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Abstract

Divide-and-conquer strategies for Monte Carlo algorithms are an increasingly popular

approach to making Bayesian inference scalable to large data sets. In its simplest form, the

data are partitioned across multiple computing cores and a separate Markov chain Monte

Carlo algorithm on each core targets the associated partial posterior distribution, which we

refer to as a sub-posterior, that is the posterior given only the data from the segment of the

partition associated with that core. Divide-and-conquer techniques reduce computational,

memory and disk bottle necks, but make it difficult to recombine the sub-posterior samples.

We propose SwISS: Sub-posteriors with Inflation, Scaling and Shifting; a new approach for

recombining the sub-posterior samples which is simple to apply, scales to high-dimensional

parameter spaces and accurately approximates the original posterior distribution through

affine transformations of the sub-posterior samples. We prove that our transformation is

asymptotically optimal across a natural set of affine transformations and illustrate the effi-

cacy of SwISS against competing algorithms on synthetic and real-world data sets.
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1 INTRODUCTION

Markov chain Monte Carlo (MCMC) algorithms are widely used within Bayesian modelling to sample from the often intractable posterior distri-
bution. These techniques are widely applicable and only require point-wise evaluation of the posterior density. One of the potential drawbacks of
MCMC algorithms is their lack of scalability. The computational cost of MCMC is typically linear in the amount of data and can be prohibitive for
large data sets, both in computational cost and storage.

In settings with large data sets, or where the model is computationally expensive, evaluating the posterior at every iteration of the MCMC
algorithm may be infeasible. Strategies to overcome this include data subsampling (1; 2; 10; 18), where only a subset of the data is used at each
MCMC iteration, or delayed acceptance (12; 15), where theMetropolis–Hastings accept-reject probability is replacedwith a cheaper approximation
to the true posterior and the full data posterior is evaluated less frequently.

In situations where it is possible to easily parallelise computation in a MapReduce framework, or through cloud-computing infrastructure such
as Amazon Web Services, then statistical modelling becomes easily scalable to large data sets. However, applying this approach in practice using
algorithms such as MCMC, which are designed to work in serial rather than parallel, is challenging. In this paper, we consider the divide-and-
conquer strategy to circumvent the computational bottleneck of MCMC, where the data are partitioned into batches, and each batch is stored on
a separate computer core. MCMC is then applied independently on each data batch and posterior samples from each computer are combined to
form an accurate approximation of the full posterior, i.e., the posterior that would have been obtained using the full data set.

0Abbreviations:MCMC, Markov chain Monte Carlo; SwISS, sub-posteriors with inflation, scaling and shifting
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The main challenge with divide-and-conquer approaches for MCMC lies in the merge step. A range of approaches has been considered in the
literature such as: the use of weighted averages of the batch samples (14); kernel density estimation (11); Gaussian process approximations (9);
finding theWasserstein barycenter of differentmeasures (16), the geometricmedian of batch samples (8), as well as using a post-MCMC importance
sample (5), to name a few.

One of the most popular algorithms in the literature is the consensus Monte Carlo algorithm (14), which approximates the full posterior using a
weighted average of sub-posterior samples. The consensus approach is computationally cheap to apply, does not require tuning and scales well to
high-dimensional parameter spaces. It is also analytically exact in the case of Gaussian sub-posteriors, but can produce poor approximations when
the sub-posteriors are non-Gaussian (see Section 4.4).

In this paper we propose SwISS, an algorithm that is as fast as the consensus algorithm, is exact in the Gaussian case, does not require tuning, and
which scales well to high-dimensional posterior distributions. However, in the case of non-Gaussian sub-posteriors, it can produce more accurate
posterior approximations than the consensus algorithm. Unlike the consensus approach, SwISS does not merge samples but instead applies a
transformation to the posterior samples that are generated from a stochastic approximation of the full posterior. As in (5), we refer to this stochastic
approximation as the inflated sub-posterior, which is the posterior density, conditional on a subset of the data, raised to a positive power. Inflating
the sub-posterior in this manner has the effect of approximately preserving the shape of the posterior density conditional on the full data. Affine
transformations (shift and re-scale) are applied to each batch of sub-posterior samples to form an approximate sample from the full posterior. This
is a generalisation of the algorithm of (19) which simply shifts each sub-posterior, with no further correction and hence performs poorly when the
sub-posterior variances differ substantially. There are many different affine transformations that produce a sample from the true posterior when
the sub-posteriors are Gaussian; we provide theoretical support for our particular choice, showing that, in a natural sense, it is optimal amongst
the set of transformations that are exact in the Gaussian case.

