Institution of MECHANICAL ENGINEERS

IMechE NW Power Industries

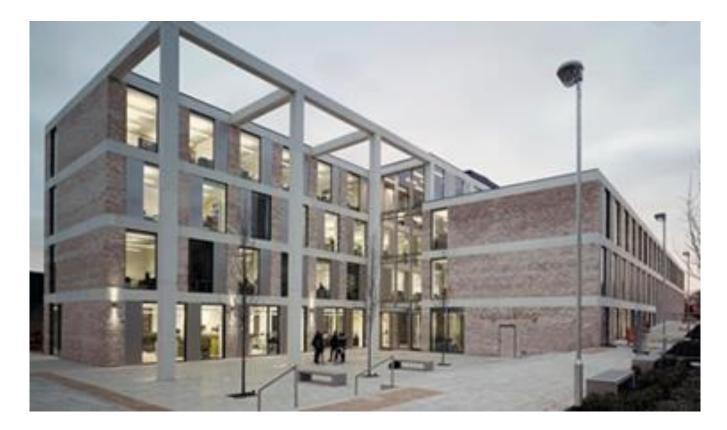
Tidal Range Energy Opportunity for the UK

EUR ING Professor George Aggidis FIMechE, FIMarEST, FEI, FIET

Head of Energy Engineering g.aggidis@lancaster.ac.uk

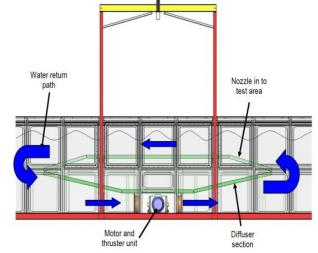
Tuesday 8th November 2022

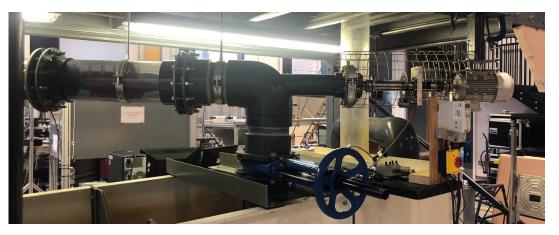
Questions

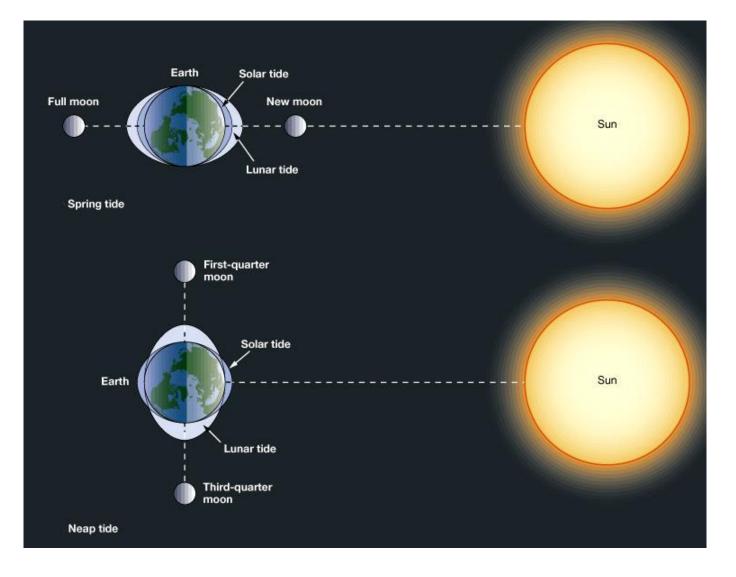

- 1. Which UK estuaries are suitable for tidal range schemes?
- 2. How much electricity can be generated using tidal range?
- 3. What are the costs of tidal range projects?
- 4. When could tidal range power be delivered?
- 5. Where should tidal range power sit in terms of UK generating options?

ENERGY - LUREG Research

- Research on Renewable Energy & Fluid Machinery
 - Generic & Applied
- Energy & Renewables
 - Computational & Experimental Modelling
 - Device Development & Power take off
 - Computational Fluid Dynamics & Control
 - Economics, Resource & Condition Monitoring
- Novel Topology Fluid Machinery & Turbines
 - Computational Fluid Dynamics, Turbine Design & Analysis
 - Direct Drive & In Line Turbines
 - Siphonic Low Head & Low Cost Turbine Research
 - Fluid Machinery reliability & Energy Efficiency
- Funded by EPSRC, Carbon Trust, EU, RDAs, Utilities and Industry

