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Stochastic Resonance in Electrical Circuits—II:
Nonconventional Stochastic Resonance

Dmitrii G. Luchinsky, Riccardo Mannella, Peter V. E. McClintock, and Nigel G. Stocks

Abstract—Stochastic resonance (SR), in which a periodic sig- Il. UNUSUAL FORMS OF STOCHASTIC RESONANCE
nal in a nonlinear system can be amplified by added noise,
is discussed. The application of circuit modeling techniques to
the conventional form of SR, which occurs in static bistable
potentials, was considered in a companion paper. Here, the The system considered by Dykma al. [2], [3] was the
investigation of nonconventional forms of SR in part using similar underdamped single-well Duffing oscillator
electronic techniques is described. In the small-signal limit, the
results are well described_in terms of linear response theory. Some 4+ 20k + ng + ,m?: = Fcoswpt + f(t) (1)
other phenomena of topical interest, closely related to SR, are

also treated. where the oscillator is driven by a periodic force of amplitude
Index Terms—Fluctuations, noise, nonlinear. F, frequencywy, and f(¢) is the zero-mean white Gaussian
noise of intensityD, such that

A. SR for Coexisting Periodic Attractors

l. INTRODUCTION (F)) =0, (f)f()) =4TDs(t —t). (2
N AN EARLIER companion paper [1], the stochasti . . :
I resonance (SR) phenomenon was introduced and reviev(\:/ret1 oscillator is driven by a nearly re;onant f.OIEeOSWFt
. ) . ith the frequencyw g close to the oscillator eigenfrequency
briefly. It was pointed out that linear response theory (LR such that
shows that SR need not be restricted to the systems with statie
bistable po_tentialg in which it was originally dis_cc_)\_/er_ed. It is L, |6w]| € wp; 6w > 0; 6w =wp — wo. (3)
to be anticipated in any system whose susceptibility increases
rapidly with noise intensity. In the case of thermal equilibriuni is of particular interest in view of its importance in nonlinear
systems (e.g., those subject to white noise, in the absencedpfics [4]-[7] and its relevance to experiments on a confined
external forces), this means that the possibility of SR can pglativistic electron excited by cyclotron resonant radiation
assessed by examination of the spectral density of fluctuatid@k [9]. Provided thatF? < wj(éw? +T?)/|y| and that the
(SDF) in the absence of the weak periodic force. Where theise is weak, the resultant comparatively small amplitude
SDF contains peaks that rise rapidly with noise intensity, tfeg (w2/|v)*/?) oscillations of z(t) can conveniently be
fluctuation dissipation relations show immediately that SR @iscussed in terms of the dimensionless parameters [10]
to be anticipated. o
. . B ) 3y
In the next section, we consider several examples of nom=T"/|éw|; 8= 398 (Bl
conventional SR, both in the small signal limit where LRT wi(8w])
is applicable and also for stronger signals where differefhich characterize, respectively, the frequency detuning, the
theoretical approaches are required. In Section Ill, we descriength of the main periodic field, and the noise intensity.
some phenomena, closely related to SR, that have also b bistability [11] in which we are interested corresponds
investigated through analog electronic experiments, and tila coexistence of stable states with large or small amplitude
Section IV, we draw conclusions. limit cycles, and it arises for a restricted rangejafnd3. The
effect of weak noisef(¢) is to cause small vibrations about
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Fig. 1. The SNRR of the response of the system (1)—(3) to a weak trial force at frequen&s a function of noise intensity, in experiment and theory
[2]: at the trial frequency? (circle data and associated theoretical curve); and at the “mirror-reflected” freq(ngy— €2) (squares) . For noise intensities
near those of the maxima iR(«), the asymptotic theory is only qualitative and so the curves are shown dotted.

