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Food waste and stockouts are widely recognized as an important global challenge. While inventory management aims to address
these challenges, the tools available to inventory managers are often limited and the usefulness of their decisions is dependent on
demand realizations, which are not within their control. Recommender systems (RS) can influence and direct customer demand, e.g.,
by sending personalized emails with promotions for different items. We propose a novel approach that combines the opportunities
provided by RS with inventory management considerations. Under the assumption that there is a known set of customers to receive a
promotion consisting of 𝑘 items, we use mixed-integer programming (MIP) to allocate recommended items across customers taking
both individual preferences and the current state of inventory with uncertainties into account. Our approach can solve problems with
both stochastic supply (inventory and perishability) and demand. We propose heuristics to improve scalability and compare their
performance with the optimal solution using data from an online grocery retailer. The goal is to target the right set of customers
who are likely to purchase an item, while simultaneously considering which items are prone to expire or be out-of-stock soon. We
show that creating recommendation lists exclusively considering user preferences can be counterproductive to users due to possible
excessive stockouts. Similarly, focusing only on the retailer can be counterproductive to retailer sales due to the number of expired
products that can be considered lost income. We thus avoid the loss of customer goodwill due to stockouts and reduce waste by selling
inventory before it expires.

CCS Concepts: • Information systems → Personalization; Recommender systems.
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1 INTRODUCTION

With about one-third of food lost or wasted, avoiding food waste has become a global challenge due to its environmental
and economic impact [9]. One out of four calories of food intended for consumptionwas wasted in 2009 [38]. Additionally,
28% of the items sold by retailers are wasted because they expire without other flaws [35]. Reasons for waste include
spillage, spoilage, and a significant decrease in the quality of the product. Wasted food emits significant amounts of
greenhouse gas to the air [50], deforests the Amazon [40], and causes significant negative effects on the climate with
very little in return.

Retail food waste occurs when supply exceeds demand. A simple solution is for retailers to order less and thus
decrease supply. This, however, increases the number of stockouts and consequently reduces customer goodwill [7].
While the stockout problem has been studied for many years [30], it has become more critical recently because of
supply chain disruptions due to extreme weather events, port congestion, labor relations [24], COVID-19 lockdowns,
manufacturing delays and human errors (e.g., Suez Canal being blocked) [54]. Increasing inventory can cause higher
holding costs and lower clearance sale pricing, which results in lower overall revenue for the retailer [49].

Although the decision maker has a notion of what to expect in the future, customer demand and whether they would
buy a recommended item is not deterministic. Consequently, inventory levels are also stochastic since the decision
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maker does not know in advance how much demand will occur on a specific day and how much stock will be left at the
end of the day. Additionally, inventory levels might not be recorded correctly, or a set of items might arrive sooner or
later than expected, causing the inventory to fluctuate unexpectedly. Some soon-to-perish items might go bad sooner
or later than expected according to the storage conditions and the type of item [28]. We propose a novel solution using
recommender systems (RS) that uses a personalized top-𝑘 list to direct demand toward items that will perish soon and
away from items that are nearing stockout while accounting for the above-mentioned uncertainties. Therefore, we
make recommendations that not only consider consumer preferences, but also the status of the available stock. Thus,
we show how to use RS to manage inventory, integrating inventory management, RS, and promotions literatures.

In the RS literature, earlier works mostly focused solely on user preferences. More recent works started incorporating
the needs of the item providers, the RS platform/system itself, and other stakeholders. Multistakeholder recommender
systems (MRS) are introduced as systems that include the objectives of parties other than the users. These objectives
may conflict with each other, and solutions recommended by MRS algorithms take all these objectives into account
while creating the recommendation lists that consist of items offered to the users [1]. Abdollahpouri et al. [1, 2] discuss
multiple real-world problems that can be solved using MRS algorithms. For example, in problems that are encountered
in an e-commerce retailer setting, the business and retailer considerations are intuitive to consider as well as the user
considerations. A traditional RS algorithm could recommend the highest estimated utility items to maximize the user
utility/rating. However, these solutions can cause problems in the system by increasing the stockouts and perishability
significantly. In our work, the system is considered a stakeholder and aims to lower the number of perished items and
stockouts. Similarly, the retailer is another stakeholder that wants to increase the sales revenue as much as possible
from the possible revenue obtained from the item recommendations. Consequently, we offer a model that solves an
e-commerce retailer MRS problem [11] by including system (sustainability, stockouts) and the provider (revenue)
considerations on top of the users’ considerations.

Given the proliferation of digital shopping environments such as websites and mobile shopping apps where many
user behaviors can be recorded, more data is available to tailor promotions to the needs of individual users [13].
Relevant interactions can be facilitated with an RS so that users receive personalized recommendations that match
their preferences. Creating recommendations, however, is more complicated than recommending items of interest to a
user because multiple objectives and stakeholders are involved [1, 2]. While we are unaware of any research that uses
multi-objective RS to avoid perishables and stockouts at the same time, there has been research that studied other retail
objectives and stakeholders. Sürer et al. [51] consider vendors on a retail platform as well as the preference of users
when creating top-𝑘 lists. Sinan et al. [47, 48] suggest MIP models that create top-𝑘 lists utilizing interactions of the
users with vendors on a retail platform.

We contribute to the RS literature by proposing and solving a mixed-integer-programming (MIP) model that combines
RS and inventory management. Our proposed model creates recommendation lists that consider both user and retailer
perspectives, as well as the system-enforced perishability and stockout concerns. Additionally, our model accounts for
the stochastic nature of perishables, demands, and inventory levels. By including stochasticity and considerations of
the users, the retailer, and the system, we discuss the complex economical impacts of RS in an online retailer setting. As
far as we know, our approach to this online retailing problem and our optimization model are novel additions to the
RS literature. Furthermore, using ideas from our optimization model, we propose heuristics that improve scalability
efficiently. Finally, we discuss the results of our optimization model and heuristics and show that our approaches offer
solutions that improve user, retailer, and system objectives simultaneously.