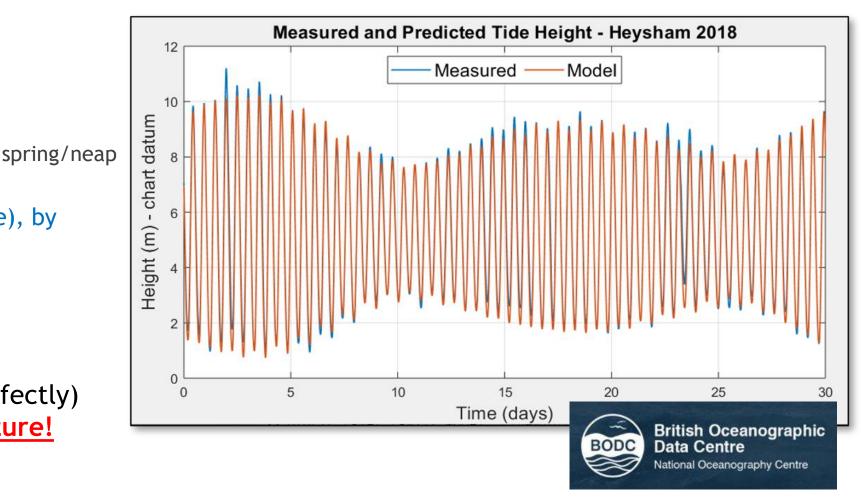

Lancaster University Engineering Building


ENERGY Research Facilities



Earth-Moon-Sun Gravity

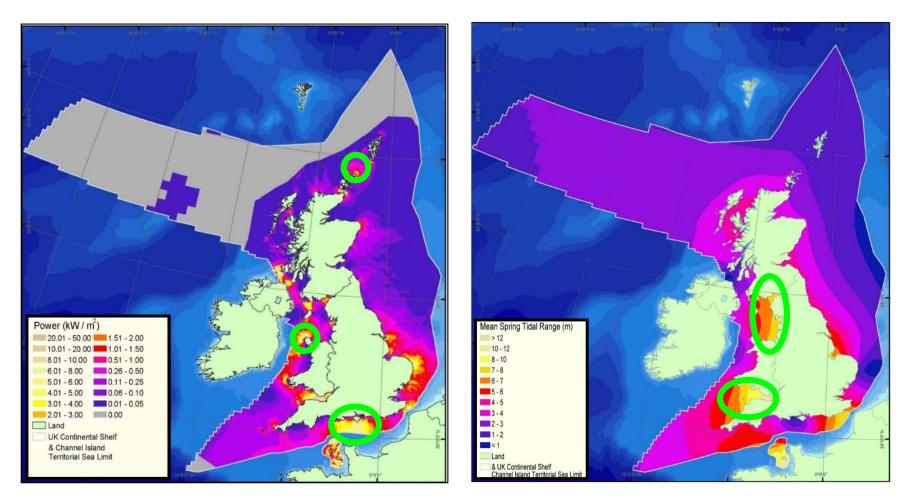
Tidal energy exploits the **natural ebb & flow** of coastal tidal waters caused principally by the interaction of the **gravitational fields of the earth, moon and sun.**


Tidal Range Power

Cyclical - modelled (red)

- Twice daily ebb/flood
- Monthly (lunar) cycles
- Seasonal cycles
- Modified show reality (blue), by
 - Atmospheric pressure
 - Wind
 - Climate change

Results are largely (but not perfectly) predictable <u>long into the future!</u>



Professor G A Aggidis

U.K. Tidal Resource

Tidal Stream

Tidal Range

Source – DTI Atlas of Marine Renewable Energy Resources

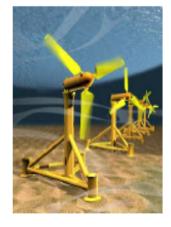
Professor G A Aggidis

Tidal Technologies



Both forms of energy (potential & kinetic) can be harvested by tidal energy technologies as renewable energy.

Increasing environmental impact


- Uni-directional operation.
- High axial flow speed.
- 50 metre downstream diffuser.
- High solidity rotor.
- Steady flow conditions.
- Deep cavitation submergence.

- Bi-directional operation.
- Low axial flow speed.
- Straight walled support structure.
- Twin low solidity rotors.
- Steady flow conditions.
- Modest cavitation submergence.

Decreasing power density

Waters, S. and Aggidis, G., 2016. Tidal range technologies and state of the art in review. *Renewable and Sustainable Energy Reviews*, *59*, pp.514-529.

- Bi-directional operation.
- Low axial flow speed.
- No enclosing support structure.
- Low solidity rotor.
- Unsteady flow conditions.
- Modest cavitation submergence.

Where else in the world?