Consider the response of the system (1) to an additiomabkults [2] in a slow oscillation in the amplitude of the force.
weak trial forced cos(€2t+¢). Under stationary conditions, theThis has the effect of strongly modulating the populations of
response to this field in the presence of the strong driving forttee attractors (in the quasi-static limit). Such a modulation
can still be described, in terms of linear response theory, byaly occurs close to the KPT; away from the KPT line, the
susceptibility. The trial force beats with the main periodic forcgopulations are always very different. If the noise intensity
and thus gives rise to vibrations of the system, not onl§2,at is optimally chosen, then the modulated system will have a
but also at the combination frequencj@st2nwy| (and also at tendency to make inter-attractor transitiocsherently once
|2+ (2n+1)wr| for a general nonlinearity). We are interestegier half-cycle of the beat frequency. The net effect of the
in the case where the strong and trial forces are both neanlyise is, therefore, to increase the modulation depth of the beat
resonant; that iswpr and @ both lie close to the oscillator envelope of the response, thereby increasing the components
eigenfrequencyw. This is the case for which the responsef the signal at frequencieQ and |2 — 2wp|.
to the trial force is strongest. It is at its most pronounced at The response of the system (1), (2), (4), and the variation
frequencyf? and at the nearest resonant combination, whiaf the signal-to-noise ratio (SNR) withr were investigated
for (1) is |2 — 2wr|. The amplitudes of vibrations at thesdq2], [3] through analog experiments on the electronic model
frequencies can be described respectively by susceptibilitdsscribed in Section II-A of [1]. In terms of scaled units,
x(£2), X(Q), so that trial-force-induced modification of thethe circuit parameters were set, typically, 2b = 0.0397;
coordinater, averaged over noise, can be sought in the formg = 1.00; v = 0.1; wp = 1.07200; 2 = 1.07097; and,

to seek SR near the KPTE' = 0.068 and the amplitude
6(x(t)) = ARe{x(2) exp[—i€2t — i¢] of the trial forceA = 0.006. The SNR'sR, determined in
+X(Q) expli(2wr — Q)] —ig]}. (5) the usual way from measurements of the delta spikes and the
smooth background, are plotted (data points) as functions of
Within the KPT range|lm x(£2)| displays a high narrow peak, noise intensity in Fig. 1 for 3 = 0.814, n = 0.236. It is
whose width is given by the transition rates and is therefoﬁ%mediately evident that there is a rangecofwithin which
strongly noise-dependent [10]. The rapid rise in susceptibilify increaseswith «. It is also apparent that, for both the main
with noise intensity corresponds precisely to SR becausggnal and that at the “mirror-reflected” combination frequency
according to (5), the areas of the peaks in the power spectrdmy. — . the form of R(«) in Fig. 1 is remarkably similar
at frequencies? and [ — 2wp| are to that observed for conventional SR. A quantitative theory of
1 1 the phenomenon is readily constructed through an extension
S() = ZA2|X(Q)|27 S = 2wp|) = ZA2|X(Q)|2- (6) [3] of the formalism introduced by Dykman and Krivoglaz
[10]. It leads to the two full curves shown in the figure which,
An intuitive understanding of the mechanism of StOChaStWithin experimenta| error, agree with the circuit data.
amplification [14] can be gained by noting that the trial
force modulates the driving force (and the coordinatg) at _
frequency|2—wr| and that, wher2 —wp| is small compared B- SR in Monostable Systems
to the dynamical relaxation ratg, the dynamical response In a noise-driven underdamped nonlinear oscillator [14],
of the system is almost adiabatic. The beat envelope thigve natural frequency vibrations(£) depends on the energy
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Fig. 2. Calculated variation of eigenfrequencyE) with energyE for the Fig. 3'. Block diagfa!“ of the analog el_ectronic circuit model of (7)' Its
potential (7) with B = 0.3, z4. = 0 [23]. The first three extrema are at P€havior can conveniently be analyzed in terms of the voltdges Vi,
Wt = 0.372. woe = 0.600, andw,m3 = 0.506. Ve, and Vp at the points indicated (see text) [23].

E (measured from the bottom of the potential well). Th& the underdamped nonlinear oscillate¥. is the amplitude
oscillator has a (Boltzmann) distribution over energy, arff the signal in volts f’(¢') is the value of the noise voltage
therefore over frequency. With increasing noise intensity th@Pplied to the circuit, and2” and ¢’ are the real frequency
distribution changes and the response at certain frequen@g8 time in units of Hertz and seconds. Setting to zero the
can become strongly enhanced by noise. The appearancé%ﬂ' currents at the inputs of the operational amplifiers whose
an additionalzero-dispersiorspectral peak (ZDP), where theoutputs arel’y and Vp respectively, we obtain

damping is extremely small and(F) is nonmonotonic as a Vi dVa  f'(t) | Alcos(t) (Rs/Ru)Vp
: i - in =— TO0——+ + -
function of energy, was predicted and discussed by Soskin Rg t Ry Rp R,
[15], [16]. The exponential rise in the ZDP with increasing Vo
noise intensity can be expected, on the basis of (18)—(20) of + R 0 (8)
[1], to give rise to SR at nearby frequencies. Vs Vy
The model used for the original prediction and first obserCo—-—~ + — = 0. )

