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A B S T R A C T
Despite extensive research, 3D face reconstruction from a single image remains an open research
problem due to the high degree of variability in pose, occlusions and complex lighting conditions.
While deep learning-based methods have achieved great success, they are usually limited to near
frontal images and images that are free of occlusions. Also, the lack of diverse training data with
3D annotations considerably limits the performance of such methods. As such, existing methods fail
to recover, with high fidelity, the facial details especially when dealing with images captured under
extreme conditions. To address this issue, we propose an unsupervised coarse-to-fine framework for
the reconstruction of 3D faces with detailed textures. Our core idea is that multiple images of the same
person but captured under different viewing conditions should provide the same 3D face. We thus
propose to leverage a self-augmentation learning technique to train a model that is robust to diverse
variations. In addition, instead of directly employing image pixels, we use a set of discriminative
features describing the identity and attributes of the face as input to the refinement module, making
the model invariant to viewing conditions. This combination of self-augmentation learning with
rich face-related features allows the reconstruction of plausible facial details even under challenging
viewing conditions. We train the model end-to-end and in a self-supervised manner, without any 3D
annotations, landmarks or identity labels, using a combination of an image-level photometric loss
and a perception-level loss that is identity and attribute-aware. We evaluate the proposed approach on
CelebA and AFLW2000 datasets, and demonstrate its robustness to appearance variations despite
learning from unlabeled images. The qualitative comparisons indicate that our method produces
detailed 3D faces even under extreme occlusions, out of plane rotations and noise perturbations where
existing state-of-the-art methods often fail. We also quantitatively show that our method outperforms
SOTA with more than 30.14%, 9.87% and 11.3% in terms of PSNR, SSIM and IDentity similarity,
respectively.

1. Introduction
High quality 3D face reconstruction from unconstrained

2D images enables a wide range of computer vision applica-
tions, ranging from face recognition [1, 2, 3, 4, 5] and reen-
actment [6] to virtual and augmented reality [7, 8]. However,
inferring 3D geometry and texture from a single image is an
ill-posed problem due to the missing 3D information during
the projection of a face into the image plane.

Recent years have seen a growing interest in the use
of Deep Convolutional Neural Networks (DCNN) for effi-
cient 3D face reconstruction from 2D facial images. These
regression-based approaches have demonstrated a signifi-
cant success due to their powerful representation [9, 10,
11, 12, 13, 14, 15, 16]. Among them, model-based methods
which estimate the parameters of a 3D Morphable Model
are commonly used to reconstruct 3D facial shapes and
texture. However, the fidelity of the texture recovered from
the 3DMM coefficients of in-the-wild images is still not
sufficiently high. This is because the computed texture from
3DMM cannot capture the fine details of the images that
are captured in unconstrained conditions. In particular, these
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methods are restricted to relatively easy viewing conditions
and have difficulties in handling extreme conditions such as
occlusions and out-of-plane rotations. Handling occlusions
is of high importance since occluders such as sunglasses,
hands and long hair can significantly affect the quality of
the 3D reconstruction. This can adversely affect the perfor-
mance of high level tasks such as landmark detection and 3D
face recognition, which rely on accurate 3D reconstruction.

In this paper, we propose a novel method for 3D face
reconstruction from a single image with the focus on high-
fidelity facial texture recovering. The method is required to
be robust to occlusions and changes in the viewing condi-
tions. This is achieved through a coarse-to-fine framework
in which an initial 3D face is reconstructed, using a 3D
Morphable Model (3DMM)-based deep neural network. The
reconstructed coarse 3D face is then refined using a novel
refinement module, hereinafter referred to as the Fine model,
which consists of a 3D mesh-wise refiner and a feature-wise
refiner that employ graph convolutions.

In order to reconstruct faces with arbitrary poses and in
the presence of occluded regions, the network needs to be
trained using a large number of occluded training samples
annotated with their corresponding non-occluded ground-
truth 3D faces. This is not feasible for in-the-wild images
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due to the lack of such paired data. To tackle this problem,
we propose a self-augmentation scheme in which, during
training, the 3D faces reconstructed by the network are
rendered from arbitrary poses, including extreme ones, and
with synthetic occlusions. These are then sent back to the
partially trained network. In other words, we impose the
invariance and robustness of the network to pose variations
and (self-)occlusions by pushing the reconstruction of the
synthetically synthesized faces to be close to those of the
original faces. Also, in contrast to previous methods, we do
not propagate the RGB values of the input face image to the
vertices of the face mesh in the refinement module. Instead,
we incorporate a set of facial attribute-aware and indentity-
aware features to make our face representation richer and
achieve higher quality reconstruction.

Previous works mostly tackle the 3D face reconstruc-
tion task in a supervised manner, which requires a large
amount of face images with 3D annotations to reconstruct
accurate 3D faces [16, 12, 17, 10, 18, 5]. The major issue
with such approaches is the lack of ground truth 3D face
data as obtaining scans of face geometry and texture is not
easy due to privacy and cost considerations. Even publicly
available 3D face datasets, like 300W-LP [17] generally
lack diversity in face expression, occlusions and appearance,
which jeopardizes the generalization ability of the result-
ing 3D face regression models. In order to overcome the
intrinsic limitations of supervised 3D face reconstruction
models, we propose a novel loss function in which we
robustify the classic image-level and perception-level losses
and combine them to enable robust end-to-end training, in an
unsupervised manner without needing any 3D annotations,
landmarks or identity labels.

The main contributions of this paper are as follows:
• We develop a fully unsupervised model in which

a novel self-augmentation learning offering multiple
forms of self-supervision is leveraged to successfully
extract plausible facial details even under challenging
viewing conditions.

• We propose a rich face representation that integrates
face attribute features with commonly-used identity
features to capture a high-level understanding of a
face. To the best of our knowledge, this is the first
attempt towards employing face attribute features for
3D face reconstruction. The proposed set of features
can also be used to compute the face attribute distance
in our attribute-aware loss, in conjunction with robus-
tified image-level and perception-level losses, giving
rise to accurate results.

• Our extensive experiments demonstrate the robust-
ness of the proposed method to challenging viewing
conditions including (self)occlusions and noise where
existing state-of-the-art (even those trained in a fully
supervised fashion) often break down.

The rest of the paper is organized as follows. Section 2
reviews the state-of-the-art in monocular 3D face recon-
struction. Our proposed method is presented in Section 3.
Section 4 analyzes the performance of the proposed method
through extensive experiments. Finally Section 5 concludes
the paper.

2. Related Work
Various approaches have been proposed to tackle the

inherently ill-posed problem of 3D face reconstruction from
a single image; see Zollhofer et al. [19] for a detailed survey.
Here, we focus on those that are directly relevant to our
approach and classify them based on their degree of 3D
supervision.
2.1. Learning with 3D supervision

There are several learning-based approaches, which train
CNNs with 3D annotated training samples to regress 3D
faces from images. Model-based methods estimate the pa-
rameters of a 3D Morphable Model [20]. For instance,
[17, 10, 18] use cascaded CNN structures to regress the
3DMM coefficients, but their approaches are time consum-
ing due to their iterative and multi-stage nature. Tran et
al. [13] learned to directly regress 3DMM parameters of
a face model by leveraging multiple images of the same
subject. The weighted average of the fitted meshes are then
used as ground truth to train the network. Liang et al. [5]
proposed a mugshot-based 3D face shape reconstruction
method implemented by both linear and nonlinear regression
and an efficient texture recovery module. Their proposed
method generates 3D face images which eliminate texture
inconsistency caused by varying illuminations in mugshot
images. Tran et al. [21] proposed an encoder-decoder frame-
work to learn a nonlinear 3DMM of facial shape and texture.
In comparison to linear models, non-linear models have a
higher representation power but still fail to reconstruct facial
details due to being trained on the 300W-LP dataset [17],
which was generated using a linear 3DMM.