The paper is organised as follows: Section 2 provides an introduction to divide-and-conquer MCMC, covering the notation for posterior and
sub-posterior densities. In Section 3 we introduce our proposed algorithm, SwISS, and provide supporting theoretical results and pseudo-code for
implementation. Section 4 covers the numerical performance of SwISS and is compared against other popular divide-and-conquer algorithms from
the literature. Finally, Section 5 gives a summary of the contributions from the paper.

2 PRELIMINARIES

Let f(y|θ) be the likelihood for a statistical model, parameterised by θ ∈ Rd, for a data set y = {y1, y2, . . . , yn} of length n. Let π0(θ) denote the
prior density for the parameter vector θ, then our posterior density is, up to a constant of proportionality,

π(θ|y) ∝ π0(θ)f(y|θ). (1)
We assume that y can be partitioned into B batches, y1, . . . ,yB, such that the likelihood for the full data is the product of the likelihoods for

the individual batches, i.e., f(y|θ) = ∏B
b=1 fb(yb|θ). This is the case, for example, when the individual data points are independent. The posterior

density for θ given y is, up to a constant of proportionality,
π(θ|y) ∝ π0(θ)

B∏
b=1

fb(yb|θ). (2)
In the literature, there are generally two approaches to applying MCMC on batches of data. In the first approach, MCMC is applied to target a
sub-posterior density for each batch b, of the form

πb(θ|yb) ∝ π0(θ)
1
B f(yb|θ), (3)

where b = 1, . . . ,B, such that∏B
b=1 πb(θ|yb) = π(θ|y) as defined in (2).

If we assume that there are J sub-posterior samples from each of the B batches, which we define as (θ
(j)
b ; j ∈ {1, . . . , J}, b ∈ {1, . . . ,B}),

then the consensus Monte Carlo algorithm (14) gives a simple strategy for approximating the full posterior (2) through a weighted average of the
sub-posterior samples,

θ(j) =

(
B∑

b=1

wb

)−1 B∑
b=1

wbθ
(j)
b ,

where the weights are typically chosen to be wb = Var [θ|yb]
−1. If each πb(θ|yb) is Gaussian, then the consensus algorithm produces exact

samples from the full posterior.
A second approach applies MCMC to each inflated sub-posterior, where the target density for batch b = 1, . . . ,B is

πB
b (θ|yb) ∝ π0(θ)f(yb|θ)B . (4)

This is a stochastic (across partitions of the data) approximation to the full posterior π(θ|y) ≈ πB
b (θ|yb), and hence individual samples from it, in

a sense, are already on the same scale as samples from the full posterior.
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FIGURE 1 A visual representation of the SwISS algorithm applied to a two-dimensional Gaussian with three sub-posteriors (blue) approximating
the full posterior (black). First, the batch samples are shifted by their respective means (θb−µb), then scaled by the matrixAb before finally being
shifted by the global mean µ.

If we assume that the data are partitioned equally across batches, then in the limit, as the amount of data in each batch n∗ = n/B

approaches infinity, the likelihood will typically dominate the prior, so that by the Bernstein von Mises theorem, the bth inflated sub-posterior is
θb ∼ N (θ̂b, I

−1
O,b(θ̂b)), where approximately, θ̂b ∼ N (θ0,BI

−1
E (θ0)) and where IE and IO,b are the full-data expected information and the observed

information from the inflated likelihood for batch b, respectively, and θ0 is the true parameter value. Hence, the difference between the expecta-
tions of the inflated sub-posteriors are O(n−1/2

∗ ) and, since limn→∞ ||I−1
E IO,b|| = 1 +O(n−1/2

∗ ), the ratio of the variances of the sub-posteriors
is 1+O(n−1/2

∗ ). However, in practice, both the location and scale of the inflated sub-posteriors can vary considerably if the partitioned data sets
are imbalanced (see examples in Section 4). Our proposed algorithm, SwISS, provides a correction for the discrepancy in the variance and location
of the sub-posterior approximations.

