1

αidθdn(t)
)
−Φ
(
bi,yni(tnj)+

D∑
d=1

αidθdn(t)
)]}
×

(2π)−
DJn
2 |Σ|−

1
2 exp

[
− 1

2
(θn − µn)TΣ−1(θn − µn)

]
(6.19)

the conditional distribution of Θ given y is not easy to find. Hence, instead of the regular

EM-algorithm we implement a Stochastic EM-algorithm (StEM; Nielsen (2000)). To do

so, we use the formulation in Eq. 6.14 to obtain the augmented joint log-likelihood

`(Ψ;y,y∗,Θ) =

N∑
n=1

{ I∑
i=1

Jn∑
j=1

1bi,yni(tnj)<y
∗
ni(tnj)≤bi,yni(tnj)+1

×
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log

[
N(y∗ni(tnj);−

D∑
d=1

αidθdn(tnj))

]}
+ log

[
MVNDJn(θn;µn,Σ)

]
. (6.20)

For the StEM-algorithm, we then iterate between a StE-step, where we sample from the

conditional distribution of Θ using Gibbs Sampling, and a M-step where we maximise

the joint log-likelihood obtained from Eq. 6.19. A detailed overview of the algorithm can

be found in Supplementary Text A.3 of the Appendix. Note that for the maximisation

step, we used a limited-memory modification of the BFGS quasi-Newton method, i.e.,

the L-BFGS-B algorithm (Zhu et al., 1995). The algorithm allows box constraints, i.e.,

generates a sequence of strictly feasible solutions to the maximisation problem, whilst

promoting computational efficiency when the number of parameters is large.

Individual Level Inference

To get estimates for an individual latent trait level at a particular point in time (individual

D-variate Gaussian process at time t), we use the Expected a Posteriori estimates for

θn(t), t ∈ [0, T ], n ∈ N , i.e.,

θ̂n,EAP = E[θn|Y n, Ψ̂] =

∫
θnP (θn|Y n, Ψ̂)dθn.

To compute the above integral we use Monte Carlo integration (Gibbs-step of the StEM-

algorithm) to draw M samples from the posterior P (θn|Y n, Ψ̂).

Given those estimates, to get estimated process values θn(t) for all t ∈ [0, T ], we

interpolate the missing θn(t) values at t ∈ [0, T ] \ {tn1, tn2, . . . , tnJn} as follows:

θ̂n(tnew) = µ̂θn(tnew)|θn(tn1),θn(tn2),...,θn(tnJn ) = µ̂θn(tnew) + Σ̂θn(tnew)Σ̂
−1
θn

(θ̂n − µ̂θn)

sinceθn(tnew)

θn

 ∼MVN2(Jn+1)

(µ̂n(tnew)

µ̂θn

 ,
 σ̂2 Σ̂θn(tnew)

Σ̂T
θn(tnew) Σ̂θn

). (6.21)

6.3.2 Identification and Other Constraints

To ensure model identifiability and covariance function validity, we applied constraints

on both the Univariate LGP (ULGP) and BiLGP models. In particular, similar to

structural equation modelling, we fix each γd0 = 0 for all d ∈ {1, 2} (avoids mean shift)

and σ11 = σ22 = 1 (fixes the scale of the latent process). Notice that, alternatively,

someone can fix the first factor loading of each dimension to 1 and the first threshold
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of one of the items from each dimension to 0 (an example is presented in Section 6.4).

For the bivariate model, in particular, we further constrain the Matérn covariance and

assume

v12 =
v11 + v22

2
, ξ12 = ξ11 = ξ22, (6.22)

σ12 = σ11 = σ22 = 1. (6.23)

Variance and scale parameter constraints were applied as previously suggested in relevant

literature (Apanasovich and Genton, 2010). This parsimonious formulation ensures

cross-covariance symmetry and nonnegative definiteness of the BiLGP.

In the remainder of this chapter, we assume a bivariate structure with all cross-

loadings being equal to zero as no item is allowed to inform more than one factor (latent

process). As shown in Chapter 3, this assumption is reasonable for model implementation

using the ageing domain data from the ELSA. However, structural misspecification

becomes a major issue if the latent factor structure is not clear, i.e., items loading to

more than one factors (latent processes); fitting a bivariate model to a process where

there is really only a single univariate latent process; or, having a static factor instead

of a time-varying latent process. Methods for proper assessment have not yet being

developped, but looking at factor (latent process) loadings and latent process mean

function parameter estimates can provide some insight on this matter. For example, low

factor loadings after fitting the BiLGP model could suggest that the bivariate process

structure might be inappropriate and a univariate model may be used instead. Proper

investigation before and after model fitting is essential to avoid lack of model fit and

erroneous conclusions being drawn.

6.3.3 Computational Complexity

As shown in previous work on Gaussian processes, this methodology suffers from high-

dimensionality problems (Vandenberg-Rodes and Shahbaba, 2015). In particular, compu-

tational cost depends on multiple factors which include the sample size N , the number

of repeated measurements per individual Jn, the number of items I and the number of

thresholds to be estimated. All of these factors can make inference quite complex and

computationally cumbersome even for the univariate case.
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Looking at the bivariate extension, inference necessitates even more computational

power since dimensionality increases vastly. Previous literature in multivariate Matérn

processes, proposes a two step approach for model implementation where each univariate

model is fitted separately and parameter estimates are, then, used as fixed to facilitate

estimation of the remaining parameters of the multivariate covariance. In particular, for

the purposes of the ELSA application, we first get parameter estimates by fitting the

ULGP model to each domain data separately and, then, proceed with estimating the

cross-correlation parameter for the joint cross-covariance function of the bivariate model.

This technique has been previously implemented and was proven to provide valid results

under a similar framework (Vandenberg-Rodes and Shahbaba, 2015). Notice that, since

after the univariate application some ξd1 6= ξd2 , for the bivariate model we assume that

ξ11 = ξ22 = ξ12 =
ξd1+ξd2

2 . This is not expected to vastly affect inference results, since for

large values and small changes of the scale parameter, Gaussian function smoothness

minorly changes, as shown in Figure 6.2.

R version 3.6.3 was used to perform all analyses within this chapter. Similar to

Chapter 4, both the simulation study and the data application were performed using

The High End Computing Cluster at Lancaster University. R code was developed to

implement the ULGP and BiLGP models. The Rcpp R package was used to improve

computational time. Parameter estimation of each ULGP model implemented using

ageing domain data (10000 iterations) ranged from 24 to 190 hours approximately and

differed according to the number of parameters within each individual model.

6.3.4 Parameter Tuning

Determining the value for the number of interior knots for the B-spline basis in Eq. 6.17

is essential to accurately approximate the mean function of the LGP structure. Common

methods for selecting the number of interior knots for the B-spline basis include cross-

validation or, more sophisticated, Bayesian algorithms (DiMatteo et al., 2001). However,

due to the computational complexity of the proposed algorithm such methods could be

computationally cumbersome or, even, infeasible in practice. To identify the ideal number

of knots for data application purposes, we initially used simulated data and developed

several different criteria based on which we compared performance under varying scenarios

for the number of interior knots. We build a BIC-like criterion following the proposed
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algorithm of Ibrahim et al. (2008) and we also used the “elbow” method (Thorndike,

1953), where determination of the number of interior knots to be used is based on the

location of the “elbow” of the model performance curve, i.e., performance improves in

a slower rate considering the trade-off between the number of added parameters in the

model and the performance benefits. We validated any results obtained by exploring

both methods’ properties using simulated data (Section 6.4).

6.4 Simulation Studies

In this section, we explore the properties of the BiLGP model with parameter estimation

and individual trajectory estimation accuracy, as discussed in Section 6.3.1. We do so,

after having investigated the performance of the ULGP model for the assumed type

of data. Indicatively, algorithm convergence is also assessed for some of the examined

scenarios.
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Figure 6.3: Mean curves of the LGPs assumed generated for the simulation studies and
B-splines basis functions used for their approximation (6 interior knots).

First, we simulated time points tnj ∈ [0, 40] and randomly sampled Jn ∈ {2, 3, . . . , 8},

for all n ∈ {1, 2, . . . , N} to mimic the data structure observed in ELSA. Our first aim

was to assess parameter estimation and latent curve estimation accuracy under varing

sample size, latent mean curve and covariance parameter scenarios. Both identification

constraint options where considered to ensure that they do not affect parameter esti-

mation and algorithm convergence. Responses were generated based on the simulation

regimes shown in Table 6.1. Notice that for the BiLGP model ξdd is the corresponding

scale parameter common across all constituent processes, i.e., ξ11 = ξ22 (parsimonious

Matérn model of Genton and Kleiber (2015)). We additionally assume that ν = 5/2

for all constituent processes. We considered three scenarios for the LGP mean func-

tion: µ(t) = 0 (zero mean); µ(t) generated using prespecified coefficients for the cubic
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ULGP Model

Scenario Mean Function Ident. Constraints Varying Correlation

1A µ(t) = 0 γ0 = 0 and σ = 1 N ∈ {500, 1000, 2000}, ξ = 10 -

1B
µ(t) generated using prespecified
coefficients for the cubic B-splines

γ0 = 0 and σ = 1 N ∈ {500, 1000, 2000}, ξ = 10 -

1C µ(t) = 0.8 sin3(0.15t) γ0 = 0 and σ = 1 N ∈ {500, 1000, 2000}, ξ = 10 -

1D µ(t) = 0.8 sin3(0.15t) α1 = 1 and b1,1 = 0 N ∈ {500, 1000, 2000}, ξ = 10 -

1E µ(t) = 0.8 sin3(0.15t) α1 = 1 and b1,1 = 0 ξ ∈ {5, 25, 35}, N = 250 -

BiLGP Model

2A µ1(t) = 0 and µ2(t) = 0
γ10 = 0, γ20 = 0,
σ1 = 1, σ2 = 1

N ∈ {100, 500, 1000}, ξ11 = ξ22 = 10 β12 ∈ {−0.2,−0.8, 0, 0.2, 0.8}

2B
µ1(t) = 0 and µ2(t)
generated using prespecified
coefficients for the cubic B-splines

γ10 = 0, γ20 = 0,
σ1 = 1, σ2 = 1

N ∈ {100, 500, 1000}, ξ11 = ξ22 = 10 β12 ∈ {−0.2,−0.8, 0, 0.2, 0.8}

2C
µ1(t) = 0 and
µ2(t) = 0.8 sin3(0.15t)

γ10 = 0, γ20 = 0,
σ1 = 1, σ2 = 1

N ∈ {100, 500, 1000}, ξ11 = ξ22 = 10 β12 ∈ {−0.2,−0.8, 0, 0.2, 0.8}

2D

µ1(t) generated using
prespecified coefficients
for the cubic B-splines and
µ2(t) = 0.8 sin3(0.15t)

γ10 = 0, γ20 = 0,
σ1 = 1, σ2 = 1

N ∈ {100, 500, 1000}, ξ11 = ξ22 = 10 β12 ∈ {−0.2,−0.8, 0, 0.2, 0.8}

2E
µ1(t) = 0 and
µ2(t) = 0.8 sin3(0.15t)

α1 = 1, α5 = 1,
b5,1 = 0, b1,1 = 0

N ∈ {100, 500, 1000}, ξ11 = ξ22 = 10 β12 = −0.5

2F
µ1(t) = 0 and
µ2(t) = 0.8 sin3(0.15t)

α1 = 1, α5 = 1,
b5,1 = 0, b1,1 = 0

ξ11, ξ22 ∈ {5, 25, 35}, N = 250 β12 = −0.5

Table 6.1: Simulation study regimes for the ULGP and BiLGP modelling frameworks.

B-splines (exact), in particular µ(t) = B(t)γT where B(t) is the B-splines basis func-

tion matrix and γT = [−1.15,−1.45, 0.31,−2.66,−0.19,−0.10, 1.87,−0.78, 0.28]; and,

µ(t) = 0.8 sin3(0.15t) (Figure 6.3). Multiple scenarios were also considered for the sam-

ples sizes, scale parameters and cross-correlation parameter of the bivariate Matérn

covariance. For all scenarios, cubic B-splines with 6 interior knots were used (Figure 6.3).

Parameter estimates were computed based on 5000 repetitions for each of the R=100

data sets generated per scenario. Performance was measured using the MAE, the

relative error (RE) and the root mean integrated squared error (RMISE) across all data

replications R when appropriate. We define the RMISE as

1

R

r=1∑
R

√∫ 8

0
(µd(s)−m

(r)
d (s))2ds (6.24)

where m
(r)
d (s) is the estimate of µd(s) in the rth replication. Algorithm convergence

was also assessed using the Rubin-Gelman R̂ (total chain variance over within chain

variance; Gelman, 1996) which was less than 1.2 and ≈ 1 under all N for all parameters.

Figures B.17 to B.21 show the GR statistics using 5 chains and varying parameter

initialisation scenarios. We noticed that a burn-in of 10% of the chain length should be

sufficient to ensure convergence under all simulation scenarios.

Table 6.2 shows parameter estimation accuracy results of the ULGP model (scenarios
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Figure 6.4: RMISE for the ULGP model; results shown correspond to simulation regimes
1D and 1E (A). RMISE for the BiLGP model; results shown correspond to simulation
regimes 2E and 2F (B); and, individual curve estimation accuracy for the BiLGP model
under multiple scenarios for the length of the observed trajectory of each individual (C).

1A to 1D) whereas Figure 6.6 illustrates the corresponding performance results for the

BiLGP model for selected correlation scenarios (2A to 2E). We observed that parameter

estimates are relatively robust and high accuracy is achieved even for small sample sizes.

Notice that the MAE of ξ (scale parameter) is high when we look at the MAE scores but

that is due to its large true value (for all scenarios ξ11 = ξ22 = 10) since small changes

in its value only slightly affect process roughness (Figure 6.2). We confirmed this by

looking at the corresponding relative error for this particular parameter which was less

than 1 for all simulation regimes. Accuracy is not affected by varying ξdd values which

indicates that process smoothness does not affect algorithm convergence and estimation

(Figures 6.4A and 6.4B). The BiLGP method showed high performance in approximating

both latent mean functions of the bivariate Gaussian process (Figures 6.4B and 6.5).

As expected, larger sample size promoted parameter and latent mean curve estimation

accuracy.

Individual trajectory estimation accuracy was also explored under varying sample

size and generated data scenarios. In particular, three Jn scenarios: short (2 ≤ Jn ≤ 8)

medium (8 ≤ Jn ≤ 14) and long trajectories (14 ≤ Jn ≤ 20). The sample sizes examined

were 50, 100 and 500 subjects. The number of samples generated for each scenario

combination was 100. The Expected a Posteriori (EAP) estimates were used. An overall

accuracy score was obtained as follows:

on =
dn
en

where
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dn =

√∫ T

0
(θn(t)− θ̂n,EAP )2dt and en =

√∫ T

0
(θn(t)− m̂(t))2dt.

This showed if individual trajectory estimates approximate the true individual curves

better compared to the mean function estimate. The on scores are provided in Figure 6.4.

Even though the method does not perform well for short trajectories and N = 50,

increasing sample size and longer observed trajectories both improve individual curve

estimation accuracy. This is reasonable since when the length of the observed individual

trajectories relative to the time interval of interest is small, the interpolation and

extrapolation done to get the EAP estimates as well as the θ̂nd(·) have larger deviations

from the true values outside each individual trajectory range.
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N α1 α2 α3 α4 b1 b2 b3 b4 ξ γ0 γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 σ

True value 1 1.20 0.90 1 0 -0.50 -0.20 -0.40 10 0 0 0 0 0 0 0 0 0 0 1

500 4.44e-02 5.88e-02 4.38e-02 3.90e-02 1.38e-01 1.62e-01 1.30e-01 1.39e-01 7.49e-01 - 2.32e-01 1.56e-01 1.84e-01 1.66e-01 1.74e-01 1.66e-01 1.90e-01 1.98e-01 1.93e-01 -
MAE (zero) 1000 3.47e-02 3.26e-02 2.81e-02 3.25e-02 1.31e-01 1.54e-01 1.14e-01 1.32e-01 5.26e-01 - 2.15e-01 1.18e-01 1.67e-01 1.45e-01 1.50e-01 1.47e-01 1.58e-01 1.62e-01 1.65e-01 -

2000 2.08e-02 3.06e-02 2.18e-02 2.17e-02 6.56e-02 7.94e-02 6.20e-02 7.05e-02 2.59e-01 - 1.28e-01 7.73e-02 8.67e-02 8.02e-02 9.48e-02 8.47e-02 1.01e-01 9.51e-02 9.77e-02 -

True value 1 1.20 0.90 1 0 -0.50 -0.20 -0.40 10 0 -1.15 -1.45 0.31 -2.66 -0.19 -0.10 1.87 -0.78 0.28 1

500 4.88e-02 5.61e-02 4.56e-02 4.60e-02 1.67e-01 1.85e-01 1.48e-01 1.63e-01 8.89e-01 - 3.20e-01 2.34e-01 2.24e-01 2.32e-01 2.00e-01 2.04e-01 2.13e-01 2.24e-01 2.26e-01 -
MAE (exact) 1000 3.45e-02 3.79e-02 2.80e-02 3.17e-02 1.09e-01 1.32e-01 9.79e-02 1.13e-01 5.23e-01 - 2.12e-01 1.49e-01 1.71e-01 1.48e-01 1.28e-01 1.35e-01 1.30e-01 1.59e-01 1.40e-01 -

2000 2.15e-02 3.12e-02 1.68e-02 2.37e-02 7.08e-02 8.58e-02 6.65e-02 7.30e-02 3.26e-01 - 1.49e-01 1.01e-01 1.16e-01 9.95e-02 9.71e-02 9.92e-02 9.72e-02 1.12e-01 9.62e-02 -

True value 1 1.20 0.90 1 0 -0.50 -0.20 -0.40 10 0 -0.09 0.31 1.16 -0.19 0.22 -0.72 -0.91 0.08 -0.07 1

500 4.87e-02 5.73e-02 3.78e-02 3.83e-02 1.46e-01 1.75e-01 1.33e-01 1.46e-01 7.88e-01 - 2.54e-01 1.73e-01 2.01e-01 1.69e-01 1.85e-01 1.82e-01 2.23e-01 2.12e-01 2.09e-01 -
MAE (approx.) 1000 3.32e-02 3.37e-02 2.87e-02 2.87e-02 1.28e-01 1.51e-01 1.09e-01 1.29e-01 5.01e-01 - 2.18e-01 1.28e-01 1.73e-01 1.47e-01 1.45e-01 1.62e-01 1.55e-01 1.76e-01 1.59e-01 -

2000 1.98e-02 2.68e-02 2.14e-02 1.99e-02 6.54e-02 7.73e-02 6.22e-02 6.90e-02 2.60e-01 - 1.14e-01 8.64e-02 9.25e-02 8.38e-02 9.29e-02 9.31e-02 1.07e-01 1.03e-01 9.10e-02 -

True value 1.00 1.20 0.90 2.20 0.00 -0.50 -0.20 0.90 10.00 0.01 -0.08 0.31 1.16 -0.19 0.23 -0.73 -0.90 0.07 -0.04 1.00

500 - 5.77e-02 5.00e-02 1.17e-01 - 3.03e-02 3.26e-02 5.49e-02 7.99e-01 8.27e-02 1.33e-01 9.99e-02 9.72e-02 8.71e-02 1.36e-01 1.58e-01 1.42e-01 9.52e-02 8.61e-02 3.69e-02
MAE (approx.) 1000 - 5.57e-02 4.87e-02 1.24e-01 - 3.60e-02 2.21e-02 4.41e-02 2.55e-01 7.46e-02 7.08e-02 6.90e-02 1.00e-01 4.69e-02 6.32e-02 1.21e-01 1.19e-01 1.03e-01 7.02e-02 4.75e-02

2000 - 1.99e-02 2.67e-02 8.38e-02 - 1.94e-02 1.48e-02 3.31e-02 1.64e-01 6.39e-02 6.65e-02 6.16e-02 3.98e-02 3.37e-02 4.24e-02 4.14e-02 6.50e-02 4.50e-02 4.32e-02 1.92e-02

Table 6.2: Parameter estimation accuracy as measured using the Mean Absolute Error for all simulated data scenarios examined for the ULGP
model. Results shown correspond to simulation regimes 1A to 1D.
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Figure 6.5: RMISE for the ULGP model; results shown correspond to simulation regimes 1A to 1C (left). RMISE for the BiLGP model; results
shown correspond to simulation regimes 2A to 2D.
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Parameter tuning

As discussed in previous section, there is currently no standard and well established

method for tuning the number of interior knots used for the B-spline basis under the

proposed framework apart from cross-validation. However, this would be extremely

computationally demanding here. So in this paragraph, we explore two alternative

methods that could potentially provide some insights on the value range that could

improve model fit and avoid underfitting or overfitting. For the “elbow” method, model

performance was measured using a Weighted F-score which was averaged across all items.

In particular, for each item i, i = 1, . . . , I

Weighted F -scorei = 2× Precisioni × Recalli
Precisioni + Recalli

(6.25)

where

Precisioni =

Ci∑
c=0

Nc
TPc

TPc + FPc
and Recalli =

Ci∑
c=0

Nc
TPc

TPc + FNc
. (6.26)

In contrast to a binary classifier, here TPc is the number of item results that were correctly

classified to level c at prediction, FPc is the number of item results that were incorrectly

classified as c and FNc is the number of item results that were incorrectly classified

into another item level rather than c. Notice that Nc are weights which correspond to

the true number of responses from level c. The closer to 1 this constructed F -score is

the better the prediction accuracy. For this testing procedure, 100 data samples were

generated based on scenario 1D in Table 6.1 and mean function approximation was made

by assuming a varying number of interior knots. Sample size was assumed to be equal to

250 individuals and inference was made based on 10000 iterations. For mean function

parameters, initial values were assumed to be equal to zero and for the rest, inital values

were fixed to the true parameter values. After plotting the number of interior knots

against the (1 − F -score), we see that even though accuracy saturates when the number

of knots increases, after 6-7 interior knots returns are considerably diminishing taking

into account the increase in computational cost (Figure 6.7a).