Apart from the aforementioned methods, end-to-end ap-
proaches have also been proposed to bypass the 3DMM
coefficients regression by directly obtaining 3D faces using
CNNs. Jackson et al. [12] use volumetric convolutions to
map an input image to full 3D facial structure. While their
method is not restricted to a 3DMM space, it introduces
heavy computations due to the use of volumetric convolu-
tions. Feng et al. [16] solved simultaneously the problems
of 3D face alignment and 3D face reconstruction. They
designed a 2D representation called UV position map, which
is a 2D image recording the 3D coordinates of a complete
facial point cloud in the UV space. To regress this UV
position map from a single 2D facial image, an encoder-
decoder network was trained with a weighted loss focused
on the most discriminative face regions. Despite employing
a light weight framework, this method still results in accu-
rately reconstructed 3D faces. However, it has difficulties
reconstructing faces taken from extreme viewing angles or
faces with occlusions.
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All the aforementioned methods require facial images
annotated with their corresponding 3D face. Since acquiring
3D ground truth data is laborious and time consuming, a
number of works have resorted to synthetic data [9]. These
methods, however, may not generalize well to real images
because of the large synthetic-realistic domain gap. Sela
et al. [22] overcame this problem using an image-to-image
translation network followed by geometric deformation and
refinement steps to generate detailed 3D faces. Although
their method shows good performance on diverse faces
under extreme expressions and different viewing angles, its
network requires heavy calculation on optimization. Also,
the model fails to generalize to cases that significantly devi-
ate from the training domain, e.g., in-the-wild-images with
extreme occlusions.

In general, the reconstructions obtained using either
volumetric or model-based methods lack details especially
when the input images are captured in unconstrained con-
ditions. A number of methods overcome this issue using
Generative Adversarial Networks (GANs) to reconstruct
[23, 24] or complete [25] the facial texture in the UV space.
While they can model, with high fidelity, facial textures, their
models require large-scale training sets of high-resolution
UV maps, which are difficult to obtain.

Apart from the methods that rely on single still images,
another class of methods exploits multiple inputs during
training or testing. MGCNet [26] is a model-based method
that leverages multi-view geometry consistency to provide
reliable constraints on face pose and depth estimation. More
recently, Bai et al. [27] presented a method for riggable 3D
face reconstruction using an end-to-end trainable network
embedded with an in network optimization. However, such a
model is still not able to generate results from a single input
since it relies on multi-view aggregation during inference.
2.2. Learning with weak 3D supervision

To reduce the degree of 3D supervision, Sengupta et
al. [28] proposed SfSNet, which learns from a mixture of
labeled synthetic and unlabeled real world images. This
allows the model to capture high frequency details from real
images and low frequency variations from synthetic images
using a photometric reconstruction loss. The performance
of the model on real world images is limited by the realism
and diversity present in the synthetic samples. Zeng et al.
[29] proposed a Dense-Fine-Finer framework using a similar
training set i.e, a combination of 3D synthetic data, 2D image
reconstructed data and fine facial images. The model can
reconstruct subtle facial details such as small crow’s feet
and wrinkles. However, because the original color image
is integrated into the input layer of F-Net, the model fails
to recover face texture in occluded facial regions. Genova
et al. [30] proposed an end-to-end learning scheme using
a differentiable rendering layer. By introducing three novel
objectives, they trained a regression network using synthetic
data and its corresponding 3D parameters in a weakly super-
vised fashion.

Tu et al. [31] tackle the shortage of 3D annotated training
data by using sparse 2D facial landmarks as additional infor-
mation for the input of the CNN regressor. In addition, the
authors introduce self-critic and self-supervision to weakly
supervise the training samples using in-the-wild 2D face
images only, i.e., without 3D annotations.
2.3. Learning without 3D supervision

There is limited work on unsupervised monocular 3D
face reconstruction. Deng et al. [32] propose a method to
simultaneously predict the 3DMM shape and texture coeffi-
cients by exploiting hybrid-level image information. How-
ever, their generated textures lack high frequency details
since it is produced by a 3DMM model and is inherently
limited by the 3DMM texture model. Tewari et al. [15] pro-
posed a Model-based deep convolutional Face Autoencoder
(MoFA) to extract semantically meaningful parameters from
a single monocular input image in an unsupervised man-
ner. The applied loss is formed by the error between the
rendered image and the input. Despite its complexity, the
model does not show great generalization capability and
has issues with extreme expressions and occlusions. Bas et
al. [33] alleviated complexity by using a purely geometric
algorithm in which only the shape component of a 3DMM
is used to geometrically normalize an image. Tewari et al.
[34] further improved MoFA [15] and proposed a multi-
level face model that fuses a convolutional encoder with a
differentiable renderer and a self-supervised training loss.
Their approach achieves improved robustness and quality
in terms of geometry and reflectance. However, it struggles
with extreme facial expressions.

RingNet [35] introduces a multiple encoder-decoder
based architecture optimized for shape consistency across
an arbitrary number of input images. It enforces shape
consistency between images of the same subjects while
enforcing shape inconsistency between images of different
subjects. Zhang et al. [36] proposed a Stacked Contractive
Autoencoder (SCAE) which learns nonlinear subspaces
from both input face images and corresponding 3D faces.
Their proposed model learns the mapping from image
subspace to 3D face subspace via a one-layer fully connected
neural network which is just the realization form of an
Autoencoder. In FML [37], Tewari et al. proposed a video-
based self-supervised approach for joint multi-frame learn-
ing of a face model and a 3D face reconstruction network.
The trained network is usable for both monocular and multi-
frame face reconstruction. However, if the number of multi-
frame images is large, the networks trained on the averaged
representations across multiple frames may not work well
for a single monocular image, due to the large gap between
averaged and single images. Lin et al. [14] used Graph
Convolutional Networks (GCN) to reconstruct the detailed
colors of the mesh vertices without using any explicit 3D
annotations. However, since it directly exploits facial details
from the color values of the input image, their model fails to
reconstruct faces under occlusions and large poses.
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To address the occlusion issues in 3D Face Reconstruc-
tion, Egger et al. [38] proposed to combine segmentation
and 3D morphable model adaptation. Their occlusion-aware
method segments the target image into face and non-face
regions, and iteratively adapts the face model and the seg-
mentation to the target image. However, in addition to being
slow, this method fails to tackle small-scale or skin-colored
occlusions. Egger et al. further extended their previous work
[38] by integrating an explicit beard model and a prior
during segmentation [39]. Although this explicit modeling
of beards improved the quality of fits compared to their
previous work [38], but the model still fails to faithfully re-
construct the facial details. Instead of adopting independent
per-image optimization for the fitting-segmentation process,
Li et al. [40] jointly solved the reconstruction and the seg-
mentation as a learning problem on a larger set of training
data. Despite being significantly faster, the segmentation
performance relies largely on the generative ability of the
face model which can result in unfaithful reconstruction.

Tiwari et al. [41] tackled the issues of occlusions and
noise in 3D face reconstruction using a self-supervised ro-
bustifying guidance framework, which learns statistical fa-
cial coefficients for clean, occluded, and noisy face images
simultaneously. However, their method requires the pre-
processing of the images which can fail due to several
reasons (e.g., the inability of the face detection model to
detect the face) and dampen the model’s performance. Feng
et al. [42] presented Detailed Expression Capture and Ani-
mation (DECA), in which the low-dimensional detail latent
space makes the fine-scale reconstruction robust to common
noise and occlusions. However, their method still does not
address extreme occlusions and fails in extreme head pose
and lighting.

In this article, we tackle diverse variations (including
occlusions, large poses, challenging lighting conditions and
appearance variations, e.g., beard and heavy make-up) using
the combination of a self-augmentation learning technique
and the rich face-related features. We propose to build upon
the success of GCNs, but instead of directly using the RGB
values of the input image for texture refinement, we take the
advantage of a rich discriminative face representation. This
representation effectively describes the identity and the traits
of facial images such as gender, emotion, age and race.

3. Proposed Method
Our goal is to reconstruct, in an unsupervised manner,

high fidelity 3D faces with plausible facial details in regions
occluded by obstructions. The targeted method should be
invariant to viewing conditions. Our key idea is that the
3D face of a person should remain unchanged, in spite of
changes in lighting conditions, occlusions or other extrinsic
factors. To this end, we introduce (1) a self-augmentation
learning scheme embodied in a coarse-to-fine reconstruction
framework, and (2) a self-supervised loss functions using a
differentiable rendering module to enable robust end-to-end
training on a large corpus of in-the-wild face images without
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Figure 1: Overview of the proposed framework. In Coarse
Model (navy blue dashed block), 3DMM coefficients are
regressed from the input image and then used to reconstruct
the coarse 3D face. The reconstructed face along with the
extracted facial features are employed to generate the fine 3D
face in Fine Model (gray dashed block).

the need for 3D annotated ground truth, identity labels or
landmarks. In order to represent high fidelity textures and
naturally recover unobserved regions, we also propose a
refinement step that utilizes a rich face representation de-
scribing face attributes and identity instead of propagating
RGB values of the input image to the face mesh (See Fig. 1).