3 SWISS ALGORITHM

Suppose that we have applied independent Monte Carlo algorithms, such as MCMC, in parallel to sample from the inflated sub-posteriors (4), and
denote the jth (of J) sample from the bth (of B) batch by θ

(j)
b . The SwISS algorithm transforms each sample from the inflated sub-posterior into a

sample from an approximation to the full posterior (2) using a batch-specific affine transformation. In the case of Gaussian sub-posteriors, as we
show below, these affine transformations produce a set of samples from the correct Gaussian full posterior, and SwISS is exact in this setting. In
general, sub-posteriors are non-Gaussian; however under standard regularity conditions and the Bernstein-von Mises theorem (7), as n∗ = n/B

approaches infinity the sub-posteriors will be approximately Gaussian and SwISS can be expected to produce samples from an approximation to
the full posterior.

Firstly, let us suppose that each inflated sub-posterior is Gaussianwith expectationµb and invertible variancematrixVb, so that the full posterior
is θ|y ∼ Nd(µ,V) where,

V =

(
1

B

B∑
b=1

V−1
b

)−1

and µ = V
1

B

B∑
b=1

V−1
b µb (5)

are the variance and mean of the full posterior.
Since it is invertible,Vb is a positive-definite matrix and therefore it has a d× d, invertible square root,Mb; i.e.Vb = MbM

⊤
b . Similarly, the full

posterior varianceV has a square root,M, so thatV = MM⊤. Let samples from the bth inflated sub-posterior, θ(1:J)
b , be (marginally) realisations

from the random variable θb ∼ πB
b and define the transformed random variable:

ϑb := Ab (θb − µb) + µ. (6)
whereAb is any matrix satisfyingAbVbA

⊤
b = V; for example,Ab = MM−1

b .
Clearly, E [ϑb] = µ and Var [ϑb] = V. Furthermore, an affine transformation of a Gaussian random variable is Gaussian, and hence ϑ ∼

Nd(µ,V). Applying the same transformation to individual samples from the bth batch, therefore provides a sample from the full posterior. As
discussed above, even when the sub-posteriors are not Gaussian, we can still apply the same scaling and shifting to any sub-posterior samples and
produce samples from an approximation to the full posterior.
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3.1 Choice of Matrix Square Roots

Matrix square roots are not unique; e.g. for a diagonal matrix, each element of the diagonal square root could be negated; methods for finding
a square root of a positive-definite matrix include the Cholesky decomposition, or the simple asymmetric square root arising from the spectral
decomposition. Moreover, for square rootsM andMb,Ab need not be simplyMM−1

b , and indeed, this is not always the most sensible choice.
For now, letM be any d× d square root ofV and let

Ṽb := M−1Vb

(
M−1

)⊤ and Ab = MM̃−1
b M−1,

where M̃b is any d× d square root of Ṽb. Then, Var [M−1θb
]
= Ṽb, so Var [M̃−1

b M−1θb

]
= I and hence Var [Abθb] = MM⊤ = V.

IfVb = V for all b = 1, . . . ,B, then Ṽb = I, and provided M̃b is chosen to be I,Ab becomes the identity transformation. To be clear, though,
if some diagonal elements of M̃b had been chosen to be −1 rather than 1 thenAb would not be the identity and, unless the initial distribution of
points θ(1:J)

b was elliptically symmetric, the transformation in (6) would not then lead to a set of points that represented the true posterior at all.
Applying the same logic as above, the transformation M̃b should be the square root of Ṽb that moves the individual points θ

(j)
b as little as

possible. With this in mind, we define a natural measure of the distance moved by J points, θ(1:J), to which a linear transformationA is applied, as:

D
(
A;θ(1:J)