Next, we built the BIC-like criterion of Ibrahim et al. (2008), let us call it IC. To

check its performance under current model assumptions, we generated 100 data samples
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Figure 6.6: Parameter estimates MAE for the BiLGP model across all simulation
replications. Results shown correspond to simulation regimes 2A to 2E.
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Figure 6.7: (a) One minus the weighted F -score as averaged across all items, for varying
number of interior knots used for the B-spline basis approximation of the mean curve
for the ULGP model. The red points highlight the ideal value range. (b) Examples of
mean function approximation results under varying number of interior knots (top). IC
scores for varying number of interior knots used for the B-spline basis approximation of
the mean curve for the ULGP model. The red points highlight the ideal value range as
determined using the “elbow” method.

based on 1A-C scenarios of Table 6.1. Figure 6.7b illustrates examples on mean function

approximation and measured performance. Based on this measure, the suggested value of

interior knots should provide a low IC value. We observed that this measure seems to be

sensitive to overfitting but is tolerant to underfitting. However, we observe that a range

of good interior knots candidates is given by looking at the point were IC score starts to

accelarate. In real data, we will use both the above methods to get a suggested interior

knots range but we will also critically examine the obtained results under all proposed

interior knots scenarios. Current algortihms showed insufficient performance, therefore,

an automatic algorithm to obtain the number of interior knots under this framework

could be investigated in the future.

6.5 Analysis of ageing domains using data from the ELSA

In Chapter 3, we performed exploratory analysis of the ELSA data covering a large

collection of variables measuring five key ageing domains: physical ability, psychological

and social well-being, cognitive function and metabolic health. In the current chapter,

we analyse data from four of the above domains to explore trends over time and between

domain relationships. The final sample included 8,945 individuals aged 50 to 90 years old

from which 53.64% are females, 75.19% cohabiting or married and 60.63% have attended
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at least some college and high school. Wealth and social status tertiles were used to

distinguish individuals of low (Routine), middle (Intermediate) and upper (Managerial)

class (Table 3.1). Unfortunately, metabolic health data were not included in further

analysis since the poor measurement of outcomes, low variability, large measurement

errors and small number of individuals responding resulted in poor convergence of the

algorithm.

As discussed in previous chapters, ageing is a multidimensional construct and, as

it has been shown in past studies, there are multiple demographic factors that shape

different ageing domain trajectories over age (Tampubolon, 2016a). For this study, we

assumed that gender (female and male as reference), threefold social class (top, middle and

bottom as reference), wealth tertiles (top, middle and bottom as reference), educational

attainments (college and high school or less as reference) and marital status (married

or cohabiting and other as reference) have an additive effect on each mean latent curve.

This assumption was checked and confirmed using a small simulation study as shown

in Supplementary Text A.4 of the Appendix. Even though results suggested that the

additive effect assumption is reasonable for most of the explored domains, we further

checked for a gender interaction by running the ULGP method for males and females

separately. Results indicated that adding a gender interaction could be reasonable for

the cognitive function and social well-being domains since crossing between the male and

female estimated curves indicated a different rate of change of the mean domain curve

over time, an effect which cannot be captured solely by the additive gender effect on the

mean domain curve (Figure B.16b).

6.5.1 Univariate analysis of the ageing domains

Before we proceed with the bivariate analysis, we performed univariate analysis of the

data for each domain separately. Here, instead of analysing the data looking at the first

order latent structure (this would mean analysing data from each ageing subdomain as

shown in Figures 3.11 and 3.12), we performed our analysis assuming the higher level

second order structure (ageing domains).

Data from each domain were analysed separately. Convergence was reached after

5000 repetitions and confirmed by calculating the Gelman-Rubin statistic for five random

initialisation scenarios (Figure B.26 of the Appendix). Mean function estimates were
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Figure 6.8: Item parameter estimates, 95% confidence intervals and threshold parameter
estimates after ULGP model implementation on the physical ability ELSA data. The
variables shown include information on: OFS-difficulty in climbing one flight of stairs
without resting; SFS-difficulty in climbing several flights of stairs wihout resting; W100-
difficulty in walking 100 yards; W10-difficulty in lifting or carrying weights over 10
pounds; PUSH-difficulty in pulling or pushing large objects.

robust and relatively invariant to the number of knots selected (Figure B.28). The chosen

number of interior knots for the cubic B-splines used for basis approximation of the

γ(·) functions were 1 for the CF and 2 for the PA, SW and PW domains respectively

following results after implementing the “elbow” and IC score methods from Section 6.3.4

(Figures B.29 and B.30). The results shown were obtained based on the following

initialisation scenario: αi = 1, bi = 0 and steps for bic − bic−1 = 0.1, ξ = 10, γk = 0. For

identifiability reasons γ0 = 0 and σ = 1. The obtained chains are shown in Figures B.22

to B.25 of the Appendix whereas item parameter estimates are shown in Figures 6.8

to 6.11.

We initially fitted the above models using all five covariates, however, the effect of

marital status on cognitive function and the effect of education on psychological well-being

were approximately equal to zero so they were omitted from the univariate analysis

of the corresponding ageing domains. Figure 6.12 shows the results after analysing

data from the four domains. The estimated mean function for each ageing domain

along with the parameter estimates for the covariates that have been included into the

model are illustrated. Approximate 95% confidence intervals were obtained by assuming

independence of the produced parameter estimates within each chain and computing the

95% confidence interval of the parameter estimate samples obtained after implementing
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Figure 6.9: Item parameter estimates, 95% confidence intervals and threshold parameter
estimates after ULGP model implementation on the psychological well-being ELSA data.
The variables shown include information on: QLJ-how often individuals look forward to
each day; QLK-how often individuals feel that their life has meaning; QLL-how often
individuals enjoy the things they do; QLA-how often individuals feel age prevents them
from doing things they like; QLB-how often individuals feel what happens to them is
out of their control; QLD-how often individuals feel left out of things; QLQ-how often
individuls feel satisfied with the way their life has turned out; QLR-how often individuals
feel that life is full of opportunities; QLS-how often individuls feel the future looks good
to them; SLA-whether they believe that in most ways their life is close to their ideal;
SLB-whether they believe that the conditions of their life are excellent; SLC-whether
they are satisfied with their life; SLD-whether, so far, they have got the important
things they want in life; SLE-whether they would not change anything, if they could live
their life again; PSA-whether individuals felt depressed much of the time during past
week; PSB-whether individuals felt that everything they did was an effort; PSG-whether
individuals felt sad during past week; PSH-whether individuals could not get going much
of the time during past week.
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Figure 6.10: Item parameter estimates, 95% confidence intervals and threshold parameter
estimates after ULGP model implementation on the cognitive function ELSA data. The
variables shown include information on: DMC-difficulty in making phone calls; DTM-
difficulty in taking medications; DUM-dIfficulty in using a map; DMM-difficulty in
managing money; RI-ability to recall words immediately; RD-ability to recall words after
delay.

Figure 6.11: Item parameter estimates, 95% confidence intervals and threshold parameter
estimates after ULGP model implementation on the social well-being ELSA data. The
variables shown include information on: ISO-whether individual feels isolated; LO-whether
individual feels left out; LC-whether individual feels lack of companionship; TH-frequency
of going to the theatre, a concert or the opera; ART-frequency of going to art gallery or
museum; CIN-frequency of going to the cinema.
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Figure 6.12: Physical ability (PA), cognitive function (CF), psychological well-being
(PW) and social well-being (SW) latent mean curve estimates. Covariate effect estimates
are depicted for each corresponding domain below the mean curve plot. In both plots
approximate 95% confidence intervals are shown.

the StEM-algorithm. On top of the additive gender effect an interaction term was

additionally explored separately for all domains and added when appropriate. Gender

interaction was considered for the cognitive function and social well-being analysis.

A decrease on PA, CF and SW was observed as people are getting older. Interestingly,

PW was the only domain which improves over time and starts to decay only later in life

(30 years after the 50 years starting point, i.e people aged over 80 years old). SW also

remains stable until 20 years after 50 which coincides to approximately the retirement

age of the UK and is currently 66 years old. On the other hand, the PA decay is initiated

from the age of 50 years and shows a constant decline until the early 80s. As for CF,

results suggest that even though males have an overall lower score, female experience

a more intense CF decay as they grow older. In addition, we observe that females live

healthier for longer. The only exception is PA which probably has to do with overall

muscle growth and strength, both often higher in males. At the same time, being in
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the upper class, married and wealthy improved the overall ageing domain score. People

with high educational attainment also have better cognitive function and social well-

being. Interestingly, even though marital status has a positive effect on social well-being,

education and socioeconomic position were found to be more important.

6.5.2 Pairwise bivariate analysis of the ageing domains

After having explored the latent trajectories of the four ageing domains we proceeded

with pairwise bivariate analysis of the data. Figure 6.13 shows the estimated correlation

structure for the four domains under study. Results indicate an overall positive correlation

between most of the domains with stronger correlations between physical ability and

psychological well-being. This supports previous findings which link physical strength

and exercise with positive mental health outcomes (Stephens, 1988; Delle Fave et al.,

2018). Another association was also found between social well-being and physical ability

which could also be explained by the fact that people with good physical health tend to

socialise more due to their abitlity to go for walks and being outside of their homes, but

this was rather small. Regarding the observed dependence between responses from the

same domain over time, larger correlations were found for social well-being data, physical

ability and psychological well-being, whereas weaker correlations were found between

the cognitive function responses, showing that poor cognitive function outcomes at older

age cannot necessarily be justified by poor cognitive function outcomes at earlier time

points. However, this conclusion needs further investigation as it can be caused due to

poor measurement during the data collection or larger measurement errors in this specific

part of the data.

The predictive power of the model was, finally, assessed using 10-fold cross-validation

where we randomly took segments of individual observations to create the training

and test sets for every iteration (Figure B.27). Results showed that high accuracy is

achieved for CF, PA and SW data, whereas lower accuracy with large variations between

the results is observed for PW data. This decrease in accuracy could potentially be

explained by the high variation of responses and the large number of subdomains included

in the construction of the second-level PW domain as shown in Figure 3.11. An in

depth investigation of these results through sensitivity analysis is recommended, since

underlying assumptions might have affected overall model fit and predictive power.
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Figure 6.13: (Left) Multivariate Matérn covariance visualisation built using the estimates
obtained from the ULGP and BiLGP model fits. Numbers on the horizontal and vertical
axis represent years since the individual has reached 50 years and within the parenthesis
are the initials of the domain to which each covariance block corresponds. (Right)
Estimated correlation structure for all domains as estimated from the pairwise BiLGP
model fits. CF, PW, PA and SW correspond to cognitive function, psychological well-
being, physical ability and social well-being respectively.

6.5.3 Exploring cohort effects

We explored the presence and intensity of cohort effects into the individual responses

to assess how these could potentially affect our latent trait trajectory estimates. We

cross-sectionally grouped the individuals into 4 age groups (50-59, 60-69, 70-79, 80+) and

compared the proportion of ordinal responses for the same age-group across the 8 data

collection waves (Figure B.16a). The average difference ranged between 0 and 5% for most

variables, except for some of the variables where larger differences have been observed,

indicating stronger cohort effects for these questions/biomarkers. The exact proportions

and the trend over the ELSA waves are plotted in Figures B.12 to B.15. We observed

consistent patterns for groups of variables measuring similar traits, however, cohort effects

were not present and of similar intensity for all variables and latent traits suggesting that

adjusting for cohort effects into the structural model could possibly further complicate

and bias the estimates out-weighting the possible benefits of controlling for them into

the model. We further obtained the EAP individual estimates and plotted the average

trajectory grouped by cohort (Figure B.16a). Similar to exploratory results, cohort effects

were present for SW but weaker for PA, PW and CF. A possible solution could be to
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Figure 6.14: Physical ability (PA), cognitive function (CF), psychological well-being (PW)
and social well-being (SW) average expected a posteriori (EAP) individual estimates
grouped by cohort.

include such effects into the measurement model allowing for the item parameters to

vary according to the cohort. However, this could further complicate the model and we

leave this for further work.

6.6 Discussion

The study of the ageing process is a rather complex task. Concept complexity and

multidimensionallity, as well as, the nature of the collected data, create multiple statistical

challenges. Examples include: a large number of outcome variables since there is not a

single metric to measure ageing; mixed types of variables; measurement errors; missing

data; non-linear underlying trends of unknown functional form. In this chapter, we built

upon the work presented across previous chapters and develop a BiLGP framework for

modelling longitudinal survey data. In particular, we studied the progression of four

major ageing domains (physical ability, cognitive function, social and psychological well-

being) and the interrelationships between them after adjusting for common covariates,

such as gender, social class, educational level, marital status and wealth. We analysed a

large collection of ordinal data from the ELSA and determined path diagrams following

previous analysis results (Chapter 3). We assessed model performance and estimation

robustness under multiple data scenarios and conditions. Our implementation of the

ULGP and BiLGP models revealed interesting findings for the progression of the four
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ageing domains with some of the results confirmed in previous relevant literature. We also

quantified relationships between some of the ageing domains which could be investigated

further in future studies to examine and develop joint strategies towards supporting old

people. Cohort effects were also explored but they were insignificant for all domains.

The work within this chapter relies on the following assumptions. First, we considered

a higher level latent structure and ignored the variable subgroups shown in Figures 3.11

and 3.12 within each ageing domain. We did that to simplify the already complex

BiLGP model structure. Incorporating the two-level structure to the model [for instance

in Pattinson (2018)] could improve model interpretability and provide further insights

on ageing domains and subdomains and also provide a methodological framework to

analyse complex processes from other scientific fields. However, further research is

needed to develop a model of this complexity. Second, we assumed that drop-outs were

results of a Missing at Random (MAR) mechanism. This ensures that the missingness is

ignorable, i.e., the full joint likelihood for the observed data and missingness indicators

factorizes into two terms, only one of which depends on the parameters generating the

underlying responses. Still, selection bias could potentially introduce some error in our

estimates as it has been shown by Banack et al. (2019) regardless of the large sample size.

Adjusting for longitudinal weights could possibly improve results and reduce bias but

proper investigation of whether and how selection and survival bias affect inference will

be investigated in future studies. The End of Life data available in ELSA, even though

limited, could potentially provide some additional insights on this. Third, we presented

results for a number of interior knots selection, however further research is needed to

automatically select the ideal number of knots in an efficient way since to the best of our

knowledge such an algortithm has not yet being developed and the IC measure could get

some clear improvement. Finally, we assumed a bivariate Matérn covariance for the LGP

since its construction and nice properties facilitated model fit. Nevertheless, research on

multi-output Gaussian processes offers multiple covariance structure alternatives which

could also facilitate extension to higher dimensions (Apanasovich and Genton, 2010;

Vandenberg-Rodes and Shahbaba, 2015; Gonçalves and Gamerman, 2018). This project

remains a work in progress and investigation on how the proposed framework could be

extended to a multivariate framework which is computationally feasible and efficient

remains one of our main future objectives. Reparametrisation of the cross-correlation
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matrix in order to estimate the multivariate Matérn covariance structure is one of the key

tasks that are essential for the extension of the model. We propose the use of Cholesky

decomposition; for readers’ reference we included the details in Supplementary Text A.5

of the Appendix. Nevertheless, initial experiments revealed convergence issues when this

method is extended to more than two dimensions and further investigation is needed to

conclude how the model should be adjusted to overcome this issue.

Regardless of its limitations, this work has major strengths. For the first time in

the literature, we simultaneously analysed multiple ageing domains and model domain

trajectories over time without making any assumptions for the functional form of the

underlying trends. At the same time, we managed to model the overall relationships

between the examined ageing domains. Possible extensions could look at modelling this

dependence over time to explore how relationships between the examined domains evolve

over time. This research could also bring major benefits since it provides a clear and

flexible framework which allows an integrated view of the ageing process as an evolving

mulidimensional construct. This promotes ageing understanding and facilitates adopting

targeted and integrated strategies towards supporting old individuals. In addition, the

current model creates new potentials in analysing longitudinal survey data by allowing

modelling of multidimensional concepts measured using domain specific questionnaires.

Through our simulation studies, we extensively explored the method’s performance for

irreguarly collected longitudinal data and provided an overview of model performance

and potential utility under multiple data frameworks. We did so to assess its strengths

and promote its utilisation from other scientific fields with similar research objectives.

6.7 Summary

In this chapter, we present a bivariate framework for analysing multivariate longitudinal

survey data of ordinal nature. The proposed framework was implemented on data from

the ELSA with the specific variabes in use being presented in detail in Chapter 3. Our

findings provide an integrated view of the ageing process domains over time and their

interrelationships which could support decision making to promote growing older whilst

maintaining health and well-being. In the following chapter, we conclude this thesis with

some additional concluding remarks and propose future directions.
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Chapter 7

Concluding Remarks and Future

Directions

The contributions of this thesis focus on developing flexible methodologies to handle

complex longitudinal data and allow an in depth understanding of anti-cancer drug

response and ageing using real-world evidence. In our first study, we explore dose-

varying associations between high-dimensional genetic factors and drug response; here,

the longitudinal responses are continuous and regularly collected across the dose points

and complexity comes from modelling the non-stationary and dose-varying effect of

high-dimensional covariates on drug response. The conclusions drawn provide a unique

view of the association between genetic factors and drug dose response whilst offering high

accuracy of drug response prediction. In our second study, we explore frailty progression

and its distributional changes over time using an innovative quantile regression method;

here, longitudinal responses are, again, continuous but irregularly collected. In fact,

individual scores are obtained through aggregating multivariate questionnaire responses

and complexity arises due to the large variations between individual frailty trajectories,

substantial amounts of missing data and measurement error. In our third study, we

explore four ageing domains and their interrelationships as individuals are getting older.

The data handled are categorical, multivariate longitudinal and collected using multiple

survey questionnaires. These data are also irregularly sampled across age expanding the

already high problem complexity. The proposed methods of these last two studies really

push gerontology forward enabling a more comprehensive view of the ageing process

and the factors promoting positive health outcomes. Overall, we showed that modelling
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longitudinal data becomes very complex as the data availability and databases grow. In

practice, this can have large implications on the conclusions drawn for the populations

of interest and the time-varying concepts examined. Motivated by our study findings,

below, we highlight some of the key limitations of these studies and directions for possible

future research.

In Chapter 4, we propose a model that reveals which genetic factors are associated

to anti-cancer drug response and how their expression in the cell genome affects it over

multiple doses. Specifically, the proposed algorithm focuses on feature screening of

dose-invariant covariates under a dose-varying coefficient modelling framework. Previous

studies have found that investigating the change in gene expression profiles may be

informative for some biological processes taking place at cell level including cancer

evolution and response to treatment (Boehm et al., 2021; Somel et al., 2020). Extending

the current methodological framework to handle and screen ultra-high dimensional

time-varying covariates could possibly offer important insights in several medicinal areas.

In Chapter 5, we dynamically model irregularly collected longitudinal data. The

employed CQ model offers a unique opportunity to estimate frailty distribution dynamics

in the presence of missing data with results interpretation offering an opportunity to better

understand the ageing process and explore its dynamic change. On top of that, predicting

individual outcomes in the presence of missing data may support decision making and the

development of aid strategies towards vulnerable population subgroups. However, similar

to Chapter 4, our method is limited in handling time-invariant covariates. Incoprporating

time-varying information such as financial and social circumstances’ change over time or

emotional changes may provide further insights into the dynamics of frailty. Of course,

this would create further computational challenges to be addressed.

In Chapter 6, our contributions are multifold. To the best of our knowledge, the

bivariate extension of the latent Gaussian process framework is developed for the first

time to analyse survey ageing data. We, also, offer the opportunity to obtain new

insights on ageing progression by modelling not only the mean trajectories of four ageing

domains over time but also their pairwise associations. Developing a model which can

handle data from all domains jointly while decreasing the computation intensity of the

employed algorithms for inference is a natural next step to our study. At the same

time, exploring the time-varying interrelationships between the latent domains of interest

139



through adopting a time-varying expression for the correlation structure between the

latent construct of the bivariate Gaussian process model could be another direction of

scientific interest.

In the studies of Chapter 5 and 6, a major assumption is that the missing data are

MAR. However, we recognise that infering model parameters under this assumption

can often introduce some bias, especially for ageing studies where participants might

die due to old age or drop-out due to hospitalisation and serious illness. Quantifying

the amount of bias introduced and extending our methodology to deal with these non-

ignorable/non-informative missing data could be another direction for future research

with many applications in multiple scientific fields. In previous years, there have been

numerous efforts to address this type of problem through adopting joint modelling

approaches (Rizopoulos, 2012; Davis-Plourde et al., 2022; He and Luo, 2016; Van den

Hout and Muniz-Terrera, 2016; Li et al., 2012). Combining the strength of the proposed

non-parametric methodologies and joint modelling could be very fruitful and create a

tool to analyse many types of complex longitudinal data, as, for example, in You and Qiu

(2021) where authors developed a local polynomial mixed-effects model and analysed

multiple blood pressure longitudinal outcomes.

Finally, in alignment with the project in Chapter 4, suggestions that genetic variants

could explain healthy ageing heterogeneity in the population have been presented across

the precedent literature. For instance, common Single Nucleotide Polymorphisms (SNPs)

have been found collectively to explain a decent percentage of the phenotypic variance of

a social deprivation measure of socio-economic status (Marioni et al., 2014). Also, Mekli

et al. (2015) have examined the genetic associations between frailty in old age and

biomarkers, finding four genes that might be related with frailty in old age. It is possible

that genetic factors can explain the observed phenotypic variance of the ageing domain

trajectories in the elderly population and, to the best of our knowledge, extensive research

has not yet been conducted in this area. High-dimensional feature screening algorithms

could be employed for this purpose, including feature subset selection techniques or feature

extraction techniques to reduce their dimensionality and detect potential biomarkers of

ageing. In fact, the ELSA data are accompanied by Genome-Wide Association Study

data which could be used for this purpose.
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Appendix A

Supplementary text

A.1 The ELSA questions and variable coding

Biomarker and chronic disease data

Binary indicators were used for cardiovascular and chronic disease variables as well as for

medication intake data. Reverse coding was used since disease occurrence of medication

intake meant a worse health score. For biomarker and body composition data, ordinal

indicators were used as determined using the following cut-off points based on previous

literature Sanders et al. (2014), as follows:

• for blood glucose level (mmol/L) – fasting samples only: 6.1 and 7.0 mmol/L;

• for the mean systolic pressure: 130 and 140;

• for the mean diastolic pressure: 85 and 90;

• for the Body Mass Index (kg/m2): better score for a BMI between 18.5 (including

18.5) and 25, worse score for a BMI less than 18.5 or between 25 (including 25) and

30−[under/over]weight−, and worst score for a BMI greater or equal to 30−obese−.