In what follows, we first introduce the Coarse Model
that regresses the 3DMM coefficients for reconstructing an
initial coarse 3D face (Section 3.1) and then describe, in
Section 3.2, the refinement process.
3.1. Coarse Model

The goal of this module is to reconstruct an initial coarse
3D face from the input face image. To this end, we follow the
approach of [32], which regresses from an input image both
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the shape and texture coefficients of the 3DMM of a face as
well as the rendering parameters (i.e., the illumination and
face pose parameters). The estimated 3DMM coefficients are
then used to generate the coarse 3D shape and texture of the
input face image. In a nutshell, the face shape 𝑆 ∈ ℝ3𝑁 that
stores the 3D coordinates of N mesh vertices and the texture
𝑇 ∈ ℝ3𝑁 that stores the color of N mesh vertices can be
represented by a linear combination over a set of PCA basis:

𝑆 = 𝑆 + 𝐵𝑖𝑑𝛼 + 𝐵𝑒𝑥𝑝𝛽, (1)

𝑇 = 𝑇 + 𝐵𝑡𝛿. (2)
Here, 𝐵𝑖𝑑 ∈ ℝ3𝑁×80, 𝐵𝑒𝑥𝑝 ∈ ℝ3𝑁×64, and 𝐵𝑡 ∈ ℝ3𝑁×80

are, respectively, the PCA basis of identity and expression-
dependent variations of the 3D shape of faces. 𝐵𝑡 is the PCA
basis of texture variations. 𝛼, 𝛽, and 𝛿 are the corresponding
coefficients. 𝑆 ∈ ℝ3𝑁 and 𝑇 ∈ ℝ3𝑁 are, respectively,
the average face shape and texture. In this work, Basel
Face Model (BFM) is adopted for 𝑆,𝐵𝑖𝑑 , 𝑇 and 𝐵𝑡 and the
expression bases 𝐵𝑒𝑥𝑝 are built from the FaceWarehouse
[43].

In summary, in this module the vector (𝛼, 𝛽, 𝛿, 𝛾, 𝜌) ∈
ℝ257 is predicted using a ResNet-50 network where 𝛼 ∈
ℝ80, 𝛽 ∈ ℝ64, 𝛿 ∈ ℝ80, 𝛾 ∈ ℝ27 and 𝜌 ∈ ℝ6 represent
the 3DMM shape, expression, texture, lighting and face pose
coefficients respectively. Shape, expression and texture coef-
ficients are used in this module to compute the 3D face shape
𝑆 and texture 𝑇 using Eq. (1) and Eq. (2). The predicted
lighting and face pose parameters are further employed in
the Differentiable Renderer module (Section 3.2.3) to render
the face mesh to a 2D image.
3.2. Fine Model

In order to reconstruct fine facial details, we employ a
refinement module, hereinafter referred to as Fine Model. It
is composed of a 3D mesh-wise refiner and a feature-wise
refiner. More specifically, the initial face reconstructed by
the Coarse Model along with the input image are fed into the
3D mesh-wise refiner and feature-wise refiner, respectively.
The refiners, trained in a fully unsupervised manner under
the self-augmentation technique (see Section 3.2.3), output
detailed vertex texture maps (one per refiner), which are then
fused to generate the fine-grained 3D face.
3.2.1. 3D Mesh-wise Refiner

We employ a Graph Convolutional Network to gener-
ate the detailed face texture from the initial face texture
reconstructed in the Coarse Model. A 3D facial texture
with 𝑁 vertices can be represented by an undirected graph
𝐺 = (𝑉 ,𝐴) where 𝑉 ∈ ℝ𝑁×3 is a set of vertex colors
and 𝐴 ∈

{

0, 1
}𝑁×𝑁 is the adjacency matrix encoding

the connectivity vertices. The normalized graph Laplacian
is defined as 𝐿 = 𝐼𝑁 − 𝐷−1∕2𝐴𝐷−1∕2, where 𝐼𝑁 is the
identity matrix and 𝐷 ∈ ℝ𝑁×𝑁 is the diagonal matrix
with 𝐷𝑖𝑖 =

∑

𝑗 𝐴𝑖𝑗 . In Chebyshev Spectral Graph CNN, the

spectral convolution for 𝑥𝑖 ∈ ℝ𝑁×𝐹𝑖𝑛 , the input with 𝐹𝑖𝑛features can be defined as [44]:

𝑦𝑖 =
𝐹𝑖𝑛
∑

𝑖=1
𝑔𝜃𝑖,𝑗 (𝐿)𝑥𝑖, (3)

where 𝑦𝑖 ∈ ℝ𝑁×𝐹𝑜𝑢𝑡 is the output with 𝐹𝑜𝑢𝑡 features and
𝑔𝜃(𝐿) is the filter parametrized as a truncated Chebyshev
polynomial expansion of order K. It is defined as:

𝑔𝜃(𝐿) =
𝐾−1
∑

𝑘=0
𝜃𝑘𝑇𝑘(�̃�), (4)

where 𝜃 ∈ ℝ𝐾 is the Chebyshev coefficients vector and
𝑇𝑘(�̃�) ∈ ℝ𝑁×𝑁 is the Chebyshev polynomial of order 𝑘
computed at a scaled Laplacian �̃� = 2𝐿

𝛾𝑚𝑎𝑥
− 𝐼𝑁 . 𝑇𝑘 can be

recursively computed by 𝑇𝑘(𝑥) = 2𝑥𝑇𝑘−1(𝑥) − 𝑇𝑘−2(𝑥) with
the initial 𝑇0 = 1 and 𝑇1 = 𝑥. Based on this concept, in this
module, a Graph Convolutional Network, which consists of
four spectral residual blocks, takes as input the RGB values
of the mesh vertices from a reconstructed coarse face and
generates the refined texture for mesh vertices.
3.2.2. Feature-wise Refiner

To further enhance the refined 3D face generated by the
3D mesh-wise refiner module, we propose to extract a set
of discriminative features that describe the Face Attribute
and IDentity (FAID) of a face, and feed them to our FAID
decoder to produce detailed texture for the mesh vertices.

To a large extent, the perception of 3D human faces
is correlated with the attributes of the facial appearance
including gender, emotion, age, and race. These attributes
provide important visual cues for 3D face reconstruction. In
other words, faces with the same facial attributes share some
common patterns in texture and geometry. For example,
Caucasian faces usually have light skin tones, male faces
are more likely to grow a beard, and more wrinkles can be
found in aged (old) faces. Motivated by this observation,
this module extracts a set of Face Attribute (FA) features
from the off-the-shelf face attribute classification networks
[45] and feed them into the FAID decoder to produce the
RGB values for each vertex. We take advantage of a state-
of-the-art face recognition network, FaceNet [1], to extract
the IDentity (ID) code. Identity features, which are robust to
many variations including illumination and pose, are shown
to be effective for 3D face reconstruction [30], synthesizing
new identities [46], and normalized faces [47]. The dis-
criminative FAID features are also utilized to verify that
the reconstructed face resembles the input face in terms of
identity and attributes; see Section 3.2.4.

We concatenate the attribute features and the identity
features to get a rich face representation as the input to the
proposed FAID decoder network. The FAID decoder in the
feature-wise refiner is also a graph convolutional network
and has the same architecture as the network in the 3D Mesh-
wise Refiner module. It takes the Face Attribute and Identity
features and outputs the detailed texture for the vertices
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of the face mesh. The final vertex texture with details is
obtained by simply averaging the outputs of the 3D mesh-
refiner and the feature-wise refiner modules.
3.2.3. Self-augmentation learning

We develop a self-augmentation learning scheme to
make our model robust against two important challenges in
3D face reconstruction: occlusions and large pose variations.
When a model learns to reconstruct 3D faces from a single
view, the reconstructed face does not seem accurate when
viewed from a different viewpoint. To tackle this issue, we
render, using a differentiable renderer, a secondary image
called 𝐼𝑟𝑜𝑡 with a random pose and send it back to the
partially trained model to generate 𝐼𝑟𝑟𝑜𝑡. Then, given the input
image 𝐼 , the training loss is imposed between 𝐼𝑟𝑜𝑡 and 𝐼𝑟𝑟𝑜𝑡and also between 𝐼 and 𝐼𝑟𝑟𝑜𝑡 to improve the generalization
ability of the model to viewpoint variations.