Manuscript submitted to ACM



Making smart recommendations for perishable and stockout products 3

2 RELATEDWORKS

This section surveys relevant literature from sales promotion, RS, and inventory management. There is extensive
research in the sales promotion literature showing the effectiveness of email promotions, and RS articles have already
investigated the effects of personalization in driving retail sales. Likewise, there is research in the inventory management
literature showing the importance of alleviating the stockout and perishability issues, mostly focusing on the retailer.
Our contribution is to combine these approaches to create personalized email promotions that consider both the user’s
preferences as well as retailer and supply chain objectives to avoid perishables and stockouts.

Sales promotion is a widely used strategy defined as an “action-oriented marketing event whose purpose is to have
a direct impact on the behavior of the firm’s customers” [42, p. xvii]. Promotions include price discounts, feature
advertising, and other touch points such as targeted emails, special displays, and coupons. Promotions stimulate market
demand, enable retailers to sell excess items, and increase their revenue. There is a long literature studying sales
promotions and their effects [42], including some with a specific focus on e-commerce and email promotions. Most of
the e-commerce promotions literature shows a positive link between sales promotions and increases in demand [3, 36].
Sahni et al. [46] conclude that personalized emails increase the total expenditure of customers by 37.2%.

Others have used RS to implement personalized shopping lists. Lin et al. [37] show that timely recommendations
resulted in sales growth. Malthouse et al. [39] solve the problem of sponsored recommendations and content in retailing
including ad revenue and user utility. Kaminskas et al. [31] implement recommendations by using text and co-occurrence
based approaches. Wan et al. [53] solve recommendations using natural language processing ideas. Chen et al. [12]
solve linear optimization-based algorithms, which offer items to users in a deterministic setting using RS considering
user ratings with perishable items. Dadouchi and Agard [15] propose an RS method that lowers stockouts. Specifically,
RS can be used to increase the revenue of the firm by engaging customers to buy more in the immediate time period
[17]. Our MIP model offers an exact solution to creating personalized shopping lists by incorporating both the user and
retailer perspectives and also actively modifying the demands before the customer arrivals.

Perishable items and limited inventory appear in multiple works in the dynamic assortment and inventory control
literature, but without considering how promotions can be used to manage them. Bernstein et al. [8] solve which
items should be offered to which users with limited inventory, not considering perishable items. Talebian et al. [52]
create dynamic assortments considering perishable items with infinite inventory. Amiri et al. [6] maximize the number
of perishable items sold considering one vendor and multiple buyers. Fan et al. [20] consider both replenishment
strategies and the pricing of the perishables. Chua et al. [14] decide whether and how much to discount items using
dynamic programming. Others solve problems with perishable inventory by incorporating partial information [19],
uncertain demands [26, 34], or time delays happening in the supply chain [18]. Nguyen and Chen [43, 44] build a MIP
model and consider perishability and stockouts in an inventory model setting. Chen et al. [12] propose a RS model
with perishability in a deterministic setting without stockouts, Dadouchi and Agard [15] propose an RS method that
lowers stockouts, Nguyen and Chen [43, 44] propose a model with both perishability and stockouts, but not including
user ratings/utility and item recommendation aspects of RS. We close this gap by developing a model that considers
stochasticity, perishability, stockouts, user ratings and retailer revenue/sales simultaneously. Furthermore, we offer
heuristics to improve the scalability of the suggested optimization model.
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3 PROBLEM DEFINITION AND FORMULATION

This section proposes a MIP model and a heuristic to solve an item recommendation problem considering both retailer
and user perspectives. We maximize both the quality of the recommendations for the users and the impact on the
retailer’s profitability (perishability, sales). For this purpose, we first discuss the problem definition and assumptions.
We then illustrate and explain our optimization model and heuristic.

3.1 Problem Definition and Optimal Solution

We consider an online retailer selling physical items to their users over the internet. The retailer periodically creates a
personalized top-𝑘 promotion list such as a weekly email recommending items (𝐼 ) to a known set of users (𝑈 ); hereafter
we use the RS term user instead of retailing terms customer or consumer. Therefore, we solve the problem of selecting
which 𝑘 items should be recommended to the users in the form of personalized email promotions. While creating top-𝑘
lists is a common RS task, we allow lists with fewer than 𝑘 items to accommodate situations with very low inventory
levels; hereafter we use the term “top-𝑘 list” with the understanding that some lists may have fewer than 𝑘 items. We
assume that recommending item 𝑖 to user 𝑢 might result in a demand increase 𝛾𝑖𝑢 for the said item. Note that the RS can
increase demand without reducing the price and thus profit margin. We assume that the retailer’s purchase cost of item 𝑖

is 𝑐𝑖 , and that the retailer earns profit 𝜌 × 𝑐𝑖 when it sells the item, where 𝜌 is the markup and 𝑝𝑖 = (1 + 𝜌) × 𝑐𝑖 is the
revenue (selling price). We allow for items to have different prices 𝑝𝑖 but assume a constant markup 𝜌 (this assumption
can be easily relaxed).

When deciding which items should be recommended, the following four aspects are considered. Firstly, since the
available in-stock inventory (𝑳) is limited, there is a possibility of stockouts if users are unable to buy items due to
unavailability. When users attempt to purchase a recommended item 𝑖 that is out of stock, we assume that the retailer
incurs a penalty of 𝑞𝑖 , which measures a loss of goodwill and revenue from the sale. Secondly, some items are perishable
with quantity 𝑬 considered soon-to-perish (0 ≤ 𝐸𝑖 ≤ 𝐿𝑖 , ∀𝑖 ∈ 𝐼 ). Soon-to-perish items must be sold as soon as possible;
otherwise, they will be discarded since the retailer cannot sell expired items. For any discarded item, the retailer incurs
a penalty 𝑐𝑖 (i.e., there is no cost to dispose of the perished items nor salvage value). We also assume that items are
shipped following the FIFO (first-in-first-out) method, where items that expire the soonest are shipped first. Retailers
enforce FIFO by keeping longer-lasting items in storage. FIFO is often used in the literature with perishable items [32].
Thirdly, different users may have different ratings (𝑟𝑖𝑢 ) for different items; the RS should recommend items that are of
interest to the user, and the user would not have purchased without the recommendation. Lastly, different items have
different prices 𝑝𝑖 , so the RS should recommend items that result in higher revenue for the retailer.