For C-reactive protein levels (mg/L), blood triglycerides levels (mmol/L), blood HDL

levels (mmol/L), blood fibrinogen levels (g/L) and blood glycated haemoglobin levels

(%), we used tertiles to create the ordinal indicators of metabolic malfunctioning.

Missing data rates were large in biomarker and NV data. Figure A.1 shows the

amount of missing values included in a random selection of the NV data. Readers can

observe the large amount of missingness in the biomarker data compare to the rest

variables in the data set.
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Figure A.1: Cross-sectional missing rates in the ELSA NV data. The first fourteen
variables are some of the available biomarker data, the rest are other data and test results
collected during the NVs.
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Physical capability data

ADLs and IADLs questionnaires include difficulties with:

• Dressing, including putting on shoes and socks

• Walking across a room

• Bathing or showering

• Eating, such as cutting up [your/his/her] food

• Getting in or out of bed

• Using the toilet, including getting up or down

• Using a map to figure out how to get around in a strange place

• Recognising when you are in physical danger

• Preparing a hot meal

• Shopping for groceries

• Making telephone calls

• Communication (speech, hearing or eyesight)

• Taking medications

• Doing work around the house or garden

• Managing money, such as paying bills and keeping track of expenses

Mobility questionnaire includes difficulties with:

• Walking 100 yards

• Sitting for about two hours

• Getting up from a chair after sitting for long periods

• Climbing several flights of stairs without resting

• Climbing one flight of stairs without resting

• Stooping, kneeling, or crouching

• Reaching or extending [your / his / her] arms above shoulder level (either arm)

• Pulling or pushing large objects like a living room chair

• Lifting or carrying weights over 10 pounds, like a heavy bag of groceries

• Picking up a 5p coin from a table

Response and coding used: All responses to ADLs, IADLs and Mobility questions are

binary: yes, if difficulty is present; and, no, if difficulty is absent. Since a positive answer

indicates worse health, we coded 0 if “yes” and 1 if “no”. From wave 4 onward two

additional difficulties were added to the questionnaire: difficulty in recognising when in

danger and difficulty in communicating (speech, hearing or eyesight).
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Cognitive function data

For orientation in time questions score, we scaled responses between 0 and 2 to maximise

the variability observed (0 for a score less than of equal to 2, 1 for a score equal to 3 and

2 for those who scored 4). For the rest variables tertiles were used.

Social well-being data

Social network questions: Participants were asked whether they have family, friends,

children or partner; and, if yes :

1. How much do you feel they understand the way you feel about things?

2. How much can you rely on them if you have a serious problem?

3. How much can you open up to them if you need to talk about your worries?

4. How much do they criticise you?

5. How much do they let you down when you are counting on them?

6. How much do they get on your nerves?

7. On average, how often do they make demands on you?

8. On average, how often do you meet up with them?

9. On average, how often do you speak on the phone to them?

10. On average, how often do you write or e-mail them?

11. How often do you send or receive text messages from them?

12. How many of them would you say you have a close relationship?

Response and coding used: For questions 1-7 answers range from “Not at all” (1) to

“A lot” (4) and reverse coding has been applied for those with negative meaning, i.e.

questions 4-7. For questions 8-11 answers range from “Less than once a year or never”

(1) to “Three or more times a week” (6). Finally, for the last question, responses range

from “Not at all close” (1) to “Very close” (4). Since questions 8-11 referred to contact

frequency with friends/family/children, we summarised their content into one variable by

using their weighted sum. Higher weight has been applied for meeting up most frequently

and lower for texting.

Civil and social participation questions:

1. Organisational membership: political party, trade union or environmental group.

2. Organisational membership: tenants or resident group or neighbourhood watch.
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3. Organisational membership: member of a church or other religious group.

4. Organisational membership: member of a charitable association.

5. Organisational membership: an education, arts or music group or evening class.

6. Organisational membership: member of a social club.

7. Organisational membership: not a member of any organisation, club or society.

8. Organisational membership: member of a sports clubs, gym, or exercise class.

9. Organisational membership: member of any other organisations, clubs or societies.

and

10. Does respondent read a daily newspaper?

11. Does respondent have a hobby or pastime?

12. Does respondent have taken a holiday in the UK in the last 12 months?

13. Does respondent have taken a holiday abroad in the last 12 months?

14. Does respondent have gone on a daytrip or outing in the last 12 months?

15. Does respondent use the internet and/or email?

16. Does respondent own a mobile phone?

Response and coding used: Answers to questions 1-16 were either “yes”−for being a

member of such organisation or doing as the statement suggests, coded as 1−or “no”−for

not being a member of such organisation or not doing as the statement suggests, coded as

0−. As for questions 1-9, membership to different organisations has being summarised into

one new variable which indicating whether participant was a member to any organisation

by summing the number of organisations a participant was a member. A missing value has

being assigned only if an individual has not answered any of the independent questions

referring to membership to organisations. Subsequently, we used tertiles as cut-off

points to distinguish between socially active and socially inactive participants in terms of

organisations participation.

Cultural participation questions:

1. How often respondent goes to the cinema?

2. How often respondent eats out of the house?

3. How often respondent goes to an art gallery or museum?

4. How often respondent goes to the theatre, a concert or the opera?

5. Would respondent like to go to the cinema more often?
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6. Would respondent like to eat out of the house more often?

7. Would respondent like to go to art galleries or museums more often?

8. Would respondent like to go to the theatre, concerts or the opera more often?

Response and coding used: For questions 1-4 possible responses range from “Never” (1)

to “Twice a month or more” (6) whereas for questions 5-8 responses were dichotomous

(“yes”−1 or “no”−0). Questions 5-8 have not included into the study though due to high

missingness rates (more than 25% in most waves).

UCLA Loneliness Scale questions:

1. How often respondent feels they lack companionship?

2. How often respondent feels left out?

3. How often respondent feels isolated from others?

4. How often respondent feels in tune with the people around them?

5. How often respondent feels lonely?

Response and coding used: Answers to the UCLA Loneliness Scale questionnaire answers

vary from “Often” (1) to “Some of the time” (2) and “Hardly ever or never” (3). Reverse

coding has been used for item 4.

Psychological well-being data

Satisfaction with Life Scale, response and coding used: Satisfaction with Life Scale con-

sists of five positive statements about individual satisfaction with life and nswers vary

from 1 (“Strongly disagree”) to 7 (“Strongly agree”) with the mid-point being 4 (“Neither

agree or disagree”)−7-point Likert Scale. The statements presented were:

1. In most ways their life is close to ideal.

2. The conditions of their life are excellent.

3. The respondent is satisfied with their life.

4. So far, the respondent has got the important things they want in life.

5. If the respondent could live their life again, they would change almost nothing.

CASP-19, response and coding used: CASP-19 questionnaire included questions on en-

joyment of life and positive affective well-being, with the main measured outcome being

the quality of life. In particular, the 19-item questionnaire addresses four main domains:

control, autonomy, self-realisation and pleasure. Possible answers were “Often”, “Some
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of the time” and “Hardly ever or never” and scores vary from 1 (“Never”) to 4 (“Often”).

Note that questions 1,2,4,5,8,9 have negative meaning, hence reverse coding has been

used, i.e. 1 for “Often” to 4 for “Never”. The specific questions were:

1. How often respondent feels age prevents [him/her] from doing things [he/she] like?

(Control)

2. How often respondent feels what happens to [him/her] is out of [his/her] control?

(Control)

3. How often respondent feels free to plan for the future? (Control)

4. How often respondent feels left out of things? (Control)

5. How often family responsibilities prevents respondent from doing things? (auton-

omy)

6. How often respondent can do the things [he/she] want to do? (autonomy)

7. How often respondent feels [he/she] can please [him/her]self what [he/she] does?

(autonomy)

8. How often respondent feels [his/her] health stops [him/her] doing what [he/she]

wants to do? (autonomy)

9. How often shortage of money stops [him/her] doing things? (autonomy)

10. How often respondent looks forward to each day? (pleasure)

11. How often respondent feels that [his/her] life has meaning? (pleasure)

12. How often respondent enjoys the things [he/she] do? (pleasure)

13. How often respondent enjoys being in the company of others? (pleasure)

14. How often respondent looks back on [his/her] life with a sense of happiness?

(pleasure)

15. How often respondent feels full of energy these days? (self-realisation)

16. How often respondent chooses to do things [he/she] has never done before? (self-

realisation)

17. How often respondent feels satisfied with the way [his/her] life has turned out?

(self-realisation)

18. How often respondent feels that life is full of opportunities? (self-realisation)

19. How often respondent feels the future looks good to [him/her]? (self-realisation)

Negative affective well-being questions: Negative affective well-being has been assessed

using the Center for Epidemiological Studies Depression (CES-D) Scale. The questionnaire
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includes questions about how participants feel the previous to the interview week. Possible

answers were either “yes” (0) or “no” (1) and the questions asked are presented below:

1. Has respondent felt depressed much of the time during the past week?

2. Has respondent felt everything they did during the past week was an effort?

3. Has respondent felt their sleep was restless during the past week?

4. Was respondent happy much of the time during the past week?

5. Has respondent felt lonely much of the time during the past week?

6. Has respondent enjoyed life much of the time during the past week?

7. Has respondent felt sad much of the time during the past week?

8. Could respondent not get going much of the time during the past week?

Response and coding used: Reverse coding has been used for questions 4 and 6, i.e. 1 for

“yes” and 0 for “no”.

Self-perceived social status

Subjective social status refers to self-perceptions of one’s own social position. It is

measured by respondents indicating on the rung of a ladder where they stand in society

based on money, education and employment. The question asked was: “Think of this

ladder as representing where people stand in our society. At the top of the ladder are

the people who are the best off-those who have the most money, most education and

best jobs. At the bottom are the people who are the worst off-who have the least money,

least education, and the worst jobs or no jobs. The higher up you are on this ladder, the

closer you are to the people at the very top and the lower you are, the closer you are

to the people at the very bottom. Please mark a cross on the rung on the ladder where

you would place yourself.”. Respondents who had put their mark in between two rungs

were assigned to the higher of these rungs. Scores varied from 10 to 100. We re-coded

this variable into a three category variable (Lower, Middle and Upper class) based on

variable tertiles.

Self-perceived relative deprivation

To get a measure of relative deprivation, scores were assigned to individuals based on the

number of items reported in the following question: “Does having too little money stop
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you from doing any of the following things [. . . ]?”. The possible responses were yes or no.

The interviewer, then, coded all that apply from the following list of activities:

1. buy your first choices of food items;

2. have family and friends round for a drink or meal;

3. have an outfit to wear for social or family occasions;

4. keep your home in a reasonable state of decoration;

5. replace or repair broken electrical goods pay for fares or other transport costs to

get to and from places you want to go;

6. buy presents for friends or family once a year;

7. take the sorts of holidays you want;

8. treat yourself from time to time; or,

9. none of these.

Since only a few individuals reported any items in this list, we recoded the variable into

a binary variable with 0 denoting experiencing none of the difficulties in the list and 1

denoting that the individual reported at least one of the items in the list.

A.2 Variables used specifically for the construction of the

FI

Below are the variables names, content or questions asked and cut-off points used for the

FI calculation using the ELSA data waves 1 to 8. These variables were chosen based on

the following criteria: 1. deficits should be associated with health; 2. deficits’ prevalence

should generally increase with age (except for deficits that show decreasing prevalence due

to decreased survival); 3. they should not saturate too early, meaning that if, for example

most 60-years-old people possess a particular deficit then this would be inadequate to be

included into the construct; 4. deficits should cover a range of systems, and; 5. if the

index is to be used for longitudinal data including the same people, the items that make

up the FI should be the same from one wave to the next.

149



INFORMATION VAR. NAME CUT-OFF POINTS

Variables measuring activities of daily living, instrumental activities of daily living and mobility.

Difficulty in walking 100 yards hemobwa Yes = 1, No = 0

Difficulty in sitting for about 2 hours hemobsi Yes = 1, No = 0

Difficulty in getting up from a chair after sitting for long periods hemobch Yes = 1, No = 0

Difficulty in climbing several flights of stairs without resting hemobcs Yes = 1, No = 0

Difficulty in climbing one flight of stairs without resting hemobcl Yes = 1, No = 0

Difficulty in stooping, kneeling, or crouching hemobst Yes = 1, No = 0

Difficulty in reaching or extending your arms above shoulder level hemobre Yes = 1, No = 0

Difficulty in pulling or pushing large objects like a living room chair hemobpu Yes = 1, No = 0

Difficulty in lifting or carrying weights over 10 pounds, like a heavy bag hemobli Yes = 1, No = 0

Difficulty in picking up a 5p coin from a table hemobpi Yes = 1, No = 0

Difficulty in communication (speech, hearing or eyesight) headlco Yes = 1, No = 0

Difficulty in dressing, including putting on shoes and socks healddr Yes = 1, No = 0

Difficulty in walking across a room headlwa Yes = 1, No = 0

Difficulty in bathing or showering headlba Yes = 1, No = 0

Difficulty in eating, such as cutting up your food headlea Yes = 1, No = 0

Difficulty in getting in or out of bed headlbe Yes = 1, No = 0

Difficulty in using the toilet, including getting up or down headlwc Yes = 1, No = 0

Difficulty in using a map to figure out how to get around in a strange place headlma Yes = 1, No = 0

Difficulty in preparing a hot meal headlpr Yes = 1, No = 0

Difficulty in shopping for groceries headlsh Yes = 1, No = 0

Difficulty in making telephone calls headlph Yes = 1, No = 0

Difficulty in recognising when in physical danger headlda Yes = 1, No = 0

Difficulty in taking medications headlme Yes = 1, No = 0

Difficulty in doing work around the house or garden headlho Yes = 1, No = 0

Difficulty in managing money, such as paying bills and keeping track of expenses headlmo Yes = 1, No = 0

Variables measuring cardiovascular disease occurrence

Cardiovascular disease: High-blood Pressure or Hypertension hediabp Yes = 1, No = 0

Cardiovascular disease: Heart attack (including myocardial infraction or coronary thrombosis) hediami Yes = 1, No = 0

Cardiovascular disease: Stroke (cerebral vascular disease) hediast Yes = 1, No = 0

Cardiovascular disease: Angina hediaan Yes = 1, No = 0

Cardiovascular disease: A heart murmur hediahm Yes = 1, No = 0

Cardiavascular disease: Congestive Heart Failure hediahf Yes = 1, No = 0

Cardiovascular disease: Diabetes or high blood sugar hediadi Yes = 1, No = 0

Cardiovascular disease: An Abnormal Heart Rhythm hediaar Yes = 1, No = 0

Variables measuring chronic disease occurrence

Chronic Lung disease such as chronic bronchitis or emphysema hediblu Yes = 1, No = 0

Asthma hedibas Yes = 1, No = 0

Arthritis (including osteoarthritis, or rheumatism) hedibar Yes = 1, No = 0

Osteoporosis, sometimes calles thin or little bones hedibos Yes = 1, No = 0

Cancer or a malignant tumour (excluding minor skin cancers) hedibca Yes = 1, No = 0

Parkinson’s disease hedibpd Yes = 1, No = 0

Any emotional, nervous or psychiatric problems hedibps Yes = 1, No = 0

Dementia, organic brain syndrome, senility or other serious memory impairment hedibde Yes = 1, No = 0

Alzheimer’s disease hedibad Yes = 1, No = 0

Variables measuring self-reported health and depressive symptoms

Self-reported health: HRS/HSE version
srh hse/

srh hrs

Excellent/Very Good = 1,

Good = 0.5,

Fair/Poor/Bad/Very Bad = 0

Much of the time during the past week, have you felt depressed? psceda Yes = 1, No = 0

Much of the time during the past week, have you felt that everything you did was an effort? pscedb Yes = 1, No = 0

Much of the time during the past week, has your sleep been restless? pscedc Yes = 1, No = 0

Much of the time during the past week, were you happy? pscedd Yes = 0, No = 1

Much of the time during the past week, have you felt lonely? pscede Yes = 1, No = 0

Much of the time during the past week, have you enjoyed life? pscedf Yes = 0, No = 1

Much of the time during the past week, have you felt sad? pscedg Yes = 1, No = 0

Much of the time during the past week, could you not get going? pscedh Yes = 1, No = 0

Variables measuring cognitive function

Please tell me today’s date: day cfdatd Succeed = 0, Failed = 1

Please tell me today’s date: month cfdatm Succeed = 0, Failed = 1

Please tell me today’s date: year cfdaty Succeed = 0, Failed = 1

Please tell me what day of the week it is today. cfday Succeed = 0, Failed = 1

Please tell me the words that you can recall: enter number of words recalled

immediately.
cflisen

≤lowest quintile = 1,

>lowest quintile = 0

A little while ago, you were read a list of words and repeated the ones

you could remember. Please tell me any words you can remember now.
cflisd

≤lowest quintile = 1,

>lowest quintile = 0
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A.3 The stochastic Expectation-Maximisation algorithm

for parameter estimation of the BiLGP model

Below we provide a detailed description of the stochastic Expectation-Maximisation

algorithm employed for parameter estimation of the BiLGP model presented in Chapter

6. Notice that definitions of parameters and notation used can be found in Chapter

6. As described previously, we iterate between a StE-step, where we sample from the

conditional distribution of Θ using Gibbs Sampling, and a M-step where we maximise the

joint log-likelihood as defined in Eq. 6.19. In particular, having defined the augmented

joint log-likelihood as

`(Ψ;y,y∗,Θ) =
N∑
n=1

{ I∑
i=1

Jn∑
j=1

1bi,yni(tnj)<y
∗
ni(tnj)≤bi,yni(tnj)+1

×

log

[
N(y∗ni(tnj);−

D∑
d=1

αidθdn(tnj))

]}
+ log

[
MVNDJn(θn;µn,Σ)

]
, (A.1)

we let Ψ(0) be the initial parameter values and (θ̃
(0)
n (tn1), . . . , θ̃

(0)
n (tnJn)), n = 1, . . . , N

be the initial values of individual parameter values. In each step s (s ≥ 1) of the StEM

algorithm, the following steps are repeatedly performed.

StE-step: Given Ψ(s), we implement Gibbs sampling as follows

Step 1. We, first, sample y∗ni(tnj) from a truncated Normal distribution defined be-

tween bi,yni(tnj) and bi,yni(tnj)+1 with mean −
∑D

d=1 αidθ̃
(s)
dn (tnj) and standard

deviation equal to 1 for n = 1, . . . , N, i = 1, . . . , I and j = 1, . . . , Jn. Note,

that θ̃
(s)
dn (tnj) is some initial value of θdn(tnj).

Step 2. For n = 1, . . . , N , given the sampled y∗ij(tnj), we then sample θ̃
(s+1)
n from the

conditional distribution of θn|y∗n(tn1),y∗n(tn2), . . . ,y∗n(tnJn). That is, a multi-

variate Normal with variance-covariance matrix Σ−1
new = (Σ−1 +

∑I
i=1AiA

T
i )

and mean equal to −Σnew
∑I

i=1Aiy
∗
ni, where Ai is a sparse DJn × Jn matrix

with the corresponding item loadings.

M-step: Given the θ̃
(s+1)
n , we can then obtain the parameter estimates

Ψ(s+1) = argΨmax `(Ψ;y,Θ)
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where `(Ψ;y,Θ) is the logarithm of 6.19.

As shown in Nielsen (2000), the final estimate of Ψ is given by the average of Ψ(s) across

the last M iterations, specifically,

Ψ̂ =
1

M

M0+M∑
s=M0+1

Ψ(s)

where M0 is the pre-specified burn-in.

A.4 The exploration of covariate effects of Chapter 6

We confirmed the additive effect assumption for the covariate effects of the ULGP model

by simulating multivariate binary response data assuming a latent unidimensional model

with µ(t) = 0.8 sin3(0.15t) and ξ = 10 for N = 10,000 individuals. We considered

three scenarios for the effect of the covariate on the latent mean process: one where

the covariate has a multiplicative effect, i.e. µ(t) = 0.8 sin3(0.15t)e1x=1 ; one where

the covariate has an additive effect, i.e. µ(t) = 0.8 sin3(0.15t) + 1x=1; and, one where

the covariate had no effect on the latent mean curve. In Figure A.2, we plotted the

proportion of the generated responses which were equal to 1 for the two groups over t

and the corresponding theoretical probabilities of answering 1 for each covariate group.

As expected, if there is no effect the observed proportions should coincide, if there is an

additive effect the proportions should be not crossing whereas if there is a multiplicative

effect the empirical probability estimates should cross. Comparing this example with the

empirical probability estimates we observed for each variable in the data we observed

that our assumption holds for some of covariates and domains, thus, findings suggest

that assuming an additive effect on the mean trend over time is a reasonable assumption

(Figure A.3).
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Figure A.2: Proportion of the generated responses which are equal to 1 for two groups
(binary covariate) over t and the corresponding theoretica probabilities of answering 1
for each covariate group.
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Figure A.3: Observed proportion of responses equal to one of the covariate categories for all covariates and all items in all five ageing domains.
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A.5 Estimation of the multivariate Matérn cross-correlation

matrix

Let B being a symmetric correlation matrix so that only the parameters in the upper

(or lower) triangular part should be estimated. If D = 2 then the B =

1 β12

· 1

 matrix

is positive definite for all β12 ∈ (−1, 1). However, for D > 2 additional constraints

should be imposed so that xTBx > 0 for all nonzero real vectors x. To ensure correct

estimation of the cross-correlation matrix of the multivariate Matérn covariance, we used

a Cholesky-based parametrisation for B to ensure that the estimated B̂ will always be

valid correlation matrices (van Oest, 2021). The exact method is described below:

Let

B =



β11 β12 · · · β1D

β21 β22 · · · β2D

...
... · · ·

...