- ► Europe
 - La Rance France's cheapest electricity 50-years operation to date 240 MW
- Canada
 - Annapolis decommissioned after 34-years operation
- S Korea
 - Sihwa 10-years operation to date

20 MW

254 MW

Professor G A Aggidis

UK's current generating capacity

Installed capacity	76.6 GW
Annual generation	308.7 TWh
Demand (consumption)	334.2 TWh
Import	28.7 TWh

Digest of United Kingdom Energy Statistics (DUKES)


https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1094628/DUKES_2022_Chapter_5.pdf

Approximate breakdown by source

Source	Percent
Gas	47.7
Wind	15.9
Nuclear	15.1
Biomass	6.2
Coal	0.9
Solar	7.2
Imports	4.5
Hydro	1.2
Storage	1.3

August 2022

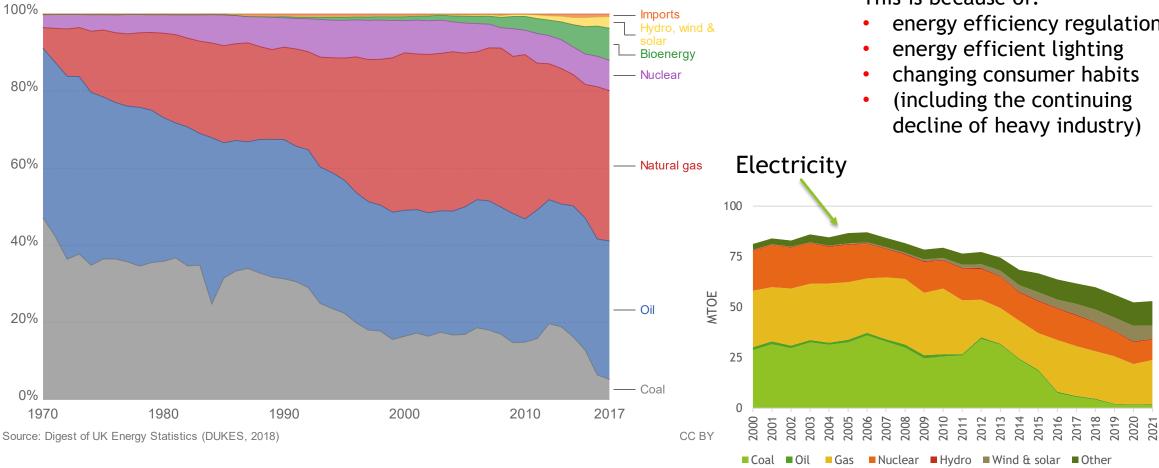
https://www.nationalgrideso.com/electricity-explained/electricityand-me/great-britains-monthly-electricity-stats

Primary energy mix in the United Kingdom

consumption, and does not include exported energy.

Primary energy mix in the United Kingdom, differentiated by energy source. This is based on domestic inland

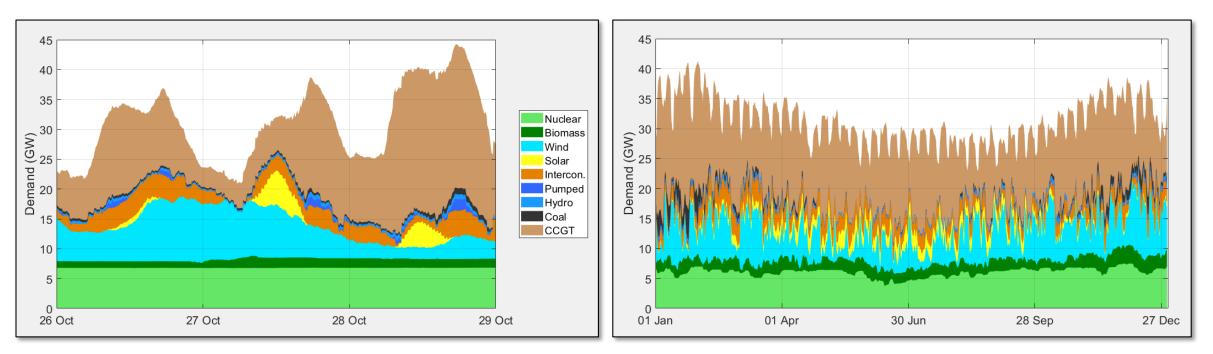
The past



All energy

Our electricity use has declined since the peak in 2005, despite population increase.

This is because of:


energy efficiency regulations

Professor G A Aggidis

UK Electricity supply mix (2019)

- > Nuclear and biomass provide baseload
- > Wind and solar are fully utilised when available
- Pumped storage used for peak demand
- > Interconnectors, hydro (~seasonal), coal and gas (CCGT) are used to satisfy the remaining demand
- > No sun and wind => compensate by burning gas
- > Installing more solar and wind capacity does not change this without an alternative approach

Lancaster

University

UKERC Energy 2050 (2009)

The project addressed two of the Government's toughest energy policy goals - delivering reliable energy to consumers while meeting its legal commitment to reduce CO_2 emissions by 80% by 2050. Conclusions:

- Decarbonise electricity totally by 2050
- Improve energy efficiency (i.e. reduce use)
- Change lifestyles
- Early action essential

