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1 Introduction

One of the key research areas in corporate finance focuses on the effect of capital market im-

perfections on corporate investment. According to the standard q-investment model (Mussa,

1977), the optimality condition requires that the marginal value of capital (measured by the

marginal q) be equal to the marginal cost of investment. In this framework, marginal q is

the sole factor relevant to the investment level. Financial factors, such as cash flow, are

expected – in the absence of capital market frictions – to play no role.

At the same time, a number of empirical studies that rely on a reduced-form regression

model, in which investment is a dependent variable and q and cash flow are regressors, show

that investment is sensitive to cash flow. Fazzari, Hubbard and Petersen (1988) interpret this

investment-cash flow (I-CF) sensitivity as the evidence of financial constraints as these are

financially constrained firms that may link their investment to the availability of internal

funds (see also Hoshi, Kashyap and Scharfstein, 1991; Gilchrist and Himmelberg, 1995;

Lamont, 1997; Rauh, 2006; Cao, Lorenzoni and Walentin, 2019).

Fazzari et al.’s (1988) view of I-CF sensitivity as a measure of financial constraints has

been challenged by, among others, Kaplan and Zingales (1997), Cleary (1999), Moyen (2004),

Alti (2003), and Gomes (2001). Also, Erickson and Whited (2000, 2002) point out that the

observed empirical I-CF sensitivity can be spurious as average Tobin’s q is a not a valid

proxy for investment opportunities, due to measurement error (see also Bond and Cummins,

2001; Cummins et al., 2006; Ağca and Mozumdar, 2017, among many others). Inasmuch

as empirical q fails to adequately capture investment opportunities, part of the information

content about capital productivity is captured by cash flow (see, e.g., Chen et al., 2007;
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Gilchrist and Himmelberg, 1995). Therefore, I-CF sensitivity can also be an outcome of the

poor quality of an empirical proxy for marginal q.

Allayannis and Mozumdar (2004) are the first to exploit the time-series pattern and doc-

ument declining I-CF sensitivity between periods 1977-1986 and 1987-1996. Their paper

spurred a debate about the economic drivers behind the negative trend of I-CF sensitivity,

which has since remained largely unresolved. Ağca and Mozumdar (2008) find that I-CF

sensitivity decreases with factors that reduce capital market imperfections but do not di-

rectly link the decline of I-CF sensitivity over time to the evolution of those factors. Chen

and Chen (2012) conclude that financial constraints cannot explain the declining pattern of

I-CF sensitivity as there is no indication of financial constraints becoming more relaxed over

time. They also document that the declining pattern of I-CF sensitivity still exists with mea-

surement error-corrected estimates (Lewellen and Lewellen (2016) and Ağca and Mozumdar

(2017) provide evidence consistent with that result). Although Brown and Petersen (2009),

Moshirian et al. (2017) and Wang and Zhang (2021) conjecture that the declining I-CF sen-

sitivity is due to the shift of importance or productivity from physical capital to intangible

assets, Chen and Chen (2012) show that it is also R&D-cash flow sensitivity that disappears

by late 2000s.1 Finally, although market power is another factor that can influence I-CF

sensitivity (e.g., Cooper and Ejarque, 2003), the fact that many U.S. industries are becom-

ing more concentrated over time (De Loecker et al., 2020; Grullon et al., 2019) should lead,

if anything, to an upward (rather than the observed downward) trend.

In this paper, we use a neoclassical investment model with costly external financing to

1Brown and Petersen (2009) report that cash flow sensitivity of total investment (physical capital ex-
penditure and R&D expense) still decreases across periods.
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demonstrate that the negative trend is due to the evolution of capital adjustment costs.

To this end, we estimate the magnitude of the capital adjustment cost parameter(s) across

different periods and show that there has been a gradual increase in the costs of capital ad-

justment, which is capable of explaining the decreasing I-CF sensitivity pattern. Consistent

with the prior literature, we find no evidence of financial frictions being able to significantly

contribute to the observed trend.

We present our main argument in four steps. First, we empirically confirm the exis-

tence of the downward trend of both I-CF and I-q sensitivity by estimating corresponding

regression coefficients over non-overlapping 5-year periods using both OLS and generalized

method of moments (GMM) approaches. The statistical significance of the negative trend

of both coefficients is confirmed by estimating the model for the whole sample and including

interaction terms between the regressors (cash flow and q) and time trend.

In the second step, we present an argument that the predicted magnitude of I-CF sensi-

tivity is not only an increasing function of financing constraints but also a decreasing function

of capital adjustment costs. The intuition behind the latter result is as follows: When a firm

invests, it does not only increase its capital stock, which is recorded as capital expenditure,

but also incurs capital adjustment costs.2 Higher capital adjustment costs result therefore in

a lower fraction of an incremental $1 of cash flow earmarked for investment being allocated

to an increase of capital stock. Given that capital expenditure reacts less to the availability

of internal funds when capital adjustment is more costly, a positive time trend of adjustment

costs results in declining I-CF sensitivity.

2Examples of capital adjustment costs include installation costs, costs of disrupting the production
process and fees associated with training staff to adapt to the new equipment. More specific examples are
provided in Section 3.
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The increasing capital adjustment costs argument is also consistent with the observed

declining I-q sensitivity as the frictions in adjusting capital stock dampen the response of

investment to the changes in growth opportunities captured by Tobin’s q.3 The presence of

the negative trend of both I-CF and I-q sensitivity, documented in the previous step, supports

the hypothesis that it is the gradual increase of capital adjustment costs over time that is the

primary driver of the observed declining I-CF sensitivity pattern. Our results are therefore

consistent with those in Chen and Chen (2012) in the sense of the declining I-CF sensitivity

not being a symptom of decreasing financial constraints as well as with Pratap (2003),

who demonstrates that capital adjustment costs can explain low I-CF sensitivity even for

financially constrained firms. (The alternative hypothesis of decreasing financial constraints

would imply an increasing trend of I-q sensitivity, which is contrary to the evidence presented

in our paper.)

The third step of our analysis includes explicitly estimating the parameter(s) of the

adjustment cost function together with a parameter that reflects the cost of accessing outside

finance over each 5-year period. To achieve this objective and demonstrate the robustness

of our results, we adopt a number of approaches here. We begin by directly estimating

relevant parameters from the first-order condition of the intertemporal investment model

using alternative measures of Tobin’s q. As mismeasurement of q makes the task of identifying

adjustment costs from an OLS regression of investment on q difficult, either due to spurious-

significance or the nonlinearity problem (Whited, 1998; Erickson and Whited, 2000), we

estimate adjustment cost parameters based on the first-order condition which has Tobin’s

3The intuition is similar to that behind the effect of adjustment costs on I-CF sensitivity, where adjust-
ment costs act effectively as a tax on capital expenditure.
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q as a left-hand-side variable to alleviate the measurement error problem (Erickson and

Whited, 2012). We subsequently perform estimations on the basis of the Euler investment

equation, which circumvents the use of a proxy for q. Finally, we also estimate the parameters

of interest using the simulated method of moments (SMM) approach, where parameter values

are selected to match the actual moments with simulated ones.4 Taken together, our results

provide robust evidence that capital adjustment costs have indeed increased over time.

In the fourth step, we investigate possible microfoundations of the positive trend of cap-

ital adjustment costs. Based on the extant literature and available data, we argue that the

observed increase in capital adjustment costs is driven by investment in knowledge capital,

which is associated with the adoption of new technologies, e.g., the widespread use of com-

puters and software, network and automated systems.5 As the integration of the high-tech

equipment and machinery entails complex implementation and relies on specialist skills for

the subsequent operation, it typically results in costly installation, retrofitting and retrain-

ing.6 Overall, investment in knowledge capital, which results from technological progress as

well as expanding new product markets, can translate into higher productivity but – on the

downside – leads to increased adjustment costs.

Our analysis in this final step begins with demonstrating that knowledge capital increases

4The linkage of model parameters with I-CF sensitivity is related to several other studies that use the
structural modeling approach, such as Riddick and Whited (2009) and Gamba and Triantis (2008).