βD1 βD2 · · · βDD


be a D × D positive definite correlation matrix, where βdq = βqd (symmetry), βdd =

1 ∀d = 1, . . . , D, βdq ∈ (−1, 1) if d 6= q and d, q ∈ {1, 2, . . . , D}. Due to its symmetry and

positive definiteness, B has a Cholesky decomposition: B = LTL, where L = (ldq) is a

unique lower triangular matrix with all diagonal elements taking positive values. This L

matrix has D(D − 1)/2 free elements, in particular:

ldd =

√√√√1−
d−1∑
k=1

l2dq > 0 and
d−1∑
k=1

l2dq < 1, d = 2, . . . , D.

Hence, if we let Ω = (ωdq) be a lower triangular matrix with ωdd = 0 for all d = 1, . . . , D

and θdq ∈ (0, π) for all d = 2, . . . , D and q = 1, . . . , d− 1, then we can re-parametrise L

so that

ldq = cos (ωdq)

q−1∏
k=1

sin (ωdk)

where d = 1, . . . , D and q = 1, . . . , d (spherical parametrisation of the Cholesky decompo-

sition).
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Appendix B

Supplementary Figures

Figure B.1: Scree plot showing the percentage of inertia explained by the first 10 MCA
dimensions (full data analysis).

Figure B.2: Scree plot showing the percentage of inertia explained by the first 10 MCA
dimensions (complete case analysis).
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Figure B.3: Perceptual map of categories of variables investigated. Different colours
were used to show the quality of each point for the indicated dimensions based on their
squared cosine value. Analysis was performed to the full data.

Figure B.4: Estimated mean drug response trajectories for BRAF and HRAS mutated
and non-mutated cancer cell lines: analysis performed on GDSC2 data. Observed
responses (points) and estimated mean trajectory (lines) of cell concentration for cancer
cell lines with and without BRAF and HRAS mutations after treatment with the eight
anticancer compounds examined using data from GDSC2.
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Figure B.5: Prediction accuracy for each different drug and scenario. Pearson correlation
was estimated across observed and predicted AUC values. AUC values have been
computed by calculating the area under the coefficient function curve (both observed and
predicted). Training and test sets have been considered based on either the experimental
units or on cancer cell lines only.

Figure B.6: Prediction accuracy for each different drug and scenario: analysis performed
on GDSC2 data. Pearson correlation across observed and predicted AUC values. AUC
values have been computed by calculating the area under the coefficient function curve
(both observed and predicted) using the GDSC2 data. Training and test sets have been
considered based on either the experimental units or on cancer cell lines only.
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number of frail at baseline subjects is 947 compared to 6836 for the non-frail.
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Figure B.9: Empirical c.d.f. estimates based on splitting the non-frail individuals into
four level groups and further splitting them into 3 age groups. Level splits are based on
quantiles. The figure demonstrates that the age dependence assumption is reasonable
and should be included as a covariate into the final model.
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Figure B.10: Sensitivity analysis results for the effect of bandwidth selection on the
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Figure B.11: Estimated quantile trajectories conditioned on the median per age group
level along with 95% pointwise bootstrap confidence intervals (left) and difference in
trajectories between non-deprived and deprived groups for all age-group and social class
subgroups, along with 95% pointwise bootstrap confidence intervals for the difference
(right). Apart from the marginal effects of age group, social class and deprivation
we controlled for the interaction between age group, social class and deprivation and
baseline. For the estimation, we used the cross-validation bandwidths: hH = 3.2× 10−4,
hK = 1.7 × 10−2 and hL = {9.2 × 10−2, 4.7 × 10−1, 3.1 × 10−1} for the age group,
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respectively. From top to bottom, α varies over 0.75, 0.50 (middle) and 0.25.
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Figure B.12: Proportion of responses for each item level and variable for all domains over
time for the 50s cohort.
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Figure B.13: Proportion of responses for each item level and variable for all domains over
time for the 60s cohort.

163



SCFEELC_RAW SCQOLQ_tert SCQOLR_tert SCQOLS_tert SCQOLA_tert SCQOLB_tert SCQOLD_tert

SCLIFED SCLIFEE HEADLMO HEADLMA HEADLME HEADLPH SCFEELA_RAW SCFEELB_RAW

HM AHR STR ANG ATT SCLIFEA SCLIFEB SCLIFEC

CFLISEN_quart HEMOBWA HEMOBCS HEMOBCL SCACTA_RAW SCACTC_RAW SCACTD_RAW CHF

SCQOLJ_tert SCQOLK_tert SCQOLL_tert PSCEDA PSCEDB PSCEDG PSCEDH CFLISD_quart

HEMOBPU HEMOBLI SCMOREA_RAW SCMOREC_RAW SCMORED_RAW DIA HYP CHO

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

2 4 6 8

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

Wave

P
ro

po
rt

io
n 

of
 r

es
po

ns
es

Category 1 2 3 4 5 6 7

Figure B.14: Proportion of responses for each item level and variable for all domains over
time for the 70s cohort.
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Figure B.15: Proportion of responses for each item level and variable for all domains over
time for the 80s cohort.
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Figure B.16: (a) Average pairwise difference in proportion of responses per category
between waves.(b) Latent mean curve estimated after fitting the univariate (ULGP)
model for each gender data separately along with 95% confidence intervals.
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Figure B.17: Rubin statistics for the univariate laten Gaussian process model. Mean
function defined as µ(t) = 0.8 sin3(0.15t).
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Figure B.18: Rubin statistics for the bivariate laten Gaussian process model. Mean
functions where defined as µ1(t) = 0 and µ2(t) = 0.
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Figure B.19: Rubin statistics for the bivariate laten Gaussian process model. Mean
functions where defined as µ1(t) = 0 and µ2(t) generated using prespecified coefficients
for the cubic B-splines.
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Figure B.20: Rubin statistics for the bivariate laten Gaussian process model. Mean
functions where defined as µ1(t) = 0 and
µ2(t) = 0.8 sin3(0.15t).
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Figure B.21: Rubin statistics for the bivariate laten Gaussian process model. Mean
functions where defined as µ1(t) = 0.8 sin3(0.15t) and µ2(t) generated using prespecified
coefficients for the cubic B-splines.
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Figure B.22: Markov chains produced from the StEM algorithm of the ULGP model
implementation on the physical ability ELSA data.

167



7500
0.

94

time

pa
r 

1

7500

0.
45

0

time

pa
r 

2

7500

0.
66

0

time

pa
r 

3

7500

1.
01

time

pa
r 

4

7500

0.
85

time

pa
r 

5

7500

1.
09

time

pa
r 

6

7500

0.
19

0

time

pa
r 

7

7500

0.
21

5

time

pa
r 

8

7500

0.
35

0

time

pa
r 

9

7500

1.
64

time

pa
r 

10

7500

1.
58

time

pa
r 

11

7500

2.
02

time

pa
r 

12

7500

1.
34

time

pa
r 

13

7500

0.
84

time

pa
r 

14

7500

0.
69

time

pa
r 

15

7500

0.
64

time

pa
r 

16

7500

0.
51

0

time

pa
r 

17

7500

0.
59

0

time

pa
r 

18

7500

0.
50

time

pa
r 

19

7500

0.
34

time

pa
r 

20

7500

0.
50

time

pa
r 

21

7500

−
0.

08

time

pa
r 

22

7500

0.
09

time

pa
r 

23

7500

−
0.

26

time
pa

r 
24

7500

−
0.

03
5

time

pa
r 

25

7500

0.
15

0

time

pa
r 

26

7500

0.
05

0

time

pa
r 

27

7500

1.
50

1.
65

time

pa
r 

28

7500

1.
50

time

pa
r 

29

7500

1.
00

time

pa
r 

30

7500

0.
40

time

pa
r 

31

7500

1.
10

time

pa
r 

32

7500

−
0.

84

time

pa
r 

33

7500

−
0.

58

time

pa
r 

34

7500
−

0.
58

0
time

pa
r 

35
7500

−
0.

55

time

pa
r 

36

7500

0.
29

8

time

pa
r 

37

7500

0.
50

1

time

pa
r 

38

7500

0.
45

1

time

pa
r 

39

7500

0.
17

1

time

pa
r 

40

7500

0.
23

85

time

pa
r 

41

7500

0.
07

02

time

pa
r 

42

7500

0.
92

00

time

pa
r 

43

7500

0.
72

65

time

pa
r 

44

7500

0.
56

20

time

pa
r 

45

7500

4.
45

time

pa
r 

46

7500

−
1.

0
1.

0

time

pa
r 

47

7500

−
0.

25

time

pa
r 

48

7500

−
0.

65

time

pa
r 

49

7500

−
0.

30

time

pa
r 

50

7500

−
0.

05

time

pa
r 

51

7500

−
0.

07

time

pa
r 

52

7500

−
0.

39

time

pa
r 

53

7500

−
0.

03

time

pa
r 

54

7500

−
0.

09

time

pa
r 

55

7500

−
0.

22

time

pa
r 

56

7500

−
0.

32

time

pa
r 

57

7500

−
0.

68

time
pa

r 
58

Figure B.23: Markov chains produced from the StEM algorithm of the ULGP model
implementation on the psychological well-being ELSA data.
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Figure B.24: Markov chains produced from the StEM algorithm of the ULGP model
implementation on the cognitive function ELSA data.
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Figure B.25: Markov chains produced from the StEM algorithm of the ULGP model
implementation on the social well-being ELSA data.

2000 4000 6000

1.
0

1.
1

1.
2

1.
3

Cognitive function

Last iteration in chain

R

2000 4000 6000

1.
00

1.
05

1.
10

1.
15

1.
20

Social well−being

Last iteration in chain

R

2000 4000 6000

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Psychological well−being

Last iteration in chain

R

2000 4000 6000

1.
0

1.
2

1.
4

1.
6

Physical ability

Last iteration in chain

R

Figure B.26: Rubin statistics for the univariate laten Gaussian process model applied to
the ELSA data.
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Figure B.27: Average prediction accuracy for each item based on the weighted F -score
after performing 10-fold cross-validation using the LGP methodology implemented on
the ELSA data. CF, PW, PA and SW correspond to cognitive function, psychological
well-being, physical ability and social well-being respectively.
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Figure B.28: Physical ability (PA), cognitive function (CF), psychological well-being
(PW) and social well-being (SW) latent mean curve estimates under varying number of
interior knots (NoIK).
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Figure B.29: Physical ability (PA), cognitive function (CF), psychological well-being
(PW) and social well-being (SW) latent mean curve estimates under varying number of
interior knots (NoIK).
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Figure B.30: Physical ability (PA), cognitive function (CF), psychological well-being
(PW) and social well-being (SW) latent mean curve estimates under varying number of
interior knots (NoIK).
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Appendix C

Supplementary Tables

Ensembl Gene ID Gene Name Area SD Sign
Spearman

Correlation

Mean fold

change of BRAF

mutation

with respect

to wild type

Protein-protein

interaction

network

distance

to BRAF

ENSG00000143621 KIR3DL1 0.370 0.107 - -0.874 0.978 3

ENSG00000101057 CHST11 0.257 0.092 - -0.817 0.899 NI

ENSG00000118113 APOC1P1 0.247 0.09 - -0.918 1.190 NI

ENSG00000166173 PLEKHA6 0.239 0.086 - -0.908 1.037 3

ENSG00000188290 PPM1F 0.223 0.068 + 0.910 0.883 3

ENSG00000139318 BFSP1 0.222 0.074 - -0.800 1.217 NI

ENSG00000174099 PPP1R3A 0.217 0.082 + 0.774 1.078 3

ENSG00000143340 C16orf87 0.207 0.087 + 0.851 0.977 NI

ENSG00000143436 PARVA 0.203 0.081 + 0.890 0.984 2

ENSG00000116285 SLC39A13 0.202 0.079 - -0.461 1.055 NI

ENSG00000136950 UCN2 0.198 0.07 - -0.928 0.979 NI

ENSG00000102265 STMN3 0.198 0.087 + 0.834 1.201 2

ENSG00000106560 RNF130 0.197 0.083 - -0.927 1.153 NI

ENSG00000196954 C3orf58 0.196 0.076 + 0.922 1.133 NI

ENSG00000198837 CXXC4 0.188 0.079 + 0.866 0.995 NI

ENSG00000197702 THBD 0.179 0.093 0 -0.967 1.231 4

ENSG00000173542 SIRT3 0.173 0.066 - -0.760 1.013 3

ENSG00000105679 PLAT 0.172 0.092 - -0.878 1.322 4

ENSG00000116580 MPPED1 0.168 0.066 + 0.430 0.978 NI

ENSG00000085274 INSL3 0.162 0.068 - -0.973 0.965 NI

ENSG00000165915 FAM163A 0.159 0.078 - -0.983 1.106 NI

ENSG00000197329 CNIH3 0.153 0.08 - -0.918 0.938 NI

ENSG00000143793 GJA3 0.153 0.067 0 -0.940 0.933 NI

ENSG00000105355 BTG2 0.152 0.078 + 0.959 1.035 2

ENSG00000189325 DLX6 0.152 0.059 0 0.686 0.987 NI

ENSG00000198829 DLC1 0.151 0.053 - -0.928 0.974 3

ENSG00000110031 GAPDHS 0.150 0.077 + 0.886 1.232 NI

ENSG00000147894 JAG2 0.149 0.069 - -0.994 0.981 3

ENSG00000084731 SMOX 0.146 0.057 0 0.816 1.070 NI

ENSG00000106077 ZMYND8 0.145 0.091 + 0.907 1.020 3

ENSG00000117360 PDPK1 0.143 0.067 - -0.867 0.950 3

ENSG00000035681 SYNJ1 0.143 0.048 + 0.948 1.037 4

ENSG00000186868 PHF23 0.140 0.086 + 0.926 0.942 NI

ENSG00000123560 KIF3C 0.140 0.138 0 0.801 1.588 NI

ENSG00000111145 DUSP16 0.138 0.075 + 0.937 1.138 2

ENSG00000143543 MYBL2 0.137 0.054 - -0.443 0.979 2
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ENSG00000134531 CARD19 0.137 0.075 0 0.999 1.273 NI

ENSG00000131732 SHROOM3 0.133 0.071 + 0.891 1.060 4

ENSG00000126088 CCDC120 0.132 0.068 + 0.741 1.045 NI

ENSG00000139116 LBX2 0.129 0.064 - -0.965 0.942 NI

ENSG00000131773 SLC13A3 0.129 0.054 + 0.665 1.155 NI

ENSG00000183696 0.127 0.072 - -0.795 1.195 NI

ENSG00000120685 GON4L 0.127 0.064 0 0.930 0.978 NI

ENSG00000126870 MACC1 0.125 0.06 - -0.593 0.996 NI

ENSG00000167633 RAB32 0.124 0.058 - -0.835 1.008 NI

ENSG00000143365 SPRY1 0.124 0.055 + 0.904 0.981 4

ENSG00000104365 HSPG2 0.122 0.061 - -0.979 1.001 NI

ENSG00000006377 HES4 0.122 0.07 + 0.898 0.889 NI

ENSG00000186143 FAM43A 0.121 0.063 + 0.967 1.002 NI

ENSG00000145107 ICOS 0.120 0.069 - -0.883 1.147 NI

ENSG00000135537 MAG 0.120 0.053 - -0.932 1.028 4

ENSG00000155330 IL1R2 0.120 0.07 + 0.915 0.875 4

ENSG00000248099 AKAP5 0.119 0.039 - -0.330 0.994 3

ENSG00000172209 RBSN 0.119 0.052 + 0.736 0.968 3

ENSG00000244439 PRR30 0.116 0.064 + 0.107 0.962 NI

ENSG00000075415 LRP5 0.116 0.061 0 -0.974 1.010 3

ENSG00000026025 DUSP8 0.115 0.094 + 0.927 1.152 NI

ENSG00000150760 C1orf35 0.114 0.065 - -0.888 1.070 NI

ENSG00000125351 COMMD2 0.112 0.055 + 0.930 0.947 NI

ENSG00000109472 DCAF12L2 0.112 0.074 + 0.857 0.792 NI

ENSG00000175550 SEMA6D 0.112 0.06 + 0.619 1.037 NI

ENSG00000128829 MAPT 0.111 0.036 - 0.032 1.048 2

ENSG00000100034 RGS19 0.111 0.063 + 0.558 1.039 2

ENSG00000148672 NECTIN1 0.108 0.071 - -0.973 0.993 3

ENSG00000143786 CAMK2B 0.108 0.074 + 0.736 1.267 3

ENSG00000131381 ATAD3C 0.107 0.036 + 0.370 0.999 NI

ENSG00000036672 DRAP1 0.107 0.038 + 0.532 0.968 NI

ENSG00000175877 GDF11 0.107 0.032 0 0.648 0.993 NI

ENSG00000161265 SDHAP3 0.106 0.041 0 0.670 0.944 NI

ENSG00000069424 RAB34 0.104 0.083 - -0.816 1.079 4

ENSG00000182500 SEC31B 0.104 0.053 + 0.671 1.037 NI

ENSG00000109113 A2M 0.102 0.042 - -0.663 1.065 5

ENSG00000159147 EMC9 0.101 0.055 + 0.988 0.976 NI

ENSG00000170382 PAIP2B 0.100 0.042 + 1.000 0.948 NI

ENSG00000152217 STPG3 0.099 0.051 - -0.502 0.928 NI

ENSG00000101216 DENND4B 0.099 0.06 + 0.649 0.989 NI

ENSG00000163958 ST8SIA2 0.099 0.043 + 0.300 0.983 NI

ENSG00000140992 ATL1 0.098 0.034 + 0.703 0.987 NI

ENSG00000175899 SERPIND1 0.097 0.066 - -0.871 1.337 4

ENSG00000138018 ITPRIP 0.097 0.062 0 0.655 0.978 NI

ENSG00000183935 ANTXR2 0.096 0.063 - -0.997 1.058 NI

ENSG00000156206 ABHD11 0.096 0.055 - -0.619 0.990 NI

ENSG00000132256 LUZP1 0.096 0.048 0 -0.299 1.031 NI

ENSG00000178935 ANGPT1 0.096 0.079 0 0.852 0.959 4

ENSG00000119138 RFLNB 0.096 0.074 0 -0.609 1.147 NI

ENSG00000187048 CORO1B 0.095 0.052 + 0.821 0.982 3

ENSG00000087258 GGT6 0.094 0.056 - -0.341 0.988 NI

ENSG00000130703 PROSER1 0.094 0.074 + 0.891 1.006 NI

ENSG00000182541 C6orf222 0.094 0.071 0 0.538 1.007 NI

ENSG00000142227 DNMBP 0.093 0.079 - -0.426 1.190 NI

ENSG00000058404 CFAP161 0.092 0.08 - -0.986 0.930 NI

ENSG00000142798 IGF2R 0.091 0.051 - -0.694 1.032 3

ENSG00000170955 ACP1 0.091 0.064 - -0.704 1.290 3

ENSG00000011347 ARPC5L 0.091 0.045 - -0.936 0.967 NI
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ENSG00000186732 MAFB 0.091 0.046 + 0.835 0.984 3

ENSG00000172725 MARC1 0.091 0.057 0 -0.989 1.032 NI

ENSG00000068366 SYT7 0.091 0.055 0 -0.768 1.074 NI

ENSG00000163600 TM4SF19 0.090 0.051 - -0.990 0.975 NI

ENSG00000133687 LMBRD2 0.090 0.053 + 0.988 1.064 NI

ENSG00000186205 UBTD1 0.090 0.046 0 0.620 0.838 NI

ENSG00000077152 ZNF552 0.090 0.056 0 0.055 0.951 NI

ENSG00000152804 TMEM270 0.089 0.047 + 0.434 1.073 NI

ENSG00000164741 FHL3 0.088 0.067 + 0.068 1.200 2

ENSG00000137575 BCL2A1 0.087 0.074 + 0.897 1.099 3

ENSG00000204103 NSMAF 0.086 0.056 + 0.903 0.932 3

ENSG00000168772 EMP3 0.086 0.077 + 0.698 0.884 NI

ENSG00000145040 TNFRSF10D 0.086 0.051 0 -0.292 1.228 3

ENSG00000154188 ORAI1 0.085 0.044 - -0.067 1.069 4

ENSG00000179528 PTP4A2 0.085 0.061 - -0.996 1.066 NI

ENSG00000197457 TMTC1 0.083 0.044 - -0.623 0.982 NI

ENSG00000137872 PPP1R13B 0.083 0.048 + 1.000 1.007 NI

ENSG00000078795 ITGA10 0.082 0.057 - -0.812 1.004 4

ENSG00000184007 KCNAB2 0.081 0.051 - -0.856 1.007 3

ENSG00000171700 ZCCHC9 0.081 0.073 0 -0.789 1.009 NI

ENSG00000112851 CDH24 0.079 0.052 - -0.930 1.017 NI

ENSG00000143319 HTR7P1 0.079 0.052 0 0.730 0.970 NI

ENSG00000088826 LHFPL3 0.078 0.034 - -0.391 1.072 NI

ENSG00000131470 MSRB3 0.078 0.061 0 0.391 0.966 NI

ENSG00000185112 MRPL9 0.077 0.036 - -0.297 1.129 NI

ENSG00000118508 PAPPA-AS1 0.077 0.048 + -0.120 1.152 NI

ENSG00000164056 SPATA31D3 0.075 0.04 + 0.351 1.073 NI

ENSG00000099937 GMEB2 0.074 0.044 - 0.028 1.047 NI

ENSG00000105643 HHEX 0.073 0.06 0 -0.771 0.988 3

ENSG00000184916 EIF2AK4 0.073 0.065 0 -0.735 0.840 4

ENSG00000169116 PRPF3 0.072 0.048 0 -0.511 0.931 3

ENSG00000143850 SELENOI 0.071 0.053 0 0.324 0.935 NI

ENSG00000086758 PRSS16 0.070 0.061 + 0.920 0.969 NI

ENSG00000139880 KLF9 0.069 0.058 - -0.533 0.957 NI

ENSG00000181744 FAM84A 0.069 0.054 0 -0.861 0.963 NI

ENSG00000162337 GPR22 0.069 0.048 0 0.537 0.966 NI

ENSG00000165233 ST5 0.069 0.043 0 -0.636 1.045 NI

ENSG00000102241 ASB9 0.068 0.042 0 -0.995 0.954 NI

ENSG00000187416 UROD 0.068 0.053 0 0.617 0.995 NI

ENSG00000183742 TMEM254 0.067 0.056 0 0.597 0.906 NI

ENSG00000169641 PRSS33 0.066 0.056 0 -0.520 1.017 NI

ENSG00000165886 ARRDC2 0.066 0.044 0 0.704 1.055 NI

ENSG00000171310 PELI1 0.065 0.045 - -0.174 1.231 4

ENSG00000104368 UBE2Q2 0.065 0.052 + 0.146 1.410 NI

ENSG00000143127 DUSP6 0.064 0.042 - -0.897 1.065 2

ENSG00000120457 SLFN12 0.064 0.051 - -0.897 0.997 NI

ENSG00000198354 KHDRBS3 0.063 0.035 + 0.560 0.991 NI

ENSG00000115590 SCGB3A1 0.063 0.045 0 -0.297 1.009 NI

ENSG00000173221 CUBN 0.063 0.045 0 0.408 1.116 NI

ENSG00000152784 VIM 0.061 0.059 0 0.323 1.002 2

ENSG00000166444 CYP4A11 0.060 0.065 - -1.000 1.077 NI

ENSG00000088808 GIMAP2 0.060 0.043 - -0.903 0.962 NI

ENSG00000179841 VOPP1 0.060 0.039 + 0.012 0.977 NI

ENSG00000153551 MMP8 0.060 0.049 0 -0.766 1.198 NI

ENSG00000173530 LPXN 0.060 0.048 0 -0.569 1.053 3

ENSG00000206190 TRIM5 0.060 0.04 0 -0.492 1.013 NI

ENSG00000159082 PKD2L2 0.059 0.052 + 0.796 1.006 4

ENSG00000138771 SEC23B 0.058 0.052 + -0.286 0.908 NI
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ENSG00000069943 PRDM8 0.057 0.064 - -1.000 1.050 NI