vation of SR in monostable systems [17], [18] was the tilted d R

single-well Duffing oscillator driven by Gaussian white noisd Ne trigonometric integrated circuit (IC) was configured to
plus a weak periodic force. However, much stronger SR effedye an output ofl0sin[50(y; — y2)], where the two inputg,

are to be anticipated in underdamped SQUID’s, which we naWdy2 are in volts and the argument of the sine is in degrees.
consider, even for relatively large valuesdf The dynamics The IC operation is restricted to lie within the rang®00°.

of the magnetic flux through a periodically-driven SQUIDN order to increase the dynamic rangezoéncompassed by
loop can be described in terms of a resistively shunted mod@¢ model, an analog multiplier was used as shown to convert
[19] whose governing equation, after appropriate changestBF argument to the double angle. The voltage at its output, in

variable (e.g., see [20]) can be written terms of the voltagd/ at the input of the trigonometric IC
au and the constant voltagé§ andV;, and allowing for internal
@42l + e f(t) + Acos(§2) scaling by a factor of 0.1, is
X
U(z) = SB(x — w4)? - cosa (7) Vb = 0.1[10sin(50(V1 — Vo))l + Vo (10)
(1) = g (O F(F)) = 4T DSt — t') or, in terms of the double angle now expressed in radians

- m
corresponding to classical motion in the potentiglk:) under Vb = 0(1 - COS[l—B(Vl - VC)D +Va. (11)
influence of the additive nois¢(t). We consider the case

where the amplituded of the periodic force is small, whereThe voltageVe: s just

the constant” is also small so that motion in the potential Ve = _&VF)’- (12)
is underdamped, and where the relative magnitudes of the Rg
constantsB and xq. are such that the potential has a singlgliminating V4, V=, andV, from (8), (9), (11), and (12), and
potential well. writing V5 = z, the differential equation for the voltagein
The correspondings(F) dependence calculated for thahe circuit can therefore be written
SQUID potential (7) withB = 0.3 and z4. = 0, shown in 2z Ry dr  RiR;
Fig. 2, exhibits a local maximum and two local minima within RCIR3Cy—— + ——R3Cy— + “x
dt'? ' Rg dt!  RoR,
the range plotted. Each of these extrema may be expected to
produce a ZDP iQ(®(w) that could in principle give rise to _ 5<1 _ Cos[l <V1 + &QC)D —V
SR. This inference [20] was tested with an analog electronic 1.8 Rg
model of (7), as shown in block form in Fig. 3/ cos '’ and _ ﬁA’ cos Ut + ﬂf’(t’) (13)
f/(t') are respectively a signal and an external noise applied Rp Ry
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D=3.1 intensity D for the analog electronic model of (7) with = 0.016, 2 = 0.62,
a0 — — B = 0.3, zq. = 0, compared with the behavior predicted (full curve) by
L - LRT, [1, egs. (18)—(20)], using the calculated spectraldengi}igs), of which
- n three examples are plotted as dashed lines in Fig. 4 [23].
- L
=0 — "1 sequentially asD “tuned” the oscillator to different ranges
L 4 of w(E). When the weak periodic forcd cos(2¢) was also
- - added, with2 chosen to lie close to the frequency of the local
a L Tt i MaXimum ofw(E) and the corresponding ZDP whejg| is

expected to be strongly noise dependent, the SNR was found to
Fig. 4. Spectral density of fluctualiof(e)  (agged lines) for th vary with increasingD, as shown by the data points of Fig. 5.

1g. 4. pectral aensity of fiuctuatio w) measure agged lines) 1or tne . H H H .
analog electronic model of (7) with = 0. B = 0.3, =4. = 0, compared At first the SNR falls, as one m_lght expecton intuitive grounds;
with the calculated behavior (dashed curves), for three noise interiteg. ~ but there follows a range dp within which the SNR markedly
One ZDP is seen foD = 1.0, and three forD = 3.1. Note the differing increaseswith increasingD, i.e., a strong manifestation of
ordinate scales. SR, before falling again at very high. The theory of these
where we have choseity = Rp = 100 kQ; Ry = Ry = phenomena, developed [20], [22]_, [23] on the _us_ual LRT basis