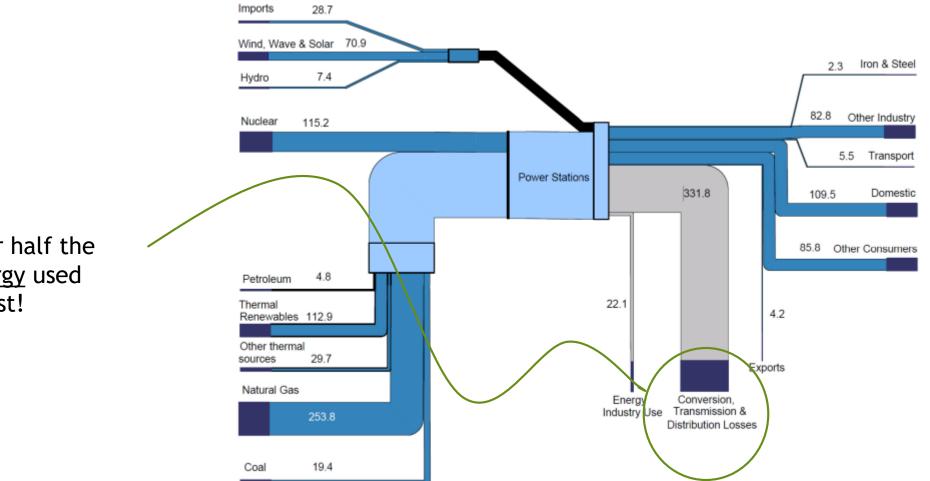
... which is now

- The bullets appear to be happening (i.e. action is taking place), link to decline in electricity use.
- There are other studies, this is just an example, but maybe research is having an effect and being listened to!

UKERC Energy 2050 (2009!) also said:

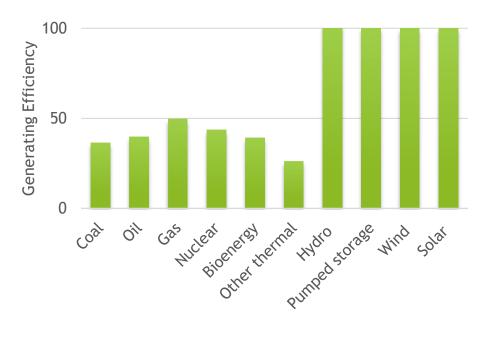
"Major gas shocks could have cost impacts measured in £billions, mainly through lost supplies to industrial consumers. More investment in gas storage or import facilities could mitigate these impacts"

Our gas storage facilities have shrunk!

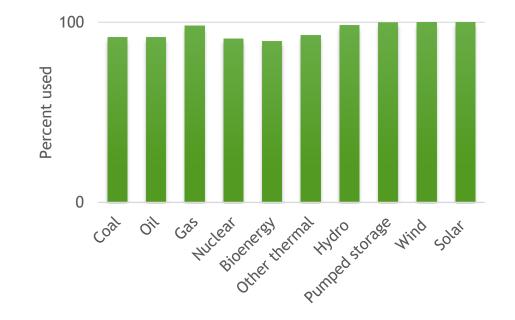


Government White Papers

- Continued and appropriate ambition
 - > Energy White Papers (2003, 2007 and 2020)
- Legislation and plans
 - > Climate Change Act (2008)
 - > Low Carbon Transition Plan (2009)
 - > Energy Bill (2012-13)
- > ...but still no serious consideration of tidal range


Over half the energy used is lost!

Digest of United Kingdom Energy Statistics (DUKES)

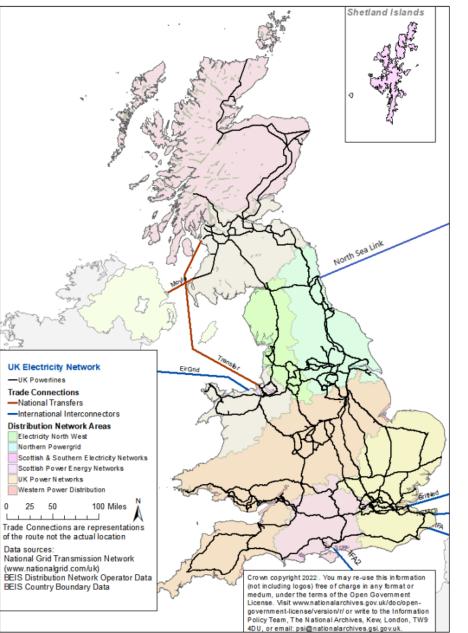


Losses

Thermal inefficiencies

Use it or lose it!