The intuition behind this scheme is that training on
images rendered under various poses helps the model resolve
self-occlusions in the training samples. Thus, it improves
its robustness compared to single view training. In addition,
passing back the reconstructed face through the partially-
trained model ensures that the network is able to correctly
interpret its own output. The same strategy can also be
applied this time by feeding back synthetically occluded
rendered images, named 𝐼𝑜𝑐𝑐 , to make the model robust to
large occlusions caused by accessories, hair, and hand-to-
face gestures. In fact, we feed 𝐼𝑜𝑐𝑐 to the partially trained
model and force it to generate the same face 𝐼𝑟𝑜𝑐𝑐 for the
same identity. By imposing training loss between 𝐼𝑜𝑐𝑐 and
𝐼𝑟𝑜𝑐𝑐 and also between 𝐼 and 𝐼𝑟𝑜𝑐𝑐 , we ensure the image-level
and perception-level consistency between the input and the
reconstructed image in the presence of occlusions.

We call this strategy self-augmentation learning as we
encourage the predicted representations of self-augmented
data (synthetically occluded faces and multi-view faces) to
be as close as possible to those of the original data in
an end-to-end fashion. The augmentation function can be
designed specifically for any variations that challenge the
3D face reconstruction problem to impose different types of
invariances on the representations predicted by our model.
Differentiable Renderer. We enable self-supervised train-
ing of our model without requiring the training pairs by
employing a differentiable rendering module in which a
2D image is rendered from the refined 3D face estimated
by the network. To project the estimated 3D face to a 2D
face image, we adopt a differentiable rasterizer based on
a deferred shading model. Per-vertex attributes, e.g., col-
ors and normals, are computed by linear interpolation at
the pixels using barycentric coordinates and triangle vertex
indices. The vertex normal is calculated as the average of
surrounding triangle normals [30].

The projected face albedo is first obtained using the
shape, the refined texture and the pose, 𝜌 ∈ ℝ6, predicted
by the Coarse Model. Then, the final rendered image is
generated by illuminating the face mesh with the estimated
lighting parameters 𝛾 ∈ ℝ27 predicted by the CNN-based

regressor in our Coarse Model. By projecting the face mesh
to a 2D image, we are able to compute our loss function
based on the differences between the input image and the
rendered one in both image-level and perception level.
3.2.4. Loss Functions

The proposed model is trained without any 3D ground
truth labels. We propose a self-supervision scheme that
uses losses in both image-level (photometric loss) and
perception-level (identity and attribute-aware losses) in con-
junction with their robustified version. The robustified losses
further improve the robustness of the model to occlusions,
large poses and other challenging appearance variations such
as heavy make-up and shadow. It is defined as the weighted
sum of the following four terms:

𝐿 = 𝛼𝑝ℎ𝑜𝑡𝑜𝐿𝑝ℎ𝑜𝑡𝑜 + 𝛼𝑖𝑑𝐿𝑖𝑑 + 𝛼𝑎𝑡𝑡𝐿𝑎𝑡𝑡 + 𝛼𝑟𝑜𝑏𝐿𝑟𝑜𝑏, (5)
where the balancing weights are empirically set to 𝛼𝑝ℎ𝑜𝑡𝑜 =
1, 𝛼𝑖𝑑 = 0.2, 𝛼𝑎𝑡𝑡 = 0.005, and 𝛼𝑟𝑜𝑏 = 0.001, in all our
experiments.
Photometric Loss. As the main objective of the network
is to reconstruct faces with high fidelity, we enforce the
model to minimize the differences between the original input
image and the rendered image obtained by the differentiable
rendering layer. During the loss computation, we exclude the
occluded regions, using a binary mask 𝑀 , in order to miti-
gate the adverse impact of occlusions in in-the-wild images.
This mask is acquired by a pre-trained face segmentation
network [48]. Thus, the pixel-wise photometric loss between
the input image 𝐼 and the rendered on 𝐼𝑅 is defined as:

𝐿𝐼,𝐼𝑅
𝑝ℎ𝑜𝑡𝑜 =

∑

𝑀
⨀

‖

‖

𝐼 − 𝐼𝑅‖
‖2

∑

𝑀
, (6)

where ⨀ is the element-wise product. This loss term, which
has been extensively used in the literature, is effective in
supporting other loss terms with fine-grained texture. This
is because it is calculated on the highest available resolution
while images need to be down-sampled during the calcula-
tion of other losses as will be discussed later.

While this masking strategy is effective, it ignores the
occluded areas, making their reconstruction difficult. How-
ever, the proposed self augmentation scheme introduced in
Section 3.2.3 enables the recovery of face textures even
under occlusions.
Identity Loss. Applying the pixel-level loss to measure
image discrepancy can generally generate plausible results.
However, it can fool the network to reconstruct faces that
match closely at the pixel level but look unnatural and have
smooth textures. In order to have a robust prediction of
recognizable 3D faces, we propose to use a perception-level
loss at the face feature level to further guide the training. By
leveraging identity loss, we not only encourage the pixels
of the rendered image to exactly match the pixels of the
input, but we also force them to have similar identity feature
representations. In this work, we employ FaceNet [1] as
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our deep identity-related feature extractor. More specifically,
given a pre-trained FaceNet face recognition network, we
capture the deep features of the input image and the rendered
image from a subset of the network layers, and define the loss
in terms of the cosine distance between them, i.e.,:

𝐿𝐼,𝐼𝑅
𝑖𝑑 = 1 −

𝐹 (𝐼)𝐹 (𝐼𝑅)
‖

‖

𝐹 (𝐼)‖
‖2

‖

‖

𝐹 (𝐼𝑅)‖
‖2

. (7)

Here, 𝐹 (.) denotes the deep feature encoding. Identity loss
helps to learn the facial identity without being influenced by
appearance factors such as facial expressions, poses, lighting
and occlusions.
Face Attribute-aware loss. Identity features are typically
extracted using face recognition networks trained to discard,
throughout the convolutional layers, face attributes such as
age, pose, facial expressions, and illumination. To capture
some of the informative mid-level features that are useful for
3D face reconstruction, Gecer et al. [23] proposed to lever-
age intermediate representations by minimizing the distance
of intermediate activations (extracted from a pre-trained face
recognition network) of the input and the rendered image.
However, it is not clear which layer exactly represents those
specific attribute-related features. To address this issue, we
devise a novel loss term, named face attribute-aware loss,
that enforces the closeness between the input image and the
reconstructed one in terms of face-related attributes. It is
defined as:

𝐿𝐼,𝐼𝑅
𝑎𝑡𝑡 = ‖

‖

𝐹 (𝐼) − 𝐹 (𝐼𝑅)‖
‖2 . (8)

Here, 𝐹 (.) denotes the extracted attribute features.
Robustified loss. We further improve our perceptual loss,
i.e., the identity loss and the face attribute-aware loss, using
an additional perceptual loss on the rendered images, 𝐼𝑅,
with multiple random poses for each face. Adding perceptual
loss with random projections ensures that our reconstructed
face resembles the target in terms of identity and attribute
under various viewpoints. Also, to make the model more
robust to diverse variations, e.g., large occlusions, we also
use the perceptual loss on synthetically rendered images
with occlusions as we realized that robust reconstruction
of recognizable faces can be facilitated by applying such
robustified perceptual losses. The rationale behind this is
that the face identity and face attributes should be consistent
across one’s different images under various viewing condi-
tions, e.g., occlusions and different poses. In summary, the
robustified loss is defined as:

𝐿𝐼,𝐼𝑅
𝑟𝑜𝑏 = 𝐿𝐼,𝐼𝑅

𝑖𝑑 + 𝐿𝐼,𝐼𝑅
𝑎𝑡𝑡 . (9)

Here, 𝐿𝐼,𝐼𝑅
𝑖𝑑 and 𝐿𝐼,𝐼𝑅

𝑎𝑡𝑡 are identity loss and attribute-aware
loss computed between the input image 𝐼 and the rendered
image under randomly taken views or synthetic occlusions
𝐼𝑅.