. and shown by the full curves of Figs. 4 and 5, is in satisfactory

100 k% Ry = R; = Re = 10 ki) Ry = 11.459 ko agreement with the measurements. Note thAtig§ made small
Ro = 2 MQ; O, = Gy = 10 nF; V; = —0.9 V. The 29 '

multiwell and single-well cases of the potential (7) corresponedqough’ there is in principle no fimit to the rise in SNR that

to different values of the parametefs and V. For example can be achieved, and that zero-dispersion SR also occurs in
. . P 2 e, SQUID’s with multiwell potentials [22], [23] where it exhibits

on introducing R, = 100 k2, Vo, = —3.93 V, the time some interesting features

constantr’ = R,C1/v/5 = R3Co/v/5 and the damping '

These circuit measurements strongly imply that zero-
! 4
constantl” = R; /(R+/5), (13) can be reduced to dispersion SR is to be anticipated in underdamped SQUID’s.

2% +T'7' & + 0.2(x — 1.07) + sin(2z) The performance of a high-frequency SR device based on
=0.24" cos V¥ +0.2f(¢) (14) @an underdamped SQUID would probably be comparable with

. . that of low-frequency SQUID-SR devices [24], and it would
whose parameters are readily related to those in the model ﬁ/e the additional advantage of being tunable over a wide

by means of the scaling relations range of frequencies by adjustment of the static magnetic field
-2 =" =" q—qs r=rvs andor the inductance of the loop.
V2 T
with B = 0.1, 2. = 2.14, A = 0.24’, f(t) = 0.2y/2f/(¢'). C. SR for Periodically Modulated Noise Intensity
The nominal value of2I' was 0.00144; the actual value, SR phenomena can also arise [25] in a bistable system when
measured experimentally by two independent methods [2{{e noise and the periodic force are introduced multiplicatively,
was found to be2l’ = 0.0011. so that the former is modulated by the latter. Periodically
When the model was driven by quasi-white noise from anodulated noise is not uncommon and arises, for example, at
external noise generator, with = 0, the measured spectralthe output of any amplifier (e.g., in optics or radio-astronomy)
density Q(”(w) underwent dramatic changes of shape witvhose amplification factor varies periodically with time. It
increasingD, as shown in Fig. 4. The three ZDP’s appeareid of obvious importance, therefore, to establish whether or
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not a modulated zero-mean noise can give rise to a periothcdisplay SR, attention turned to the so-called level crossing
signal in the system it is driving. Such an effect would nofetector (LCD), which is basically a threshold device. The new
of course, occur in a linear system where the signal is directhhave of electronic simulations and theoretical explanations
proportional to the driving noise so that they must both, dior this class of system were reviewed in [28], [29]. A fairly
average, vanish. In aonlinear system, however, a periodicgeneral theoretical approach able to account for their behavior
signal does arise; furthermore, where the system is bistableterms of simple quantities was developed in [30]. It was
a form of SR can occur for periodically modulated noissoon realized, however, that the dynamics of this class of
intensity. It has some novel features that are strikingly differeaystems is closely connected to the dithering effect, already
from those in conventional SR. Dykmaat al. [25] addressed well known in digital signal processing, as explained in [31].
the problem through analytic approximation and an electronicMore recently, SR in threshold devices has been redis-
model of an overdamped Brownian particle in moving in acovered in an electronic simulation [32]; the authors study
asymmetric bistable potential a two-state threshold comparator fed by white noise and a
. , periodic signal; they show that the cross-correlation between
&+ U(x) = f(t) output and input can be enhanced in the appropriate range of

= <%Acos((2t) + 1>£(t) input noise intensity.
U(z) = _%x2 + %xék + Az (15) E. Aperiodic SR and Information Transmission

_ ) Traditionally, SR has been quantified in terms of a noise-
Here, A characterizes the asymmetry of the potenuaj. F@hduced maximum in the SNR [1]. For systems subject to
—2/(3V3) < A < 2/(3V/3) the potentiall’(x) has two min- 4 periodic signal, this is a simple and convenient quantity
ima, i.e., the system is bistable. The functigt) represents o measure experimentally. The output signal power and

white Gaussian noise of intensi#, so that background noise intensity can easily be determined from a
measurement of the power spectrum of the response. However,

(f(t)f(t)) =2D58(t —t') |1 + Acos(Qt) spectral methods cannot be easily applied if the input signal
2 is broadband. Recently, SR has been extended to encompass

+ A—(1 +cos(22))| (16) broadband signals [33], so-callegieriodic SR Although the
8 term was first coined in a study of a parallel array, it was
i.e., the intensity of the driving forcg(¢) is periodic in time. already known that broadband signals could exhibit SR type
The modulation was assumed to be wedkg 1, so that the effects [34], [35]. In fact, aperiodic SR can occur in any system
term in A2 in (16) could be neglected. that displays conventional SR.