5According to PwC (2016), “the use of 3D printing is disrupting U.S. manufacturing” and “the most
commonly cited barriers to the adoption is the cost and lack of talent and current expertise”. Factories are
switching to electric vehicles, which bring “new ways of structuring transportation, land use and domestic
energy use” but, at the same time, require costly investment in the associated infrastructure (Barkenbus,
2009).

6Clegg (2018) reports that the online education program funded by AT&T to retrain the workforce
“requires at least 10 hours’ homework a week and takes 6 to 12 months to complete” and SEAT’s (the
Spanish subsidiary of the Volkswagen Group) re-skilling program opens the possibility for employees to
retrain during working hours.
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over the sample period and that both I-CF and I-q sensitivities are negatively related to

it. We subsequently parameterize the scaling parameter of the adjustment cost function

in the Euler equation and demonstrate a positive relationship of this parameter with the

knowledge capital. Subsequently, we extend the intertemporal investment model of Section

4 to also include (optimal) investment in knowledge capital and use SMM to show that

capital adjustment costs as a function of knowledge capital do increase over time.

The paper contributes to the literature on corporate investment and financing decisions

in several ways. First, we provide systematic evidence that, since 1970s, there has been an

increasing trend of capital adjustment costs. The relevance of capital adjustment costs for

investment is discussed, among others, in Abel and Eberly (2002), Barnett and Sakellaris

(1998, 1999), Basu et al. (2003), Cooper and Haltiwanger (2006), Caggese (2007), Groth

and Khan (2010), Pratap (2003) and Whited (1998).7 Also, while investment is reliant on

cash flow when it is costly to access the external financing market, it is less sensitive to cash

flow in the presence of higher capital adjustment costs. Second, using a number of empirical

approaches, we demonstrate that it is the increasing magnitude of frictions generated by

capital adjustment that contribute to the declining I-CF sensitivity over time. We, therefore,

highlight the role of frictions generated by the real side of firms’ activities in explaining

the evolution of the responsiveness of investment to internal funds as opposed to frictions

generated by financial markets. Finally, we provide evidence that the documented increase of

adjustment costs is one of the consequences of an increase in the stock of knowledge capital,

which firms optimally accumulate to increase their productivity.

7Capital adjustment costs can also be an important source of business cycle fluctuations. For instance,
Basu et al. (2003) argue that capital adjustment costs account for the underlying deceleration of productivity
growth in the UK.
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2 Dataset and baseline results

The sample contains all U.S. manufacturing firms (SIC between 2000 and 3999) in the

Compustat industry annual file, covering the period between 1977 and 2019. Investment, I,

is measured as capital expenditure in a year (capx ). Capital, K, is defined as beginning-of-

year net property, plant and equipment (ppent). Tobin’s average q, Q, is the beginning-of-

the-year market value of capital over net property, plant and equipment. The market value

of capital is defined as the market value of assets minus the difference between the book

value of assets (at) and the book value of capital (ppent).8 The market value of assets is the

sum of market value of common stock (csho×prcc), total liabilities (lt), and preferred stock

(pstk) minus deferred taxes (txditc). Cash flow, CF , is income before extraordinary items

(ib) plus depreciation and amortization (dp).

Regression variables, that is I/K, Q, and CF/K, are required to have non-missing values

for each observation. Following Almeida et al. (2004), we remove firms that have sales or

asset growth exceeding 100% to eliminate the effect of business discontinuities. We also drop

firms that have assets, sales or capital lower than USD 1 million (see Chen and Chen (2012)

and Moshirian et al. (2017)). Finally, following Hennessy and Whited (2007), we winsorize

all regression variables at the 1% and 99% levels by year to mitigate the effect of outliers.9

Table 1 provides summary statistics for the regression variables. We divide the sample

into 5-year subsample periods, except for the latest period for which only 3 years of data

8Note that by subtracting the difference between the values of total assets and physical capital, we
remove the value of intangible assets when calculating the market value of physical capital. This allows us
to measure investment opportunities for the physical capital.

9The resulting dataset is an unbalanced panel, with a noticeable turnover of firms, in particular around
the 2007-09 Great Recession (the number of firms in period 1977-1981 (2007-2011) is 2045 (1786) and out
of the 2045 firms present in years 1977-1981, 389 firms remain in the sample until period 2007-2011).
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are available, and provide descriptive statistics for each period. The mean and median levels

of I/K are relatively stable over time and broadly fluctuate around 0.2 across the sample

period. The mean level of Q increases from 1.335 to 15.105 between 1977-1981 and 2017-

2019, with its median level increasing from 0.815 to 5.596 over the same period. Both the

25th and 75th percentiles of Q increase over time too, which suggests that the positive trend

of Q is not limited to the subsample of value firms or growth firms. The mean level of CF/K

drops substantially, from 0.415 in 1977-1981 to −0.506 in 2017-2019, with its median level

remaining relatively stable. There is also an increasing cross-sectional variation in Q and

CF/K as indicated by greater dispersion between the 25th and 75th percentiles and larger

standard deviations.

Serial correlation of the investment-to-capital ratio indicates the smoothness of invest-

ment behavior, which is symptomatic of convex adjustment costs, and rises from 0.458 in

years 1977-81 to 0.573 in the most recent period. The proxy for Tobin’s q is also highly au-

tocorrelated, which has implications for the use of lagged instrumental variables to correct

for the measurement error in q (Almeida et al., 2010; Erickson and Whited, 2012).

The baseline OLS regression equation for investment is

Iit
Kit

= β0 + β1Qit + β2
CFit
Kit

+ ηi + ξt + εit, (1)

where βi, i ∈ {0, 1, 2} denotes the relevant regression coefficient, ηi is the firm fixed effect,

ξt is the year fixed effect, and εit is an error term. Next to the OLS estimator, we also use

the Erickson and Whited (2000, 2002) higher-order moment-based GMM estimator (EW
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TABLE 1
Summary statistics for regression variables

Mean, standard deviation, percentiles and first-order serial correlation ρk for variable k ∈
{I/K,Q,CF/K} for each subsample period (1977-1981 through 2017-2019). I/K is the firm’s
capital expenditure, scaled by beginning-of-year net property, plant and equipment. Q is the
beginning-of-year average Tobin’s q, calculated as the market value of capital divided by the book
value of capital (measured by net property, plant and equipment). CF/K is firm’s internal cash
flow (income before extraordinary items plus depreciation), deflated by beginning-of-year net prop-
erty, plant and equipment. The sample contains all manufacturing firms (SIC code between 2000
and 3999) in the U.S. for which relevant data is available in Compustat over 1977-2019 period.

Period: 1977-81 1982-86 1987-91 1992-96 1997-01 2002-06 2007-11 2012-16 2017-19
I/K
Mean 0.287 0.260 0.239 0.270 0.262 0.225 0.235 0.240 0.230
Std. Dev. 0.215 0.228 0.197 0.243 0.240 0.225 0.227 0.213 0.198
p(25) 0.150 0.120 0.114 0.119 0.110 0.090 0.097 0.112 0.109
p(50) 0.233 0.198 0.190 0.199 0.191 0.156 0.170 0.183 0.178
p(75) 0.351 0.320 0.297 0.333 0.327 0.276 0.289 0.288 0.281
ρI/K 0.458 0.390 0.430 0.513 0.452 0.494 0.471 0.530 0.573
Q
Mean 1.335 2.501 3.088 5.116 6.547 9.267 9.448 11.930 15.105
Std. Dev. 1.992 3.529 4.628 8.288 12.250 17.886 18.283 25.867 30.026
p(25) 0.322 0.704 0.891 1.145 1.135 1.325 1.323 1.545 1.930
p(50) 0.815 1.373 1.680 2.333 2.575 3.362 3.529 4.005 5.596
p(75) 1.693 2.898 3.358 5.291 6.437 8.873 9.278 10.584 14.590
ρQ 0.819 0.766 0.798 0.771 0.682 0.723 0.752 0.811 0.845
CF/K
Mean 0.415 0.307 0.267 0.327 0.067 0.035 −0.009 −0.143 −0.506
Std. Dev. 0.350 0.490 0.681 0.982 1.512 2.091 2.525 3.289 4.608
p(25) 0.235 0.135 0.108 0.136 0.010 −0.011 −0.057 0.069 0.014
p(50) 0.377 0.295 0.280 0.328 0.286 0.309 0.343 0.372 0.353
p(75) 0.559 0.495 0.490 0.603 0.588 0.692 0.802 0.806 0.829
ρCF/K 0.754 0.687 0.627 0.627 0.627 0.692 0.651 0.729 0.795

estimator), which is designed to mitigate the consequences of measurement error in Qit. We

employ the fifth-order moment-based GMM estimator (GMM5) and a within-transformation

is applied to all independent variables to remove the individual fixed effect.