4. Experimental Results
We evaluate the proposed model qualitatively and quan-

titatively on CelebA [49] and AFLW2000 [17] datasets
and thoroughly compare our results with state-of-the-art
3D face reconstruction methods, namely MoFa [15], PRNet
[16], Deep 3D Face Reconstruction [32], Nonlinear face
reconstruction [21], RingNet [35], FML [37], MGCNet [26],
INORig [27], GANfit [23], DF2Net [29], DECA [42], the
methods of Tewari et al. [34], Egger et al. [39] and Lin et al.
[14].
4.1. Implementation Details

We trained the proposed model using CelebA dataset
[49], which contains more than 200K celebrity images. The
training images were aligned following the method of [50],
segmented by the pre-trained model of [48] and resized to
224×224 before being fed to the model. During the training
process, we used Adam optimizer with the initial learning
rate of 10−4 and a learning rate decay of 0.9, batch size of
16 and around 200K total iterations. Any 3DMM coefficient
regressor could potentially be used to reconstruct a coarse
3D face (See Section 3.1). Our choice of using Deep3DDM
[32] is motivated by its ability to generate a plausible coarse
3D face from unconstrained images. All experiments were
performed on a PC with Intel Core i9 CPU at 3.7 GHz and a
NVIDIA GeForce RTX 2080 Ti GPU.
4.2. Qualitative Comparison

We qualitatively evaluated and compared our method
against the most recent face reconstruction methods. Per-
formance evaluation was carried out on a subset of unseen
images from CelebA dataset and AFLW2000 dataset [17].
We use the publicly available implementations of [16, 32,
21, 35, 26, 27, 29, 14, 42] to report their results and for
the methods of [23, 37, 15, 34, 39], their authors provided
us with the qualitative results on a subset of test set as the
corresponding source codes were not publicly available.

Fig. 2 shows the superiority of our proposed method
in its ability to reconstruct high-quality photo-realistic face
textures even under challenging viewing conditions, e.g.,
extreme lighting and shadows. The third row in this figure
shows the results of [14] which appears to be sensitive
to viewing conditions (e.g., occlusions and lighting) and
cannot extract fine textures in the presence of shadows and
occlusions. This is due to the fact that it employs the exact
values of the input face during the refinement step. Tran et
al. [21] proposed to learn additional proxies as a means to
avoid strong regularization. However, their non-linear model
is still not able to reconstruct plausible faces as it was trained
on 300W-LP dataset, which was generated using a linear
3DMM. The weakly supervised method of Deng et al. [32]
is able to recover a basic shape and texture. However, facial
details such as those in eyes and skin texture (lentigo) are not
faithfully estimated. Also, in general, the reconstructed face
lacks realism specifically in terms of face expressions. These
results also show how this method is limited when dealing
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Figure 2: Qualitative comparison with [14, 21, 32, 34, 15,
23, 27, 26, 37] on AFLW2000 dataset. Extreme illumination
conditions harm the estimation of 3D faces in some of these
methods.

with in-the-wild textures, since the model is still restricted
to the linear subspace.

The method of INORig [27] was developed for multi-
view face reconstruction. Since only one view (image) is
available for monocular face reconstruction, we horizontally
flip it to generate the second input image before feeding
both images to the trained model. Because the model is
trained with synthetic images, it cannot generalize well when
applied to in-the-wild images, resulting in texture artifacts
(9th row). Although the monocular reconstruction works by
Tewari et al. [34, 15] used end-to-end training on in-the-wild
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Figure 3: Comparison with PRNet [16], DF2Net [29], RingNet
[35], INORig [27], MGCNet [26], FML [37], MOFA [15],
GANfit [23], DECA [42], the methods of Lin et al. [14],
Tewari et al. [34], and Egger et al. [39] on AFLW2000.
Extreme head poses and severe occlusions adversely impact
the reconstruction quality of these methods.
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Figure 4: Qualitative comparison with PRNet [16], DF2Net
[29], RingNet [35], INORig [27], MGCNet [26], FML [37],
MOFA [15], GANfit [23], DECA [42], the methods of Lin et al.
[14], and Egger et al. [39] on CelebA dataset under challenging
viewing conditions.

images, it is still not able to faithfully reconstruct the identity,
skin tone, and lighting in challenging viewing conditions
(6th and 7th rows). Its improved version [37], which uses
multi-view supervision during training, also fails to capture
adequate facial details and identity for monocular recon-
struction. MGCNet [26] and GANFIT [23] reconstructions

are also limited by the use of a pretrained 3DMM model and
hence result in less detailed texture than our model which
leverages fine-scale correction to add more details to the
coarse–scale linear model. More specifically, the proposed
method is seen to predict coloration and skin tone more
faithfully. As a result, it can handle different ethnicities,
genders, and scene conditions, and produce high quality
reconstructions that look more realistic.

Figs. 3 and 4, show our model’s ability to reconstruct
fine texture details from faces under challenging appearance
variations. We compared the performance of our method
with recent state-of-the-art methods on AFLW2000 and
CelebA datasets by reporting the reconstructed 3D meshes
visualized using MeshLab. Reconstructions in the presence
of extreme poses, occlusions (e.g., glasses) and heavy make-
up (Figs. 3 and 4) is particularly challenging for techniques,
that directly employ RGB values of the input face image
to reconstruct face textures [14, 16, 29, 35]. In contrast,
by extracting rich face-related features, our model is able
to faithfully reconstruct all facial areas including regions
hidden by strong occlusions or head rotations.

By incorporating the multi-view consistency from ge-
ometry, pixel, and depth, MGCNet [26] achieves plausible
face reconstructions. However, its limitations can still be
observed on reconstructed expressions (mouth shapes) and
also on recovered face textures for occluded areas. PRNet
[16] predicts unconstrained faces by regressing a 2D rep-
resentation, i.e. UV position maps, in a supervised fashion.
However, it has difficulty in reconstructing hidden regions as
well as fine texture details because of the smoothing effect
of the image-to-UV position mapping. DECA [42] is tolerant
to common noise and occlusions exist in its training dataset
and fails to recover unobserved area in extreme occlusions,
head pose and lighting. The 3DMM-based method of [39]
is limited by the 3DMM texture model and only captures
low-frequency details. This method also has difficulties in
handling extreme viewing conditions such as wearing face
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t

Figure 5: Reconstruction results from corrupted faces. Our
model is robust to change in occlusion (b) and noise (c) in
comparison with [14].
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Figure 6: 3D face reconstruction for a single subject under
different viewing conditions. Our proposed method is robust to
various view-points and occlusions in comparison with PRNet
[16] and is able to reconstruct all facial areas including the
unobserved region.

mask (3rd column in Fig. 4) and heavy make-up (5th column
in Fig. 4). As shown in Figs. 3 and 4, our method outperforms
all other methods even in the presence of large poses, (self-)
occlusions and heavy make-up.

We further evaluate qualitatively the robustness of the
proposed method to diverse variations by conducting an
experiment that reconstructs 3D faces from synthetically
corrupted images (See Fig. 5). To better understand the
superiority of our method, we compare our results with those
of Lin et al. [14]. As shown in Fig. 5, [14] cannot recover
plausible face textures from faces with challenging viewing
conditions. However, our model, which employs a rich face
representation describing face attributes and identity as the
input for the texture refiner, is robust to noise and extreme
occlusions. In addition, Fig. 6, qualitatively demonstrates
this robustness in compariosn with [16] by varying extreme
conditions (various viewpoints and occlusions) for a single
subject and displaying consistent outputs for our model. This
robustness is mainly due to the invariance of the extracted
high-level discriminative features to pixel-level information.

We also evaluate our approach on a set of images with
challenging expressions, which often cause wrinkles and
folds in the face; see Fig. 7. As can be seen in this figure,
by applying the Fine Model to the initial coarse 3D face, our
model is able to nicely recover the subtle texture details such
as small crow’s feet, wrinkles, and folds.
4.3. Quantitative Comparison

To conduct a quantitative analysis, we compute the
metrics on rendered 2D images due to the lack of 3D
ground truth data. Specifically, we calculate Peak Signal-to-
Noise Ratio (PSNR) and Structural Similarity Index (SSIM),
which measures the similarity between an input image and
the projected image from 3D face mesh. To better understand
the power of our model to reconstruct with high fidelity
faces in challenging viewing conditions, e.g., in the presence
of occlusions, we evaluate our method on synthetically
occluded images of CelebA and AFLW2000 in which the
non-occluded face images are available as the reference.