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1094460/DUKES_5.6.xlsx

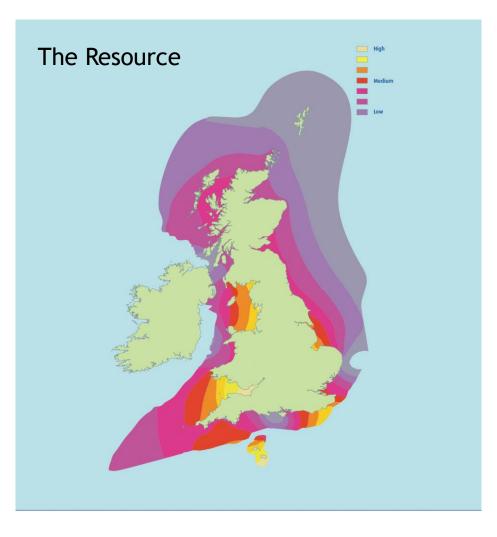


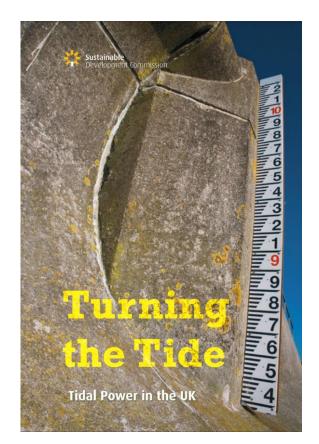
UK Distribution Network Operating Areas and GB Power Lines Map

The electricity network

Nearness to major power lines and connectors essential

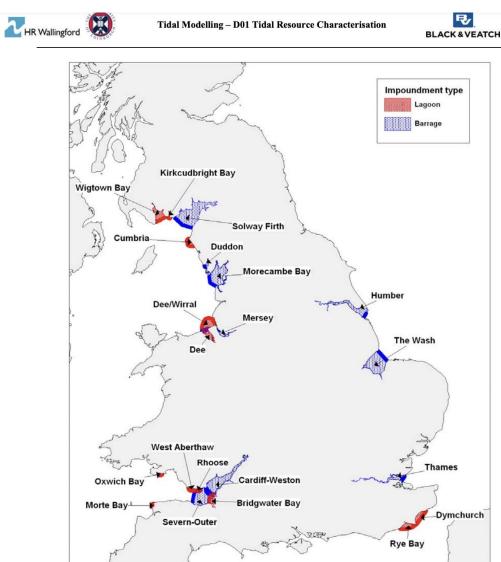
Tidal Range Energy Resource


Neill, S.P., Angeloudis, A., Robins, P.E., Walkington, I., Ward, S.L., Masters, I., Lewis, M.J., Piano, M., Avdis, A., Piggott, M.D. and Aggidis, G., 2018. Tidal range energy resource and optimization–Past perspectives and future challenges. *Renewable energy*, *127*, pp.763-778.


Professor G A Aggidis

Where could tidal range schemes be built?

Turning the Tide https://www.sdcommission.org.uk/data/files/publications/ Tidal_Power_in_the_UK_Oct07.pdf



ETI Report

Black & Veitch (2011) Tidal Resource Characterisation and Feasible Schemes Report

13 December 2011

MRN_MA1009_15.pdf (dl.ac.uk)

2.0

Which UK estuaries are suitable for tidal range?

- Estuaries
- Approximately 15% of UK capacity
- More smaller estuaries (e.g. Wyre)

- Solway Firth
- Morecambe Bay
- Mersey
- **Dee**
- Severn
- Wash
- Humber
- Thames
- **Forth**
 - Tay

Thames Barrier flood protection and an opportunity missed

Professor G A Aggidis

Yates, N., Walkington, I., Burrows, R. and Wolf, J. (2013) Appraising the extractable tidal energy resource of the UK's western coastal waters *Philosophical Transactions: Mathematical, Physical and Engineering Sciences* **371**(1985) 1-14

Tidal Resource Complementarity

Variability and phasing of tidal current energy around the United Kingdom. Iyer *et al* 2103

12000

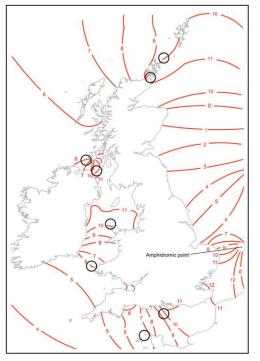
10000

8000

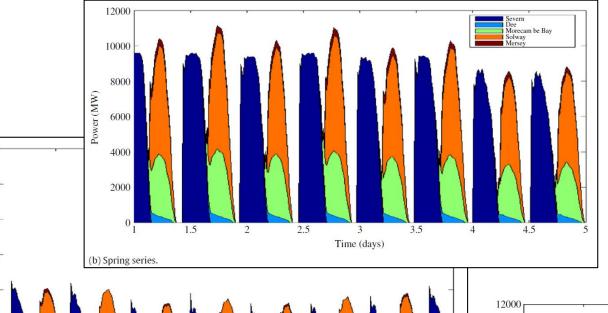
6000

4000

2000


(c) Neap series.

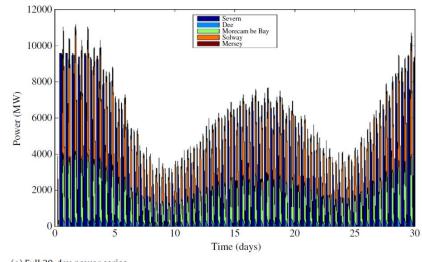
75


8.5

Time (days)

Power (MW)

Co-tidal lines for the coast of UK.