We consider these four aspects from either the user’s or retailer’s perspective. We create these perspectives by including
system-enforced sustainability and stockout considerations to the traditional user consideration of utility/rating
and retailer consideration of revenue. From the user’s perspective, the recommended list should have items with a
high average rating, while avoiding stockouts. The retailer wants to stimulate demand for items that generate high
profit, while also avoiding items to perish. Balancing between these perspectives is crucial. The retailer may, for
example, need to recommend items with a lower user rating to avoid items perishing. The retailer thus determines the
recommendation lists considering the number of perishable items, demand, inventory, and possible demand increase
after recommendations. If these values are known with certainty, the problem is deterministic. In this case, after
finalizing all recommendation lists, the decision maker knows exactly how many items will be sold, what the profits
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will be, the average user rating, the numbers of stockout and perished items, and their costs. However, in practice, the
decision maker rarely has access to complete information.

By considering stochasticity in our model we obtain top-𝑘 lists that account for unexpected situations. Therefore, we
incorporate uncertainties in inventory (𝑳) and soon-to-perish items (𝑬) (both vectors of length |𝐼 |), and demands with
|𝐼 | × |𝑈 | matrix 𝑫 . For example, if each value in 𝑳, 𝑬 ,𝑫 were binary then there would be a total of 22 |𝐼 |+ |𝐼 | |𝑈 | scenarios
to investigate. Even with only two realizations, an exhaustive enumeration would be intractable. One solution to this
problem is to use Monte Carlo sampling to obtain a finite number of scenarios and the Sample Average Approximation
(SAA) method to solve them [33]. We define a function max

𝑥 ∈𝑋

[
𝐹 (𝑥) B Eb 𝑓 (𝑥, b)

]
. We assume 𝑓 is real-valued and

cannot be computed directly, 𝑥 is a point in solution space 𝑋 ⊆ 𝑅𝑑 (𝑑 < ∞), and b is some random vector independent
of 𝑥 . We first generate 𝑆 scenarios b1, b2, . . . , b𝑆 from random vector b that are independent and identically distributed
unless noted otherwise. Assume that the probability of each scenario equals 1/𝑆 . Applying the SAA method, we solve

max
𝑥 ∈𝑋

[
𝑓𝑆 (𝑥) B

1
𝑆

𝑆∑
𝑗=1

𝑓 (𝑥, b 𝑗 )
]
, with the maximizer of 𝑓𝑆 (𝑥) converging (as 𝑆 → ∞) to the maximizer of 𝑓 (𝑥) under

mild conditions [4]. In our problem, assume that we know the distributions of 𝑳, 𝑬 ,𝑫 . Then, by Monte Carlo sampling,
assume we obtain 𝑆 scenarios by sampling, such that b1 = (𝑳1, 𝑬1,𝑫1), . . . , b 𝑗 = (𝑳 𝑗 , 𝑬 𝑗 ,𝑫 𝑗 ), . . . , b𝑆 = (𝑳𝑆 , 𝑬𝑆 ,𝑫𝑆 ).
The superscript 𝑗 is the scenario index, and each possible scenario b 𝑗 contains the information of the triple (𝑳 𝑗 , 𝑬 𝑗 ,𝑫 𝑗 ).
The number 𝑆 is decided by the decision maker. We use the shorthand notation [𝑆] = {1, 2, . . . , 𝑆}.

3.1.1 Preliminary Optimization Model. Decision variable 𝑎𝑖𝑢 equals 1 if we recommend item 𝑖 to user 𝑢 and 0 otherwise.
The estimated rating of item 𝑖 for user 𝑢 is denoted as 𝑟𝑖𝑢 . For scenario 𝑗 and item 𝑖 , the quantity sold is 𝑥 𝑗

𝑖
, the quantity

of unmet demand (number of stockouts) is 𝑦 𝑗
𝑖
, and the number of perished items is 𝑧 𝑗

𝑖
. Every user 𝑢 has a demand value

𝐷
𝑗
𝑖𝑢

for a given item 𝑖 and scenario 𝑗 , and demand increases by 𝛾𝑖𝑢 if 𝑖 is recommended to 𝑢. Increasing the demand of
an item recommended to a user assumption is used in simulations in the literature [22, 27].

max
𝑎,𝑥,𝑦,𝑧

1
𝑆

𝑆∑︁
𝑗=1

[
_

(∑︁
𝑖∈𝐼

∑︁
𝑢∈𝑈

𝑟𝑖𝑢𝑎𝑖𝑢/𝑘 −
∑︁
𝑖∈𝐼

𝑞𝑖𝑦
𝑗
𝑖

)
+ (1 − _)

(∑︁
𝑖∈𝐼

𝜌𝑐𝑖𝑥
𝑗
𝑖
−

∑︁
𝑖∈𝐼

𝑐𝑖𝑧
𝑗
𝑖

)]
(1)

subject to:∑︁
𝑖∈𝐼

𝑎𝑖𝑢 ≤ 𝑘 (∀𝑢 ∈ 𝑈 ) (2)

𝑥
𝑗
𝑖
≤ 𝐿

𝑗
𝑖

(∀𝑖 ∈ 𝐼 , 𝑗 ∈ [𝑆]) (3)

𝑧
𝑗
𝑖
≥ 𝐸

𝑗
𝑖
− 𝑥

𝑗
𝑖

(∀𝑖 ∈ 𝐼 , 𝑗 ∈ [𝑆]) (4)

𝑦
𝑗
𝑖
+ 𝑥

𝑗
𝑖
=

∑︁
𝑢∈𝑈

(
𝐷
𝑗
𝑖𝑢

+ 𝛾𝑖𝑢𝑎𝑖𝑢
)

(∀𝑖 ∈ 𝐼 , 𝑗 ∈ [𝑆]) (5)

𝑥
𝑗
𝑖
, 𝑦

𝑗
𝑖
, 𝑧

𝑗
𝑖
≥ 0, 𝑎𝑖𝑢 ∈ {0, 1} (∀𝑖 ∈ 𝐼 , 𝑢 ∈ 𝑈 , 𝑗 ∈ [𝑆]) (6)

Equation (1) specifies our multi-objective function that considers both the user and retailer perspectives. Inside the left
parenthesis, we maximize the average estimated ratings and minimize the cost incurred when a demanded item is out
of stock (stockout). Inside the right parenthesis, we maximize the revenue of the retailer from the sales and minimize
the cost incurred from the perished items. We divide the estimated ratings by 𝑘 to lower the effect of choice of 𝑘 on the
solution quality. Trade-off parameter _ ∈ [0, 1] is specified by the analyst to control the weight given to the user versus
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retailer perspective. If _ = 1 then we only consider the user perspective, and if _ = 0 then we only consider the retailer
perspective. Constraint (2) enforces that we recommend at most 𝑘 items to each user. We cannot sell more items than
the available inventory, enforced by constraint (3). If the number of items sold for 𝑖 is less than the soon-to-perish
count 𝐸𝑖 , then the difference is assumed to perish. Constraint (5) controls the flow of demand with the right-hand side
equaling the modified demand after recommendations. Therefore, total modified demand is either sold or is considered
stockout. Constraint (6) specifies the values that the decision variables can take.