Panel A of Table 2 presents baseline regression results for each subsample period from

1977-1981 to 2017-2019. For 1977-1981, I-CF sensitivity (β2) equals 0.271 and is statistically

significant. I-CF sensitivity decreases in subsequent periods and from 2002-2006 onwards

becomes non-significant, consistent with Chen and Chen (2012). A similar decreasing pattern
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is observed when the EW estimator is applied, which indicates that the decreasing trend of

I-CF sensitivity is unlikely to be driven by a potential measurement error. Moreover, a

declining trend is also observed for I-q sensitivity, as evidenced by decreasing coefficient β1

between 1977-1981 and 2017-2019. In Panel B of Table 2, we provide statistical evidence

that I-CF and I-q sensitivity are decreasing over time by interacting cash flow and q with

the trend variable (denoted as Trend) which is equal to 1 in 1977-1981, 2 in 1982-1986 and

so on. The coefficients of Qit×Trend and CFit

Kit
×Trend are negative and, therefore, confirm

the results of the subsample analysis.

In Section 3 below, we reconcile the above results with the predictions of investment

theory and argue that it is the evolution of capital adjustment costs that is consistent with

the observed trends of I-CF and I-q sensitivities.

3 Capital adjustment costs and I-CF sensitivity

The extant literature on investment-cash flow sensitivity has largely focused on the effects of

financial constraints (e.g., Ağca and Mozumdar, 2008; Chen and Chen, 2012). Yet, relatively

little attention has been devoted to investigating the impact of capital adjustment costs on

the responsiveness of investment to extra cash flow.

Capital adjustment costs are the expenditure incurred before the equipment or plant can

be put to full use and comprise installing costs (e.g., breaks in production during installation

and sunk costs), learning, expenses associated with the training of labor to accommodate

new physical capital, lost expertise due to the adoption of new technologies, overtime costs,
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TABLE 2
Baseline linear regression results

Estimation results of regression models for both OLS and GMM5 estimators for each subsample
period (Panel A) and the whole sample with an interaction with Trend (Panel B). The dependent
variable (I/K) is investment measured as the firm’s capital expenditure, scaled by beginning-
of-year net property, plant and equipment. The independent variables are the beginning-of-year
Tobin’q (Q), defined as the market value of capital over book value of capital (measured by net
property, plant and equipment), and cash flow (CF/K), defined as income before extraordinary
items plus depreciation, deflated by beginning-of-year net property, plant and equipment. Trend is
defined as 1 in 1977-1981, 2 in 1982-1986 and so on. β1 (β2) denotes the coefficient of Q (CF/K).
Robust standard errors (in parentheses) are clustered at the firm level. Trend is absorbed by
year fixed effects in the OLS estimation. The sample contains all U.S. manufacturing firms in
Compustat over 1977-2019 period. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10%
level, respectively.

Panel A. Estimation results per subsample period
Period OLS GMM5

β1 β2 β1 β2 Obs.
1977-1981 0.021∗∗∗ 0.271∗∗∗ 0.101∗∗∗ 0.207∗∗∗ 7,994

(0.004) (0.021) (0.009) (0.020)
1982-1986 0.022∗∗∗ 0.131∗∗∗ 0.060∗∗∗ 0.069∗∗∗ 8,033

(0.003) (0.015) (0.006) (0.016)
1987-1991 0.016∗∗∗ 0.058∗∗∗ 0.037∗∗∗ 0.046∗∗∗ 7,714

(0.002) (0.009) (0.003) (0.009)
1992-1996 0.010∗∗∗ 0.046∗∗∗ 0.026∗∗∗ 0.022∗∗∗ 8,357

(0.001) (0.008) (0.002) (0.008)
1997-2001 0.007∗∗∗ 0.022∗∗∗ 0.016∗∗∗ 0.022∗∗∗ 8,680

(0.001) (0.006) (0.002) (0.006)
2002-2006 0.006∗∗∗ 0.005 0.012∗∗∗ 0.002 7,497

(0.001) (0.005) (0.001) (0.005)
2007-2011 0.007∗∗∗ 0.000 0.010∗∗∗ −0.002 6,436

(0.001) (0.004) (0.000) (0.003)
2012-2016 0.004∗∗∗ −0.002 0.008∗∗∗ −0.001 5,451

(0.001) (0.004) (0.001) (0.004)
2017-2019 0.003∗∗∗ −0.004 −0.001 −0.009 2,917

(0.001) (0.004) (0.001) (0.005)

Panel B. Estimation results for the whole sample with Trend

Qit
CFit
Kit

Qit × Trend CFit
Kit

× Trend Trend

OLS 0.016∗∗∗ 0.089∗∗∗ −0.002∗∗∗ −0.011∗∗∗

(0.001) (0.005) (0.000) (0.001)
GMM5 0.008∗∗∗ 0.025∗∗∗ −0.0002∗∗∗ −0.001∗∗∗ −0.021∗∗∗

(0.000) (0.002) (0.000) (0.000) (0.001)

costs of disrupting the old system and reorganizing the production process. Cooper and

Haltiwanger (2006) state that “changing the level of capital services at a business generates
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disruption costs” and that “installing new equipment or structures often involves delivery

lags and time to build”. Kiley (2001) concludes that adjustment costs related to the instal-

lation of high-tech equipment, such as the cost of training workers to use a new technology

and reorganizing activities associated with the installation of new capital, are of first-order

importance. Brown et al. (2009) argue that R&D involves spending on highly skilled tech-

nology workers who are costly to hire, train and replace, and thus exhibits high capital

adjustment costs (see also Peters and Taylor, 2017).10 From the perspective of sustainabil-

ity, costs may occur to meet the high environmental standards when re-purposing existing

plants or constructing new sites.

If firms had an unrestricted access to external finance, they would be able to invest

whenever valuable projects arise and the availability of internal funds would be irrelevant.

With a costly access to external capital markets, the sensitivity of investment to cash flow

– irrespective of the level of adjustment costs – is expected to be positive. As it is therefore

possible that the decreasing I-CF sensitivity is the result of a better access to external

financing (cf. Ağca and Mozumdar, 2017), we formulate the following empirical prediction:

H1: Cash flow sensitivity of investment decreases as a result of lower costs of external

financing.

I-CF sensitivity does not only depend on the costs of obtaining outside financing but

10Capital adjustment costs tend to be explicitly mentioned in company reports. Nestlé Group (2016,
p. 16) has expensed the costs of disruption as “impairment of property, plant or equipment”, which are
mainly related to about “the plans to optimise industrial manufacturing capacities by closing or selling
inefficient production facilities”, with the expenses amounting to more than CHF 200 million. Equipment
and facilities used for manufacturing can also be subject to a costly technological change. According to Intel
Corporation (2016, p. 36), the increase of the company’s R&D spending comes in a significant part from
high development costs of a new processor technology. Manufacturers of semiconductors now face “increased
costs of constructing new fabrication facilities to support smaller transistor geometries”.
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also on the costs of adjusting the level of capital stock (e.g., Lewellen and Lewellen, 2016).

Higher adjustment costs result in a lower fraction of an extra dollar of cash flow earmarked

for investment being actually spent on new capital stock as its increased fraction is used

to cover the associated costs of capital adjustment. Consequently, financially constrained

firms increase their investment to a smaller extent upon receiving cash windfall when capital

adjustment is costly. Therefore, an alternative explanation for the decreasing I-CF sensitivity

over time is the gradually increasing adjustment costs. Hence, we formulate the second

empirical prediction:

H2: Cash flow sensitivity of investment decreases due to higher capital adjustment costs.

The above discussion implies that the changes in I-CF sensitivity may be a joint result of

the evolution of both financing constraints as well as capital adjustment costs. What is worth

pointing out is that the imperfections on the real side of firm’s activities (adjustment costs)

have an opposite effect on this sensitivity compared to imperfections in financial markets

(financing constraints).