9.5

10

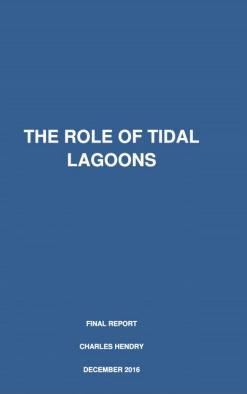
10.5

The tidal range energy potential of the West Coast of the United Kingdom. Burrows *et al*, 2009

(a) Full 30-day power series.

Where else could they go?

Tidal Lagoons


Hendry Report

- ▶ 37 GW capacity from 18 sites
- 4 sites in NW England
- ▶ ~ 50% of UK current capacity

... but not positive about current proposals

Offshore Lagoons No-one has assessed their potential!

Site	Installed Capacity (GW)
Swansea Bay	0.3
Stepping Stones	0.8
Cardiff	3.4
Newport	1.4
Bridgwater Bay	6.5
Conwy	0.7
Colwyn Bay	3.2
Sefton	2.6
Wirral / Liverpool	1.6
West Cumbria	2.2
Blackpool	2.6
Wyre	3.0
Barrow in Furness	1.6
The Wash	0.7
East Lincs Coast	1.9
Sheerness	1.3
Thames Estuary	0.5
Sussex Coast	2.4
Total	36.9

<u>Hendry Review - The website for the independent review of tidal lagoons, led by</u> <u>Charles Hendry (wordpress.com)</u> Professor G A Aggidis

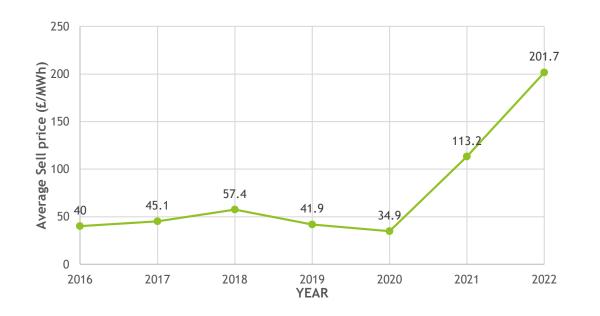
The case for a Tidal Lagoon Programme

- "I conclude that the potential impact on consumer bills of large scale tidal lagoons appears attractive, particularly when compared to nuclear projects over a long time period."
- "A new body (Tidal Power Authority) should be established at arms-length from Government, with the goal to maximise UK advantage from a tidal lagoon;"
- "Sites with the highest tidal ranges are in the Severn Estuary, followed by North Wales / Liverpool Bay and the North West."
- "the theoretical scale of opportunity in the UK is around 37 GW of installed capacity, from a tidal lagoon programme of 18 potentially feasible schemes, generating 55 TWh of electricity per year."

Neill et al, 2018

"The potential for using tidal range to generate electricity was originally proposed for the Severn Estuary in Victorian times". "a total potential energy of 366 TWh per annum ... is found in UK waters,

Site Type	Mean tidal range (m)	Basin area (km²)	Proposed Capacity (GW)	Estimated annual output (TWh)
Severn Barrage	7.0	520.0	8.64	17.00
Mersey Barrage	6.5	61.0	0.70	1.50
Wyre Barrage	6.0	5.8	0.05	0.09
Conwy Barrage	5.2	5.5	0.03	0.06
Swansea Lagoon	-	11.7	0.32	1.00
Newport Lagoon	-	-	0.75	_
Bridgewater Lagoon	-	-	2.00	-
Cardiff Lagoon	-	-	1.80-2.80	_
Colwyn Bay Lagoon	-	-	1.50	_
Blackpool Lagoon	-	-	1.00	


Table extracted from S.P. Neill et al. / Renewable Energy 127 (2018)

Wholesale Electricity Prices

- Pre-2021 ~ £45/MWh
- 2021 post Covid bounce
- 2022 Putin Special Military Operation
- Swansea Bay CfD £95/MWh

Voor	Sell price, £/MWh			
Year	Average	Maximum	Minimum	
2016	40.0	1,528.7	-100.0	
2017	45.1	1,509.8	-73.1	
2018	57.4	990.0	-150.0	
2019	41.9	375.0	-88.0	
2020	34.9	2,242.3	-70.5	
2021	113.2	4,037.8	-70.0	
2022	201.7	4,036.0	-90.3	
Average	76.3	2,102.8	-91.7	

Half-hourly wholesale system sell price from Elexon best view prices

https://www.elexon.co.uk/data/open-settlement-data/

Professor G A Aggidis

Tidal Range Alliance

Mission

 Promote the multi-disciplinary features and benefits of tidal range projects to key stakeholders across Government, industry and the media

Key Messages

- Multi-functional, multi-generational benefits beyond energy alone
- Security and stability of supply to help meet future energy needs
- Sustainability and contribution to decarbonisation
- Geographical spread of projects