Both the approximate theory and measurements of Sig_Due to the broadband nature of the signals, information-
nal/noise ratiaR in the electronic model immediately demontheoretic measures have started to be employed. The most
strated [25] the occurrence of SR: the rate of increas& of commonly used measure is the average mutual information
was faster thanD, so that it did not represent merely thd35]-[40], although other quantities have also been considered
proportionality of the modulation ta> in (16). The most [41].
striking feature was that the SR effect occuredy when the ~ Using this type of approach, the SR system is treated as a
bistable potential was made asymmetric, with wells of differef0isy communication channel with an input signgk) and
depths, whereas conventional SR can be regarded (see ab80efutputy(t). The average mutual information (transmitted
as a kinetic phase transition (KPT) phenomenon that is at iormation) I(z;y) is then computed for these quantities.
most pronounced for equally populated stable states i.e., fefif threshold-type systems, such as a simple comparator or

equal well depths. Schmitt trigger, there often exists a countable number of output
states. In this case the system can be treated as a semi-infinite
D. SR in Threshold Devices channel. The average mutual information is then given by

It is interesting to notice that the first experimental evidence j _ H(y)— H(
of SR was obtained in an electronic bistable system working N
as a threshold detector (a Schmitt trigger) [26]. The electronic _ _ Z P,(n)log, P,(n)
device used was fairly simple, consisting of an operational

ylz)

amplifier with feedback, subject to random noise and a periodic " oo N

forcing. Although the work of [26] was prompted by [27], sO - <_/ P.(x)dx Z P(n | x)log, P(n | x))_
that the authors had in mind a continuous system, they realized —o0 =0

that their system had hysteresis and was actually behaving a7

more like a threshold system.

After a period during which work on SR was focused mainly (y) is the information content (or entropy) 9t¢) and H (v |
on continuous systems, SR in threshold systems again becarhean be interpreted as the amount of encoded information
of interest when it was realized that the latter were perhajast in the transmission of the signal. Enumerating the possible
more appropriate for the description of neuronal dynamics. Autput states byn, wheren = 0,1,---, N (N being the
the same time, in an attempt to work on minimal systems abiiember of output levels)?, (n) is then the probability of the
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it . , ; . : information(z; {r;}) to be constructed. A number of authors
have used this approach to make connection with neurophys-
iological applications [35]-[37]. Similar SR type effects are

0.8f 1 observed using this approach.
0.7r 60 1 F. SR in Networks
06} g To date, the majority of studies on SR have tended to