)
:=

1

J

J∑
j=1

∥∥∥θ(j) −Aθ(j)
∥∥∥2 , (7)

where ∥.∥2 denotes Euclidean distance. We wish to find the linear transformation M̃b that minimisesD(M̃−1
b ;θ(1:J)) subject to the constraint that

M̃bM̃
⊤
b = Ṽb. In Section 3.2 we show that, provided the points have expectation zero, as J ↑ ∞, the best choice of M̃b is the positive-definite,

symmetric square root of Ṽb; this is the square root used by SwISS. The choice of square root, M, of V is less important, since within the linear
transformation Ab, the initial transformation by M−1 is later inverted; however, with the general motivation of preventing excess movement,
SwISS setsM to be the positive-definite, symmetric square root ofV. Finally, the averaged re-centring algorithm of (19) can be viewed as a special
case of SwISS whereAb = I.

3.2 The Positive-Definite, Symmetric Square Root and its Optimality

We first define the positive-definite symmetric square root of a positive-definite matrix and detail the sense in which it is optimal with respect to
the distance measure D (7).

LetV be a positive-definite matrix and let its spectral decomposition be
V = UΛΛU⊤. (8)

where Λ is a diagonal matrix with entries equal to the positive square roots of the eigenvalues of V, and U is a unitary matrix (i.e. the columns of
U are the orthonormal right eigenvectors ofV, soUU⊤ = I = U⊤U) and so

V1/2 := M = UΛU⊤. (9)
The natural interpretation ofM is as a simple scaling transformation with different scalings applied along each of the eigenvectors ofV.

As explained previously, we require a matrixAb such that the transformation (6) leads to a sample with a variance ofV; however, when inflated
sub-posteriors are non-Gaussian, we need a transformation that preserves the shape and orientation of the inflated sub-posterior as much as
possible. Theorem 1 shows that for large J,M−1 is not likely to cause more than the minimum discrepancy, given the constraints.
Theorem 1. Let θ(j) ∈ Rd (j = 1, . . . , J) be a set of independent and identically distributed realisations of a random variable θ with E [θ] = 0 and
Var [θ] = V. LetV have a spectral decomposition as in (8) and letM = UΛU⊤. LetA be any other d× d matrix such that Var [Aθ] = Id. Then

P
(

lim
J→∞

[
D
(
M−1;θ(1:J)

)
−D

(
A;θ(1:J)

)]
> 0

)
= 0,

where D(·; ·) is as defined in (7).
Theorem 1 relies upon the following two results.

Proposition 1. Let Zi ∈ Rd (i = 1, . . . , n) be an independent and identically distributed sequence of random variables with E [Z] = 0 and
Var [Z] = Id, and let B be any d× d matrix. Then, as n→∞, D(B;Z1:n)→ d+ trace

(
BBT

)
− 2trace (B), almost surely.
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Proof.

D(B;Z1:n) =
1

n

n∑
i=1

||(B− I)Z||2 → E
[
||(B− I)Z||2

]
= E

 d∑
i,j,k=1

Zi(B− I)Ti,j(B− I)j,kZk


=

d∑
i,j=1

(B− I)Ti,j(B− I)j,i = trace
(
(B− I)T(B− I)

)
= trace

(
BTB

)
+ trace (I)− 2trace (B) ,

where the convergence is almost sure. But trace
(
BTB

)
= trace

(
BBT

), giving the required result.
Lemma 1. Let V,Λ, and U be as defined in Theorem 1, and let and λi = Λi,i (i = 1, . . . , d). Then

sup
M :MMT=V

trace (M) =

d∑
i=1

λi.

The supremum is achieved whenM = UΛUT.
Proof. The rows of U form an orthonormal basis e1, . . . , ed, with eTi Vei = λ2

i (i = 1, . . . , d). For any matrixM withMMT = V,
λ2
i = eTi MMT ei = ||MT ei||2 = ||fi||2,

where fi = MTei. Next, recall that for any unitary matrix, U, and square matrix M, trace
(
UMUT

)
= trace (M). Thus, using the Cauchy-Schwarz

inequality, and since UT is also unitary,
trace (M) = trace

(
UTMU

)
=

d∑
i,j,k=1

(ei)j(ei)kMj,k

=

d∑
i=1

eTi Mei =
d∑

i=1

fTi ei ≤
d∑

i=1

||fi|| ||ei|| =
d∑

i=1

λi.