ENSG00000140379 PSMC3IP 0.057 0.049 0 0.716 1.665 NI

ENSG00000158296 JTB 0.056 0.041 - 0.238 1.041 NI

ENSG00000154415 SUCNR1 0.056 0.03 - 0.021 0.995 NI

ENSG00000163297 NRP2 0.056 0.068 0 0.076 1.110 4

ENSG00000183688 CPE 0.056 0.047 0 -0.461 1.120 NI

ENSG00000138443 CMTM7 0.056 0.051 0 -0.895 1.004 NI

ENSG00000110400 SDCBP 0.055 0.041 + -0.310 0.931 4

ENSG00000186300 PARM1 0.054 0.044 - 0.202 0.978 NI

ENSG00000103355 SETBP1 0.054 0.034 - 0.248 1.184 NI

ENSG00000075826 SCNN1B 0.054 0.054 0 0.273 0.965 2

ENSG00000101310 LIMK2 0.053 0.038 + 0.995 1.021 3

ENSG00000164187 ABLIM1 0.053 0.045 + 0.971 0.943 2

ENSG00000114473 ZNF280A 0.053 0.048 0 0.722 1.014 NI

ENSG00000143727 WDR60 0.052 0.043 + 0.744 0.986 NI

ENSG00000145029 PMP22 0.051 0.042 0 -0.522 1.037 NI

ENSG00000100908 GLUD1 0.051 0.045 0 -0.094 0.960 4

ENSG00000143368 C9orf72 0.051 0.051 0 -0.670 1.005 NI

ENSG00000074660 SERPINA3 0.050 0.051 - -0.716 1.033 4

ENSG00000126878 NICN1 0.050 0.04 + 0.866 0.978 NI

ENSG00000139438 USP2 0.050 0.052 0 -0.646 0.985 4

ENSG00000214855 RHOXF1 0.049 0.046 - -0.891 0.992 NI

ENSG00000154978 UPP1 0.048 0.049 - -0.883 0.967 NI

ENSG00000111266 SF3B4 0.047 0.037 - -0.682 0.990 4

ENSG00000198513 RORC 0.046 0.051 + 0.463 0.917 NI

ENSG00000184545 UBE2T 0.046 0.038 0 -0.586 0.987 5

ENSG00000183386 CYP17A1 0.046 0.041 0 -0.675 1.048 3

ENSG00000112812 ABI2 0.046 0.045 0 -0.499 0.911 3

ENSG00000186788 ERBIN 0.045 0.03 0 0.433 1.007 3

ENSG00000148488 HTATSF1 0.044 0.062 0 -0.596 0.996 4

ENSG00000162981 ST8SIA6 0.044 0.03 0 0.735 0.987 NI

ENSG00000118557 IKBKB 0.043 0.034 + 0.003 0.985 3

ENSG00000168447 TIMP1 0.043 0.031 + 0.937 0.955 3

ENSG00000125864 DOCK1 0.043 0.039 0 -0.592 1.110 2

ENSG00000142082 AFG1L 0.042 0.049 - -0.401 1.003 NI

ENSG00000148841 ZBP1 0.042 0.06 + 0.338 1.106 NI

ENSG00000135298 U2AF1L4 0.042 0.057 0 0.717 0.898 NI

ENSG00000058335 RASGRF1 0.041 0.043 - -0.547 1.029 3

ENSG00000113269 PLP1 0.041 0.047 + 0.730 1.071 3

ENSG00000148795 GNAO1 0.041 0.056 0 0.439 0.994 3

ENSG00000140557 CAVIN3 0.040 0.052 - -0.661 0.979 NI

ENSG00000161055 LARP6 0.040 0.031 0 -0.042 0.986 3

ENSG00000147144 OSBPL2 0.040 0.041 0 -0.016 0.976 NI

ENSG00000182890 GLUD2 0.038 0.06 0 -0.653 1.097 NI

ENSG00000196136 FAM222A 0.037 0.061 0 -0.372 1.249 NI

ENSG00000040633 MOB1B 0.037 0.045 0 -0.734 1.042 3

ENSG00000256040 HUWE1 0.037 0.049 0 -0.760 1.021 4

ENSG00000159388 PLIN3 0.036 0.046 0 -0.901 0.887 NI

ENSG00000114744 ZNF555 0.034 0.054 + 0.832 0.954 NI

ENSG00000107554 CASP4 0.034 0.05 0 0.424 1.050 NI

ENSG00000135414 PMFBP1 0.033 0.051 0 -0.205 1.096 NI

ENSG00000197768 SCARF1 0.032 0.047 + 0.793 0.989 5

ENSG00000107611 ZDHHC19 0.032 0.045 0 -0.219 1.051 NI

ENSG00000101883 ILF2 0.031 0.036 0 -0.175 1.001 NI

ENSG00000215915 MYNN 0.030 0.046 + 1.000 0.989 NI

ENSG00000169548 UPF3B 0.029 0.043 0 0.540 1.120 NI

ENSG00000068097 HEATR6 0.029 0.059 0 0.199 0.983 NI

ENSG00000172123 SLC25A3 0.028 0.056 0 0.538 1.118 NI
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ENSG00000124256 KIF21A 0.028 0.034 0 -0.314 0.982 4

ENSG00000178726 ADGRB3 0.028 0.045 0 0.747 0.958 NI

ENSG00000109099 DONSON 0.027 0.06 0 -0.428 1.312 NI

ENSG00000121743 ELK3 0.026 0.04 0 -0.017 1.154 2

ENSG00000101040 ACP7 0.026 0.048 0 0.010 1.042 NI

ENSG00000133678 LRRN2 0.026 0.039 0 -0.528 0.967 NI

ENSG00000197081 C18orf25 0.026 0.056 0 0.311 1.037 NI

ENSG00000053918 IQCG 0.026 0.038 0 -0.045 0.994 NI

ENSG00000099204 ATP10A 0.025 0.041 0 -0.117 0.898 NI

ENSG00000167741 KCNQ1 0.024 0.049 0 0.918 0.979 3

ENSG00000118257 PIGB 0.024 0.046 0 0.771 1.157 NI

ENSG00000152242 KCNJ5 0.024 0.036 0 0.028 0.984 3

ENSG00000105497 ACSL4 0.023 0.048 0 -0.255 1.017 NI

ENSG00000183760 ISG20L2 0.023 0.039 0 -0.680 1.014 NI

ENSG00000197893 ZNF175 0.023 0.031 0 -0.354 1.004 NI

ENSG00000124374 GLRX 0.022 0.04 0 0.611 0.959 NI

ENSG00000102048 ERRFI1 0.022 0.042 0 0.538 1.176 3

ENSG00000185986 EMP1 0.022 0.038 0 -0.549 0.935 NI

ENSG00000105695 AIF1L 0.019 0.054 - -0.688 0.992 NI

ENSG00000140367 NRAP 0.016 0.036 0 -0.069 1.020 NI

Table C.1: Gene rankings of all selected genes based on the magnitude of the genetic effect
on drug response. A positive (+) sign translates to a positive effect on cells survival after
drug administration, a negative (-) sign translates to a negative effect on cells survival and
a mixed (0) effect translates to a varying effect on cells survival which depends on drug
dosage. Spearman’s correlation is calculated between drug dosage and gene estimated
coefficient function values as an indicator of the magnitude change of the gene effect over
the increasing dosage. Area corresponds to the area under the estimated coefficient curve
and the SD corresponds to the standard deviation of the area based on bootstrapping.
Mean fold change is calculated between the selected gene expression values of the cell
lines carrying BRAF mutations with respect to wild type. Protein-protein interaction
network distance is computed based on the shortest interaction path between the BRAF
gene and each of the selected genes. Here, NI denotes absence of any interaction.

Pathway Number of genes P-value Adjusted p-value

Glial Cell Differentiation WP2276 2 0 0.000

NLR Proteins WP288 2 0 0.000

Supression of HMGB1 mediated inflammation by THBD WP4479 2 0 0.000

Mammary gland development pathway - Puberty (Stage 2 of 4) WP2814 2 0 0.000

Apoptosis Modulation and Signaling WP1772 5 0.001 0.023

Primary Focal Segmental Glomerulosclerosis FSGS WP2572 4 0.001 0.023

NOTCH1 regulation of human endothelial cell calcification WP3413 2 0.001 0.023

Osteopontin Signaling WP1434 1 0.001 0.023

Sulindac Metabolic Pathway WP2542 1 0.002 0.041

Vitamin B12 Metabolism WP1533 3 0.003 0.050

Glucocorticoid and Mineralcorticoid Metabolism WP237 1 0.003 0.050

T-Cell antigen Receptor (TCR) Signaling Pathway WP69 4 0.004 0.052

Role Altered Glycolysation of MUC1 in Tumour Microenvironment WP4480 1 0.004 0.052

MAPK and NFkB Signalling Pathways Inhibited by Yersinia YopJ WP3849 1 0.004 0.052

Heme Biosynthesis WP561 1 0.005 0.057

The alternative pathway of fetal androgen synthesis WP4524 1 0.005 0.057

Complement and Coagulation Cascades WP558 3 0.007 0.058

Oligodendrocyte Specification and differentiation WP4304 2 0.007 0.058

Matrix Metalloproteinases WP129 2 0.006 0.058

Fibrin Complement Receptor 3 Signaling Pathway WP4136 2 0.006 0.058

TFs Regulate miRNAs related to cardiac hypertrophy WP1559 1 0.007 0.058
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NAD metabolism, sirtuins and aging WP3630 1 0.007 0.058

Calcium Regulation in the Cardiac Cell WP536 5 0.009 0.069

Steroid Biosynthesis WP496 1 0.009 0.069

Selenium Micronutrient Network WP15 3 0.01 0.070

Photodynamic therapy-induced NF-kB survival signaling WP3617 2 0.01 0.070

MAPK Signaling Pathway WP382 7 0.013 0.072

Spinal Cord Injury WP2431 4 0.014 0.072

PPAR signaling pathway WP3942 3 0.011 0.072

Photodynamic therapy-induced HIF-1 survival signaling WP3614 2 0.012 0.072

Nucleotide-binding Oligomerization Domain (NOD) pathway WP1433 2 0.013 0.072

Genes targeted by miRNAs in adipocytes WP1992 1 0.014 0.072

Classical pathway of steroidogenesis, including diseases WP4523 1 0.015 0.072

Fatty Acid Omega Oxidation WP206 1 0.014 0.072

NAD+ metabolism WP3644 1 0.015 0.072

ID signaling pathway WP53 1 0.015 0.072

Serotonin and anxiety WP3947 1 0.012 0.072

Leptin Insulin Overlap WP3935 1 0.013 0.072

Notch Signaling WP268 2 0.017 0.080

Oxysterols derived from cholesterol WP4545 1 0.019 0.085

Mitochondrial LC-Fatty Acid Beta-Oxidation WP368 1 0.019 0.085

EGF/EGFR Signaling Pathway WP437 5 0.02 0.087

Interleukin-11 Signaling Pathway WP2332 2 0.021 0.089

MicroRNAs in cardiomyocyte hypertrophy WP1544 3 0.022 0.089

Vitamin B12 Disorders WP4271 1 0.022 0.089

TGF-B Signaling in Thyroid Cells for Epithelial-Mesenchymal Transition WP3859 1 0.026 0.095

Serotonin Receptor 2 and ELK-SRF/GATA4 signaling WP732 1 0.026 0.095

Urea cycle and metabolism of amino groups WP497 1 0.026 0.095

NAD+ biosynthetic pathways WP3645 1 0.025 0.095

Type II diabetes mellitus WP1584 1 0.025 0.095

B Cell Receptor Signaling Pathway WP23 3 0.03 0.096

Cardiac Hypertrophic Response WP2795 2 0.03 0.096

Regulation of Apoptosis by Parathyroid Hormone-related Protein WP3872 1 0.03 0.096

Fatty Acid Biosynthesis WP357 1 0.027 0.096

Vitamin D in inflammatory diseases WP4482 1 0.031 0.096

Blood Clotting Cascade WP272 1 0.031 0.096

EBV LMP1 signaling WP262 1 0.029 0.096

Estrogen signaling pathway WP712 1 0.03 0.096

Angiogenesis WP1539 1 0.029 0.096

Intraflagellar transport proteins binding to dynein WP4532 1 0.032 0.098

Brain-Derived Neurotrophic Factor (BDNF) signaling pathway WP2380 4 0.035 0.103

Integrin-mediated Cell Adhesion WP185 3 0.035 0.103

Focal Adhesion WP306 5 0.039 0.106

IL-1 signaling pathway WP195 2 0.041 0.106

Notch Signaling Pathway WP61 2 0.041 0.106

Oxidation by Cytochrome P450 WP43 2 0.041 0.106

T-Cell antigen Receptor (TCR) pathway WP3863 2 0.041 0.106

Endochondral Ossification WP474 2 0.037 0.106

Methionine De Novo and Salvage Pathway WP3580 1 0.037 0.106

PPAR Alpha Pathway WP2878 1 0.04 0.106

One Carbon Metabolism WP241 1 0.04 0.106

Wnt Signaling WP428 3 0.044 0.107

MECP2 and Associated Rett Syndrome WP3584 2 0.045 0.107

Folate Metabolism WP176 2 0.045 0.107

TLR4 Signaling and Tolerance WP3851 1 0.044 0.107

Toll-like Receptor Signaling WP3858 1 0.045 0.107

Constitutive Androstane Receptor Pathway WP2875 1 0.045 0.107

Canonical and Non-canonical Notch signaling WP3845 1 0.048 0.113

Wnt/beta-catenin Signaling Pathway in Leukemia WP3658 1 0.049 0.114
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Gastric Cancer Network 1 WP2361 1 0.051 0.117

IL1 and megakaryocytes in obesity WP2865 1 0.052 0.117

Sterol Regulatory Element-Binding Proteins (SREBP) signalling WP1982 2 0.053 0.118

Gastric Cancer Network 2 WP2363 1 0.054 0.119

RAC1/PAK1/p38/MMP2 Pathway WP3303 2 0.061 0.125

Non-genomic actions of 1,25 dihydroxyvitamin D3 WP4341 2 0.061 0.125

IL17 signaling pathway WP2112 1 0.059 0.125

Resistin as a regulator of inflammation WP4481 1 0.06 0.125

Signal transduction through IL1R WP4496 1 0.06 0.125

p38 MAPK Signaling Pathway WP400 1 0.06 0.125

Fluoropyrimidine Activity WP1601 1 0.064 0.129

miRNAs involvement in the immune response in sepsis WP4329 1 0.064 0.129

Human Thyroid Stimulating Hormone (TSH) signaling pathway WP2032 2 0.065 0.129

Signaling of Hepatocyte Growth Factor Receptor WP313 1 0.067 0.130

Selenium Metabolism and Selenoproteins WP28 1 0.067 0.130

Fatty Acid Beta Oxidation WP143 1 0.069 0.133

Zinc homeostasis WP3529 1 0.072 0.137

Signaling Pathways in Glioblastoma WP2261 2 0.074 0.140

Apoptosis WP254 2 0.077 0.141

Nuclear Receptors in Lipid Metabolism and Toxicity WP299 1 0.076 0.141

Wnt Signaling in Kidney Disease WP4150 1 0.077 0.141

Striated Muscle Contraction Pathway WP383 1 0.083 0.149

Ferroptosis WP4313 1 0.083 0.149

ncRNAs involved in Wnt signaling in hepatocellular carcinoma WP4336 2 0.084 0.149

Nuclear Receptors WP170 1 0.09 0.158

TNF related weak inducer of apoptosis (TWEAK) Signaling Pathway WP2036 1 0.092 0.160

NO/cGMP/PKG mediated Neuroprotection WP4008 1 0.095 0.164

Circadian rhythm related genes WP3594 4 0.096 0.164

Pancreatic adenocarcinoma pathway WP4263 2 0.097 0.164

Androgen receptor signaling pathway WP138 2 0.102 0.171

Metabolic reprogramming in colon cancer WP4290 1 0.103 0.171

LncRNA involvement in canonical Wnt signaling and colorectal cancer WP4258 2 0.108 0.173

IL-5 Signaling Pathway WP127 1 0.107 0.173

Exercise-induced Circadian Regulation WP410 1 0.108 0.173

Histone Modifications WP2369 1 0.106 0.173

TNF alpha Signaling Pathway WP231 2 0.109 0.173

ATM Signaling Network in Development and Disease WP3878 1 0.112 0.177

Pathogenic Escherichia coli infection WP2272 1 0.114 0.178

IL-6 signaling pathway WP364 1 0.119 0.181

Regulation of Microtubule Cytoskeleton WP2038 1 0.119 0.181

Rett syndrome causing genes WP4312 1 0.119 0.181

Metapathway biotransformation Phase I and II WP702 3 0.12 0.181

Energy Metabolism WP1541 1 0.121 0.182

IL-2 Signaling Pathway WP49 1 0.125 0.186

G Protein Signaling Pathways WP35 2 0.131 0.193

Synaptic signaling pathways associated with autism spectrum disorder WP4539 1 0.133 0.195

Structural Pathway of Interleukin 1 (IL-1) WP2637 1 0.138 0.196

Copper homeostasis WP3286 1 0.136 0.196

Wnt Signaling Pathway WP363 1 0.137 0.196

TYROBP Causal Network WP3945 1 0.137 0.196

Epithelial to mesenchymal transition in colorectal cancer WP4239 3 0.142 0.200

Apoptosis-related network due to altered Notch3 in ovarian cancer WP2864 1 0.148 0.207

IL-4 Signaling Pathway WP395 1 0.152 0.211

MET in type 1 papillary renal cell carcinoma WP4205 1 0.158 0.216

Prader-Willi and Angelman Syndrome WP3998 1 0.159 0.216

Genotoxicity pathway WP4286 1 0.157 0.216

RANKL/RANK (Receptor activator of NFKB (ligand)) Signaling Pathway WP2018 1 0.163 0.218

RIG-I-like Receptor Signaling WP3865 1 0.162 0.218
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Lung fibrosis WP3624 1 0.171 0.227

Insulin Signaling WP481 3 0.178 0.234

Kit receptor signaling pathway WP304 1 0.179 0.234

Hippo-Merlin Signaling Dysregulation WP4541 2 0.184 0.239

NRF2 pathway WP2884 2 0.196 0.250

Endometrial cancer WP4155 1 0.198 0.250

Pathways Affected in Adenoid Cystic Carcinoma WP3651 1 0.197 0.250

AGE/RAGE pathway WP2324 1 0.198 0.250

mRNA Processing WP411 2 0.216 0.271

Regulation of toll-like receptor signaling pathway WP1449 2 0.22 0.274

Leptin signaling pathway WP2034 1 0.225 0.278

Arrhythmogenic Right Ventricular Cardiomyopathy WP2118 1 0.23 0.282

Endoderm Differentiation WP2853 2 0.233 0.284

Mesodermal Commitment Pathway WP2857 2 0.25 0.303

Ectoderm Differentiation WP2858 2 0.265 0.317

Pyrimidine metabolism WP4022 1 0.265 0.317

Alzheimers Disease WP2059 1 0.283 0.336

Breast cancer pathway WP4262 2 0.291 0.344

Regulation of Actin Cytoskeleton WP51 2 0.297 0.348

Sudden Infant Death Syndrome (SIDS) Susceptibility Pathways WP706 2 0.299 0.349

ErbB Signaling Pathway WP673 1 0.305 0.353

Allograft Rejection WP2328 1 0.308 0.354

Focal Adhesion-PI3K-Akt-mTOR-signaling pathway WP3932 4 0.316 0.359

Nuclear Receptors Meta-Pathway WP2882 4 0.319 0.359

Myometrial Relaxation and Contraction Pathways WP289 2 0.317 0.359

Amino Acid metabolism WP3925 1 0.32 0.359

Corticotropin-releasing hormone signaling pathway WP2355 1 0.337 0.376

Genes related to primary cilium development (based on CRISPR) WP4536 1 0.347 0.385