focus on the dynamics of single elemental systems. However,
recently there has been a growth of interest in connecting
0.4 \ 1 together a number of such elemental systems to form arrays or
networks. A wide range of network design, using different el-
‘ ements and connectivity, has been investigated; these include,
0.2} 1 globally coupled networks [42]-[45], randomly connected
3 networks [46], linear chains [47]-[53] and parallel arrays [33],
[54]-[58]. Possible applications include pattern segmentation
0 o2 v 05 0% ; " [59], perceptual interpretation of ambiguous figures [60], the
G modeling of biological sensory system [33], [55], modeling of
Fig. 6. Plot of the transmitted information againstfor three different neurops_yck_natrlc dlso-rders [61], and nanoscale subthreshold
sett-int_;]s of the threshold = 0 (circles),é = 0.4 (pluses), andd = 0.6 magneyc field detection [62]. .
(crosses). The data points are from digital simulations and the solid lines areStudies of networks have demonstrated that SR is not solely
guides to the eye. a temporal effect, it can also manifest itself in the spatiotempo-
ral domain. Indeed, the global response of a network can lead
outputy(¢) being in staten and P(n | z) is the conditional to an enhanced SR effect, as exemplified in array-enhanced
probability density given knowledge. SR (AESR) [47]. The existence of AESR, which occurs in
To illustrate the use of this approach, consider what happendinear chain of coupled bistable oscillators, has recently
in a simple comparator circuit. It is assumed that two possidieen confirmed experimentally in a diode resonator connected
output states exist, labeled 0 and 1. In the absence of any noiiusively into an array of nonidentical resonators [48], [50],
state 1 is accessed if the signét) exceeds the threshold level[51]. In these systems, in addition to the usual temporal
g; otherwise, the system remains in state O. If nejg® is now synchronization, a spatial synchronization of the chain to the
added to the signal, the system will only change state wheignal also occurs. The maximum in the SNR is observed to
both the signal plus the noise excedts coincide with the optimal spatiotemporal synchronization of
Fig. 6 shows results from a digital simulation of this modethe chain [48]. Similar enhancements of the SR effect have also
The signal was uniformly distributed between the limit6.5 been found in globally coupled networks [42], [43]. Again,
and the noise was Gaussianly distributed with standard &R enhancements over and above that displayed by a single
viation . It can be seen that SR effects (a maximum ialement were observed.
the transmitted information) are observed when the signal isThe motivation behind studying parallel arrays of elements
entirely subthreshold i.e., wheh> 0.5. comes primarily from neurophysiological applications. Sen-
The appearance of SR can be understood as follows. If stiry neurons tend to be arranged in a highly parallel structure.
information is lost in transmissiorH (y | ) = H(y) (which They also possess significant amounts of internal noise and
occurs asc — oc), and hencel = 0. Alternatively, if all are highly nonlinear. Consequently, they have all the features
encoded information is transmittefy = 0), H(y | ) = 0, necessary for exhibiting SR. Indeed, SR type effects have been
and I = H(y). Given that it is straightforward to show thatobserved in a number of real neurophysiological experiments
for any non-zeros, H(y | =) < H(y), it would seem to [63], [64].
follow that maximum information transfer occurs when there Parallel arrays differ from other types of network in that the
is no internal noise. However, as we have seen, this is r@déments are not actually coupled. Generally, each element is
necessarily the case. This is because internal noise also sesudgect to the same signal but evolves under the influence of
to increaseH (y). In effect, when the signal is subthresholdits own internal noise. The elements are only connected at
the noise facilitates access to additional bits of informatioa. common summing point. The action of the summing point
Consequently, the maximization df by internal noise is a leads to an ensemble averaging over the noise. Consequently,
balance between additional information generated by the notke SNR at the output can be simply improved by increasing
and the increased loss in information transmitted through ttiee number of elements. In addition to displaying SR, the
system with increasing. dynamics of each element linearises with increasing noise
It should be noted that this is not the only way of definingntensity (see Section 111-B). Therefore, such arrays are capable
1. In neurophysiological experiments, it is common practioaf transmitting a high-fidelity reproduction of the signal,
to measure the time between successive firings of a neurdaspite the nonlinearity of individual elements. It is the ability
The same idea can be applied to simple threshold systeafisthese arrays, to display SR effectmd a high-fidelity
by measuring the time between generated events; this giliegar response, that makes them so intriguing as signal
rise to a set of timeg;}. This enables the average mutuaprocessing systems.

0.3+ 0=0.4 N J

0.1f 8=0.6 e ]
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Fig. 7. A summing network aiV threshold devices. Each device is subject to
the same signal (a Gaussianly distributed signal with zero mean and standard

deviationo ) but independent Gaussian noise. Fig. 8. Plot of transmitted information against= ¢, /o, for various N
and allg; = 0. The data points are the results of a digital simulations of the
network and the solid lines were obtained by numerically evaluating (19).

G. Suprathreshold SR

SR is commonly understood to be the enhancement, byHowever, this is not the case if every threshold is adjusted to
noise, of the response of a system tevaaksignal [1]. By coincide with the dc component of the signal. Fig. 8 illustrates
weak, one normally means with reference to an appropriaiéat happens for a broadband Gaussianly distributed input sig-
scale of the system. In a threshold-type system, the scalg with standard deviation,, and zero mean. Each threshold
would be taken as the threshold level. Normally, SR is onlgvel 6; has been set to zero to coincide with the mean of
observed if the signal is smaller than this scale i.e., it ife signal. It can be seen that an SR-type effect is observed,
subthreshold. For signals of sufficient magnitude, the SR effggtbviding V > 1, even though the signal is suprathreshold.
disappears. However, it has recently been observed [65] thatleed, it was found that the effect remained for any magnitude
in parallel networks of threshold devices, SR-type effects cafsignal. Consequently, in contrast to single element threshold
occur for any magnitude of signal—including suprathresholgstems, noise can optimize the performance of parallel arrays
signals. For this reason, this form of SR has been termggsuprathreshold as well as to subthreshold signals.
suprathreshold SR (supra-SR). The mechanism giving rise to supra-SR is quite different to