Regarding the effect of growth opportunities (Tobin’s q) on investment, capital expen-

diture will be less sensitive to changes in q if the firm is constrained by frictions in either

financial markets or real economic activities. This is due to the fact that both types of fric-

tions effectively increase the marginal cost of investment. With that observation in mind, we

offer a preliminary test of our predictions by looking back at the time trend of I-q sensitivity.

If I-CF sensitivity declines alongside with the decrease of financial constraints, we should ob-

serve an increasing trend of I-q sensitivity. In the alternative case, if I-CF sensitivity declines

as a result of higher capital adjustment costs in late years, we should observe a decreasing
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trend of I-q sensitivity as well.

The baseline OLS regression results in Table 2 indicate both a declining q sensitivity

of investment as well as a downward-sloping I-CF sensitivity. This combination of results

supports the second prediction (i.e., H2) that decreasing I-CF sensitivity is driven by rising

capital adjustment costs.

4 Evidence on increasing capital adjustment costs

Given the documented shortcomings of the OLS (and to a certain extent GMM) estimators

when the regressors, such as q, are measured with an error (cf., Erickson and Whited,

2000, 2002, 2012; Almeida et al., 2010), in Sections 4 and 5 we provide a broader empirical

assessment of the evolution of capital adjustment costs and financial frictions.

We first introduce a simple intertemporal model of investment with financial constraints

and adjustment costs. We then derive the first-order condition of the investment problem and

estimate its parameters of interest using regression analysis. We then proceed to estimating

relevant model parameters using the Euler equation framework as well as SMM.11

In the adopted set-up, time is discrete, I is current investment and K is capital stock. K

satisfies the standard intertemporal condition K ′ = I+(1−δ)K, where prime (′) denotes the

next period’s value and δ ≥ 0 is the depreciation rate. Adjusting capital stock is costly and

the adjustment cost function is given by G(I,K) = ψ−1γ(I/K)ψK, where γ > 0 is a scaling

parameter and ψ > 1 reflects the elasticity of adjustment cost with respect to investment

11In Online Appendix OA1, we report the results of an analysis based on industry-level data and present
evidence consistent with a positive trend of capital adjustment costs.
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rate. The assumed convex adjustment costs incentivize firms to smooth investment, which

results in only a partial adjustment of capital towards its desired level, and leads to positive

serial correlation of investment (see, e.g., Chen et al., 2022; Cooper et al., 1999; Caballero and

Engel, 2003; Fiori, 2012). The demonstrated evidence of the presence of convex adjustment

costs (e.g., Cao et al., 2019; Hayashi, 1982; Kogan, 2004) is also consistent with Wang and

Wen (2012), where borrowing constraints may result in the convexity of the adjustment cost

function (see also Carlstrom and Fuerst, 1997).

Although Cooper and Haltiwanger (2006) report that serial correlation of investment is

low at the plant-level (estimated at 0.058), we show that serial correlation is economically

significant at the firm-level (see Table 1). To further support the choice of the convex

adjustment cost formulation, we test for convexity of function G(I,K) later in this section.

The profit function, which also constitutes a measure of internal funds available for

investment, is denoted by Π(A,K), where A is a Markovian state variable. The cost of

external financing, H(X,K), is a function of amount X ≡ I − Π that a firm needs to raise

externally to meet its investment needs.12 We follow Lewellen and Lewellen (2016) and

define H(X,K) ≡ 0.5bΦ(X/K)2K, where Φ is an indicator equal to one if I ≥ Π and zero

otherwise. Parameter b is a scaling factor reflecting the cost of external financing. A ceteris

paribus higher (unit) cost of raising funds from the outside capital market is equivalent to a

higher magnitude of financing constraints.

12As in Cooper and Ejarque (2003) and Lewellen and Lewellen (2016), X equals the gap between in-
vestment and cash flow and ignores the capital adjustment cost. Including the latter in X results in more
complex calculations but does not substantially affect the main results.
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Equityholders choose an investment policy to maximize the firm value:

V (A,K) = max
I

[(Π(A,K)− I −G(I,K)−H(X,K)) + ϑEA′|AV (A′, K ′)], (2)

where ϑ is a discount factor. The marginal Tobin’s q (denoted by q) is defined as

ϑEA′|AVK(A
′, K ′), where VK ≡ ∂V/∂K. The first-order condition with respect to I yields

the following equation for q:

1 + γ

(
I

K

)ψ−1

+ bΦ

(
I

K
− Π

K

)
= q. (3)

Eq. (3) states that at the optimal investment level, the marginal cost of investment equals

its marginal benefit. The marginal cost consists of a unit price of capital (normalized to

1), the marginal cost of capital adjustment and, for insufficient internal funds, the marginal

cost of external financing. The condition thus implies that higher capital adjustment costs

raise the marginal cost of investment, which makes changes in capital stock less responsive

to both q and cash flow.

4.1 Direct estimation of b and γ based on the q equation

To alleviate any consequences of the potential measurement problem in q, instead of relying

on the baseline linear regression (1), in which q and cash flow are regressors, we directly

provide estimates of model parameters b, γ, as well as ψ, based on the first-order condition

(3). We let q become the dependent variable so we can still obtain consistent estimates of

parameters as long as the measurement error is independent of the explanatory variables.
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The empirical equivalent of (3) is

Qit = 1 + γ

(
Iit
Kit

)ψ−1

+ bΦ

(
Iit
Kit

− CFit
Kit

)
+ ηj + ξt + εit, (4)

where ηj is dummy variable for each two-digit SIC industry code and ξt represents the year

fixed effect.13 Other variables are as those described in Section 2. Estimated parameters

are all expected to be positive (and are, therefore, restricted to non-negative values). The

estimation procedure yields the set of parameters that minimizes the sum of squared errors∑
ε2it. The estimation results are presented in Panel A of Table 3.

Given that the likely mismeasured Q is the dependent variable, the estimates of the

parameters based on equation (4) are more reliable than the ones implied from the reciprocal

of β1 and the ratio of β2 and β1 from regression (1). The R2 shown in column 5 indicates

that the model’s goodness-of-fit improves over time, which is consistent with the finding in

Chen and Chen (2012) that the measurement quality of Tobin’s q is improving.

The estimates of parameter b, which measures the cost of external financing, are reported

in column 4. The estimated b is in most periods positive and significant (apart from 1977-

1981, when it is not significantly positive) and generally higher in 2000s than in earlier

periods. If one interprets I-CF sensitivity as a measure of financial constraints, one would

expect to see a declining b over time, which would correspond to a negative trend of coefficient

β2 in eq. (1). The degree of financial constraints, as captured by b, is, however, increasing.

This result is consistent with Chen and Chen’s (2012) evidence that financial constraints

13We use industry fixed effects instead of firm fixed effects as otherwise regressions may fail to capture
the characteristics of firms that have single observations during the 5-year subsample period. In our sample,
10%-17% of firms have only a single observation and approx. 30% – two years observations in the subsample
period.
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have not become more relaxed in recent years. Also, constrained firms are more inclined

to hold cash (Almeida et al., 2004; Faulkender and Wang, 2006), with Bates, Kahle and

Stulz (2009) showing that there is an increase in cash holdings of U.S. firms. Therefore, we

again do not find support for hypothesis H1 that decreasing financial constraints explain the

negative trend of I-CF sensitivity.

The estimate of scaling parameter γ of the adjustment cost function, reported in column 2,

increases systematically throughout the sample period. This positive trend is consistent with

I-CF sensitivity declining over time. Investment responds less strongly to cash flow in late

periods because capital adjustment is more costly. Our result therefore echoes the conclusion

in Pratap (2003) that in the presence of adjustment costs “investment cannot increase with

marginal increases in cash flow [for some firms], leading to insensitivity of investment to

cash flow”. We obtain that sufficiently high adjustment costs imply low (and, empirically,

statistically not significant) I-CF sensitivity even when financing constraints are present.14

With respect to the magnitude of γ, earlier studies, which typically assume quadratic costs

and infer the adjustment cost parameter from the reciprocal of the coefficient of q, obtain

generally too high estimates for γ for them to be plausible (Gilchrist and Himmelberg (1995)

obtain an estimate of γ as high as 20 during 1985-1989, which is similar to Hayashi (1982),

who uses data from 1952-1978).15

Lower and thus more realistic estimates of γ are obtained in more recent studies that

rely on dynamic models of a firm (e.g., Barnett and Sakellaris, 1999; DeAngelo et al., 2011;

14Our result is based on a slightly different mechanism than in Pratap (2003) though. While her conclusion
follows from the lack of investment in the “inaction region” characteristic for non-convex adjustment costs,
ours reflects negligible sensitivity of investment to cash flow for sufficiently high convex costs.