TRA project estimates

Project	Cap. Ex.	GW	Construction	٦
Mersey Tidal Power	£9 billion	3.8	7 years	
West Somerset Lagoon	£8.5 billion	2.5	5 years	
Wyre (Fleetwood)	£.15 billion	0.1	3 years	
Blue Eden (Swansea)	£1.7 billion	0.35	5 years	
Norther Tidal Power Gateway	£9.8 billion	4.0	7 years	
Mostyn SeaPower	£0.6 billion	0.2	4 years	
North Wales Tidal Lagoon	£7.5 billion	2.5	5 years	
				-
TOTAL:	£37.52 billion	13GW	7 years	
			Tidal Range Alliance	

- > Perhaps their sum of construction time is overoptimistic!
- > It suggests that in 7 years we could have 13 GW of tidal power.
- > Perhaps here we require a more realistic value of years that is significantly higher.

Barriers to success

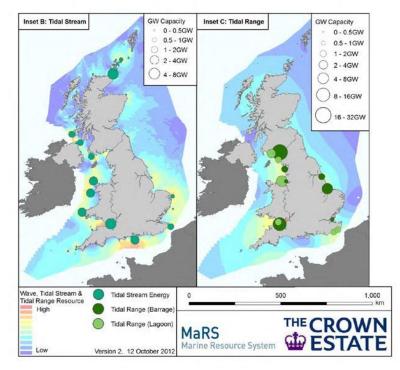
The industry, its investors and supply chain remain in a state of readiness, but unable to progress until UK Government includes tidal range within Policy

BEIS accepting of well developed, value form money proposals. But have not yet defined these statements

The industry requires early development funding in order to leverage billions of private sector investment. This an ask from the industry of the UK Government, much in line with what we have recently seen with Tidal Stream.

Time Frame

Step	Stage	Time (Years)	Potential
1.	Initial examination (proposal)	2-3	0.5
2.	Detailed analysis and full costings	2-3	2.5
3.	Planning approval	5	2
4.	Construction deployment	8	6
1-4		18	11
5.	Operation	130	130
6.	Decommissioning	5	5



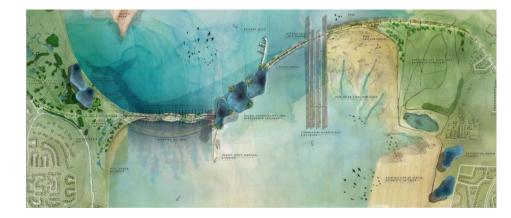
Objectives (Power)

- Sustainability
- Zero carbon
- Independence (from international markets)
- Balance of supply
- Storage

Objectives (other functions)

Environmental

- Carbon emission reduction (including carbon capture in saltmarsh)
- Flood protection (marine from sea level rise and terrestrial from rainstorms)
- Habitat creation/management (including Spartina grass an invasive)
- Species conservation (esp. birds, marine mammals and fish)


Socio-economic

- Jobs
- Transport
- Power management (e.g. grid network connections)
- Recreation
- Tourism

THE GREEN WHALE (2017)

Petley, S., Starr, D., Parish, L., Underwood, Z. and Aggidis, G.A., 2019. Opportunities for tidal range projects beyond energy generation: Using Mersey barrage as a case study. *Frontiers of Architectural Research*, *8*(4), pp.620-633.

Latest relevant research at Lancaster

Models

- Lancaster 0-D Generation Model
- Lancaster Cost Model

Publications

- Lancaster 0-D Generation Model (in prep)
- A Model of the Costs for Tidal Range Power Generation Schemes (in press ICE Energy)
- The Value of Tidal Range Power Generation (submitted ICE Energy)
- Tidal range electricity generation: A comparison between estuarine barrages and coastal lagoons (*Heliyon* DOI: <u>10.1016/j.heliyon.2022.e11381</u>)

Lancaster 0-D Generation Model

Underpinning data

- Turbine
 - Efficiency (Hill chart)

Water

- Tidal cycle (timing & head)
- Bathymetry (volume)

<u>Variables</u>

- Turbine
 - Size
 - Number
 - Operation
 - flood., ebb or 2-way
 - double/triple regulation
 - pumping
- Generator rating
- Sluices

Lancaster Cost Model

Capital Cost = $N_{t+g}C_{t+g} + N_{t+g}C_p + N_sC_s + L_cC_c + L_bCb$

Where

- = turbo-generating equipment cost C_{t+g}
 - = **powerhouse** cost

$$s = sluices cost$$

- C_p C_s C_c C_b = **bund** cost
- N_{t+g} = number of turbo-generators and powerhouse sections
- N_s = number of sluices
- L_c = length of the cofferdam.
- $L_{\rm b}$ = length of the bund.

Where does UK tidal range power sit?