Toll-like Receptor Signaling Pathway WP75 1 0.353 0.389

Wnt Signaling Pathway and Pluripotency WP399 1 0.358 0.392

VEGFA-VEGFR2 Signaling Pathway WP3888 3 0.368 0.396

Pathways Regulating Hippo Signaling WP4540 1 0.365 0.396

Senescence and Autophagy in Cancer WP615 1 0.366 0.396

Vitamin D Receptor Pathway WP2877 2 0.375 0.399

Neural Crest Differentiation WP2064 1 0.374 0.399

Ras Signaling WP4223 2 0.395 0.418

PI3K-Akt Signaling Pathway WP4172 4 0.403 0.421

Thermogenesis WP4321 1 0.402 0.421

Ciliary landscape WP4352 2 0.459 0.477

ESC Pluripotency Pathways WP3931 1 0.473 0.489

TGF-beta Signaling Pathway WP366 1 0.499 0.513

Angiopoietin Like Protein 8 Regulatory Pathway WP3915 1 0.51 0.521

Nonalcoholic fatty liver disease WP4396 1 0.518 0.527

Integrated Breast Cancer Pathway WP1984 1 0.57 0.576

GPCRs, Class A Rhodopsin-like WP455 2 0.578 0.581

Chemokine signaling pathway WP3929 1 0.607 0.607

Table C.2: Signalling pathways along with the adjusted p-values and the number of
overlapping genes obtained after pathway enrichment analysis applied to the full scale
analysis results.
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Gene Set Name
# Genes in

Gene Set (K)
Description GiO k/K p-value FDR

STK33 SKM UP 275 Genes up-regulated in SKM-1 cells (AML) after knockdown of STK33 [Gene ID=65975] by RNAi. 12 0.0436 1.17E-07 1.62E-05

STK33 UP 285 Genes up-regulated in NOMO-1 and SKM-1 cells (AML) after knockdown of STK33 [Gene ID=65975] by RNAi. 12 0.0421 1.72E-07 1.62E-05

STK33 NOMO UP 290 Genes up-regulated in NOMO-1 cells (AML) after knockdown of STK33 [Gene ID=65975] by RNAi. 10 0.0345 1.08E-05 0.000597

TGFB UP.V1 DN 188 Genes down-regulated in a panel of epithelial cell lines by TGFB1 [Gene ID=7040]. 8 0.0426 1.88E-05 0.000597

TGFB UP.V1 UP 189 Genes up-regulated in a panel of epithelial cell lines by TGFB1 [Gene ID=7040]. 8 0.0423 1.95E-05 0.000597

KRAS.DF.V1 UP 190 Genes up-regulated in epithelial lung cancer cell lines over-expressing an oncogenic form of KRAS [Gene ID=3845] gene. 8 0.0421 2.02E-05 0.000597

SIRNA EIF4GI UP 94 Genes up-regulated in MCF10A cells vs knockdown of EIF4G1 [Gene ID=1981] gene by RNAi. 6 0.0638 2.21E-05 0.000597

RAPA EARLY UP.V1 UP 166 Genes up-regulated in BJAB (lymphoma) cells by rapamycin (sirolimus) [PubChem = 6610346]. 7 0.0422 6.64E-05 0.00157

P53 DN.V1 DN 193 Genes down-regulated in NCI-60 panel of cell lines with mutated TP53 [Gene ID=7157]. 7 0.0363 0.00017 0.00321

RAF UP.V1 UP 193 Genes up-regulated in MCF-7 cells positive for ESR1. 7 0.0363 0.00017 0.00321

KRAS.KIDNEY UP.V1 UP 142 Genes up-regulated in epithelial kidney cancer cell lines over-expressing an oncogenic form of KRAS [Gene ID=3845] gene. 6 0.0423 0.000219 0.00377

KRAS.600 UP.V1 UP 276 Genes up-regulated in four lineages of epithelial cell lines over-expressing an oncogenic form of KRAS [Gene ID=3845] gene. 8 0.029 0.000272 0.00428

AKT UP MTOR DN.V1 UP 178 Genes up-regulated by everolimus [PubChem = 6442177] in mouse prostate tissue transgenically expressing human AKT1. 6 0.0337 0.000729 0.0106

ESC J1 UP LATE.V1 UP 185 Genes up-regulated during late stages of differentiation of embryoid bodies from J1 embryonic stem cells. 6 0.0324 0.00089 0.0119

CYCLIN D1 UP.V1 UP 187 Genes up-regulated in MCF-7 cells (breast cancer) over-expressing CCND1 [Gene ID=595] gene. 6 0.0321 0.000941 0.0119

EGFR UP.V1 UP 192 Genes up-regulated in MCF-7 cells positive for ESR1 engineered to express ligand-activatable EGFR. 6 0.0312 0.00108 0.0119

RAF UP.V1 DN 192 Genes down-regulated in MCF-7 cells (breast cancer) positive for ESR1 MCF-7 cells over-expressing active RAF1 gene. 6 0.0312 0.00108 0.0119

LEF1 UP.V1 UP 194 Genes up-regulated in DLD1 cells (colon carcinoma) over-expressing LEF1 [Gene ID=51176]. 6 0.0309 0.00114 0.0119

PDGF UP.V1 DN 134 Genes down-regulated in SH-SY5Y cells (neuroblastoma) in response to PDGF [Gene ID=] stimulation. 5 0.0373 0.00129 0.0128

PDGF ERK DN.V1 DN 148 Genes down-regulated in SH-SY5Y cells (neuroblastoma) in response to PDGF stimulation after pre-treatment with the ERK inhibitors. 5 0.0338 0.002 0.0189

ESC V6.5 UP EARLY.V1 DN 161 Genes down-regulated during early stages of differentiation of embryoid bodies from V6.5 embryonic stem cells. 5 0.0311 0.00288 0.0259

MTOR UP.V1 DN 181 Genes down-regulated by everolimus [PubChem = 6442177] in prostate tissue. 5 0.0276 0.00473 0.0397

IL15 UP.V1 DN 182 Genes down-regulated in Sez-4 cells, first starved of IL2 and then stimulated with IL15. 5 0.0275 0.00484 0.0397

CYCLIN D1 KE .V1 UP 188 Genes up-regulated in MCF-7 cells (breast cancer) over-expressing a mutant K112E form of CCND1 [Gene ID=595] gene. 5 0.0266 0.00554 0.0397

PIGF UP.V1 DN 188 Genes down-regulated in HUVEC cells (endothelium) by treatment with PIGF [Gene ID=5281]. 5 0.0266 0.00554 0.0397

ATF2 S UP.V1 UP 189 Genes up-regulated in myometrial cells over-expressing a shortened splice form of ATF2 [Gene ID=1386] gene. 5 0.0265 0.00567 0.0397

ERBB2 UP.V1 UP 189 Genes up-regulated in MCF-7 cells positive for ESR1 engineered to express ligand-activatable ERBB2. 5 0.0265 0.00567 0.0397

MEK UP.V1 UP 194 Genes up-regulated in MCF-7 cells (breast cancer) positive for ESR1 [Gene ID=2099] MCF-7 cells over-expressing active MAP2K1 gene. 5 0.0258 0.00632 0.0426

RB P130 DN.V1 UP 128 Genes up-regulated in primary keratinocytes from RB1 and RBL2 [Gene ID=5925, 5934] skin specific knockout mice. 4 0.0312 0.00739 0.0481

Table C.3: Overlaps have been detected using gene set enrichment analysis performed using a hypergeometric distribution. The false discovery rate
analog of the hypergeometric p-value is displayed after correction for multiple hypothesis testing according to Benjamini and Hochberg. GiO stands
for Genes in Overlap (k).
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Pathway NoG P-value Adj.P-value Regul.

Axon guidance Homo sapiens R-HSA-422475 14 0.000 0.000 Up

Signaling by VEGF Homo sapiens R-HSA-194138 10 0.000 0.000 Up

CREB phosphorylation through the activation of Ras Homo sapiens R-HSA-442742 3 0.000 0.000 Down

Negative regulation of MAPK pathway Homo sapiens R-HSA-5675221 3 0.000 0.000 Down

TNF signaling Homo sapiens R-HSA-75893 3 0.000 0.000 Up

IRAK1 recruits IKK complex Homo sapiens R-HSA-937039 2 0.000 0.000 Down

IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation Homo sapiens R-HSA-975144 2 0.000 0.000 Down

TP53 Regulates Transcription of Death Receptors and Ligands Homo sapiens R-HSA-6803211 2 0.000 0.000 Down

DCC mediated attractive signaling Homo sapiens R-HSA-418885 2 0.000 0.000 Down

Ras activation uopn Ca2+ infux through NMDA receptor Homo sapiens R-HSA-442982 2 0.000 0.000 Down

RIP-mediated NFkB activation via ZBP1 Homo sapiens R-HSA-1810476 2 0.000 0.000 Down

Sodium-coupled sulphate, di- and tri-carboxylate transporters Homo sapiens R-HSA-433137 1 0.000 0.000 Down

Homo sapiens R-HSA-5339717 1 0.000 0.000 Down

Hemostasis Homo sapiens R-HSA-109582 14 0.001 0.018 Up

VEGFA-VEGFR2 Pathway Homo sapiens R-HSA-4420097 9 0.001 0.018 Up

RAF-independent MAPK1/3 activation Homo sapiens R-HSA-112409 3 0.001 0.018 Down

Lipoprotein metabolism Homo sapiens R-HSA-174824 3 0.001 0.018 Up

Post NMDA receptor activation events Homo sapiens R-HSA-438064 3 0.001 0.018 Down

Formation of Fibrin Clot (Clotting Cascade) Homo sapiens R-HSA-140877 3 0.001 0.018 Up

Death Receptor Signalling Homo sapiens R-HSA-73887 3 0.001 0.018 Up

N-Glycan antennae elongation Homo sapiens R-HSA-975577 2 0.001 0.018 Down

Intrinsic Pathway of Fibrin Clot Formation Homo sapiens R-HSA-140837 2 0.001 0.018 Down

N-glycan antennae elongation in the medial/trans-Golgi Homo sapiens R-HSA-975576 2 0.001 0.018 Down

RSK activation Homo sapiens R-HSA-444257 1 0.001 0.018 Down

NrCAM interactions Homo sapiens R-HSA-447038 1 0.001 0.018 Down

Activation of PUMA and translocation to mitochondria Homo sapiens R-HSA-139915 1 0.001 0.018 Down

Developmental Biology Homo sapiens R-HSA-1266738 17 0.002 0.027 Up

Interleukin-1 signaling Homo sapiens R-HSA-446652 3 0.002 0.027 Up

Caspase-mediated cleavage of cytoskeletal proteins Homo sapiens R-HSA-264870 2 0.002 0.027 Down

HDL-mediated lipid transport Homo sapiens R-HSA-194223 2 0.002 0.027 Down

ZBP1(DAI) mediated induction of type I IFNs Homo sapiens R-HSA-1606322 2 0.002 0.027 Down

Neurofascin interactions Homo sapiens R-HSA-447043 1 0.002 0.027 Down

IkBA variant leads to EDA-ID Homo sapiens R-HSA-5603029 1 0.002 0.027 Down

IKBKG deficiency causes EDA-ID via TLR Homo sapiens R-HSA-5603027 1 0.002 0.027 Down

Synthesis of (16-20)-hydroxyeicosatetraenoic acids (HETE) Homo sapiens R-HSA-2142816 1 0.002 0.027 Down

Homo sapiens R-HSA-442755 3 0.003 0.033 Up

Common Pathway of Fibrin Clot Formation Homo sapiens R-HSA-140875 2 0.003 0.033 Down

PTK6 Regulates Proteins Involved in RNA Processing Homo sapiens R-HSA-8849468 1 0.003 0.033 Down

Scavenging by Class F Receptors Homo sapiens R-HSA-3000484 1 0.003 0.033 Down

IRF3 mediated activation of type 1 IFN Homo sapiens R-HSA-1606341 1 0.003 0.033 Down

TNFR1-mediated ceramide production Homo sapiens R-HSA-5626978 1 0.003 0.033 Down

Homo sapiens R-HSA-2660825 1 0.003 0.033 Down

Constitutive Signaling by NOTCH1; Homo sapiens R-HSA-2660826 1 0.003 0.033 Down

TNFR1-induced NFkappaB signaling pathway Homo sapiens R-HSA-5357956 2 0.004 0.041 Down

Axonal growth inhibition (RHOA activation) Homo sapiens R-HSA-193634 1 0.004 0.041 Down

Glucocorticoid biosynthesis Homo sapiens R-HSA-194002 1 0.004 0.041 Down

ERKs are inactivated Homo sapiens R-HSA-202670 1 0.004 0.041 Down

Amino acid synthesis and interconversion (transamination) Homo sapiens R-HSA-70614 2 0.005 0.042 Down

Regulation of TNFR1 signaling Homo sapiens R-HSA-5357905 2 0.005 0.042 Down

Activation of Matrix Metalloproteinases Homo sapiens R-HSA-1592389 2 0.005 0.042 Down

Homo sapiens R-HSA-5368598 1 0.005 0.042 Down

Protein repair Homo sapiens R-HSA-5676934 1 0.005 0.042 Down

Phase 3 - rapid repolarisation Homo sapiens R-HSA-5576890 1 0.005 0.042 Down

Homo sapiens R-HSA-446388 1 0.005 0.042 Down

Relaxin receptors Homo sapiens R-HSA-444821 1 0.005 0.042 Down

p75NTR regulates axonogenesis Homo sapiens R-HSA-193697 1 0.005 0.042 Down

Dissolution of Fibrin Clot Homo sapiens R-HSA-75205 1 0.005 0.042 Down
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VEGFR2 mediated cell proliferation Homo sapiens R-HSA-5218921 7 0.006 0.043 Up

NOD1/2 Signaling Pathway Homo sapiens R-HSA-168638 2 0.006 0.043 Down

R-HSA-5340588 1 0.006 0.043 Down

CHL1 interactions Homo sapiens R-HSA-447041 1 0.006 0.043 Down

Homo sapiens R-HSA-2892245 1 0.006 0.043 Down

Synthesis of IP2, IP, and Ins in the cytosol Homo sapiens R-HSA-1855183 1 0.006 0.043 Down

Signaling by NOTCH3 Homo sapiens R-HSA-1980148 1 0.006 0.043 Down

Signaling by NOTCH4 Homo sapiens R-HSA-1980150 1 0.006 0.043 Down

Miscellaneous substrates Homo sapiens R-HSA-211958 1 0.006 0.043 Down

Eicosanoids Homo sapiens R-HSA-211979 1 0.006 0.043 Down

Trafficking of AMPA receptors Homo sapiens R-HSA-399719 2 0.007 0.044 Down

Homo sapiens R-HSA-399721 2 0.007 0.044 Down

Sialic acid metabolism Homo sapiens R-HSA-4085001 2 0.007 0.044 Down

Regulation of TP53 Degradation Homo sapiens R-HSA-6804757 2 0.007 0.044 Down

Vitamin D (calciferol) metabolism Homo sapiens R-HSA-196791 1 0.007 0.044 Down

Pyrimidine salvage reactions Homo sapiens R-HSA-73614 1 0.007 0.044 Down

NF-kB activation; Homo sapiens R-HSA-933543 1 0.007 0.044 Down

Elevation of cytosolic Ca2+ levels Homo sapiens R-HSA-139853 1 0.007 0.044 Down

Homo Sapiens R-HSA-112314 5 0.008 0.047 Up

Degradation of the extracellular matrix Homo sapiens R-HSA-1474228 4 0.008 0.047 Up

Regulation of TP53 Expression and Degradation Homo sapiens R-HSA-6806003 2 0.008 0.047 Down

Androgen biosynthesis Homo sapiens R-HSA-193048 1 0.008 0.047 Down

Homo sapiens R-HSA-6804759 1 0.008 0.047 Down

Glutathione synthesis and recycling Homo sapiens R-HSA-174403 1 0.008 0.047 Down

Steroid hormones Homo sapiens R-HSA-209943 2 0.009 0.050 Down

Heme biosynthesis Homo sapiens R-HSA-189451 1 0.009 0.050 Down

p75NTR recruits signalling complexes Homo sapiens R-HSA-209543 1 0.009 0.050 Down

Bile salt and organic anion SLC transporters Homo sapiens R-HSA-425471 1 0.009 0.050 Down

Chylomicron-mediated lipid transport Homo sapiens R-HSA-174800 1 0.010 0.055 Down

Signaling by Activin Homo sapiens R-HSA-1502540 1 0.011 0.058 Down

Homo sapiens R-HSA-156988 1 0.011 0.058 Down

Homo sapiens R-HSA-442729 1 0.011 0.058 Down

Fatty acids Homo sapiens R-HSA-211935 1 0.011 0.058 Down

Apoptotic cleavage of cellular proteins Homo sapiens R-HSA-111465 2 0.012 0.060 Down

Pyrimidine catabolism Homo sapiens R-HSA-73621 1 0.012 0.060 Down

Platelet Adhesion to exposed collagen Homo sapiens R-HSA-75892 1 0.012 0.060 Down

Homo sapiens R-HSA-3772470 1 0.012 0.060 Down

Metabolism of porphyrins Homo sapiens R-HSA-189445 1 0.012 0.060 Down

Lipid digestion, mobilization, and transport Homo sapiens R-HSA-73923 3 0.013 0.063 Up

Netrin-1 signaling Homo sapiens R-HSA-373752 2 0.013 0.063 Down

NF-kB is activated and signals survival Homo sapiens R-HSA-209560 1 0.013 0.063 Down

TNFR1-induced proapoptotic signaling Homo sapiens R-HSA-5357786 1 0.013 0.063 Down

NLR signaling pathways; Homo sapiens R-HSA-168643 2 0.014 0.064 Down

Uptake and function of anthrax toxins Homo sapiens R-HSA-5210891 1 0.014 0.064 Down

IRF3-mediated induction of type I IFN Homo sapiens R-HSA-3270619 1 0.014 0.064 Down

TP53 regulating transcription of cell death genes; Homo sapiens R-HSA-6803205 1 0.014 0.064 Down

Polo-like kinase mediated events Homo sapiens R-HSA-156711 1 0.014 0.064 Down

NCAM signaling for neurite out-growth Homo sapiens R-HSA-375165 7 0.015 0.066 Up

Defective EXT2 causes exostoses 2 Homo sapiens R-HSA-3656237 1 0.015 0.066 Down

Defective EXT1 causes exostoses 1, TRPS2 and CHDS Homo sapiens R-HSA-3656253 1 0.015 0.066 Down

Constitutive Signaling by NOTCH1 HD Domain Mutants Homo sapiens R-HSA-2691232 1 0.015 0.066 Down

Signaling by NOTCH1 HD Domain Mutants in Cancer Homo sapiens R-HSA-2691230 1 0.015 0.066 Down

Intraflagellar transport Homo sapiens R-HSA-5620924 2 0.016 0.068 Down

MAP3K8 (TPL2)-dependent MAPK1/3 activation Homo sapiens R-HSA-5684264 1 0.016 0.068 Down

Homo sapiens R-HSA-6803204 1 0.016 0.068 Down

Retrograde transport at the Trans-Golgi-Network Homo sapiens R-HSA-6811440 2 0.017 0.070 Down

p75NTR signals via NF-kB Homo sapiens R-HSA-193639 1 0.017 0.070 Down

Homo sapiens R-HSA-438066 1 0.017 0.070 Down
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TP53 Regulates Transcription of Cell Death Genes Homo sapiens R-HSA-5633008 2 0.018 0.071 Down

Ion homeostasis Homo sapiens R-HSA-5578775 2 0.018 0.071 Down

Defects in cobalamin (B12) metabolism Homo sapiens R-HSA-3296469 1 0.018 0.071 Down

Cell-extracellular matrix interactions Homo sapiens R-HSA-446353 1 0.018 0.071 Down

Synthesis of glycosylphosphatidylinositol (GPI) Homo sapiens R-HSA-162710 1 0.018 0.071 Down

Aflatoxin activation and detoxification Homo sapiens R-HSA-5423646 1 0.018 0.071 Down

Kinesins Homo sapiens R-HSA-983189 2 0.020 0.076 Down

Apoptotic execution phase Homo sapiens R-HSA-75153 2 0.020 0.076 Down

RHO GTPases Activate ROCKs Homo sapiens R-HSA-5627117 1 0.020 0.076 Down

Signaling by NODAL Homo sapiens R-HSA-1181150 1 0.020 0.076 Down

Signaling by Interleukins Homo sapiens R-HSA-449147 9 0.021 0.077 Up

IRS-mediated signalling Homo sapiens R-HSA-112399 7 0.021 0.077 Up

Insulin receptor signalling cascade Homo sapiens R-HSA-74751 7 0.022 0.077 Up

IGF1R signaling cascade Homo sapiens R-HSA-2428924 7 0.022 0.077 Up

Homo sapiens R-HSA-2404192 7 0.022 0.077 Up

IRS-related events triggered by IGF1R Homo sapiens R-HSA-2428928 7 0.022 0.077 Up

Toll Like Receptor 10 (TLR10) Cascade Homo sapiens R-HSA-168142 3 0.023 0.077 Up

Toll Like Receptor 5 (TLR5) Cascade Homo sapiens R-HSA-168176 3 0.023 0.077 Up

MyD88 cascade initiated on plasma membrane Homo sapiens R-HSA-975871 3 0.023 0.077 Up

Homo sapiens R-HSA-975138 3 0.023 0.077 Up

MyD88 dependent cascade initiated on endosome Homo sapiens R-HSA-975155 3 0.024 0.077 Up

Toll Like Receptor 7/8 (TLR7/8) Cascade Homo sapiens R-HSA-168181 3 0.024 0.077 Up

Phase 1 - Functionalization of compounds Homo sapiens R-HSA-211945 3 0.022 0.077 Up

Voltage gated Potassium channels Homo sapiens R-HSA-1296072 2 0.024 0.077 Down

Metabolism of fat-soluble vitamins Homo sapiens R-HSA-6806667 2 0.024 0.077 Down

Regulation of innate immune responses to cytosolic DNA Homo sapiens R-HSA-3134975 1 0.021 0.077 Down

STING mediated induction of host immune responses Homo sapiens R-HSA-1834941 1 0.024 0.077 Down

Other semaphorin interactions Homo sapiens R-HSA-416700 1 0.024 0.077 Down

Ephrin signaling Homo sapiens R-HSA-3928664 1 0.024 0.077 Down

Gap junction assembly Homo sapiens R-HSA-190861 1 0.022 0.077 Down

Synthesis of Leukotrienes (LT) and Eoxins (EX) Homo sapiens R-HSA-2142691 1 0.023 0.077 Down