The final part of the Lemma follows as trace
(
UΛUT

)
= trace (Λ) =

∑d
i=1 λi.

To prove Theorem 1, let Zi = AXi, so E [Zi] = 0 and Var [Zi] = Id, and let B = A−1 so BBT = V. Since D(A;X1:n) = D(B;Z1:n), by Proposition
1, and then from Lemma 1, we have almost surely,

D(A;X1:n)− D(M−1;X1:n) = D(B;Z1:n)− D(M;Z1:n)

→ 2trace (M)− 2trace (B) ≥ 0.

The affine transformation (6) of SwISS is easy to apply to each batch of inflated sub-posterior samples, making the algorithm as fast and as simple
to use as the consensus algorithm, with the guarantee of exactness in the Gaussian case. A visual representation of SwISS is given in Figure 1 and
pseudo-code for implementing the algorithm is given in Algorithm 1.

4 EXPERIMENTS

In this section we test the accuracy of the SwISS algorithm to merge batch posterior samples drawn from a variety of posterior distributions. We
consider various complex posterior geometries to highlight the difference between affine transformations of posterior samples (i.e. SwISS) and
averaging posterior samples (i.e. ConsensusMonte Carlo). We also investigate the efficiency of alternative merging algorithms on popular statistical
models with simulated and real data. We compare the SwISS algorithm against the following popular competing algorithms from the literature:

• Consensus Monte Carlo (Cons) algorithm (14), as described in Section 2.
• Semiparametric density estimation (SKDE)1 from (11), where sub-posteriors are approximated semi-parametrically as described in (6).
• Average re-centring (AR) algorithm from (19), which is a special case of SwISS whereAb = I.
• GaussianBarycenter (GB) algorithm (17), assuming aGaussian approximation for each inflated sub-posterior, the barycenter is the geometric

center of the inflated sub-posterior distributions.

1Implemented using the parallelMCMCcombine R package
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Algorithm 1 SwISS Algorithm; here SPSQ(V) denotes the symmetric positive-definite square root of the matrixV as described through (8) and (9).
Require: {θj

b}
J
j=1 - JMonte Carlo samples from each of the B inflated posteriors

Calculate the mean and variance for each of the inflated posteriors
for b ∈ {1, . . . ,B} do

µb ← mean[θ
(1:J)
b ] and Vb ← var[θ

(1:J)
b ]

end for

Set the global mean µ and varianceV and calculate the matrix square root,
V =

(
1
B

∑B
b=1 V

−1
b

)−1
, µ = V 1

B

∑B
b=1 V

−1
b µb, and M← SPSQ(V)

Apply the affine transformation to the inflated posterior samples
for b ∈ {1, . . . ,B} do

Ṽb ←M−1VbM
−1

M̃b ← SPSQ(Ṽb)

Ab ←MM̃−1
b M−1

Set ϑ1:J
b ← Ab (θb − µb) + µ

end for

Concatenate the transformed samples ϑ1:J
b to give a Monte Carlo approximation of the full posterior distribution π(θ|y)

return
{
ϑ
(1:J)
1 , . . . ,ϑ

(1:J)
B

}

We assess the accuracy of the above algorithms to combine batch posterior samples to form an approximation of the full posterior, comparing
the merged approximations against the full posterior, which is generated by sampling (in serial) from the posterior conditional on the full data set.
Accuracy of estimation of the posterior of the d-dimensional parameter, θ, is assessed with the following discrepancy measures:

• Mahalanobis distance (Mah):
DMah :=

√(
µa − µf

)⊤
V−1

f

(
µa − µf

)
,

where Vf and µf are the variance and mean estimates of posterior samples taken from the full data posterior using an MCMC algorithm.
For a given posterior approximation algorithm, e.g. SwISS, µa denotes the estimated mean.