Table 1
Quantitative comparison results on CelebA and AFLW2000.
The results of [32], [14], [16], [26] and [27] are obtained using
the original implementations provided by the authors. Best
results in bold.

Dataset Method

Quality Metrics ID Similarity

PSNR SSIM FaceNet LightCNN EvoLVe

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

CelebA

[32] 22.47 2.239 0.826 0.035 0.890 0.034 0.51 0.146 0.32 0.14

[14] 18.59 2.582 0.817 0.035 0.953 0.026 0.48 0.174 0.39 0.19

[16] 17.96 2.51 0.802 0.037 0.903 0.031 0.515 0.14 0.35 0.17

[26] 18.86 2.47 0.79 0.041 0.893 0.029 0.49 0.154 0.35 0.149

[27] 17.88 2.45 0.77 0.037 0.88 0.034 0.508 0.133 0.341 0.178

Ours 23.27 2.38 0.846 0.034 0.938 0.017 0.56 0.126 0.40 0.14

AFLW2K

[32] 23.21 2.769 0.856 0.034 0.908 0.029 0.63 0.130 0.42 0.15

[14] 19.02 3.147 0.844 0.025 0.955 0.020 0.60 0.159 0.44 0.18

[16] 18.08 2.80 0.811 0.025 0.913 0.025 0.61 0.151 0.32 0.15

[26] 18.36 2.84 0.809 0.033 0.941 0.024 0.607 0.134 0.38 0.17

[27] 17.74 2.65 0.79 0.029 0.901 0.028 0.61 0.158 0.38 0.18

Ours 23.84 2.581 0.871 0.024 0.933 0.022 0.65 0.124 0.44 0.14

Higher PSNR and SSIM reported in Table 1 indicate that our
reconstructed faces are closer to the input images in pixel-
level and are more consistent from person to person with less
standard deviation compared to other methods.

In order to evaluate the recognizability of the faces
reconstructed with our approach, we employ a set of face
recognition features as a measure of similarity. In particular,
for each face image, we compute the cosine similarity of the
layers of FaceNet between the input image and the rendered
one. In order to avoid bias in evaluating the perceptual
likeness, two other pre-trained face recognition networks,
i.e., LightCNN [51] and EvoLVe [52], have been employed
to extract discriminative perceptual face representations.
The results in Table 1 indicate that our model has the most
identity-preserving ability, thanks to applying the robustified
perception-level loss.
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Figure 7: Illustration of the model’s performance under various
expressions by overlaying the reconstructions on the input
images. Our method can generate high fidelity reconstructions
under large variations of expression.
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Figure 8: Illustration of the effects of employing Face Attribute
Features in our Fine Model. The reconstructed textures in our
full model are very good at capturing high frequency details in
eyes, noses and lips.

4.4. Ablation Study
We perform an ablation study on CelebA dataset by

evaluating several variants of our model. To explore how the
performance is affected by each factor, we train our model
with various combinations of components or loss terms and
report the obtained qualitative and quantitative results.

Fig. 8 demonstrates the effect of leveraging face attribute
features in our Fine Model. We found that employing such
features helps to reduce artifacts by providing smoother
surfaces but still allowing high frequency details to be pre-
served. The reconstructed textures in our full model are very
good at capturing high frequency details in eyes, noses and
lips (Fig. 8 (a), (b) and (e)), with sharp edges. Removing this
set of features results in discontinuities and artifacts in those
parts. Moreover, the attribute preserving power of our full
model can be seen in Fig. 8 (c) and (d) in which the languish-
ing eyes and mustaches are faithfully reconstructed and look
more realistic thanks to employing a set of discriminative
attribute-aware features in our Feature-wise Refiner.

We also demonstrate the influence of our self-augmentation
technique by switching off the self-augmentation module
and evaluating qualitatively the performance of the ablated
model. Fig. 9(a) shows visual comparisons between our
full model and its variant, i.e., ours without applying self-
augmentation technique in the Fine Model. To better un-
derstand the effect of this module in generating plausible
estimates for the parts that are completely hidden from
camera, we specifically demonstrate the reconstructed 3D

Table 2
Contributions of the components of the proposed approach
on CelebA dataset (Higher is better). SA refers to Self-
Augmentation and FA refers to Face Attribute.

PSNR SSIM ID Similarity

FaceNet LightCNN EvoLVe

𝐿𝑝ℎ𝑜𝑡𝑜 + 𝐿𝑖𝑑 22.78 0.831 0.918 0.539 0.3685

𝐿𝑝ℎ𝑜𝑡𝑜 + 𝐿𝑖𝑑 + 𝐿𝑎𝑡𝑡 22.91 0.837 0.9221 0.550 0.376

𝐿𝑝ℎ𝑜𝑡𝑜 + 𝐿𝑖𝑑 + 𝐿𝑎𝑡𝑡 + 𝐿𝑟𝑜𝑏 23.27 0.846 0.938 0.56 0.3956

Full model w/o SA module 21.19 0.805 0.912 0.55 0.374

Full model w/o FA features 20.14 0.810 0.925 0.517 0.380

meshes in unobserved regions of faces viewed under out-
of-plane rotation. It can be seen from Fig. 9(a) that our
self-augmentation module helps to generate plausible and
naturally looking facial details for unobserved facial re-
gions and leads to improved reconstruction quality. More
specifically, Fig. 9(b) shows the effect of using synthetically
occluded rendered images in our self-augmentation module.
We observe that the ablated model fails to recover the regions
hidden by occlusions, for example, the hair-covered forehead
and eyebrows.

To explore how individual terms of our loss function
affect the overall performance, we start training our model
by the photometric loss and identity loss and then add other
terms one by one and compute the aforementioned metrics
for each variant. Table 2 reports the quantitative results for
each variant. One can note that each of the loss function
terms contributes towards an improved reconstruction qual-
ity. As expected, our novel loss terms, i.e., face attribute-
aware loss, 𝐿𝑎𝑡𝑡 and robustified loss, and 𝐿𝑟𝑜𝑏, are effec-
tive in improving the performance. However, 𝐿𝑟𝑜𝑏 appears
to have more contribution than the others in boosting the
performance especially in terms of system’s recognizability
as measured by identity similarity. We also quantitatively

Input Inputw/o S.A Full model w/o Occ. 

Aug part

Full model

(a)
Input Inputw/o S.A Full model w/o Occ. Full model

(b)

Figure 9: Illustration of the benefits of applying Self-
augmentation technique in our Fine Model. Our full model
obtains higher reconstruction quality and provides robustness
to occlusions and strong head rotation. SA refers to Self-
Augmentation and Occ. refers to Occlusion.
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evaluated the importance of the Self Augmentation (SA)
module as well as that of employing Face Attribute (FA)
features in our model. The obtained results (reported in
Table 2) indicate that the highest similarity (in terms of
PSNR, SSIM and ID similarities) is achieved by the full
model.

5. Conclusions and Future Work
In this paper, we propose a fully unsupervised method

for 3D face reconstruction. Delicate facial textures, which
are difficult to represent by a 3DMM, are reconstructed
by applying a novel Fine Model to the initial coarse 3D
face. To supervise and facilitate the training, we employ a
set of effective self-supervised loss functions for efficient
end-to-end training of the architecture on a large corpus
of in-the-wild face images. The qualitative and quantitative
experiments on two challenging face datasets indicate that,
compared to existing methods, the proposed approach is
robust to viewing conditions and is able to reconstruct higher
fidelity 3D faces without the need for any annotated ground
truth. We have also tackled diverse appearance variations,
e.g., wearing heavy make-up or glasses. As shown in the
qualitative results, our model has the ablity to successfully
remove the make-up, which makes it ideal for biometric
applications that require make-up-invariant face verification.
However, in some applications such as Augmented/Virtual
Reality (AR/VR), to have a much more immersive AR/VR
experience, or first-person experience in general, we need
to reconstruct the person’s face with its current appearance.
Therefore, completely removing the make-up or glasses in
such applications would deteriorate the immersive experi-
ence. Future work should focus on recognizing such varia-
tions and trying to reconstruct them on top of the initially
reconstructed face. This suggests the need for an intelligent
approach to properly model such variations.