Hurdle rates and decisions

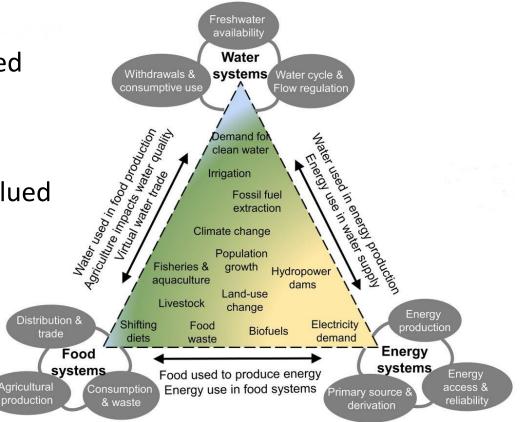
- What investors expect to risk before they will invest (i.e. the lower the more favourable)
- Balances risks, competing opportunities, inflation, interest rates, etc.
- Sometimes seem counter intuitive rejecting larger projects with higher total returns
- Must involve economists!

- Technology specific hurdle rates (2018)
- Still complicated
- No tidal barrage!
- Kwasi Kwarteng (then Chancellor) suggested that Swansea Bay would be. He said 8.00% (range between 6.20% and 9.00%)

Electricity Generation Costs 2020 (publishing.service.gov.uk)

Technology	Hurdle rate
Solar PV	5.00%
Onshore wind	5.20%
Hydro	5.40%
Hydro large storage	5.40%
Landfill	6.10%
Offshore wind	6.30%
EfW	6.50%
Sewage gas	7.10%
Gas/diesel reciprocating engine	7.10%
OCGT	7.10%
ACT standard	7.20%
CCUS gas nth of a kind	7.30%
CCGT	7.50%
EfW CHP	7.60%
Dedicated biomass 5-100MW	7.90%
Dedicated biomass >100MW	8.10%
ACT advanced	8.10%
AD	8.30%
Wave	8.60%
ACT CHP	8.90%
CCUS gas first of a kind	9.00%
CCGT CHP	9.00%
CCUS biomass	9.10%
Biomass conversion	9.20%
Tidal stream	9.40%
Biomass CHP	9.90%
AD CHP	9.90%
Geothermal CHP	18.80%

Lancaster University



Other issues....

Questions are not simple

- Energy generation may be compromised by conservation, flood protection/management, recreational requirements – all need to be costed
- Sea level rise is a major issue that threatens all estuaries and coastlines
- Multifunctional benefits need to be properly valued
 - Transport
 - Economy/employment
 - Pollution
 - Etc.
- Consider the nexus of our requirements

but....

Negatives

- It hasn't happened yet
- It's low on the financiers list
- There are still concerns about the environment...

Positives

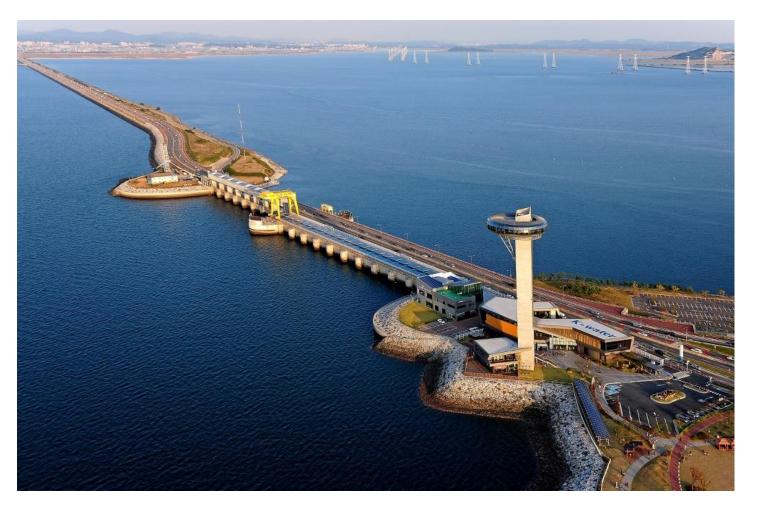
- Power generation may not be the main driver
- Sea level rise needs an urgent response
- Protecting habitats and species reverses conservation concerns
- It's gaining popularity.

Conclusions

- Needs to be thought of as part of the UK's whole energy system
 - ▶ 10% rising to a maximum of 20-25% total for security
- Multi-functional so other benefits must be costed in
 - Socio-economic
 - Environmental
- Research ongoing, but more needed
 - Construction options
 - Environmental consequences
 - Economic and political research

What can we do?

- Robust and sound research both focussing on the engineering and its interactions with other disciplines.
- Publish beyond standard scientific literature.
- Seek funding to address questions such as the brief given today.
- Press politicians to support (and co-fund) a proof of concept barrage in Britain.
- ► ACT NOW!



Institution of MECHANICAL ENGINEERS

IMechE NW Power Industries

Tuesday 8th November 2022

Thank you

Tidal Range Energy Opportunity for the UK

EUR ING Professor George Aggidis

FIMechE, FIMarEST, FEI, FIET

Head of Energy Engineering g.aggidis@lancaster.ac.uk