• Mean absolute skew deviation (Skew):
η :=

1

d

d∑
i=1

|γ̂a
i − γ̂f

i |,

where γi = E[{(θi − µi)/V
1/2
ii }

3]; i.e. η is the sum over components of the third standardised moments.
• Integrated absolute distance (IAD):

DIAD :=
1

2d

d∑
j=1

∫
|π̂a

j (θj)− π̂f
j (θj)|dθj ∈ [0, 1],

the average of the integrated absolute differences between two kernel density estimates of the marginal posteriors for each component, j,
of θ: π̂f

j , obtained from samples from the true posterior, and π̂a
j using one of the approximate merging algorithms (4).

4.1 Scalability with parameter dimension

Typically, divide-and-conquer methods are advertised for use with tall data, i.e. a large number of observations and up to a moderate number of
parameters. Here, we test the accuracy and computational speed of the merging algorithms as the number of parameters grows.

Let θ|yb ∼ Nd(µb,Vb) for b ∈ {1, . . . ,B = 10}, where d is the dimension of the parameter space and letµb ∼ Nd(0, Id) andVb ∼ W−1(5d, Id).
Each sub-posterior is Gaussian, with expectation and variance drawn respectively from Gaussian and inverse-Wishart distributions. For each
experiment J = 5, 000 samples were drawn from each sub-posterior and inflated sub-posterior. Using this model, the full data posterior is tractable:

θ|y ∼ Nd

(
V

B∑
b=1

V −1
b µb, V

)
,
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FIGURE 2 The left plot shows integrated absolute distance for each method for a different number of parameters. The right plot shows the mean
time each combination method took to obtain the samples from an approximate posterior.

where V−1 =
∑B

b=1 V
−1
b . The following set of dimensions were used: d ∈ {5, 10, 20, 40, 80}.

Figure 2 shows that both the consensus Monte Carlo algorithm and SwISS perform well with increasing dimension (as measured by integrated
absolute distance) and are both computationally efficient. The semi-parametric KDE approach, Gaussian barycenter and average re-centering
approaches display reduced accuracy (as measured by integrated absolute distance). Only SwISS and consensus are robust to increasing the dimen-
sion of the parameter space. In terms of the computational cost required to merge the posterior samples, all approaches are generally fast, with
the exception of the semi-parametric KDE approach.

4.2 Linear Mixed Effects Model

A natural way to extend the simple linear model is to introduce both fixed and random effects. This extension can be particularly useful when data
exhibit a hierarchical dependency structure, for example, to cluster student test scores based on classroom. Let yi,j ∈ Y ⊆ R (for i, j = 1, . . . , nj,
and j = 1, . . . , n) be the response variable, where nj is the number of observations for group j. The fixed and random effects are xi,j ∈ X ⊆ Rp

and zj ∈ Z ⊆ Rr , respectively, and are related to the response variable by
yi,j |β,αj , 1 ∼ Logistic (xi,jβ + zjαj , 1), αi ∼ Nr(0,Σ),

where β ∈ Rp and αi ∈ Rr are the fixed and random effect model coefficients and the Logistic(a, 1) distribution has a cumulative distribution
function of 1/(1+exp[−(x− a)]). Our parameters of interest are then θ = (β,α,Σ), where Σ represents the variance of the random effects. We
assume an inverse-Wishart distribution for the prior of Σ, Σ ∼ W−1(ν, S), with ν = 5 and S = 5Ir , and a priori we assumed β ∼ Np(0, 1000Ip).

We simulated a dataset that contains 200, 000 observations. We set the number of groups n = 2000 and the number observations for each
group nj = 100, for j = 1, . . . , n. The number of parameters for the fixed effects were set to p = 10, with β0,i = (−1)(i−1). The number of
parameters for each random effect was set to be r = 2, and we set

Σ0 =

[
1 0.2

0.2 1

]
,

then αi were simulated independently from a Nr(0,Σ0) distribution. We included an intercept term, that is xi,j,1 = 1 for all i, j, otherwise xi,j and
zj were simulated from independent Bernoulli(0.5) distributions.

The data were randomly partitioned into B = 10 batches by group, so that each group only belonged to one batch. This was necessary since
divide and conquer methods assume independence between the batches. With a Gaussian observation model for the yi,j, marginalisation over all
of the random effects would be tractable. The logistic observation model necessitates the use of a sampling scheme such as MCMC.