3.1.2 Reformulated Optimization Model. In a deterministic setting with 𝑆 = 1, this model can be easily solved for
thousands of users and items. When the number of scenarios increases, however, the number of constraints and decision
variables increases rapidly. Next, we propose an optimization model that is more efficient with memory and time as the
number of scenarios grows.

Since we assume FIFO we can preprocess some of the uncertainties. For each scenario 𝑗 and item 𝑖 , we update

𝐸
𝑗
𝑖
= max

(
0, 𝐸 𝑗

𝑖
− ∑
𝑢∈𝑈

𝐷
𝑗
𝑖𝑢

)
and 𝐿

𝑗
𝑖
= max

(
0, 𝐿 𝑗

𝑖
− ∑
𝑢∈𝑈

𝐷
𝑗
𝑖𝑢

)
. These are the respective counts of inventory (𝐿 𝑗

𝑖
) and

soon-to-perish items (𝐸 𝑗
𝑖
) when the RS is not applied (we only consider initial demands). Next, suppose that we

sort the number of perishable items (𝑬 ) and inventory (𝑳) as follows for each 𝑖 , 𝐸1
𝑖
≤ 𝐸2

𝑖
≤ · · · ≤ 𝐸𝑆−1

𝑖
≤ 𝐸𝑆

𝑖
, and

𝐿1
𝑖
≤ 𝐿2

𝑖
≤ · · · ≤ 𝐿𝑆−1

𝑖
≤ 𝐿𝑆

𝑖
. Then, we create two incremental increase arrays for each 𝑖: 𝐸 𝑗

𝑖
= 𝐸

𝑗
𝑖
−𝐸

𝑗−1
𝑖

, ∀𝑗 ∈ {2, . . . , 𝑆}
with 𝐸1

𝑖
= 𝐸1

𝑖
, and, �̃� 𝑗

𝑖
= 𝐿

𝑗+1
𝑖

− 𝐿
𝑗
𝑖
, ∀𝑗 ∈ {1, . . . , 𝑆 − 1} with �̃�𝑆

𝑖
= 𝐿𝑆

𝑖
. Define 𝑋𝑖 =

∑
𝑢∈𝑈

(𝛾𝑖𝑢 × 𝑎𝑖𝑢 ), which represents

the expected demand increase for item 𝑖 after implementing the RS. Next, we apply the remodeling idea suggested by
Ferguson and Dantzig [21] as follows:

max
𝑎,�̃�,𝑧

1
𝑆

𝑆∑︁
𝑗=1

_

(∑︁
𝑖∈𝐼

∑︁
𝑢∈𝑈

𝑟𝑖𝑢𝑎𝑖𝑢/𝑘 − 𝑗
∑︁
𝑖∈𝐼

𝑞𝑖𝑦
𝑗
𝑖

)
+ (1 − _)

(∑︁
𝑖∈𝐼

𝜌𝑐𝑖𝑋
𝑗
𝑖
− (𝑆 + 1 − 𝑗)

∑︁
𝑖∈𝐼

𝑐𝑖 (𝐸 𝑗
𝑖
− 𝑧

𝑗
𝑖
) − 𝑗

∑︁
𝑖∈𝐼

𝜌𝑐𝑖𝑦
𝑗
𝑖

)
(7)

subject to:∑︁
𝑖∈𝐼

𝑎𝑖𝑢 ≤ 𝑘 (∀𝑢 ∈ 𝑈 ) (8)

𝑦
𝑗
𝑖
≤ �̃�

𝑗
𝑖

(∀𝑖 ∈ 𝐼 , 𝑗 ∈ [𝑆]) (9)

𝑧
𝑗
𝑖
≤ 𝐸

𝑗
𝑖

(∀𝑖 ∈ 𝐼 , 𝑗 ∈ [𝑆]) (10)

𝑆∑︁
𝑗=1

𝑧
𝑗
𝑖
≤ 𝑋𝑖 (∀𝑖 ∈ 𝐼 ) (11)

𝑆∑︁
𝑗=1

𝑦
𝑗
𝑖
≥ 𝑋𝑖 − 𝐿1𝑖 (∀𝑖 ∈ 𝐼 ) (12)

𝑦
𝑗
𝑖
, 𝑧

𝑗
𝑖
≥ 0, 𝑎𝑖𝑢 ∈ {0, 1} (∀𝑖 ∈ 𝐼 , 𝑢 ∈ 𝑈 , 𝑗 ∈ [𝑆]) (13)

Equation (7) is a reformulation of equation (1) with new decision variables. For item 𝑖 , 𝑧 𝑗
𝑖
is the number of soon-to-perish

items sold and 𝑦
𝑗
𝑖
is the number of stockouts in 𝑗 scenarios. Then, for calculating the perished items we use the

coefficient (𝑆 + 1 − 𝑗) and penalize 𝑐𝑖 (𝐸 𝑗
𝑖
− 𝑧

𝑗
𝑖
). or calculating the stockouts we use the coefficient 𝑗 and penalize 𝑞𝑖𝑦

𝑗
𝑖
.