Consider the summing network a¥ threshold devices that of conventional SR. In the absence of noise, all devices
shown in Fig. 7. Each threshold device is subject to the samgitch in unison and consequently the network acts like a
input signalz(¢) but to an independent Gaussian noig€t), single-bit ADC (I = 1). Finite noise results in a distribution
with a standard deviatiom,. The devices are modeled asf thresholds that gives access to more bits of information;
Heaviside functions, the outputg(t) being given by the effectively the noise is accessing more degrees of freedom
response function of the system, and hence, generating information. Using (17),

1, if 2(t) +mi(t) > 6 I(z;y) can be calculated analytically to give

bilt) = {0, otherwise (18)

where 6; are the threshold levels and= 1,2,---N. The
response of the network is obtained by summing the individual
responses of each device. Consequenily) is the number of - <—N/ dx Py(x)( Py, logs Prje
devices that are triggered at any instant of time. -

Although other studies have considered similar networks + Ppj. log, POla:))
[33], this model differs in that each threshold can be chosen
indepe_nqlently. This ena_\bles the t_hre_sholds to _be ao_ljusted P'(n) :/Oo da Py(2) P!} g pN-n (19)
to optimize the information transmission for a given signal @7 0=
distribution. Uniformly placing the thresholds across the S|gnal N o N
space mimics the signal encoding abilities of a flash anal ,9h repy(n) = G, P'(n), C is the B|r210m|al co2eff|C|ent
to-digital converter (ADC)—this is the optimal threshold dis- he signal distribution, (x) = (1/ V2mag) exp(—a®/20.),
tribution for a uniformly distributed signal. For other signaBnd P, = 1/2Erfc[(6 — 37)/\/20727] is the conditional prob-
distributions, the optimal threshold distribution can be founability of 4; = 1 for a givenz (note all devices are identical)
using the method obptimal quantization65]-[67]. If such and similarlyP, . = 1— P, is the probability of a zero given
a procedure is undertaken, one finds that the transmittedErfc is the complementary error function [68]. The integrals
information is generally maximized at zero levels of noise. and summation were calculated numerically to give the solid

Z P,(n)log, P'(n)

ade o)
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lines in Fig. 8. Good agreement between simulation and theoryBuilding on the understanding gained from studies of the

is obtained confirming the suprathreshold SR effect. analog electronic model, both SR and NEH were subsequently
Such networks could have direct engineering applicatiorabserved in a nonlinear optical system [71], [72].

This is particularly true in the design of ADC’s when the

signal is highly nonstationary and weak with respect to the

internal noise of the system. The nonstationarity of the signdl Noise-Induced Linearization

precludes the possibility of fixing the threshold levels in an The phenomenon aficise-induced linearizatiowas iden-
optimal configuration. In this situation, some advantage Ca@fled in the course of experiments on SR, using analog
be gained by simply adjusting the levels to coincide with thlectronic models [73]. The unexpected observation was that
mean of the signal and exploiting the supra-SR effect [69]. the signal distortion introduced by passage through a nonlinear
system could be reduced by the addition at the input of

IIl. RELATED PHENOMENA external white (or weakly colored) noise of sufficient intensity.
The scenario was found to hold experimentally for many
A. Noise-Enhanced Heterodyning (NEH) different nonlinear systems, including monostable as well as

. _bistable, underdamped as well as overdamped, chaotic as well

In the well-known phenomenon of heterodyning, two highss reqular, and for signals of various shapes. Because the
frequency fields—an “input signal” and a ‘reference SiG.qjtant linearized output(#) is inevitably noisy, we consider
nal’—are mixed nonlinearly to generate a heterodyne signal,; the ensemble averade(t)) of the output varies with
at the difference frequency. The addition of noise usuallyieyant parameters, for example with the noise intensity at
results in a decrease in the amplitude of the heterodypg, input.
signal (and its SNR), because the frequency response Ofpg pasic idea of linearization by added noise is, of course,
the system becomes correspondingly broadened. Nonethelggs, v familiar from specific observations and applications in
it has been shown [70] that, in bistable systems of h&jence and engineering, e.g. the removal of digitization steps
kind that exhibit SR, the heterodyne signal (and SNR) c3fhe output of an ADC, or the linearization of periodic signals
sometimes be enhanced by an increase in the noise intensjiy,e  rophysiological experiments [74], or the linearization of
Consider an overdamped bistable system driven by three tijgs response of ring-laser gyroscopes at low angular velocities