We used the STAN software to sample from the full posterior and sub-posteriors generating J = 5, 000 MCMC samples after an initial 1,000
sample burn in. Table 1 gives the discrepancy measures for each of the merging algorithms, averaged over 10 random partitions of the data. The
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TABLE 1 Discrepancy measures for the linear mixed effects model on the simulated dataset. These measures were averaged over 5 random
partitions of the data. Estimated standard errors are given in brackets.

Algorithm Mah Skew IAD
SwISS 0.69 (0.14) 0.02 (<0.01) 0.06 (0.01)
Consensus 0.39 (0.13) 0.03 (0.01) 0.04 (0.01)
Average Re-centring 2.20 (0.31) 0.02 (<0.01) 0.13 (0.01)
Semi-parametric KDE 0.39 (0.08) 0.04 (<0.01) 0.04 (0.01)
Gaussian Barycenter 2.19 (0.31) 0.05 (0.01) 0.13 ( 0.01)

TABLE 2 Discrepancy measures for the logistic regression model with simulated and Hepmass data sets. Each metric was averaged over 5 runs.
Estimated standard error are given in brackets.

Simulated data Hepmass data
Algorithm Mah Skew IAD Mah Skew IAD
SwISS 0.46 (0.30) 0.04 (0.01) 0.05 (0.03) 0.56 (0.05) 0.03 (<0.01) 0.03 (<0.01)
Consensus 0.48 (0.35) 0.05 (0.01) 0.06 (0.03) 0.35 (0.05) 0.03 (<0.01) 0.03 (<0.01)
Average Re-centring 5.46 (3.92) 0.13 (0.07) 0.20 (0.03) 0.47 (0.04) 0.03(<0.01) 0.02 (<0.01)
Semi-parametric KDE 1.25 (1.11) 0.76 (0.33) 0.12 (0.06) 0.36 (0.05) 0.03(<0.01) 0.03 (<0.01)
Gaussian Barycenter 5.42 (3.75) 0.04 (0.01) 0.20 (0.01) 0.46 (0.05) 0.03(<0.01) 0.02 (<0.01)

results show that all algorithms perform well, with the exception of AR and the Gaussian barycenter, both on the Mahalanobis metric. The SwISS
and Consensus algorithms are robust across the range of metrics.

4.3 Logistic Regression Model

Logistic regression is a popular technique for modelling binary data, i.e. yi ∈ {0, 1}. Features xi ∈ Rd, also known as covariates, that can indicate
the classification outcome are mapped onto the binary observations using a logit transformation, where the outcome probability P(yi = 1) =

exp(x⊤
i θ)/

(
1+ exp(x⊤

i θ)
), is the success probability of a Bernoulli randomvariable. Our parameter of interestθ ∈ Rd is the vector of coefficients.

We consider two data sets, the first is a synthetic data set which is designed to simulate a scenario with rare but highly informative features.
This data set is similar to the one given in (14). We simulateN = 100, 000 data points with d = 5 binary features with relative frequencies of xi = 1

being (1, 0.02, 0.03, 0.05, 0.001) and the corresponding true parameter values are θ0 = (−3, 1.2,−0.5, 0.8, 3). Due to the rarely occurring final
feature, this can lead to largely differing variances across the sub-posteriors. For our experiments, we spilt the data equally across B = 25 batches.

We also consider a real-world data set; the Hepmass data set2 from high-energy particle physics where the response is an indicator for whether
a signal was indicative of an exotic particle being present as opposed to background noise. The data set contains 27 real features which we
augmented with an intercept term to give d = 28 parameters. The full data set contains 10.5 million responses, in this experiment we considered
the first N = 100, 000 and split the data across B = 20 batches.

In each of the our experiments, the data were repeatedly partitioned nruns = 5 times with a Monte Carlo average of the discrepancy metrics
given in Table 2 . The STAN (3) software, which implements an automatically-tuned version of Hamiltonian Monte Carlo sampling, was used as
the MCMC sampler and applied to the full posterior and sub-posteriors for each experiment. Each sampler drew J = 10, 000 samples after a burn
in of 1, 000 iterations.