Note that we use incremental increase arrays (𝐸, �̃�) in this step. Because of how 𝑋
𝑗
𝑖
is defined, every recommendation
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increases the equation (7) by 𝜌𝑐𝑖 . The additional term 𝑗
∑
𝑖∈𝐼

𝜌𝑐𝑖𝑦
𝑗
𝑖
removes this increase if item 𝑖 stockouts. Constraint (8)

remains the same as constraint (2). Constraints (9) and (10) are simple bounds on decision variables 𝑦 and 𝑧, which are
generally easily handled by commercial optimization software. Constraint (11) enforces that sum of 𝑧 𝑗

𝑖
cannot exceed

𝑋𝑖 . Constraint (12) enforces that sum of 𝑦 𝑗
𝑖
should be greater than or equal to 𝑋𝑖 − 𝐿1

𝑖
. Constraint (13) remains the same

as constraint (6), except in this model, decision variable 𝑥 is removed. The value of 𝐸 𝑗
𝑖
is 0 if 𝐸 𝑗

𝑖
= 𝐸

𝑗−1
𝑖

(same with 𝐿
𝑗
𝑖
).

Then, the corresponding decision variable 𝑧 𝑗
𝑖
(𝑦 𝑗
𝑖
) is removed since it is fixed to 0. These changes improve the previous

optimization model’s computational time and memory requirement.

3.2 Heuristic Algorithm

For very large datasets, optimization models can struggle with large memory requirements and slow solution times. We
offer a heuristic that scales better for larger datasets. This heuristic is both easy to implement and fast to run. We first
randomize the order of users. In each step, we recommend a single item 𝑖 to user 𝑢, and then move on to the next user.
This procedure continues until either all users have 𝑘 items in their lists or adding an item to a user’s list decreases the
objective function value, which only happens if all the inventory is depleted. For a given user 𝑢, we recommend the
item 𝑖∗ that solves the objective function:

𝑖∗𝑢 = argmax
𝑖∈𝐼

1
𝑆

𝑆∑︁
𝑗=1

_(𝑟𝑖𝑢/𝑘 − 𝑞𝑖 min(0, 𝐿 𝑗
𝑖
− 𝛾𝑖𝑢 )) + (1 − _) (𝜌𝑐𝑖 min(𝐿 𝑗

𝑖
, 𝛾𝑖𝑢 ) + 𝑐𝑖 min(𝐸 𝑗

𝑖
, 𝛾𝑖𝑢 )) . (14)

After each recommendation, the 𝑳, 𝑬 and recommendation lists of users are updated: 𝐸 𝑗

𝑖∗ = max(0, 𝐸 𝑗

𝑖∗ − 𝛾𝑖∗𝑢 ), and
𝐿
𝑗

𝑖∗ = max(0, 𝐿 𝑗
𝑖∗ −𝛾𝑖∗𝑢 ). Each item 𝑖∗ recommended to user 𝑢 has rating 𝑟𝑖∗𝑢/𝑘 . The value of 𝛾𝑖∗𝑢 is the demand increase

of item 𝑖∗ for user 𝑢. If the term 𝐿𝑖∗ −𝛾𝑖∗𝑢 is negative, recommending item 𝑖∗ to user 𝑢 causes a stockout having penalty
𝑞𝑖∗ . When a soon-to-perish item 𝑖∗ is recommended to user 𝑢, we incentivize that recommendation by the cost of the
item (𝑐𝑖∗ ) times the number of soon-to-perish items sold (min{𝐸𝑖∗ , 𝛾𝑖∗𝑢 }). Lastly, when the retailer sells an item, the
objective value increases by 𝜌 × 𝑐𝑖 . The heuristic requires solving objective function (14) at most 𝑘 |𝑈 | times.

3.3 Solving the Model with Massive Datasets

Our optimization model can be solved optimally for hundreds of scenarios and thousands of users and items. However,
in cases with thousands of scenarios and millions of users and items, we need approximation methods to obtain a
solution in a reasonable length of time. This subsection discusses two approximation approaches. First, co-clustering
[23] can be applied to users, items, or both. Rather than focusing on each item and user individually, we can cluster
them. This can be done by aggregating items similar to each other as only one item, or by aggregating users in clusters
if they have similar preferences for similar items. Consequently, even billions of users and items can be manageable in
smaller clusters. We apply this idea by reducing the item space using the taxonomy of the categories in our dataset.

Second, we apply a simple idea that we call the “best-𝑁 approach,” in which we recommend item 𝑖 to user 𝑢 only if
either item 𝑖 is one of the top 𝑁 rated items by that user 𝑢, or user 𝑢 is one of the top 𝑁 users that rated that item 𝑖 the
highest. None of the other user-item pairs will be considered for recommendation. The decision maker can choose
𝑁 by using a grid-search algorithm. A similar approach was implemented in the RS literature [10] with good results
by solely focusing on the user top 𝑁 lists. Normally, the number of decision variables created for recommending an
item 𝑖 to user 𝑢 (𝑎𝑖𝑢 ) is |𝐼 | × |𝑈 |. Implementing the best-𝑁 approach decreases this number to at most 𝑁 × (|𝐼 | + |𝑈 |).
Thus, we reduce the number of decision variables by orders of magnitude, which alleviates both the solution time and
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memory requirements of the model. The heuristic model’s solution time improves similarly. With the best-𝑁 approach,
some users and items might appear significantly more than others and result in over recommending some items and
under recommending others. We alleviate this issue by subtracting the mean rating of each item and user by itself, i.e.,
de-biasing them. Consequently, items or users will be included in the best-𝑁 list only if the rating gain observed is
higher relative to the item-user pair.

4 COMPUTATIONAL STUDY

This section discusses the data used in our paper and the computational results of the models proposed. All results are
obtained by using a laptop with Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz 2.21 GHz processor information with
16.0 GB of installed RAM specifications. The optimization model is solved using Gurobi, a commercially available
mathematical programming solver, [25] 9.5.0 with the optimization gap set to 10−4 and a one-hour time limit. Gurobi
obtains the global optimal solution (within the optimization gap) using a linear-programming based branch&bound
algorithm [41]. In the worst case, the algorithm implemented in Gurobi can have exponential time complexity [41], but
in practice, the time complexity is much better than exponential. The heuristic approach is solved with Python 3.7.