15Quadratic adjustment costs are assumed in the derivation of the baseline investment regression. Under
such an assumption, an additional $1 of investment leads to an incremental capital adjustment cost of $γI/K.
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Gao et al., 2021; Nikolov and Whited, 2014). Adjustment cost parameter γ estimated in

our setting falls into that more plausible range (and varies between 2.701 and 6.726 for the

comparable period 1977-1991).

The estimates of the elasticity parameter ψ are reported in column 3. For most periods,

they are not different from 2 at the 1% significance level (column 6 presents the t statistics

under the null hypothesis that ψ = 2), which supports the commonly used quadratic cost

assumption (e.g., Barnett and Sakellaris, 1999; Gilchrist and Himmelberg, 1995; Lewellen

and Lewellen, 2016; Nikolov and Whited, 2014) and, more generally, confirms the convexity

of the adjustment cost function. Hence, from now on, we adopt a quadratic function for

capital adjustment costs. One advantage of such a functional form is that it allows for

interpreting an increase in the level of adjustment costs as an increase in γ, as the scaling

parameter is the only one in the quadratic adjustment cost function.16

As average q (market-to-book capital ratio) may not be a reliable proxy for marginal q,

if any of the linear homogeneity assumptions in Hayashi (1982) do not hold, we rerun the

estimation with alternative measures of q: a state-space measure of marginal q (Gala et al.,

2020) and the fundamental q (Campello and Graham, 2013; Goyal and Yamada, 2001).17

16In the same way, parameter b is synonymous with the magnitude of financing constraints.
17To calculate Gala et al.’s q, we infer the magnitude of profitability shock from net profit (as A = Π/Kα),

given the provided estimate of the curvature of the profit function (α = 0.51). We denote the average
q (market-to-book capital ratio) by Q and estimate log(Q) = a0 + a1 log(A) + a2 log(K) + a3 log(A)

2 +
a4 log(K)2+a5 log(A) log(K)+ε in each subsample period. By doing so, we obtain the fitted value of Q (Q̂)
as well as coefficient sets for capital stock and the profitability shock. Since the marginal q can be written as
q = ∂V/∂K = V/K (1 + ∂ log(Q)/∂ log(K)), one can compute marginal q by differentiating the expression
for log(Q) to obtain q = Q̂(1+ â2+2â4 log(K)+ â5 log(A)). The fundamental q is the portion of the market-
to-book ratio that can be explained by observable fundamental variables, which are the lagged value of
cash flow-to-capital ratio, sales growth, current asset-to-capital ratio, debt-to-capital ratio, capital spending,
capital expenditure, size (market capitalization), industry sales growth, industry capital investment growth
and industry R&D growth.
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The results with Gala et al.’s q (reported on the left-hand side of Panel B) show that

the estimate of the adjustment cost parameter γ rises across periods from 0.029 in 1977-

1981 to 6.291 in 2017-2019. The estimation results based on the fundamental q (reported

on the right-hand side of Panel B) yield a similar picture – the adjustment cost parameter

γ increases steadily over time from 1.072 in 1977-1981 to 8.572 in 2017-2019. The results

based on the alternative measures of q support the earlier conclusion that the financing cost

parameter does not decrease over time and that the upward trend of the adjustment cost

parameter is clearly present.

4.2 Empirical implementation of the Euler equation

As a complementary way of estimating capital adjustment costs, we use the investment

Euler equation framework. The approach, which is based on equating the marginal cost

of investment today with the expected discounted cost of waiting to invest tomorrow, does

not require a proxy for q and mitigates endogeneity concerns present in the reduced-form

regression framework (Kang et al., 2010). To perform the estimation, we first express the

maximization problem (2) as

V (At, Kt) = max
{Kτ+1,Iτ}∞τ=t

Et
∑
τ=t

ϑτ−t [Π(Aτ , Kτ )− Iτ −G(Iτ , Kτ )−H(Xτ , Kτ )] , (5)

subject to Kτ+1 = Iτ +(1− δ)Kτ . The right-hand side of eq. (5) is the expected net present

value of cash flows, which takes into account the expected quadratic adjustment cost as well

as the cost of financing constraints. Following Gomes, Yaron and Zhang (2006), we assume
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linear homogeneity of the profit function Π (·).18 By differentiating (5) with respect to Kt+1

and adding an error term ϵt+1, where Et(ϵt+1) = 0, to remove the expectation operator

(details are presented in Online Appendix OA2), we arrive at the estimation equation for

the Euler equation:

ϑ

[
(1− δ)

(
1 + γ

(
It+1

Kt+1

)
+ bΦ

(
It+1

Kt+1

− Πt+1

Kt+1

))
+

Πt+1

Kt+1

+
1

2
γ

(
It+1

Kt+1

)2

+
b

2
Φ

(
It+1

Kt+1

− Πt+1

Kt+1

)(
It+1

Kt+1

+
Πt+1

Kt+1

)]
+ ϵt+1

= 1 + γ

(
It
Kt

)
+ bΦ

(
It
Kt

− Πt

Kt

)
. (6)

We follow Whited (1998) and employ two-step GMM to estimate the parameters in (6). As

information set at time t is orthogonal to the error at time t+ 1, we use moment condition

E(Ztϵt+1) = 0, where Zt denotes the set of instruments: time fixed effects, the lagged value of

investment-to-capital ratio, cash flow-to-capital ratio, debt-to-capital ratio, current assets-to-

capital ratio, capital spending, sales growth, and cash reserves. We also set ϑ = (1+0.05)−1

(as in Gamba and Triantis, 2008). The estimation output is presented in Table 4. The results

of the J test indicate that the overidentifying restrictions are rejected in most of the early

periods (column 4). This can be largely expected due to the large cross-sectional variations

in the data (Gomes et al., 2006). The J statistic decreases over time, which demonstrates

that the model’s goodness-of-fit improves in the later periods. The estimate of adjustment

cost parameter γ oscillates around zero in the early periods and substantially increases from

mid-2000s (column 2). Taken together, the estimation results based on the Euler equation

18The linear homogeneity assumption implies that ∂Π/∂K = Π/K.

23



TABLE 4
Estimation results based on the investment Euler equation

Two-step GMM estimation results of eq. (6). The instrument set consists of time fixed effects,
lagged value of investment-capital ratio, cash flow-capital ratio, debt-capital ratio, current asset-
capital ratio, capital spending, sales growth and cash reserves. The weighting matrix in the first
step is identity matrix and the weighting matrix for the second step is the inverse of robust standard
errors clustered at firm level. Standard errors clustered at firm level for the estimated coefficients
are reported in the parentheses. The J statistics and the corresponding p-values (reported in
parentheses) are presented in column 4. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and
10% level, respectively.

Period γ b J statistic

1977-1981 0.428∗∗∗ 0.000 390.615
(0.075) (0.179) (0.000)

1982-1986 −0.159∗∗ 0.000 324.293
(0.058) (0.102) (0.000)

1987-1991 0.908∗∗∗ 0.000 23.705
(0.119) (0.084) (0.022)

1992-1996 0.247 1.762∗∗∗ 58.320
(0.265) (0.234) (0.000)

1997-2001 1.300∗∗∗ 0.151∗∗∗ 30.046
(0.183) (0.058) (0.003)

2002-2006 1.654∗∗∗ 0.395∗∗∗ 46.388
(0.505) (0.077) (0.000)

2007-2011 6.192∗∗∗ 0.198∗∗∗ 19.960
(0.633) (0.046) (0.068)

2012-2016 8.141∗∗∗ 0.222∗∗∗ 12.388
(1.285) (0.060) (0.415)

2017-2019 24.276∗∗∗ 0.314 13.649
(3.908) (0.094) (0.560)

support hypothesis H2 that it is an upward trend of capital adjustment costs that results in

the decreasing pattern of I-CF sensitivity.