Homo sapiens R-HSA-2979096 1 0.021 0.077 Down

ERK/MAPK targets Homo sapiens R-HSA-198753 1 0.024 0.077 Down

Defects in vitamin and cofactor metabolism Homo sapiens R-HSA-3296482 1 0.025 0.079 Down

Tie2 Signaling Homo sapiens R-HSA-210993 1 0.025 0.079 Down

Signaling by EGFR Homo sapiens R-HSA-177929 8 0.027 0.081 Up

GRB2 events in EGFR signaling Homo sapiens R-HSA-179812 6 0.029 0.081 Up

SHC1 events in EGFR signaling Homo sapiens R-HSA-180336 6 0.029 0.081 Up

SOS-mediated signalling Homo sapiens R-HSA-112412 6 0.029 0.081 Up

SHC1 events in ERBB4 signaling Homo sapiens R-HSA-1250347 6 0.029 0.081 Up

RAF/MAP kinase cascade Homo sapiens R-HSA-5673001 6 0.029 0.081 Up

FRS-mediated FGFR2 signaling Homo sapiens R-HSA-5654700 6 0.029 0.081 Up

FRS-mediated FGFR4 signaling Homo sapiens R-HSA-5654712 6 0.029 0.081 Up

FRS-mediated FGFR3 signaling Homo sapiens R-HSA-5654706 6 0.029 0.081 Up

FRS-mediated FGFR1 signaling Homo sapiens R-HSA-5654693 6 0.029 0.081 Up

Toll Like Receptor 9 (TLR9) Cascade Homo sapiens R-HSA-168138 3 0.029 0.081 Up

Defective B3GALT6 causes EDSP2 and SEMDJL1 Homo sapiens R-HSA-4420332 1 0.028 0.081 Down

Defective B4GALT7 causes EDS, progeroid type Homo sapiens R-HSA-3560783 1 0.028 0.081 Down

Defective B3GAT3 causes JDSSDHD Homo sapiens R-HSA-3560801 1 0.028 0.081 Down

Chondroitin sulfate biosynthesis Homo sapiens R-HSA-2022870 1 0.028 0.081 Down

TP53 regulating transcription of cell cycle genes; Homo sapiens R-HSA-6804115 1 0.028 0.081 Down

CTLA4 inhibitory signaling Homo sapiens R-HSA-389513 1 0.029 0.081 Down

Endogenous sterols Homo sapiens R-HSA-211976 1 0.028 0.081 Down

Homo sapiens R-HSA-198725 1 0.028 0.081 Down

IKK complex recruitment mediated by RIP1 Homo sapiens R-HSA-937041 1 0.027 0.081 Down

G0 and Early G1 Homo sapiens R-HSA-1538133 1 0.027 0.081 Down

Fc epsilon receptor (FCERI) signaling Homo sapiens R-HSA-2454202 8 0.031 0.082 Up

ARMS-mediated activation Homo sapiens R-HSA-170984 6 0.032 0.082 Up

182



Signalling to p38 via RIT and RIN Homo sapiens R-HSA-187706 6 0.034 0.082 Up

Frs2-mediated activation Homo sapiens R-HSA-170968 6 0.034 0.082 Up

MAPK1/MAPK3 signaling Homo sapiens R-HSA-5684996 6 0.033 0.082 Up

Prolonged ERK activation events Homo sapiens R-HSA-169893 6 0.035 0.082 Up

Signaling by Leptin Homo sapiens R-HSA-2586552 6 0.032 0.082 Up

Interleukin receptor SHC signaling Homo sapiens R-HSA-912526 6 0.034 0.082 Up

Signalling to RAS Homo sapiens R-HSA-167044 6 0.035 0.082 Up

Interleukin-2 signaling Homo sapiens R-HSA-451927 6 0.035 0.082 Up

MyD88:Mal cascade initiated on plasma membrane Homo sapiens R-HSA-166058 3 0.035 0.082 Up

Toll Like Receptor TLR1:TLR2 Cascade Homo sapiens R-HSA-168179 3 0.035 0.082 Up

Toll Like Receptor TLR6:TLR2 Cascade Homo sapiens R-HSA-168188 3 0.035 0.082 Up

Toll Like Receptor 2 (TLR2) Cascade Homo sapiens R-HSA-181438 3 0.035 0.082 Up

L1CAM interactions Homo sapiens R-HSA-373760 3 0.030 0.082 Up

Cell surface interactions at the vascular wall Homo sapiens R-HSA-202733 3 0.034 0.082 Up

Ion transport by P-type ATPases Homo sapiens R-HSA-936837 2 0.032 0.082 Down

Synthesis of substrates in N-glycan biosythesis Homo sapiens R-HSA-446219 2 0.034 0.082 Down

Signaling by Hippo Homo sapiens R-HSA-2028269 1 0.033 0.082 Down

Regulation of FZD by ubiquitination Homo sapiens R-HSA-4641263 1 0.035 0.082 Down

HS-GAG degradation Homo sapiens R-HSA-2024096 1 0.033 0.082 Down

Synthesis of very long-chain fatty acyl-CoAs Homo sapiens R-HSA-75876 1 0.033 0.082 Down

CD28 dependent PI3K/Akt signaling Homo sapiens R-HSA-389357 1 0.035 0.082 Down

Laminin interactions Homo sapiens R-HSA-3000157 1 0.031 0.082 Down

Insulin processing Homo sapiens R-HSA-264876 1 0.031 0.082 Down

Diseases associated with the TLR signaling cascade Homo sapiens R-HSA-5602358 1 0.033 0.082 Down

Diseases of Immune System Homo sapiens R-HSA-5260271 1 0.033 0.082 Down

TRAF6 mediated NF-kB activation Homo sapiens R-HSA-933542 1 0.035 0.082 Down

Homo sapiens R-HSA-163125 1 0.031 0.082 Down

Synthesis of IP3 and IP4 in the cytosol Homo sapiens R-HSA-1855204 1 0.030 0.082 Down

Homo sapiens R-HSA-499943 1 0.034 0.082 Down

Platelet calcium homeostasis Homo sapiens R-HSA-418360 1 0.034 0.082 Down

Homo sapiens R-HSA-416572 1 0.037 0.086 Down

Basigin interactions Homo sapiens R-HSA-210991 1 0.037 0.086 Down

Integrin alphaIIb beta3 signaling Homo sapiens R-HSA-354192 1 0.038 0.087 Down

G-protein activation Homo sapiens R-HSA-202040 1 0.038 0.087 Down

Signaling by Insulin receptor Homo sapiens R-HSA-74752 7 0.039 0.088 Up

Potassium Channels Homo sapiens R-HSA-1296071 3 0.039 0.088 Up

Homo sapiens R-HSA-211897 2 0.039 0.088 Down

Signaling by PDGF Homo sapiens R-HSA-186797 8 0.040 0.089 Up

Signaling by SCF-KIT Homo sapiens R-HSA-1433557 7 0.040 0.089 Up

FCERI mediated MAPK activation Homo sapiens R-HSA-2871796 6 0.040 0.089 Up

Chondroitin sulfate/dermatan sulfate metabolism Homo sapiens R-HSA-1793185 2 0.040 0.089 Down

Gap junction trafficking Homo sapiens R-HSA-190828 1 0.040 0.089 Down

Neuronal System Homo sapiens R-HSA-112316 7 0.041 0.090 Up

Constitutive Signaling by AKT1 E17K in Cancer Homo sapiens R-HSA-5674400 1 0.041 0.090 Down

VEGFR2 mediated vascular permeability Homo sapiens R-HSA-5218920 1 0.041 0.090 Down

Signaling by ERBB4 Homo sapiens R-HSA-1236394 7 0.043 0.090 Up

Signalling to ERKs Homo sapiens R-HSA-187687 6 0.042 0.090 Up

Interleukin-3, 5 and GM-CSF signaling Homo sapiens R-HSA-512988 6 0.043 0.090 Up

Platelet degranulation Homo sapiens R-HSA-114608 3 0.043 0.090 Up

Integrin cell surface interactions Homo sapiens R-HSA-216083 2 0.043 0.090 Down

Signaling by PTK6 Homo sapiens R-HSA-8848021 2 0.043 0.090 Down

Pyrimidine metabolism Homo sapiens R-HSA-73848 1 0.042 0.090 Down

Diseases associated with glycosaminoglycan metabolism Homo sapiens R-HSA-3560782 1 0.043 0.090 Down

Homo sapiens R-HSA-445989 1 0.042 0.090 Down

Metabolism of steroid hormones Homo sapiens R-HSA-196071 1 0.042 0.090 Down

Regulation of actin dynamics for phagocytic cup formation Homo sapiens R-HSA-2029482 2 0.044 0.090 Down

Cobalamin (Cbl, vitamin B12) transport and metabolism Homo sapiens R-HSA-196741 1 0.044 0.090 Down

Homo sapiens R-HSA-8849471 1 0.044 0.090 Down
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Gap junction trafficking and regulation Homo sapiens R-HSA-157858 1 0.044 0.090 Down

Glycolysis Homo sapiens R-HSA-70171 1 0.044 0.090 Down

Downstream signaling of activated FGFR2 Homo sapiens R-HSA-5654696 7 0.047 0.091 Up

Downstream signaling of activated FGFR4 Homo sapiens R-HSA-5654716 7 0.047 0.091 Up

Downstream signaling of activated FGFR3 Homo sapiens R-HSA-5654708 7 0.047 0.091 Up

MAP kinase activation in TLR cascade Homo sapiens R-HSA-450294 2 0.045 0.091 Down

Semaphorin interactions Homo sapiens R-HSA-373755 2 0.046 0.091 Down

Activation of G protein gated Potassium channels Homo sapiens R-HSA-1296041 1 0.046 0.091 Down

Homo sapiens R-HSA-997272 1 0.046 0.091 Down

G protein gated Potassium channels Homo sapiens R-HSA-1296059 1 0.046 0.091 Down

Phase 2 - plateau phase Homo sapiens R-HSA-5576893 1 0.045 0.091 Down

Sema4D in semaphorin signaling Homo sapiens R-HSA-400685 1 0.047 0.091 Down

EGFR downregulation Homo sapiens R-HSA-182971 1 0.047 0.091 Down

MAPK targets/ Nuclear events mediated by MAP kinases Homo sapiens R-HSA-450282 1 0.047 0.091 Down

Glutathione conjugation Homo sapiens R-HSA-156590 1 0.046 0.091 Down

Activated NOTCH1 Transmits Signal to the Nucleus Homo sapiens R-HSA-2122948 1 0.048 0.092 Down

Cargo concentration in the ER Homo sapiens R-HSA-5694530 1 0.048 0.092 Down

Transmission across Chemical Synapses Homo sapiens R-HSA-112315 5 0.049 0.093 Up

Activation of BH3-only proteins Homo sapiens R-HSA-114452 1 0.049 0.093 Down

Signaling by FGFR4 Homo sapiens R-HSA-5654743 7 0.050 0.094 Up

Response to elevated platelet cytosolic Ca2+ Homo sapiens R-HSA-76005 3 0.050 0.094 Up

Signalling by NGF Homo sapiens R-HSA-166520 9 0.052 0.097 Up

Signaling by FGFR3 Homo sapiens R-HSA-5654741 7 0.052 0.097 Up

Intra-Golgi and retrograde Golgi-to-ER traffic Homo sapiens R-HSA-6811442 4 0.052 0.097 Up

FCERI mediated NF-kB activation Homo sapiens R-HSA-2871837 2 0.052 0.097 Down

Downstream signaling of activated FGFR1 Homo sapiens R-HSA-5654687 7 0.053 0.097 Up

Homo sapiens R-HSA-4641262 1 0.053 0.097 Down

Signaling by NOTCH2 Homo sapiens R-HSA-1980145 1 0.053 0.097 Down

Gluconeogenesis Homo sapiens R-HSA-70263 1 0.053 0.097 Down

Costimulation by the CD28 family Homo sapiens R-HSA-388841 2 0.054 0.098 Down

HS-GAG biosynthesis Homo sapiens R-HSA-2022928 1 0.054 0.098 Down

Homo sapiens R-HSA-1971475 1 0.055 0.099 Down

Adherens junctions interactions Homo sapiens R-HSA-418990 1 0.055 0.099 Down

Signaling by FGFR1 Homo sapiens R-HSA-5654736 7 0.056 0.101 Up

DAP12 signaling Homo sapiens R-HSA-2424491 7 0.057 0.101 Up

Activated TLR4 signalling Homo sapiens R-HSA-166054 3 0.057 0.101 Up

HSF1-dependent transactivation Homo sapiens R-HSA-3371571 1 0.057 0.101 Down

Downstream signal transduction Homo sapiens R-HSA-186763 7 0.058 0.102 Up

Cytosolic sensors of pathogen-associated DNA Homo sapiens R-HSA-1834949 2 0.058 0.102 Down

Uptake and actions of bacterial toxins Homo sapiens R-HSA-5339562 1 0.058 0.102 Down

Biosynthesis of the N-glycan precursor ; Homo sapiens R-HSA-446193 2 0.060 0.105 Down

Fanconi Anemia Pathway Homo sapiens R-HSA-6783310 1 0.060 0.105 Down

Biological oxidations Homo sapiens R-HSA-211859 4 0.061 0.106 Up

MAPK family signaling cascades Homo sapiens R-HSA-5683057 6 0.062 0.107 Up

Signaling by FGFR2 Homo sapiens R-HSA-5654738 7 0.063 0.108 Up

Signaling by WNT in cancer Homo sapiens R-HSA-4791275 1 0.063 0.108 Down

DAP12 interactions Homo sapiens R-HSA-2172127 7 0.064 0.109 Up

CD28 co-stimulation Homo sapiens R-HSA-389356 1 0.064 0.109 Down

TRAF6 Mediated Induction of proinflammatory cytokines Homo sapiens R-HSA-168180 2 0.065 0.111 Down

NCAM1 interactions Homo sapiens R-HSA-419037 1 0.066 0.112 Down

Striated Muscle Contraction Homo sapiens R-HSA-390522 1 0.068 0.115 Down

Inwardly rectifying K+ channels Homo sapiens R-HSA-1296065 1 0.070 0.117 Down

Antigen activating B Cell Receptor;Homo sapiens R-HSA-983695 1 0.070 0.117 Down

Signaling by FGFR Homo sapiens R-HSA-190236 7 0.071 0.117 Up

Toll Like Receptor 4 (TLR4) Cascade Homo sapiens R-HSA-166016 3 0.071 0.117 Up

COPI-dependent Golgi-to-ER retrograde traffic Homo sapiens R-HSA-6811434 2 0.071 0.117 Down

RHO GTPases Activate WASPs and WAVEs Homo sapiens R-HSA-5663213 1 0.071 0.117 Down

Platelet Aggregation (Plug Formation) Homo sapiens R-HSA-76009 1 0.072 0.119 Down
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Innate Immune System Homo sapiens R-HSA-168249 13 0.078 0.128 Up

Homo sapiens R-HSA-983231 3 0.079 0.129 Up

Synthesis of PIPs at the plasma membrane Homo sapiens R-HSA-1660499 1 0.081 0.132 Down

Collagen degradation Homo sapiens R-HSA-1442490 1 0.081 0.132 Down

Intrinsic Pathway for Apoptosis Homo sapiens R-HSA-109606 1 0.083 0.134 Down

Meiotic recombination Homo sapiens R-HSA-912446 1 0.083 0.134 Down

Fcgamma receptor (FCGR) dependent phagocytosis Homo sapiens R-HSA-2029480 2 0.084 0.135 Down

Homo sapiens R-HSA-390471 1 0.084 0.135 Down

Homo sapiens R-HSA-6814122 1 0.085 0.136 Down

Cardiac conduction Homo sapiens R-HSA-5576891 3 0.086 0.137 Up

Transcriptional regulation of pluripotent stem cells Homo sapiens R-HSA-452723 1 0.087 0.138 Down

mRNA Splicing - Major Pathway Homo sapiens R-HSA-72163 3 0.088 0.139 Up

NGF signalling via TRKA from the plasma membrane Homo sapiens R-HSA-187037 7 0.089 0.140 Up

Non-integrin membrane-ECM interactions Homo sapiens R-HSA-3000171 1 0.090 0.141 Down

Immune System Homo sapiens R-HSA-168256 23 0.094 0.146 Up

Downstream TCR signaling Homo sapiens R-HSA-202424 2 0.094 0.146 Down

EPHB-mediated forward signaling Homo sapiens R-HSA-3928662 1 0.094 0.146 Down

Retinoid metabolism and transport Homo sapiens R-HSA-975634 1 0.094 0.146 Down

p75 NTR receptor-mediated signalling Homo sapiens R-HSA-193704 2 0.095 0.146 Up

Metabolism of nucleotides Homo sapiens R-HSA-15869 2 0.095 0.146 Up

GABA B receptor activation Homo sapiens R-HSA-977444 1 0.096 0.146 Down

Activation of GABAB receptors Homo sapiens R-HSA-991365 1 0.096 0.146 Down

Fatty Acyl-CoA Biosynthesis Homo sapiens R-HSA-75105 1 0.096 0.146 Down

Cell junction organization Homo sapiens R-HSA-446728 2 0.097 0.148 Down

mRNA Splicing Homo sapiens R-HSA-72172 3 0.099 0.150 Up

Inositol phosphate metabolism Homo sapiens R-HSA-1483249 1 0.101 0.152 Down

RHO GTPases activate PKNs Homo sapiens R-HSA-5625740 1 0.101 0.152 Down

Muscle contraction Homo sapiens R-HSA-397014 4 0.102 0.153 Up

Toll-Like Receptors Cascades Homo sapiens R-HSA-168898 3 0.105 0.157 Up

CLEC7A (Dectin-1) signaling Homo sapiens R-HSA-5607764 2 0.105 0.157 Up

Interferon gamma signaling Homo sapiens R-HSA-877300 2 0.106 0.157 Up

Transcriptional activation of mitochondrial biogenesis Homo sapiens R-HSA-2151201 1 0.106 0.157 Down

Binding and Uptake of Ligands by Scavenger Receptors Homo sapiens R-HSA-2173782 1 0.106 0.157 Down

Glucagon-like Peptide-1 (GLP1) regulates insulin secretion Homo sapiens R-HSA-381676 1 0.107 0.158 Down

Chaperonin-mediated protein folding Homo sapiens R-HSA-390466 2 0.108 0.159 Up

EPH-Ephrin signaling Homo sapiens R-HSA-2682334 2 0.109 0.160 Up

PLC beta mediated events Homo sapiens R-HSA-112043 1 0.110 0.160 Down

Diseases of metabolism Homo sapiens R-HSA-5668914 1 0.110 0.160 Down

G-protein mediated events Homo sapiens R-HSA-112040 1 0.112 0.163 Down

Phase 0 - rapid depolarisation Homo sapiens R-HSA-5576892 1 0.114 0.165 Down

mRNA Splicing - Minor Pathway Homo sapiens R-HSA-72165 1 0.115 0.166 Down

Transport to the Golgi and subsequent modification Homo sapiens R-HSA-948021 3 0.119 0.171 Up

Apoptosis Homo sapiens R-HSA-109581 3 0.120 0.171 Up

MyD88-independent TLR3/TLR4 cascade Homo sapiens R-HSA-166166 2 0.121 0.171 Up

Toll Like Receptor 3 (TLR3) Cascade Homo sapiens R-HSA-168164 2 0.121 0.171 Up

TRIF-mediated TLR3/TLR4 signaling Homo sapiens R-HSA-937061 2 0.121 0.171 Up

G alpha (z) signalling events Homo sapiens R-HSA-418597 1 0.120 0.171 Down

Programmed Cell Death Homo sapiens R-HSA-5357801 3 0.124 0.175 Up

Regulation of TP53 Activity Homo sapiens R-HSA-5633007 3 0.126 0.177 Up

Protein folding Homo sapiens R-HSA-391251 2 0.126 0.177 Up

Cytokine Signaling in Immune system Homo sapiens R-HSA-1280215 10 0.127 0.178 Up

TP53 Regulates Transcription of Cell Cycle Genes Homo sapiens R-HSA-6791312 1 0.128 0.179 Down

Golgi-to-ER retrograde transport Homo sapiens R-HSA-8856688 2 0.132 0.183 Up

GPVI-mediated activation cascade Homo sapiens R-HSA-114604 1 0.132 0.183 Down

G beta:gamma signalling through PI3Kgamma Homo sapiens R-HSA-392451 1 0.133 0.184 Down

mRNA 3’-end processing Homo sapiens R-HSA-72187 1 0.138 0.189 Down

Post-Elongation Processing of Intron-Containing pre-mRNA Homo sapiens R-HSA-112296 1 0.138 0.189 Down

Nuclear Receptor transcription pathway Homo sapiens R-HSA-383280 1 0.138 0.189 Down
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Heparan sulfate/heparin (HS-GAG) metabolism Homo sapiens R-HSA-1638091 1 0.142 0.194 Down

TCR signaling Homo sapiens R-HSA-202403 2 0.147 0.200 Up

Mitochondrial biogenesis Homo sapiens R-HSA-1592230 1 0.147 0.200 Down

Amyloid fiber formation Homo sapiens R-HSA-977225 1 0.149 0.202 Down

G-protein beta:gamma signalling Homo sapiens R-HSA-397795 1 0.150 0.203 Down

Golgi Associated Vesicle Biogenesis Homo sapiens R-HSA-432722 1 0.156 0.210 Down

C-type lectin receptors (CLRs) Homo sapiens R-HSA-5621481 2 0.158 0.212 Up

GABA receptor activation Homo sapiens R-HSA-977443 1 0.165 0.221 Down

Activation of NF-kappaB in B cells Homo sapiens R-HSA-1169091 1 0.166 0.222 Down

Extracellular matrix organization Homo sapiens R-HSA-1474244 5 0.167 0.223 Up

Arachidonic acid metabolism Homo sapiens R-HSA-2142753 1 0.169 0.225 Down

Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants Homo sapiens R-HSA-2894862 1 0.172 0.226 Down

Signaling by NOTCH1 in Cancer Homo sapiens R-HSA-2644603 1 0.172 0.226 Down

Signaling by NOTCH1 PEST Domain Mutants in Cancer Homo sapiens R-HSA-2644602 1 0.172 0.226 Down