4.1 Dataset Description

We consider an online grocery retailer located in the United States and learn user preferences from their purchase
history. We examine regular users who have shopped at least 15 times within the last 6 months, giving 3731 users (|𝑈 |)
with 78,195 orders. These orders include 27,158 unique item stock-keeping units (SKUs). Each SKU has a price, brand,
and category from a retailer-provided taxonomy. We aggregate the SKUs following [39]: we match the retailer-provided
taxonomy of sub-categories with brand names to come up with 4106 (|𝐼 |) unique item names. For example, “HAIR
PRODUCTS - BRAND NAME", is considered one item. We manually tag delivery items, fresh market items, and some
dairy items as soon-to-perish items using sub-categories. The number of perishable items is 651 out of 4106.

Average demand values are calculated by averaging the quantity bought for each user-item pair for a week, denoted
as 𝐷𝑖𝑢 . We create a |𝑈 | × |𝐼 | rating matrix by using the function log(𝑥 +1), 𝑥 as the number of orders including item 𝑖 ∈ 𝐼

for user 𝑢 ∈ 𝑈 . Next, we compare prediction algorithms SVD, 𝑘-NN, and Co-clustering using the Surprise package [29]
to estimate the values of unknown item-user pairs. We use the SVD algorithm, which performed the best using 5-fold
cross-validation, with RMSE and MAE values of 0.24 and 0.20, which is better than for 𝑘-NN (RMSE=0.26, MAE=0.21)
and co-clustering (RMSE=0.60, MAE=0.55). Finally, the values are min-max normalized between 0 and 1. Denote the
value calculated for item-user pair as [𝑖𝑢 , which we take as the probability of buying an item 𝑖 in case it is recommended
to the user 𝑢. We assume that the probability of buying and money spent on an item correlates with the utility of that
item to the user. Therefore, the ratings are calculated as 𝑟𝑖𝑢 = (1 + 𝜌) × 𝑐𝑖 × [𝑖𝑢 , which is the price times purchase
probability. With this assumption, all values in the objective function are in dollars. More complex utility/rating choices
can be considered by the decision maker. The 𝛾𝑖𝑢 values are calculated as

⌈
𝐷𝑢𝑖 + 0.1

⌉
× [𝑖𝑢 . This value is continuous

and can be interpreted as the average expected increase in demand when item 𝑖 is recommended to user 𝑢. We assume
high purchase probability and high previous demand are both important in recommender quality. We consider that
recommendations can play two different roles: either the user will be reminded to order their regular needs, or they
will be recommended novel items that they might want to buy. Because 𝛾 is not related to 𝑐𝑖 , items with low purchase
probability and low previous demand will rarely get recommended for that user, even if the item has a high price.
Stockout costs 𝑞𝑖 are set equal to costs of the items 𝑐𝑖 , ∀𝑖 ∈ 𝐼 . We use a constant markup value 𝜌 = 0.26 [45] for
simplicity, but the decision maker can choose different markups for different products.
Manuscript submitted to ACM
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4.2 Evaluation Procedure

This subsection discusses the settings and metrics used to evaluate our models, and benchmarks implemented to
compare our approaches. These benchmarks are denoted 𝐵𝑝 , 𝐵𝑟 , 𝐵𝑠 , and 𝐵𝑢 , and they solely optimize perishability,
retailer sales, stockouts, and average user rating objective functions, respectively. In other words, each benchmark
obtains a solution considering only one criterion. Therefore, we compare our solutions solving multiple objectives with
those focusing on a singular objective. The letter 𝐻 indicates the heuristic solution and 𝑂 indicates optimization. This
letter is followed by a number indicating the weight (_) value. For example, the optimization solution with weight _ = 0.5
is denoted as 𝑂5. We obtain solutions for _ ∈ {0.1, 0.5, 0.9}, corresponding to a higher focus on retailer perspective,
equal focus, and a higher focus on user perspective, respectively.

We investigate four settings: high perishables and low stockout risk (HL), low perishables and high stockout risk
(LH), both high risk (HH), and finally, both low risk (LL) settings. Settings with a high risk of perishables have a larger
number of soon-to-perish items 𝑬 , and those with a high risk of stockout have lower levels of inventories 𝑳. We choose
𝜓 = {0.2, 0.6} and 𝜖𝐿 = {30, 100}, and their combinations create our four settings. We generate inventory levels using
𝐿𝑖 ∼ Poisson(𝜖𝐿 + ∑

𝑢∈𝑈
𝐷𝑖𝑢 ), where 𝐷𝑖𝑢 is the expected demand for item 𝑖 and user 𝑢. Average demands vary greatly

from as low as 0.4 to as much as thousands. We choose lower 𝜖𝐿 values for high-risk stockouts and higher values
otherwise. The demand values 𝐷𝑖𝑢 are distributed as Poisson(𝐷𝑖𝑢 ). In this way, we create upper bounds that are tight
relative to the total demand of each item. We create a number of soon-to-perish items as a percentage of inventories
such as 𝐸𝑖 = 𝐿𝑖𝜓𝑖 , where 𝜓𝑖 is distributed as a truncated normal N(𝜓, 0.1) with bounds [0, 1], ∀𝑖 ∈ 𝐼 . Some items
perish sooner than others, and the decision maker can incorporate this by choosing higher values of𝜓𝑖 for items that
perish more rapidly and lower values otherwise. We base the number of soon-to-perish items as a percentage of the
inventory, so higher inventory will result in a larger number of soon-to-perish items. For high-risk perishable cases
𝜓𝑖 will be closer to 1, and 0 otherwise. As a shorthand notation, HH is𝜓 = 0.6, 𝜖𝐿 = 30, HL is𝜓 = 0.6, 𝜖𝐿 = 100, LH is
𝜓 = 0.2, 𝜖𝐿 = 30, and finally, LL is𝜓 = 0.2, 𝜖𝐿 = 100.