dependent forces representing respectively the reference W The results under discussion suggested, however, that

input signals, and noise noise-induced linearization may exist as a more general phe-
dr , nomenon than had been appreciated, thus further illustrating
5 = V@) Arerwcoswot+Aw(t) cos(wot +¢(1))+F (). the idea [76] that the role of noise in a dynamical system may
(20) often be, in a sense, creative.
The linearization occurred in two different senses. First, a
Here, the termscA,.r andocAin(t) are respectively the high- sinusoidal input was able to pass through the system without
frequency reference signal corresponding to a local oscillatignificant change of shape, demonstrating a proportionality
of frequencyw, (applied multiplicatively), and the modulatedbetween the amplitudes of output and input; this need not
high-frequency input signal (applied additively). The functionsecessarily imply that the constant of proportionality must
Ain(t) andg(t) vary slowly compared toos wot, and itis their be frequency-independent, however. Secondly, the undistorted
variation in time that has to be revealed via heterodyning. Tip@assage of a sawtooth waveform, containing not only the
heterodyning can be characterized by the low-frequency sigh@hdamental frequency but also its higher harmonics, implies
at the outputz®) (¢) = z(t) (the overbar stands for averaginghe occurrence of linearization in the “Hi-Fi” sense that the
over the perio®@r /wy), for Ay, = const and¢ = Qt+const, system becomes nondispersive within a certain frequency
with © < wy, i.e., for a monochromatic input signal whoseange when the noise intensity is large enough.
frequencywg + 2 is slightly different from the frequencyy. The physical origin of both forms of signal restoration can
Dykman et al. [70] considered the case where the doubleeadily be understood, at least qualitatively, in the following
well potentiall/(z) has equally deep wells, as in standard SRerms. Where the amplitude response of a system to a periodic
and for convenience chose it to be the quartic potential  force is nonlinear, this arises because the amplitude of the
1 1 vibrations induced by the force is comparable with, or larger
Ulz) = —=2? + Za*. (21) than, some characteristic nonlinear length scale of the system,
2 4 . .
determined by the structure of the region of phase space
For the case wherd;,(¢), ¢(¢) vary slowly over the time being visited. The effect of noise is to smear the system
t,., the equations describing the dynamics of the system twwmer a larger region of phase space, so that a variety of
out to be identical to those of conventional SR. The systedifferent scales and frequencies then become involved in the
can thus be well-described in terms of LRT provided only thatotion, even in the absence of periodic driving, and the
A is small enough. It was thus demonstrated theoretically aatfective characteristic scale will usually increase as a result.
by use of a circuit model that, in close analogy to conventionBbr sufficiently large noise intensities, therefore, the amplitude
SR, NEH in a bistable system can produce a very substantifilthe force-induced vibrations will become small compared
enhancement of the heterodyne signal over that obtainedtbythe scale (e.g., small compared to the average size of the
heterodyning in e.g. a single-well nonlinear system. noise-induced fluctuations), so that the nonlinearity of the
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response is correspondingly reduced. Because the systemidp H. Kramers, “Brownian motion in a field of force and the diffusion
then spending an increasing proportion of its time far away
from its attractor(s), at coordinate values where the timescalg;
that characterizes the motion will in general be quite different
and sometimes shorter than for small noise intensities, there
will be one or more ranges of frequency for which dispersiof
is likely to decrease [77]. Although the linearization and the

suppression of the dispersion arise, ultimately through the5
same physical processes, there is no reason to expect that

will

th

become important at the same noise intensity. Dykman

et al.[73] and Stockst al. [77] have given detailed analyzes!1®!
of noise-induced linearization phenomena in the standard $R
system, with overdamped Brownian motion in the bistable

quartic potential (21).

(18]

IV. CONCLUSION
[19]

The above examples are intended to convey some idea of

the

versatility, convenience, and power of analog electronii”]

modeling as a complement to analytic and numerical methods
for the investigation of SR and related phenomena. It is equalBil
useful for other phenomena involving noise and nonlinearity

where theoretical treatments are necessarily approximate and

direct experimental tests are therefore essential. Despite [#3
simplicity, the technique can be applied usefully to problems
at the forefront of statistical mechanics as well as to a wide

range of applied research.

[23]
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