Acknowledgement
This work is supported by ARC DP210101682. We

thank authors who made their source codes publicly avail-
able or provided us with their results and made the compre-
hensive comparison possible.

References
[1] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A

unified embedding for face recognition and clustering. In Proceedings
of the IEEE conference on computer vision and pattern recognition,
pages 815–823, 2015.

[2] Kaidi Cao, Yu Rong, Cheng Li, Xiaoou Tang, and Chen Change Loy.
Pose-robust face recognition via deep residual equivariant mapping.
In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5187–5196, 2018.

[3] Feng Liu, Ronghang Zhu, Dan Zeng, Qijun Zhao, and Xiaoming Liu.
Disentangling features in 3d face shapes for joint face reconstruction
and recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 5216–5225, 2018.

[4] Jian Zhao, Lin Xiong, Jianshu Li, Junliang Xing, Shuicheng Yan,
and Jiashi Feng. 3d-aided dual-agent gans for unconstrained face

recognition. IEEE transactions on pattern analysis and machine
intelligence, 41(10):2380–2394, 2018.

[5] Jie Liang, Huan Tu, Feng Liu, Qijun Zhao, and Anil K Jain. 3d
face reconstruction from mugshots: Application to arbitrary view face
recognition. Neurocomputing, 410:12–27, 2020.

[6] Justus Thies, Michael Zollhofer, Marc Stamminger, Christian
Theobalt, and Matthias Nießner. Face2face: Real-time face capture
and reenactment of rgb videos. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2387–2395, 2016.

[7] Roger Blanco i Ribera, Eduard Zell, John P Lewis, Junyong Noh,
and Mario Botsch. Facial retargeting with automatic range of motion
alignment. ACM Transactions on graphics (TOG), 36(4):1–12, 2017.

[8] Sofien Bouaziz, Yangang Wang, and Mark Pauly. Online modeling
for realtime facial animation. ACM Transactions on Graphics (ToG),
32(4):1–10, 2013.

[9] Elad Richardson, Matan Sela, and Ron Kimmel. 3d face reconstruc-
tion by learning from synthetic data. In 2016 fourth international
conference on 3D vision (3DV), pages 460–469. IEEE, 2016.

[10] Elad Richardson, Matan Sela, Roy Or-El, and Ron Kimmel. Learning
detailed face reconstruction from a single image. In Proceedings
of the IEEE conference on computer vision and pattern recognition,
pages 1259–1268, 2017.

[11] Pengfei Dou, Shishir K Shah, and Ioannis A Kakadiaris. End-to-end
3d face reconstruction with deep neural networks. In proceedings
of the IEEE conference on computer vision and pattern recognition,
pages 5908–5917, 2017.

[12] Aaron S Jackson, Adrian Bulat, Vasileios Argyriou, and Georgios
Tzimiropoulos. Large pose 3d face reconstruction from a single image
via direct volumetric cnn regression. In Proceedings of the IEEE
international conference on computer vision, pages 1031–1039, 2017.

[13] Anh Tuan Tran, Tal Hassner, Iacopo Masi, and Gérard Medioni.
Regressing robust and discriminative 3d morphable models with a
very deep neural network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5163–5172, 2017.

[14] Jiangke Lin, Yi Yuan, Tianjia Shao, and Kun Zhou. Towards high-
fidelity 3d face reconstruction from in-the-wild images using graph
convolutional networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5891–5900,
2020.

[15] Ayush Tewari, Michael Zollhofer, Hyeongwoo Kim, Pablo Garrido,
Florian Bernard, Patrick Perez, and Christian Theobalt. Mofa:
Model-based deep convolutional face autoencoder for unsupervised
monocular reconstruction. In Proceedings of the IEEE International
Conference on Computer Vision Workshops, pages 1274–1283, 2017.

[16] Yao Feng, Fan Wu, Xiaohu Shao, Yanfeng Wang, and Xi Zhou.
Joint 3d face reconstruction and dense alignment with position map
regression network. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 534–551, 2018.

[17] Xiangyu Zhu, Zhen Lei, Xiaoming Liu, Hailin Shi, and Stan Z Li.
Face alignment across large poses: A 3d solution. In Proceedings
of the IEEE conference on computer vision and pattern recognition,
pages 146–155, 2016.

[18] Amin Jourabloo and Xiaoming Liu. Large-pose face alignment via
cnn-based dense 3d model fitting. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 4188–
4196, 2016.

[19] Michael Zollhöfer, Justus Thies, Pablo Garrido, Derek Bradley, Thabo
Beeler, Patrick Pérez, Marc Stamminger, Matthias Nießner, and
Christian Theobalt. State of the art on monocular 3d face recon-
struction, tracking, and applications. In Computer Graphics Forum,
volume 37, pages 523–550. Wiley Online Library, 2018.

[20] Volker Blanz and Thomas Vetter. A morphable model for the
synthesis of 3d faces. In Proceedings of the 26th annual conference on
Computer graphics and interactive techniques, pages 187–194, 1999.

[21] Luan Tran, Feng Liu, and Xiaoming Liu. Towards high-fidelity
nonlinear 3d face morphable model. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages
1126–1135, 2019.

Hoda Mohaghegh et al.: Preprint submitted to Elsevier Page 12 of 14



Robust Monocular 3D Face Reconstruction

[22] Matan Sela, Elad Richardson, and Ron Kimmel. Unrestricted facial
geometry reconstruction using image-to-image translation. In Pro-
ceedings of the IEEE International Conference on Computer Vision,
pages 1576–1585, 2017.

[23] Baris Gecer, Stylianos Ploumpis, Irene Kotsia, and Stefanos
Zafeiriou. Ganfit: Generative adversarial network fitting for high
fidelity 3d face reconstruction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages
1155–1164, 2019.

[24] Baris Gecer, Stylianos Ploumpis, Irene Kotsia, and Stefanos
Zafeiriou. Fast-ganfit: Generative adversarial network for high fidelity
3d face reconstruction. arXiv preprint arXiv:2105.07474, 2021.

[25] Jiankang Deng, Shiyang Cheng, Niannan Xue, Yuxiang Zhou, and
Stefanos Zafeiriou. Uv-gan: Adversarial facial uv map completion
for pose-invariant face recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 7093–
7102, 2018.

[26] Jiaxiang Shang, Tianwei Shen, Shiwei Li, Lei Zhou, Mingmin Zhen,
Tian Fang, and Long Quan. Self-supervised monocular 3d face re-
construction by occlusion-aware multi-view geometry consistency. In
Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XV 16, pages 53–70.
Springer, 2020.

[27] Ziqian Bai, Zhaopeng Cui, Xiaoming Liu, and Ping Tan. Riggable 3d
face reconstruction via in-network optimization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 6216–6225, 2021.

[28] Soumyadip Sengupta, Angjoo Kanazawa, Carlos D Castillo, and
David W Jacobs. Sfsnet: Learning shape, reflectance and illuminance
of facesin the wild’. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 6296–6305, 2018.

[29] Xiaoxing Zeng, Xiaojiang Peng, and Yu Qiao. Df2net: A dense-fine-
finer network for detailed 3d face reconstruction. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages
2315–2324, 2019.

[30] Kyle Genova, Forrester Cole, Aaron Maschinot, Aaron Sarna, Daniel
Vlasic, and William T Freeman. Unsupervised training for 3d mor-
phable model regression. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 8377–8386, 2018.

[31] Xiaoguang Tu, Jian Zhao, Mei Xie, Zihang Jiang, Akshaya Balamu-
rugan, Yao Luo, Yang Zhao, Lingxiao He, Zheng Ma, and Jiashi Feng.
3d face reconstruction from a single image assisted by 2d face images
in the wild. IEEE Transactions on Multimedia, 2020.

[32] Yu Deng, Jiaolong Yang, Sicheng Xu, Dong Chen, Yunde Jia, and
Xin Tong. Accurate 3d face reconstruction with weakly-supervised
learning: From single image to image set. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, pages 0–0, 2019.