4.3 Evidence based on structural estimation of parameters

To build on the analysis of Sections 3 and 4.1-4.2, we estimate relevant model parameters

using the SMM approach. SMM not only bypasses the need for using a proxy for q but also

avoids relying on instruments, which are required for the estimation of the Euler equation.
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The objective here is to identify the values of key parameters, γ and b, that would result

in matching relevant properties of the actual data, that is, the coefficients of the baseline

regression (1). Hence, for each 5-year period, we estimate γ and b by matching the actual

moments with the moments generated from the simulated data. The moments we match are

the q sensitivity of investment, β1, and cash flow sensitivity of investment, β2. The details

of the estimation procedure and the adopted remaining parameter values are presented in

the Appendix.

The estimation output is reported in Table 5. The magnitude of estimated adjustment

cost parameter γ in 1977-1981 of 0.477 implies that the average firm incurs an adjustment

cost of approximately $0.137 (with the mean value of investment in 1977-1981 equal to 0.287)

for the marginal $1 of investment expenditure.19 In other words, adjustment costs constitute

approximately one-eighth (i.e., 0.137/1.137 = 12%) of the total investment costs, which is

consistent with Barnett and Sakellaris (1999). Furthermore, our estimates of γ before 2000

(i.e., ranging from 0.477 to 1.583) are in line with findings of Nikolov and Whited (2014) (i.e.,

γ between 0.5 and 1.3), DeAngelo et al. (2011) (i.e., 0.152) and Gao et al. (2021) (i.e., 0.939).

Importantly, it can be seen that the capital adjustment cost parameter estimated with the

simulated method of moments displays an increasing time trend, which is consistent with

our previous findings. It further illustrates that the increasing pattern of capital adjustment

costs is robust to using a different estimation methodology.

19Since $0.287× 0.477 is $0.137.
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TABLE 5
Parameter estimation results based on the SMM for each subsample period

β1 is the q sensitivity of investment and β2 is the cash flow sensitivity of investment, as in baseline
regression (1). Columns 2 and 3 (4 and 5) show β1 and β2 calculated based on the actual (simu-
lated) data in each subsample period. Columns 6 and 7 report the estimated model parameters γ
and b that minimize the weighted distance between the actual and simulated moments.

Actual moments Simulated moments Parameter estimates
Period β1 β2 β1 β2 γ b
1977-1981 0.021 0.271 0.028 0.280 0.477 0.698
1982-1986 0.022 0.131 0.020 0.150 0.829 0.692
1987-1991 0.016 0.058 0.007 0.074 1.220 0.671
1992-1996 0.010 0.046 0.006 0.068 1.583 0.647
1997-2001 0.007 0.022 0.002 0.056 1.373 0.657
2002-2006 0.006 0.005 0.001 0.001 6.617 0.507
2007-2011 0.007 0.000 0.003 −0.001 3.914 0.734
2012-2016 0.004 −0.002 0.004 −0.001 2.748 0.727
2017-2019 0.003 −0.004 0.004 −0.001 2.748 0.672

5 Adjustment costs as a function of knowledge capital

Having explored the consequences of (increasing) capital adjustment costs, we now look at

the antecedents of those costs. The innovation of technology has evolved significantly over

the past 40 years. According to McKinsey & Company (2017), manufacturing organizations

have entered a new era with advances in automation, robotics and artificial intelligence

that necessitate the adoption, integration and development of the technology into business

solutions, which enhances the associated cost of time for labor to retrain into the highly

skilled positions.

Extant academic literature offers similar insights referring to the technological progress

or knowledge advancement as a significant contributor to the increase of capital adjustment

costs. Klette and Kortum (2004) define knowledge capital as the “skills, techniques, and

know-how that [a firm] draws on as it attempts to innovate”. The development of knowledge
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capital is associated with the frequent use of intellectual property or the reliance on skilled

scientists or engineers, which can add to the labor expenses (Belo et al., 2017), costs and

complexity of installing machinery and equipment or opening a new plant.20 Bloom and

Van Reenen (2002) postulate that the reason for the sluggish impact of patents on market

value is that the new processes have to be embodied in the new capital equipment and train-

ing. With the growing adoption of new technologies, firms need to reorient their investments

or retrofit their existing plants towards technology-intensive plants or equipment.21 The

tendency to adopt new technologies can be captured by the stock of knowledge capital, thus

one would naturally expect that capital adjustment costs increase with the latter. Using

industry-level evidence, Hornstein and Krusell (1996) and Greenwood and Yorukoglu (1997)

suggest that technological improvement can cause productivity slowdown as the installation

of new capital goods results in high costs of learning. Kiley (2001) presents evidence of sub-

stantial costs associated with training and maintaining information technology, while Bessen

(2002) attributes increasing adjustment costs to an increase in spending on information tech-

nology (e.g., customization of software). Groth (2008) estimates that it is particularly costly

to install capital in ICT-intensive industries (see also Bessen (2002), who reports high ad-

justment cost estimates for high-tech industries). Uchida, Takeda and Shirai (2012) identify

significant costs of capital adjustment for the sectors that have undergone a technological

change in automobile electronics.

The rate of technology growth has been significant (Oliner and Sichel, 2000; Jorgenson

20Examples of those installation costs include longer time in setting up complex machine systems, em-
ployee training (and the associated lost in production) for digital transformation on the equipment, adver-
tising, search and selection fees for skilled workers.

21For instance, Gurbaxani (1992) note that the stock of information technology capital accounts for a
rapidly growing share of total U.S. capital stock.
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and Stiroh, 2000). We show evidence of the associated increase in the knowledge capital

intensity, measured as the ratio of intangible capital stock to total assets, in Panel A of

Table 6. We use the proxy for the value of intangible capital stock based on Peters and

Taylor (2017), which comprises spending (current and past) in both R&D (research and

development) and organization capital (e.g., advertising, payments on strategy consults and

employee training) capitalized using the perpetual inventory method.22 The mean (median)

level of knowledge capital intensity, Nit, increases from 0.454 (0.405) in 1977-1981 to 0.814

(0.654) in 2012-2016. The gradual growth of the firm-level intensity of knowledge capital

translates into increasing costs associated with installing complex machine systems, employee

training and recruitment fees for skilled talent.

In the remainder of this section, we explore the relationship between I-CF and I-q sen-

sitivities and knowledge capital, analyze the link between the scaling parameter γ of the

adjustment cost function and knowledge capital using the Euler equation framework, and

estimate parameters describing the dynamics of knowledge capital (and adjustment costs)

using an extension of the intertemporal investment model of Section 4.23

5.1 I-CF regression with the interaction of knowledge capital

We now provide an initial examination of the effect of knowledge capital on capital adjust-

ment costs and, subsequently, I-CF sensitivity. We interact cash flow and q variables with

knowledge capital intensity (Nit) using an extended version of the baseline regression (1)

22Note that Peters and Taylor’s (2017) data for intangible capital is available until 2017, which is reflected
in the length of our sample period in this part of the analysis.

23In Online Appendix OA3, we further corroborate the existence of the relationship between I-CF sen-
sitivity and knowledge capital using regression analysis that exploits the cross-country and cross-industry
variation of the latter.

28



TABLE 6
Summary statistics and investment regression with the interaction of intangible capital

Panel A shows the summary statistics of Nit, which is defined as the ratio of intangible capital
(based on Peters and Taylor (2017)) to total assets. Panel B displays the regression output by
interacting cash flow and q variables with Nit for both OLS estimator with firm and year fixed
effects (models 1 and 2) and GMM5 estimator (models 3 and 4).

Panel A. Summary statistics of Nit

Period Mean Std. Dev. p(25) p(50) p(75) Serial
Corr.