Unless stated otherwise, we generate 500 scenarios (𝑆) for 𝑳, 𝑬 , and 𝑫 considering each of the four settings. We obtain
solutions for each approach by solving the problem with these 500 scenarios. Then, we generate 2500 new out-of-sample
scenarios to test the quality of the obtained solutions. Overall, a solution is better if it has higher user ratings, retailer
sales, or lower perishability and stockout objective values. These objective values (metrics) are calculated as follows,
where x𝑖𝑢 is 1 if item 𝑖 is recommended to user 𝑢 and 0 otherwise, s𝑖 is the number of item 𝑖 sold, z𝑖 is the number of
perished item 𝑖 , y𝑖 is the number of stockouts of item 𝑖:

Ratings =
∑︁
𝑖∈𝐼

∑︁
𝑢∈𝑈

𝑟𝑖𝑢

𝑘
x𝑖𝑢 , Sales =

∑︁
𝑖∈𝐼

𝜌𝑐𝑖s𝑖 , Perishability =
∑︁
𝑖∈𝐼

𝑐𝑖z𝑖 , Stockouts =
∑︁
𝑖∈𝐼

𝑞𝑖y𝑖 ,

User Perspective = Ratings − Stockouts, Retailer Perspective = Sales − Perishability (15)

4.3 Results

This subsection presents and discusses results obtained using our optimization model and heuristics, and compares them
with solutions of benchmark models. Furthermore, we investigate the effect of including stochasticity and heuristics on
the solution quality.
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(c) User rating objective values
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(e) Stockout objective values
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(f) Perishability objective values

Fig. 1. Comparison of benchmarks, in the subfigures (e) & (f) lower values and for the rest higher values are better
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4.3.1 Solution Quality of Optimization Approach. We compare our model’s solution with the benchmarks in Figure 1.
We use the best-𝑁 method with 𝑁 = 100 and offer at most 𝑘 = 10 items to every user. Figure 1 (a) shows that the overall
objective values for the user perspective, which includes user ratings and stockouts, are similar for all approaches,
except for 𝐵𝑢 , which is the benchmark where only the average user rating is optimized. Despite 𝐵𝑢 performing well in
terms of user rating (Figure 1 (c)), users would experience many stockouts (Figure 1 (e)) that reduce customer goodwill,
which results in significantly worse user perspective objective value. As expected, in the high stockout risk settings
(HH and LH) the number of stockouts observed is greater, causing slightly lower user perspective objective values. The
optimal approach achieves the highest user perspective objective values for all settings.

Considering the objective values from the retailer perspective, which include perished items and sales, we observe
more varied results than those from the user perspective. The values for the high perishables and low stockouts (HL) are
the lowest, indicating that many items perish, which generates high waste costs, as illustrated by Figure 1 (f). The exact
opposite setting with low perish and high stockout (LH) achieves the highest retailer perspective values because of the
low waste costs. The retailer perspective objective values are similar for HH and LL, which is surprising at first because
they consider exact opposite situations. Looking into these results in more detail, we see that for LL, the sales are higher
than for HH (Figure 1 (d)), but so are the number of perished items. In general, the solutions tend to slightly decrease
the sales objective values to improve the perishability objective, resulting in a better retailer perspective objective value.
We next discuss each individual objective in more detail.

When considering the user ratings in subfigure (c), 𝐵𝑢 performs the best, but as discussed before, suffers from a
high number of stockouts (Figure 1 (e)), which negatively affects users. Interestingly, the solution 𝐵𝑟 results in high user
ratings as well but incurs higher stockouts too. The 𝐵𝑟 solution offers items with the greatest monetary gain considering
the users’ probability of buying the item recommended to them. This can also be observed from subfigure (d), where 𝐵𝑟
achieves the highest sales objective values. This benchmark is different from only offering items with high price margins,
and additionally considers the probability of users buying the recommended item, thus achieving recommendations
with high user ratings. Therefore, this competitive benchmark considers both retailer and user information, and is
most similar to approaches that maximize the retailer’s expected profit [5, 16]. Since the monetary return is the only
consideration, 𝐵𝑟 solutions result in large numbers of stockouts and perished items. Since the recommendations are not
scenario dependent, the user rating of each solution is the same for all scenarios.

Subfigure (d) shows the sales objective function values. The LL setting results in the greatest sales due to the retailer
being able to sell the highest profit items in a low-risk stockout and perishability environment. Counterintuitively,
most of the time sales increase when the optimization solution focuses less on the retailer perspective. This happens
because an increased focus on the retailer perspective usually lowers the current sales in favor of selling lower-margin
and lower-rating items that will perish soon, causing long-term profits instead of short-term. Generally, less focus on
retailer perspective results in less focus on recommending soon-to-perish items, thus increasing the retailer sales but
decreasing the retailer perspective objective value due to perished items. This is again an important distinction that
traditional RS might miss while trying to maximize the revenue of the retailer. However, the LH setting is an exception
to this rule. The optimization solutions in setting LH already have a low number of perished items (subfigure (f)) and
thus a weight increase results in recommending high-rating items that are not necessarily high profit for the retailer
while lowering the stockouts. Benchmarks 𝐵𝑠 and 𝐵𝑝 perform the worst because sales are negatively affected when the
only concern is selling soon-to-perish items or keeping the stockouts to a minimum.

The number of stockouts (see Figure 1(e)) is in a similar range for all approaches except for benchmark 𝐵𝑢 .
Interestingly, the 𝐵𝑢 approach might seem to be user-centric, however, it results in a poor user experience because
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of the large number of stockouts, where users cannot purchase items that were recommended to them. This is an
important and general shortcoming of the top-𝑘 recommendation rule and is a disadvantage of applying RS without
considering demand changes that follow. Our optimization solution considers user experience overall and results in
users obtaining the items that are recommended to them. Next, benchmark 𝐵𝑠 solely focuses on minimizing the stockout
objective function. In this benchmark, not recommending anything is one solution with the optimal value of 0. This
benchmark is useful for analyzing the solution quality when little to no recommendations are made. The objective
values of perishability, user ratings, and sales are significantly underperforming. Interestingly, due to the existence of
multiple-optima solutions, the sales objective value is not exactly zero in some cases. For the optimal solutions, larger
weights result in better stockout objective values because the focus shifts to the user perspective.

Figure 1 (f) shows the perishability objective function values. HL has the highest perishability values due to high
inventory (low stockout risk) and high-risk perishability, which results in the greatest number of soon-to-perish items.
We observe that low stockout with a low perishability ratio (LL) can result in a larger number of perished items than
low inventory with a high perishability ratio (HH). Thus, we note that low risk stockout is not always desirable and
the retailer should order less to reduce the number of perished items due to high inventory levels. The benchmark 𝐵𝑝

minimizes the perishability objective function by recommending soon-to-perish items first, and thus achieves the best
perishability results. The optimization solution with weight 0.1 is a close second to 𝐵𝑝 in the perishability objective.
However, benchmark 𝐵𝑝 struggles when it comes to sales and user ratings. The proposed recommendations are neither
what users prefer nor the items with high-profit margins. If the RS focuses solely on soon-to-perish items, both retailer
and user perspectives suffer. The perishability objective, in general, decreases when the weight decreases due to more
focus on the retailer perspective.