The results in Table 2 show that SwISS and the Consensus algorithm outperform all of the others on the simulated data, whereas for the real
example all of the methods work well. The AR algorithm performs especially poorly on the synthetic data example as the variance of the sub-
posteriors varies across subposteriors, and the AR algorithm does not correct for this when the sub-posterior samples are merged. The similarity
of eprformance on the Hepmass data could be due to the sub-posteriors all being close to Gaussian. We would expect both Consensus and SwISS
to work well in this setting as they are exact for Gaussian sub-posteriors, and much faster to apply than nonparametric methods such as SKDE.

2http://archive.ics.uci.edu/ml/datasets/HEPMASS
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FIGURE 3 Left-hand plots: Four plots which show the two-dimensional full data posterior and three of the batch posteriors. Right-hand plots:
A comparison is given between the consensus Monte Carlo algorithm (left) with black points and the SwISS algorithm (right) with blue points,
compared against the true full posterior (orange points).

4.4 Ornstein-Uhlenbeck Processes

Consider an Ornstein-Uhlenbeck (OU) process centered at zero, which satisfies the stochastic differential equation (SDE)
dXt = −

1

2
θdt+ σdWt. (10)

This has stationary distribution N(0, σ2/θ). If we assume that the process is started from stationarity, then for s ≤ t, Cov[Xs,Xt] =
σ2

θ
exp[−θ(t−

s)/2]. Suppose we observe X0,X∆,X2∆, . . . ,XM∆ for a very largeM. If∆θ >> 1 then consecutive observations are almost uncorrelated and the
likelihood is close to that of a set of iid draws from the stationary distribution. Thus σ2/θ is well identified, but the individual parameters are not.
The likelihood is,

L(θ, σ;x0, . . . , xM∆) = N(x0; 0, σ
2/θ)

M∏
m=1

N(xm;xm−1 exp(−θ∆/2), σ2(1− exp(−θ∆))/θ) (11)

If we observe B = 10 realisations of the same OU process, x(b)0 , x
(b)
1 , . . . , x

(b)
M∆, for b = 1, 2, . . . ,B, with θ = 1, σ = 1,∆ = 6 and M = 365, then

then the likelihood will be
B∏

b=1

L(θ, σ;x
(b)
0 , x

(b)
1 , . . . , x

(b)
M∆). (12)

This example is interesting because the individual batches are centered at different points along a quadratic curve (see Figure 3 ), so averaging
them, as the consensus algorithm will do, does not give a value on that same curve. Since the curve is convex, the average will give a value above
the curve. This is illustrated in Figure 3 and as we can see, if we try to estimate the stationary variance σ2/θ from the consensus samples for
(σ, θ), it will be an overestimate.

We can see from Figure 3 that the mean of the batch means will lead to an overestimate of the mean for σ2/θ but this effect is significantly
smaller for the SwISS algorithm than for the consensus algorithm as the batch means are more concentrated round the true curve. Figure 3 (left)
also shows a scatter plot of the batch and full data posteriors to highlight the areas of highest posterior concentration. The scatter plots are slightly
misleading as for the full posterior there is a long right tail which leads to some large σ and θ values. However, the 95% upper quantiles for σ and
θ are 1.73 and 2.98, respectively, and the SwISS algorithm accurately captures this area of highest posterior mass.
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5 CONCLUSIONS

We have introduced a new method to merge posterior samples generated in parallel on independent batches of data. Our algorithm, SwISS, is fast,
scalable to high-dimensional settings, and accurate on a variety of test cases. The SwISS algorithm, like the consensus Monte Carlo algorithm, is
simple to apply and competitive against popular alternative divide-and-conquer algorithms. SwISS also has the advantage that it does not require
hyper-parameter tuning and is faster to apply than many of the alternative divide-and-conquer algorithms given in the literature.We have provided
theoretical support for our choice of affine transformations and shown that SwISS is exact in the case of merging inflated Gaussian sub-posteriors.
Code to recreate this work is available through the Github link: https://github.com/CJohnVyner/SwISS
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