Constitutive Signaling by NOTCH1 PEST Domain Mutants Homo sapiens R-HSA-2644606 1 0.172 0.226 Down

Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer Homo sapiens R-HSA-2894858 1 0.172 0.226 Down

Cell-cell junction organization Homo sapiens R-HSA-421270 1 0.173 0.226 Down

Gastrin-CREB signalling pathway via PKC and MAPK Homo sapiens R-HSA-881907 7 0.174 0.227 Up

Cleavage of Growing Transcript in the Termination Region Homo sapiens R-HSA-109688 1 0.179 0.232 Down

RNA Polymerase II Transcription Termination Homo sapiens R-HSA-73856 1 0.179 0.232 Down

Post-Elongation Processing of the Transcript Homo sapiens R-HSA-76044 1 0.179 0.232 Down

Triglyceride Biosynthesis Homo sapiens R-HSA-75109 1 0.188 0.243 Down

PI Metabolism Homo sapiens R-HSA-1483255 1 0.192 0.247 Down

Ca2+ pathway Homo sapiens R-HSA-4086398 1 0.194 0.249 Down

Antigen processing: Ubiquitination & Proteasome degradation Homo sapiens R-HSA-983168 4 0.198 0.253 Up

Rho GTPase cycle Homo sapiens R-HSA-194840 2 0.202 0.257 Up

COPII (Coat Protein 2) Mediated Vesicle Transport Homo sapiens R-HSA-204005 1 0.202 0.257 Down

Homo sapiens R-HSA-159236 1 0.205 0.260 Down

Processing of Capped Intron-Containing Pre-mRNA Homo sapiens R-HSA-72203 3 0.206 0.261 Up

Platelet activation, signaling and aggregation Homo sapiens R-HSA-76002 4 0.207 0.261 Up

Homo sapiens R-HSA-5617472 1 0.210 0.264 Down

Activation of HOX genes during differentiation Homo sapiens R-HSA-5619507 1 0.210 0.264 Down

Glycosaminoglycan metabolism Homo sapiens R-HSA-1630316 2 0.211 0.264 Up

Vesicle-mediated transport Homo sapiens R-HSA-5653656 7 0.221 0.276 Up

Cell-Cell communication Homo sapiens R-HSA-1500931 2 0.223 0.278 Up

trans-Golgi Network Vesicle Budding Homo sapiens R-HSA-199992 1 0.224 0.278 Down

Clathrin derived vesicle budding Homo sapiens R-HSA-421837 1 0.224 0.278 Down

Transport of Mature Transcript to Cytoplasm Homo sapiens R-HSA-72202 1 0.233 0.287 Down

Meiosis Homo sapiens R-HSA-1500620 1 0.233 0.287 Down

Adaptive Immune System Homo sapiens R-HSA-1280218 10 0.234 0.288 Up

Signaling by NOTCH1 Homo sapiens R-HSA-1980143 1 0.236 0.290 Down

RIG-I/MDA5 mediated induction of IFN-alpha/beta pathways Homo sapiens R-HSA-168928 1 0.238 0.291 Down

Metabolism of polyamines Homo sapiens R-HSA-351202 1 0.239 0.292 Down

Signaling by the B Cell Receptor (BCR) Homo sapiens R-HSA-983705 3 0.248 0.302 Up

Glucose metabolism Homo sapiens R-HSA-70326 1 0.250 0.304 Down

Mitochondrial translation termination Homo sapiens R-HSA-5419276 1 0.253 0.306 Down

Phase II conjugation Homo sapiens R-HSA-156580 1 0.253 0.306 Down

Membrane Trafficking Homo sapiens R-HSA-199991 6 0.254 0.306 Up

Transcriptional Regulation by TP53 Homo sapiens R-HSA-3700989 5 0.257 0.309 Up

Mitochondrial translation initiation Homo sapiens R-HSA-5368286 1 0.259 0.309 Down

Mitochondrial translation elongation Homo sapiens R-HSA-5389840 1 0.259 0.309 Down

Nonsense-Mediated Decay (NMD) Homo sapiens R-HSA-927802 1 0.260 0.309 Down

Nonsense Mediated Decay (NMD) enhanced by the EJC; Homo sapiens R-HSA-975957 1 0.260 0.309 Down

PI3K Cascade Homo sapiens R-HSA-109704 1 0.261 0.310 Down

Ion channel transport Homo sapiens R-HSA-983712 3 0.264 0.312 Up

Metabolism of vitamins and cofactors Homo sapiens R-HSA-196854 2 0.264 0.312 Up

Regulation of insulin secretion Homo sapiens R-HSA-422356 1 0.267 0.315 Down

Platelet homeostasis Homo sapiens R-HSA-418346 1 0.281 0.330 Down
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Class I MHC mediated antigen processing & presentation Homo sapiens R-HSA-983169 4 0.282 0.331 Up

Signaling by Rho GTPases Homo sapiens R-HSA-194315 5 0.283 0.331 Up

Fatty acid, triacylglycerol, and ketone body metabolism Homo sapiens R-HSA-535734 3 0.285 0.331 Up

PI3K/AKT Signaling in Cancer Homo sapiens R-HSA-2219528 1 0.285 0.331 Down

Mitochondrial translation Homo sapiens R-HSA-5368287 1 0.284 0.331 Down

Peptide hormone metabolism Homo sapiens R-HSA-2980736 1 0.292 0.338 Down

Opioid Signalling Homo sapiens R-HSA-111885 1 0.293 0.339 Down

Diseases of glycosylation Homo sapiens R-HSA-3781865 1 0.298 0.343 Down

RHO GTPase Effectors Homo sapiens R-HSA-195258 3 0.327 0.375 Up

Cellular response to heat stress Homo sapiens R-HSA-3371556 1 0.327 0.375 Down

Metabolism of water-soluble vitamins and cofactors Homo sapiens R-HSA-196849 1 0.328 0.375 Down

Stimuli-sensing channels Homo sapiens R-HSA-2672351 1 0.330 0.377 Down

Visual phototransduction Homo sapiens R-HSA-2187338 1 0.332 0.378 Down

MHC class II antigen presentation Homo sapiens R-HSA-2132295 1 0.339 0.385 Down

Signal Transduction Homo sapiens R-HSA-162582 30 0.344 0.390 Up

Asparagine N-linked glycosylation Homo sapiens R-HSA-446203 3 0.348 0.393 Up

Homo sapiens R-HSA-198933 1 0.363 0.409 Down

Homo sapiens R-HSA-425366 1 0.372 0.419 Down

Downstream signaling events of B Cell Receptor (BCR) Homo sapiens R-HSA-1168372 2 0.375 0.421 Down

Organelle biogenesis and maintenance Homo sapiens R-HSA-1852241 4 0.387 0.431 Up

Interferon Signaling Homo sapiens R-HSA-913531 2 0.386 0.431 Down

TCF dependent signaling in response to WNT Homo sapiens R-HSA-201681 2 0.387 0.431 Down

Signaling by NOTCH Homo sapiens R-HSA-157118 1 0.401 0.446 Down

Assembly of the primary cilium Homo sapiens R-HSA-5617833 2 0.404 0.448 Down

Integration of energy metabolism Homo sapiens R-HSA-163685 1 0.405 0.448 Down

PI-3K cascade:FGFR1 Homo sapiens R-HSA-5654689 1 0.424 0.463 Down

PI-3K cascade:FGFR3 Homo sapiens R-HSA-5654710 1 0.424 0.463 Down

PI3K events in ERBB4 signaling Homo sapiens R-HSA-1250342 1 0.424 0.463 Down

PIP3 activates AKT signaling Homo sapiens R-HSA-1257604 1 0.424 0.463 Down

PI-3K cascade:FGFR4 Homo sapiens R-HSA-5654720 1 0.424 0.463 Down

PI-3K cascade:FGFR2 Homo sapiens R-HSA-5654695 1 0.424 0.463 Down

PPARA activates gene expression Homo sapiens R-HSA-1989781 1 0.427 0.465 Down

Metabolism of lipids and lipoproteins Homo sapiens R-HSA-556833 8 0.430 0.467 Up

GAB1 signalosome Homo sapiens R-HSA-180292 1 0.433 0.469 Down

Metabolism of carbohydrates Homo sapiens R-HSA-71387 3 0.437 0.472 Up

Diseases of signal transduction Homo sapiens R-HSA-5663202 3 0.438 0.472 Up

PI3K/AKT activation Homo sapiens R-HSA-198203 1 0.438 0.472 Down

Regulation of lipid metabolism by PPARalpha; Homo sapiens R-HSA-400206 1 0.441 0.474 Down

Signaling by Wnt Homo sapiens R-HSA-195721 3 0.444 0.476 Up

ER to Golgi Anterograde Transport Homo sapiens R-HSA-199977 1 0.451 0.482 Down

Mitotic G1-G1/S phases Homo sapiens R-HSA-453279 1 0.457 0.487 Down

Role of LAT2/NTAL/LAB on calcium mobilization Homo sapiens R-HSA-2730905 1 0.456 0.487 Down

RNA Polymerase II Transcription Homo sapiens R-HSA-73857 1 0.461 0.490 Down

Generic Transcription Pathway Homo sapiens R-HSA-212436 9 0.510 0.541 Up

Metabolism of amino acids and derivatives Homo sapiens R-HSA-71291 3 0.512 0.542 Up

G alpha (i) signalling events Homo sapiens R-HSA-418594 2 0.519 0.548 Down

Major pathway of rRNA processing in the nucleolus Homo sapiens R-HSA-6791226 1 0.523 0.551 Down

Beta-catenin independent WNT signaling Homo sapiens R-HSA-3858494 1 0.527 0.554 Down

G alpha (s) signalling events Homo sapiens R-HSA-418555 1 0.546 0.572 Down

rRNA processing Homo sapiens R-HSA-72312 1 0.570 0.596 Down

Phospholipid metabolism Homo sapiens R-HSA-1483257 1 0.583 0.609 Down

Disease Homo sapiens R-HSA-1643685 7 0.611 0.635 Down

G2/M Transition Homo sapiens R-HSA-69275 1 0.610 0.635 Down

Mitotic G2-G2/M phases Homo sapiens R-HSA-453274 1 0.616 0.639 Down

Peptide ligand-binding receptors Homo sapiens R-HSA-375276 1 0.670 0.693 Down

G alpha (q) signalling events Homo sapiens R-HSA-416476 1 0.681 0.703 Down

Post-translational protein modification Homo sapiens R-HSA-597592 4 0.749 0.770 Down

Class A/1 (Rhodopsin-like receptors) Homo sapiens R-HSA-373076 2 0.748 0.770 Down
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Signaling by GPCR Homo sapiens R-HSA-372790 11 0.806 0.825 Down

Metabolism of proteins Homo sapiens R-HSA-392499 9 0.806 0.825 Down

Metabolism Homo sapiens R-HSA-1430728 18 0.821 0.839 Down

SLC-mediated transmembrane transport Homo sapiens R-HSA-425407 1 0.846 0.862 Down

DNA Repair Homo sapiens R-HSA-73894 1 0.857 0.872 Down

Transmembrane transport of small molecules Homo sapiens R-HSA-382551 4 0.889 0.902 Down

Infectious disease Homo sapiens R-HSA-5663205 1 0.904 0.916 Down

GPCR ligand binding Homo sapiens R-HSA-500792 2 0.908 0.918 Down

Gene Expression Homo sapiens R-HSA-74160 13 0.912 0.920 Down

Cellular responses to stress Homo sapiens R-HSA-2262752 1 0.914 0.920 Down

Cell Cycle Homo sapiens R-HSA-1640170 2 0.959 0.963 Down

Cell Cycle, Mitotic Homo sapiens R-HSA-69278 1 0.962 0.964 Down

GPCR downstream signaling Homo sapiens R-HSA-388396 4 0.987 0.987 Down

Table C.4: Signalling pathways along with the adjusted p-values and the number of
overlapping genes obtained after pathway enrichment analysis applied to the full scale
analysis results using the Reactome database.

Gene Set Name # Genes in Gene Set (K) Description # Genes in Overlap (k) k/K p-value FDR q-value

P53 DN.V1 DN 193
Genes down-regulated in NCI-60 panel of
cell lines with mutated TP53 [Gene ID=7157].

13 0.067 1.13E-17 2.14E-15

IL21 UP.V1 UP 185
Genes up-regulated in Sez-4 cells (T lymphocyte)
that were first starved of IL2 [Gene ID=3558] and
then stimulated with IL21 [Gene ID=59067].

6 0.032 7.52E-07 7.1E-05

E2F1 UP.V1 DN 186
Genes down-regulated in mouse fibroblasts over-expressing
E2F1 [Gene ID=1869] gene.

4 0.022 0.000 0.018

Table C.5: Overlaps have been detected using gene set enrichment analysis performed
using a hypergeometric distribution. The false discovery rate analog of the hypergeometric
p-value is displayed after correction for multiple hypothesis testing according to Benjamini
and Hochberg.

Gene Name Sign
Spearman

Correlation
Area SD

Mean fold

change of BRAF

mutation with

respect to

wild type

Protein-protein

interaction

network

distance

to BRAF

MYO5A + 0.955 0.531 0.261 1.358 4

UCN2 - -0.999 0.517 0.184 1.016 NI

TSPYL5 + 0.886 0.513 0.146 0.838 NI

S100A1 + 0.812 0.488 0.189 1.263 NI

GPNMB + 1 0.424 0.196 1.169 3

ACP5 - -0.998 0.359 0.149 1.039 NI

FCGR2A - -0.588 0.341 0.158 1.250 3

GAS7 - -0.513 0.285 0.096 1.067 NI

CITED1 0 -0.603 0.28 0.348 1.630 3

SPRY4 - -0.611 0.274 0.127 1.228 2

HPS4 0 -0.801 0.245 0.196 1.410 NI

C3orf70 - -0.957 0.239 0.124 1.145 NI

CD44 + 0.868 0.239 0.164 1.413 3

ACOT7 0 0.999 0.239 0.123 1.184 NI

RAP2B 0 0.927 0.236 0.179 1.254 NI

KCNJ13 0 -0.604 0.205 0.094 1.101 3

ALX1 - -1 0.202 0.099 1.104 NI

PLAT - -0.405 0.201 0.121 1.312 4

RETSAT 0 0.689 0.201 0.142 1.127 NI

GSN + 0.588 0.196 0.109 1.079 4

CDH19 0 0.943 0.185 0.102 0.933 NI

ATP1B3 - -1 0.178 0.115 1.063 NI
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BAZ1A + -0.29 0.173 0.105 1.109 4

FAM78B 0 -0.732 0.173 0.163 1.231 NI

SLC16A4 - -0.298 0.166 0.117 1.234 NI

DSTYK + 0.937 0.166 0.136 0.943 NI

ST6GALNAC2 0 -0.815 0.164 0.102 1.264 NI

MFSD12 0 -0.788 0.16 0.148 1.130 NI

MTARC1 - -0.846 0.158 0.098 1.289 NI

GJA3 0 -0.85 0.157 0.075 1.071 NI

CYP27A1 - -0.743 0.156 0.09 1.373 NI

ZNF292 + -0.474 0.154 0.118 1.194 NI

CRYL1 0 0.84 0.152 0.13 1.330 NI

EGLN1 - -0.442 0.15 0.119 1.053 3

TRPV2 0 0.769 0.147 0.118 1.074 4

MITF + 1 0.146 0.106 0.743 2

TBC1D7 0 -0.603 0.146 0.118 1.304 3

SLC6A8 0 -0.263 0.144 0.111 0.941 NI

PTPRZ1 - -0.808 0.139 0.138 1.074 4

PLOD3 0 0.696 0.132 0.135 1.166 4

IGSF11 0 -0.723 0.132 0.094 1.266 NI

ANKRD7 + 0.92 0.131 0.12 1.241 NI

KIAA1549L 0 -0.986 0.128 0.109 1.231 NI

LINC00518 + 0.754 0.127 0.13 1.093 NI

RTN3P1 0 0.824 0.127 0.087 1.176 NI

PRSS33 0 0.507 0.118 0.275 1.635 NI

RAB38 0 0.039 0.113 0.118 1.377 NI

TRAK2 0 -0.42 0.109 0.123 1.296 NI

KANK1 0 -0.493 0.107 0.113 1.345 3

GYPC + -0.3 0.105 0.092 1.072 4

HCCAT5 0 0.654 0.103 0.131 1.180 NI

TYR - 0.467 0.1 0.098 1.110 4

BFSP1 - -0.804 0.1 0.113 1.406 NI

TYRP1 0 0.457 0.1 0.097 1.326 3

STEAP1B 0 -0.301 0.091 0.116 1.202 NI

IGSF8 0 -0.668 0.09 0.129 1.313 5

ASB9 0 0.513 0.086 0.115 1.142 NI

SPRED1 0 -0.556 0.067 0.116 1.239 4

TBC1D16 0 0.757 0.065 0.097 1.117 NI

ITGA9 0 0.785 0.056 0.111 1.154 3

KREMEN1 0 -0.555 0.053 0.086 1.123 4

LAMA4 - 0.344 0.038 0.083 1.151 4

MLANA 0 0.534 0.037 0.097 1.147 NI

ZCCHC24 0 -0.858 0.035 0.097 1.233 NI

KLF9 0 0.932 0.011 0.074 1.064 NI

Table C.7: Gene rankings of all selected genes based on the magnitude of the genetic effect
on drug response. A positive (+) sign translates to a positive effect on cells survival after
drug administration, a negative (-) sign translates to a negative effect on cells survival and
a mixed (0) effect translates to a varying effect on cells survival which depends on drug
dosage. Spearman’s correlation is calculated between drug dosage and gene estimated
coefficient function values as an indicator of the magnitude change of the gene effect over
the increasing dosage. Area corresponds to the area under the estimated coefficient curve
and the SD corresponds to the standard deviation of the area based on bootstrapping.
Mean fold change is calculated between the selected gene expression values of the cell
lines carrying BRAF mutations with respect to wild type. Protein-protein interaction
network distance is computed based on the shortest interaction path between the BRAF
gene and each of the selected genes. Here, NI denotes absence of any interaction.
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Pathway Number of genes P-value Adjusted p-value

Senescence and Autophagy in Cancer WP615 3 0.000 0.000

Vitamin D Metabolism WP1531 1 0.000 0.000

Dopamine metabolism WP2436 1 0.000 0.000

NOTCH1 regulation of human endothelial cell calcification WP3413 1 0.000 0.000

Hippo-Merlin Signaling Dysregulation WP4541 3 0.001 0.007

RANKL/RANK (Receptor activator of NFKB (ligand)) Signaling Pathway WP2018 2 0.001 0.007

miRNA targets in ECM and membrane receptors WP2911 1 0.001 0.007

Blood Clotting Cascade WP272 1 0.001 0.007

Hereditary leiomyomatosis and renal cell carcinoma pathway WP4206 1 0.002 0.010

Globo Sphingolipid Metabolism WP1424 1 0.002 0.010

Osteoclast Signaling WP12 1 0.003 0.014

Type 2 papillary renal cell carcinoma WP4241 1 0.007 0.028

Photodynamic therapy-induced HIF-1 survival signaling WP3614 1 0.007 0.028

Spinal Cord Injury WP2431 2 0.008 0.030

Fibrin Complement Receptor 3 Signaling Pathway WP4136 1 0.011 0.030

IL-5 Signaling Pathway WP127 1 0.010 0.030

Vitamin A and Carotenoid Metabolism WP716 1 0.012 0.030

Prostaglandin Synthesis and Regulation WP98 1 0.011 0.030

Regulation of Microtubule Cytoskeleton WP2038 1 0.012 0.030

Exercise-induced Circadian Regulation WP410 1 0.011 0.030

Prader-Willi and Angelman Syndrome WP3998 1 0.011 0.030

Calcium Regulation in the Cardiac Cell WP536 2 0.014 0.030

Vitamin B12 Metabolism WP1533 1 0.014 0.030

Oxidation by Cytochrome P450 WP43 1 0.014 0.030

Hepatitis C and Hepatocellular Carcinoma WP3646 1 0.018 0.037

Endochondral Ossification WP474 1 0.019 0.038

Kit receptor signaling pathway WP304 1 0.020 0.039

Complement and Coagulation Cascades WP558 1 0.021 0.039

Folate Metabolism WP176 1 0.023 0.041

Selenium Micronutrient Network WP15 1 0.025 0.043

ncRNAs involved in Wnt signaling in hepatocellular carcinoma WP4336 1 0.027 0.045

PPAR signaling pathway WP3942 1 0.029 0.047

Focal Adhesion WP306 2 0.036 0.055

Arrhythmogenic Right Ventricular Cardiomyopathy WP2118 1 0.036 0.055

LncRNA involvement in canonical Wnt signaling and colorectal cancer WP4258 1 0.037 0.055

Pathways Regulating Hippo Signaling WP4540 1 0.039 0.056

Wnt Signaling Pathway and Pluripotency WP399 1 0.040 0.056

Neural Crest Differentiation WP2064 1 0.045 0.062

Integrin-mediated Cell Adhesion WP185 1 0.050 0.065

Wnt Signaling WP428 1 0.050 0.065

NRF2 pathway WP2884 1 0.074 0.094

Ebola Virus Pathway on Host WP4217 1 0.077 0.094

TGF-beta Signaling Pathway WP366 1 0.078 0.094

Endoderm Differentiation WP2853 1 0.080 0.095

Focal Adhesion-PI3K-Akt-mTOR-signaling pathway WP3932 2 0.086 0.099

Ectoderm Differentiation WP2858 1 0.089 0.101

PI3K-Akt Signaling Pathway WP4172 2 0.112 0.119

Regulation of Actin Cytoskeleton WP51 1 0.112 0.119

Metapathway biotransformation Phase I and II WP702 1 0.112 0.119

Circadian rhythm related genes WP3594 1 0.153 0.159

VEGFA-VEGFR2 Signaling Pathway WP3888 1 0.208 0.212

Nuclear Receptors Meta-Pathway WP2882 1 0.303 0.303

Table C.6: Signalling pathways along with the adjusted p-values and the number of
overlapping genes obtained after pathway enrichment analysis applied to the resistant
cell line analysis results.
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