Overall, considering the user and retailer perspectives in subfigures (a) and (b), the benchmark 𝐵𝑢 performs badly
on the user metrics due to stockouts, and 𝐵𝑠 performs badly on retailer metrics due to low sales. Benchmark 𝐵𝑟

performs worse in user perspective when stockout is high risk, and in retailer perspective when perishability is high
risk. Benchmark 𝐵𝑟 might seem like a good option for the retailer at first, however, the stockouts and perished items
that are ignored make it undesirable. Benchmark 𝐵𝑝 performs worse than our models on user ratings and sales, due to
recommendations being made towards selling the soon-to-perish items without considering user ratings or revenue.
We have investigated two additional benchmarks: user-perspective (consider both user rating and stockouts) and
retailer-perspective (consider both retailer sales and perishability). The user-perspective benchmark was only slightly
better in user perspective objective value while significantly worse in retailer perspective objective value relative to
the optimization solution due to a high number of perished items. The retailer-perspective objective value was almost
identical to the optimization solution but significantly worse in user perspective solution due to a high number of
stockouts. Overall, the optimization solutions perform the best when considering both the user and retailer perspectives.

4.3.2 Solution Quality of Heuristic Approach. Figure 2 compares the objective function values for heuristic approaches.
Each subfigure considers one of the four settings with best-𝑁 approach applied, where 𝑁 ∈ {100, 500}. The difference
in the objective values between 𝑁 = 100 and 500 is minimal. The objective function value difference is even smaller for
𝑁 > 500. This result is very useful for a retailer offering a large number of products since only considering a smaller
subset of the most preferred products for each user and most preferred users for each product decreases the problem
size significantly. Therefore, using the best-𝑁 approach improves the memory and solution time for both models while
maintaining the solution quality. We note that our heuristic approach also achieves objective function values close
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Fig. 2. Objective value comparison for 𝑁 = {100, 500}
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Fig. 3. Objective value comparison of using scenarios

to the optimal solution (within 1%). The heuristic performs similarly to the optimization model that considers all the
metrics in Equation 15.

4.3.3 Solution Quality Comparison of Stochastic and Deterministic Cases. We analyze the solutions using expected
values of 𝑳, 𝑬 ,𝑫 instead of creating 500 scenarios for demand, inventory, and perishability. We denote these solutions
with 𝐴 and use the same weights as before, i.e., {0.1, 0.5, 0.9}. Figure 3 shows that it is advantageous to consider
stochasticity because using only the expected values ignores the variance of the data. We conclude that it is better to
account for uncertainty compared to using a solution estimated with averages.

4.3.4 SolutionQuality Changes with Weights and Number of Scenarios. Figure 4 provides additional insights by focusing
on HH (high in both perishability and stockouts). The discussions are similar in other settings. Subfigure (a) shows that
creating 500 scenarios is more than adequate, and after 100 scenarios the improvement in the objective function value is
negligible. We also observe that fewer scenarios result in a significant drop in performance for weight _ ∈ {0.1, 0.5, 0.9}.
Therefore, solutions obtained by considering a variety of scenarios perform better. For example, a decision maker who
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Fig. 4. Objective value changes with the number of scenarios in (a), Objective values for different perspectives with different weights
in (b), in setting HH

considers only the latest 3 weeks’ worth of data (𝑆 = 3) would be at a significant disadvantage. Subfigure (b) shows the
trade-off curve between the user and retailer perspectives with weights ranging from 0 to 1. We observe that increasing
the weight from 0 to 0.5 almost triples the user perspective objective while reducing only 0.1 of retailer perspective
objective. Therefore, considering both perspectives rather than only one improves the overall quality of the solution.
The decision maker can select the best weight according to the needs of the user, retailer, or both.

5 FUTURE RESEARCH & CONCLUSION

This article proposes a MIP model and heuristics that consider RS objectives from the user and retailer perspectives. The
user perspective aims to obtain highly rated item recommendations while minimizing stockouts. The retailer perspective
aims to maximize profit while minimizing the losses incurred by the perished items. Our models find solutions that are
high in quality for both criteria. We offer approximation methods that scale better than the optimization model. We
propose a heuristic model and show that its solution quality is nearly as good as the optimal one. Therefore, the reader
can decide to aim for the optimal solution and use the optimization model, or use the heuristic, which is faster to solve
and more scalable. Finally, we study the improvements made to the objective function values using our models, and
compared the solutions with each of the benchmarks in different settings.

Our work can be extended in multiple directions. Firstly, more emphasis on inventory could be incorporated into the
retailer perspective. In this way, excess inventory could be considered and items with higher storage spaces might need
to be recommended more often. In our work, we create recommendations considering inventory as constant (although
not deterministic), however, inventory levels of items could be added as decision variables as well. Note that, different
user segments could behave differently to stockouts (e.g., purchasing a substitute), and incurring different penalties to
different user segments can be a possible direction.

The stochasticity can be applied to different parts with more knowledge of the uncertainties. Scenarios can be
generated using the background knowledge of the system. For example, the inventory generation process can represent
a problem with supply chain disruptions. Our work assumes the distribution of the parameters, but more work can
be done solely focusing on the solution quality changes tied to the distributions. If more complex distributions are
considered, the solution quality of the models may change, and it would be worthwhile to investigate the changes in
solution quality with changes in distributions.
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While creating our parameters such as the ratings of the items for the users and the effect of recommendation on the
increased demand for a given item, we had to make certain assumptions. We use an online retailer dataset in an offline
setting. If our work is extended to an online setting then it would be possible to understand and update our parameters
accordingly. Next, by obtaining data from the users continuously, we could improve the quality of the parameters for
each user to reflect their needs better. Even in an offline setting, future research can include different parameter creation
ideas and investigate the changes in solution qualities in different settings.
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