1977-1981 0.454 0.272 0.264 0.405 0.587 0.961
1982-1986 0.507 0.322 0.285 0.447 0.651 0.944
1987-1991 0.566 0.406 0.297 0.481 0.722 0.929
1992-1996 0.601 0.432 0.312 0.510 0.768 0.940
1997-2001 0.693 0.647 0.337 0.539 0.810 0.892
2002-2006 0.797 0.686 0.410 0.637 0.923 0.927
2007-2011 0.856 0.864 0.395 0.661 0.973 0.912
2012-2016 0.814 0.740 0.393 0.654 0.955 0.946

Panel B. Regressions with the interaction with Nit

(1) (2) (3) (4)
OLS OLS GMM5 GMM5

Dependent variable: Iit
Kit

Iit
Kit

Iit
Kit

Iit
Kit

Qit 0.007∗∗∗ 0.016∗∗∗ 0.012∗∗∗ 0.008∗∗∗

(0.000) (0.001) (0.001) (0.000)
CFit
Kit

0.029∗∗∗ 0.093∗∗∗ 0.012∗∗∗ 0.021∗∗∗

(0.002) (0.006) (0.002) (0.002)
Qit ×Nit −0.002∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗

(0.000) (0.000) (0.001) (0.000)
CFit
Kit

×Nit −0.013∗∗∗ −0.008∗∗∗ −0.005∗∗∗ −0.005∗∗∗

(0.001) (0.001) (0.002) (0.001)
Nit −0.092∗∗∗ −0.084∗∗∗ −0.110∗∗∗ −0.086∗∗∗

(0.005) (0.004) (0.005) (0.004)
Qit × Trend −0.001∗∗∗ −0.0001∗∗

(0.000) (0.000)
CFit
Kit

× Trend −0.011∗∗∗ −0.000

(0.001) (0.000)
Trend −0.019∗∗∗

(0.001)
Constant 0.272∗∗∗ 0.256∗∗∗ 0.001∗∗∗ 0.006∗∗∗

(0.003) (0.003) (0.000) (0.001)
Obs. 61,079 61,079 61,079 61,079
R2 (OLS)/J (GMM5) 0.113 0.138 69.553 140.022
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estimated for the full sample. If capital adjustment costs – which increase with the intensity

of knowledge capital – do bring down I-CF sensitivity, one would also expect Nit to be neg-

atively related to I-CF sensitivity. In Panel B of Table 6, we report the results based on the

OLS estimator with firm and year fixed effects (models 1 and 2) and those based on GMM5

(Erickson and Whited, 2000, 2002) and EW estimators (models 3 and 4). For models 1 and

3, the coefficients of CFit

Kit
×Nit and Qit×Nit are negative and statistically significant for both

estimators. The results indicate that knowledge capital has a negative effect on both I-CF

and I-q sensitivity. The finding is therefore consistent with the view that capital adjustment

costs, which stem from investment in knowledge capital, contribute to a lower sensitivity

of investment to cash flow and q. To further show that the knowledge capital Nit, despite

increasing over time, captures more than the time-series variation of macroeconomic trends,

we additionally control for the interaction term of cash flow and q variables with Trend in

models 2 and 4. The coefficients of CFit

Kit
× Nit and Qit × Nit continue to be negative and

statistically significant, indicating that the negative effect of Nit on I-CF and I-q sensitivity

is robust to controlling for the time trend.

5.2 Parametrization of the adjustment cost in Euler equation

We further investigate the relation between capital adjustment costs and knowledge capital

using the Euler equation framework, with adjustment cost parameter γ being now a function

of knowledge capital intensity. We adopt a similar approach to Whited and Wu (2006) and

parameterize γit as a linear function of Nit, that is, we set γit(Nit) = d0 + d1Nit. We then

substitute the expression for γit into eq. (6) and, otherwise, repeat the estimation procedure
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of Section 4.2 for the parameter set [d0 d1 b]. The GMM estimation results are presented in

Panel A of Table 7. In Panel B, we plot the evolution of γt as a function of Nt, defined as the

average value of Nit across all firms in year t, based on the estimated parameters d0 and d1.

The results show that the parameter estimate of d1 is positive and significant at the 1% level,

indicating that γit and, more generally, capital adjustment costs are positively associated

with Nit. The time-series evolution of predicted γt implies that the capital adjustment costs

increase over time, which is driven by the increasing trend of Nt.

TABLE 7
Parameter estimation results based on the Euler equation with parameterized adjustment costs

Panel A shows the two-step GMM estimation results with parameterized γit. Standard errors
(S.E.) clustered at firm level for the estimates are reported. ∗∗∗, ∗∗, and ∗indicate significance at
the 1%, 5%, and 10% level respectively. Panel B plots the time-series evolution of predicted γt
based on the parameter estimates of d0 and d1 from Panel A.

Panel A. Parameter estimates
d0 d1 b

Estimates −10.683∗∗∗ 21.572∗∗∗ 0.000
S.E. 1.688 2.868 4.239

Panel B. Evolution of predicted γt
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5.3 Endogenizing adjustment cost in a fully dynamic framework

We next derive foundations of capital adjustment costs by endogenizing the adjustment

cost parameter in an investment model. We subsequently estimate model parameters using

the SMM approach. In this framework, the firm valuation is summarized by three state

variables: firm-level profitability shock A, knowledge capital stock N and physical capital

stock K. Managers choose investment in both knowledge capital n and physical capital I to

maximize firm value:

V (A,K,N) = max
I,n

[(Π(A,K,N)−I−n1n>0−G(I,K, γ(N
′
))−H(X,K))+ϑE{A′ |A}V (A

′
,K

′
, N

′
)],

(7)

with the indicator function used to reflect irreversibility of knowledge capital investment.

Profit is modelled with a constant elasticity of substitution (CES) function (cf. Belo et al.,

2017), Π(A,K,N) = A(κK1−1/θ+(1−κ)N1−1/θ)α/(1−1/θ), where κ > 0 represents the relative

weight of the two inputs in the production process, α is the degree of returns to scale, and θ is

the elasticity of substitution between physical capital and knowledge capital.24 Investment

in knowledge capital in a given period is denoted by n and its depreciation rate, which

captures gradual knowledge obsolescence and spillovers, is δN . The law of motion of N is

given by N
′
= n + (1 − δN)N . The capital adjustment cost parameter is a function of

knowledge capital and is expressed as γ(N) = c0 + c1N . Other parameters and variables

are as defined in Section 4.3 (see also the Appendix). We repeat the steps of the structural

estimation procedure of that section but augmented with an additional choice variable n.

We now estimate an extended set of parameters, that is, [c0 c1 δN b α κ θ ρa σa], to match as

24The CES function collapses to a Cobb-Douglas function when θ → 1.
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closely as possible the empirical time-series pattern of investment-cash flow sensitivity. The

estimates are reported in Table 8.

TABLE 8
Parameter estimation results based on the SMM with endogenized γ(N)

Parameters of capital adjustment costs:
Intercept c0 0.605
Slope c1 0.124
Other parameters:
Depreciation rate δN 0.036
Financing cost b 0.408
Returns to scale α 0.633
Weight of physical capital κ 0.540
Elasticity of substitution 1 − 1/θ −0.508
Mean reversion coefficient of productivity ρa 0.880
Volatility of productivity σa 0.051

The simulated process for the capital adjustment cost parameter and time-series trend

of I-CF sensitivities are shown in Figure 1. Again, after closely matching the pattern of

investment-cash flow sensitivity, endogenized γ(N) demonstrates an increasing trend as a

result of the upward evolution of N over time. The SMM estimation results again support

our argument that the declining investment-cash flow sensitivity is driven by increasing

capital adjustment costs, which is a product of accumulating the knowledge capital stock.
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FIGURE 1
Simulated process of γ(N) and estimated β2
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6 Conclusions

The gradual decline of I-CF sensitivity over time is a phenomenon that has remained largely

unexplained in the extant literature. By focusing on two key factors inspired by a neoclassical

investment framework with costly external financing: financial frictions and capital adjust-

ment costs, we provide evidence that goes towards settling the ongoing debate. To evaluate

whether either of those factors contribute to the declining pattern of I-CF sensitivity, we

use a broad range of tests ranging from a nonlinear estimation of the first-order condition,

a GMM estimation of the Euler equation, to the structural estimation of the parameters

capturing financial and real frictions.
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We demonstrate that while I-CF sensitivity is a function of both financial constraints and

capital adjustment costs, it is the evolution of the latter that is largely capable of explaining

the declining I-CF sensitivity pattern. As firms need to divide financial resources earmarked

for investment between covering actual investment expenditure and capital adjustment costs,

higher adjustment costs lead to a lower sensitivity of investment to available cash flow. Our

estimates unequivocally show that capital adjustment costs exhibit an upward time trend,

which explains why I-CF sensitivity has declined over time. The gradual increase of capital

adjustment costs is also consistent with the documented decrease in I-q sensitivity.