[33] Anil Bas, Patrik Huber, William AP Smith, Muhammad Awais, and
Josef Kittler. 3d morphable models as spatial transformer networks.
In Proceedings of the IEEE International Conference on Computer
Vision Workshops, pages 904–912, 2017.

[34] Ayush Tewari, Michael Zollhöfer, Pablo Garrido, Florian Bernard,
Hyeongwoo Kim, Patrick Pérez, and Christian Theobalt. Self-
supervised multi-level face model learning for monocular reconstruc-
tion at over 250 hz. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2549–2559, 2018.

[35] Soubhik Sanyal, Timo Bolkart, Haiwen Feng, and Michael J Black.
Learning to regress 3d face shape and expression from an image
without 3d supervision. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7763–7772,
2019.

[36] Jian Zhang, Ke Li, Yun Liang, and Na Li. Learning 3d faces from 2d
images via stacked contractive autoencoder. Neurocomputing, 257:
67–78, 2017.

[37] Ayush Tewari, Florian Bernard, Pablo Garrido, Gaurav Bharaj, Mo-
hamed Elgharib, Hans-Peter Seidel, Patrick Pérez, Michael Zollhofer,
and Christian Theobalt. Fml: Face model learning from videos. In

Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10812–10822, 2019.

[38] Bernhard Egger, Andreas Schneider, Clemens Blumer, Andreas
Forster, Sandro Schönborn, and Thomas Vetter. Occlusion-aware 3d
morphable face models. In BMVC, volume 2, page 4, 2016.

[39] Bernhard Egger, Sandro Schönborn, Andreas Schneider, Adam Ko-
rtylewski, Andreas Morel-Forster, Clemens Blumer, and Thomas
Vetter. Occlusion-aware 3d morphable models and an illumination
prior for face image analysis. International Journal of Computer
Vision, 126(12):1269–1287, 2018.

[40] Chunlu Li, Andreas Morel-Forster, Thomas Vetter, Bernhard Egger,
and Adam Kortylewski. To fit or not to fit: Model-based face
reconstruction and occlusion segmentation from weak supervision.
arXiv preprint arXiv:2106.09614, 2021.

[41] Hitika Tiwari, Min-Hung Chen, Yi-Min Tsai, Hsien-Kai Kuo, Hung-
Jen Chen, Kevin Jou, KS Venkatesh, and Yong-Sheng Chen. Self-
supervised robustifying guidance for monocular 3d face reconstruc-
tion. arXiv preprint arXiv:2112.14382, 2021.

[42] Yao Feng, Haiwen Feng, Michael J Black, and Timo Bolkart. Learn-
ing an animatable detailed 3d face model from in-the-wild images.
ACM Transactions on Graphics (ToG), 40(4):1–13, 2021.

[43] Chen Cao, Yanlin Weng, Shun Zhou, Yiying Tong, and Kun Zhou.
Facewarehouse: A 3d facial expression database for visual computing.
IEEE Transactions on Visualization and Computer Graphics, 20(3):
413–425, 2013.

[44] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Con-
volutional neural networks on graphs with fast localized spectral
filtering. arXiv preprint arXiv:1606.09375, 2016.

[45] Olivia Wiles, A Koepke, and Andrew Zisserman. Self-supervised
learning of a facial attribute embedding from video. arXiv preprint
arXiv:1808.06882, 2018.

[46] Baris Gecer, Binod Bhattarai, Josef Kittler, and Tae-Kyun Kim. Semi-
supervised adversarial learning to generate photorealistic face images
of new identities from 3d morphable model. In Proceedings of the
European conference on computer vision (ECCV), pages 217–234,
2018.

[47] Forrester Cole, David Belanger, Dilip Krishnan, Aaron Sarna, Inbar
Mosseri, and William T Freeman. Synthesizing normalized faces
from facial identity features. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3703–3712, 2017.

[48] Tianyang Shi, Yi Yuan, Changjie Fan, Zhengxia Zou, Zhenwei Shi,
and Yong Liu. Face-to-parameter translation for game character auto-
creation. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 161–170, 2019.

[49] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep
learning face attributes in the wild. In Proceedings of the IEEE
international conference on computer vision, pages 3730–3738, 2015.

[50] Dong Chen, Gang Hua, Fang Wen, and Jian Sun. Supervised trans-
former network for efficient face detection. In European Conference
on Computer Vision, pages 122–138. Springer, 2016.

[51] Xiang Wu, Ran He, Zhenan Sun, and Tieniu Tan. A light cnn for
deep face representation with noisy labels. IEEE Transactions on
Information Forensics and Security, 13(11):2884–2896, 2018.

[52] Jian Zhao, Jianshu Li, Xiaoguang Tu, Fang Zhao, Yuan Xin, Junliang
Xing, Hengzhu Liu, Shuicheng Yan, and Jiashi Feng. Multi-prototype
networks for unconstrained set-based face recognition. arXiv preprint
arXiv:1902.04755, 2019.

Hoda Mohaghegh received the B.Sc. and M.Sc.
degrees in Electrical Engineering from Isfahan
University of Technology, Isfahan, Iran, in 2012
and 2016, respectively. She is currently a PhD
candidate in the School of Computer Science and
Software Engineering, The University of Western
Australia. Her main research interests are in the
field of 2D and 3D image processing, computer
vision and machine learning with an emphasis on

Hoda Mohaghegh et al.: Preprint submitted to Elsevier Page 13 of 14



Robust Monocular 3D Face Reconstruction

monocular depth estimation and 3D reconstruc-
tion.

Faird Boussaid received the M.S. and Ph.D. de-
grees in microelectronics from the National Insti-
tute of Applied Science (INSA), Toulouse, France,
in 1996 and 1999 respectively. He joined Edith
Cowan University, Perth, Australia, as a Postdoc-
toral Research Fellow, and a Member of the Visual
Information Processing Research Group in 2000.
He joined the University of Western Australia,
Crawley, Australia, in 2005, where he is currently
a Professor. His current research interests include
neuromorphic engineering, smart sensors, and ma-
chine learning.

Hamid Laga received the PhD degrees in Computer
Science from Tokyo Institute of Technology in
2006. He is currently a Professor at Murdoch Uni-
versity (Australia). His research interests span var-
ious fields of machine learning, computer vision,
computer graphics, and pattern recognition, with a
special focus on the 3D reconstruction, modeling
and analysis of static and deformable 3D objects,
and on image analysis and big data in agriculture
and health. He is the recipient of the Best Paper
Awards at SGP2017, DICTA2012, and SMI2006

Hossein Rahmani received the BSc degree in com-
puter software engineering from Isfahan University
of Technology, Isfahan, Iran, in 2004, the MSc de-
gree in software engineering from Shahid Beheshti
University, Tehran, Iran in 2010, and the PhD
degree from the University of Western Australia,
in 2016. He has published several papers in top
conferences and journals such as CVPR, ICCV,
ECCV, and the IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence. He is currently an
associate professor (Senior Lecturer) in the School
of Computing and Communications at Lancaster
University. Before that he was a research fellow
in the School of Computer Science and Software
Engineering, University of Western Australia. His
research interests include computer vision, action
recognition, 3D shape analysis, and machine learn-
ing.

Mohammed Bennamoun is a Winthrop Professor
in the Department of Computer Science and Soft-
ware Engineering at the University of Western
Australia (UWA) and is a researcher in computer
vision, machine/deep learning, robotics, and sig-
nal/speech processing. He has published 4 books
(available on Amazon), 1 edited book, 1 Ency-
clopedia article, 14 book chapters, 180+ journal
papers, 260+ conference publications, 16 invited
and keynote publications. His h-index is 69 and his
number of citations is 21,470+ (Google Scholar).
He was awarded 70+ competitive research grants,
from the Australian Research Council, and nu-
merous other Government, UWA, and industry
Research Grants. He successfully supervised 35+
Ph.D. students to completion. He won the Best
Supervisor of the Year Award at Queensland Uni-
versity of Technology (1998) and received the

award for research supervision at UWA (2008 and
2016) and Vice-Chancellor Award for mentorship
(2016). He delivered conference tutorials at major
conferences, including IEEE CVPR 2016, Inter-
speech 2014, IEEE ICASSP, and ECCV. He was
also invited to give a Tutorial at an International
Summer School on Deep Learning (DeepLearn
2017).

Hoda Mohaghegh et al.: Preprint submitted to Elsevier Page 14 of 14