In line with several recent contributions, we do not find evidence of a variation in the

magnitude of financing frictions that would be consistent with the observed I-CF sensitiv-

ity pattern. (The hypothesis of a decline in the magnitude of financing constraints is not

supported by the observed negative trend in I-q sensitivity either.)

We also provide a microfounded explanation of the capital adjustment cost increase, based

on the accumulation of knowledge capital in response to expanding new product markets

and technological progress. While such investment translates into firms’ higher productivity,

it also leads to increased adjustment costs.

More generally, our results demonstrate that I-CF sensitivity should be interpreted as

a joint measure of financial and real frictions. This observation has implications for the

design and interpretation of empirical tests of financing constraints that rely on using I-CF

sensitivity. Namely, a lower sensitivity of investment to cash flow may be symptomatic of a

higher cost of adjusting capital stock rather than of an improved access to external financing.
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Appendix: Details of the structural estimation approach

Denote (A,K) as the state of the firm, the value of which is maximized. The productivity
shock A is the only source of economic uncertainty. Numerical solutions for the firm value and
level of investment are based on the iterative value iteration algorithm. To simplify notation,
denote xt as x and xt+1 as x

′
(the analogous notation is applied to all other variables). The

logarithm of the shock variable, denoted as a = log(A), is assumed to follow a first-order
autoregressive process with zero drift: a

′
= ρaa+ϵ

′
, where ρa is the autoregressive coefficient

and ϵ
′ ∼ N(0, σa) is identically independently distributed across time. We transform the

first-order autoregressive process into a discrete-state Markov chain following Tauchen (1986)
where the value sets and corresponding transition probability are determined by [ρa σa]. We
let a take Na = 10 points from the discretized set of [−3σa/

√
(1− ρ2a) 3σa/

√
(1− ρ2a)] and

define the interval between each point as w = 6σa/(
√

(1− ρ2a)(Na − 1)). We denote the
probability that the log stochastic shock a

′
becomes āi given that the log stochastic variable

in the last period a is āj as p(j, i) = Pr[a
′
= āi|a = āj]. Then the probability matrix for

j = 1 . . . Na and i = 1 . . . Na is

p(j, i) = Pr[āi − w/2 ≤ ρaāj + ϵ
′ ≤ āi + w/2] (A.1)

= N

(
āi − ρaāj + w/2

σa

)
−N

(
āi − ρaāj − w/2

σa

)
.

The discretized set for capital stock K is defined as K̄, K̄(1− δ), . . . , K̄(1− δ)49, where the
maximum value of capital K̄ is determined by Π(Ā, K̄) = δK̄ where the profit function is
Π(A,K) = AKα (see Gomes (2001)). Remaining parameters broadly follow Gomes (2001)
and Hennessy and Whited (2007): the curvature of the profit function α is 0.45, the auto-
correlation coefficient of the stochastic profit component ρa is 0.65, its volatility σa is 0.15,
the depreciation rate δ is 0.15 and risk-free rate r equals 0.05.

Now, for a given set of parameters Θ = [γ b], we solve for the value function and the
optimal policy function. The goal is to identify the parameters that match the actual data
moments, denoted as Md, with simulated moments, denoted as ms(Θ). The parameter
estimates are therefore chosen to minimize the weighted distance between actual moments
and simulated moments:

Θ̂ = argmin
Θ

[
Md −

1

S

S∑
s=1

ms(Θ)

]
W

[
Md −

1

S

S∑
s=1

ms(Θ)

]
, (A.2)

where W is the optimal weighting matrix, which is given by the inverse of the variance-
covariance matrix of Md. We create S = 6 artificial panels containing 1000 firms (paths)
with 40 time periods. For each path, the log state variable a is restricted to the discretized
set of values. We simulate 60 periods for each firm and drop the first 20 periods to allow the
firms to move away from a possibly suboptimal starting point (see Hennessy and Whited,
2005). At the end of each panel, we run the baseline regression of investment on q and cash
flow. Finally, we take the average of the cash flow coefficients and q coefficients over the S
panels and form the simulated moments.
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Ağca, Ş. and Mozumdar, A. (2008), ‘The impact of capital market imperfections on

investment-cash flow sensitivity’, Journal of Banking and Finance 32(2), 207–216.
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OA 1 Euler equation: Empirical counterpart

The empirical counterpart of the Euler investment equation is derived as follows. The firm

aims to maximize the expected discounted value of the net profit stream:

V (At, Kt) = max
{Kτ+1,Iτ}∞τ=t

Et

∑
τ=t

(
1

1 + r

)τ−t

[Π(Aτ , Kτ )− Iτ −G(Iτ , Kτ )−H(Xτ , Kτ )],

(OA 1.1)

subject to It = Kt+1 − (1 − δ)Kt. All functions are as previously defined. The Lagrangian

with multiplier qτ is given by

L = max
{Kτ+1,Iτ}∞τ=t

Et

∑
τ=t

(
1

1 + r

)τ−t

[Π(Aτ , Kτ )− Iτ −G(Iτ , Kτ ) (OA 1.2)

−H(Xτ , Kτ ) + qτ (Iτ + (1− δ)Kτ −Kτ+1)] ,

where qt is the shadow price of capital. The first-order conditions with respect to It and

Kt+1 are, respectively,

∂L
∂It

= 0 ⇒ qt = 1 +
∂G(It, Kt)

∂It
+

∂H(Xt, Kt)

∂It
, (OA 1.3)

∂L
∂Kt+1

= 0 ⇒ (OA 1.4)

qt =
1

1 + r
Et

[
(1− δ)qt+1 +

∂Π(At+1, Kt+1)

∂Kt+1

− ∂G(It+1, Kt+1)

∂Kt+1

− ∂H(Xt+1, Kt+1)

∂Kt+1

]
.
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With the iterative substitution of (OA 1.4) and the transversality condition which requires

that limT→∞ qt+T/(1 + r)t+T = 0, we obtain

qt = Et

∞∑
τ=t+1

(1− δ)τ−t−1

(1 + r)τ−t

(
∂Π(Aτ , Kτ )

∂Kτ

− ∂G(Iτ , Kτ )

∂Kτ

− ∂H(Xτ , Kτ )

∂Kτ

)
. (OA 1.5)

The substitution of (OA 1.3) into (OA 1.4) yields

1 +
∂G(It, Kt)

∂It
+

∂H(Xt, Kt)

∂It
=

1

1 + r
Et

[
(1− δ)

(
1 +

∂G(It+1, Kt+1)

∂It+1

+

∂H(Xt+1, Kt+1)

∂It+1

)
+

∂Π(At+1, Kt+1)

∂Kt+1

− ∂G(It+1, Kt+1)

∂Kt+1

− ∂H(Xt+1, Kt+1)

∂Kt+1

]
. (OA 1.6)

When constructing the empirical equation, we assume that the production function displays

constant returns to scale in a perfectly competitive output market so that ∂Π(At, Kt)/∂Kt =

Πt/Kt. Assuming further the quadratic adjustment cost function, we obtain ∂G(It, Kt)/∂It =

γIt/Kt and ∂G(It, Kt)/∂Kt = −0.5γ (It/Kt)
2. Also ∂H(Xt, Kt)/∂It = bϕ(It/Kt − Πt/Kt)

and ∂H(Xt, Kt)/∂Kt = −0.5bϕ (ItKt − Πt/Kt) (ItKt +Πt/Kt). Adding an expectation er-

ror ϵt+1 where Et(ϵt+1) = 0 to remove the expectation operator, we arrive at the empirical

counterpart of the Euler equation:

1

1 + r

[
(1− δ)

(
1 + γ

(
It+1

Kt+1

)
+ bϕ

(
It+1

Kt+1

− Πt+1

Kt+1

))
+

Πt+1

Kt+1

+
1

2
γ

(
It+1

Kt+1

)2

+
1

2
bϕ

(
It+1

Kt+1

− Πt+1

Kt+1

)(
It+1

Kt+1

+
Πt+1

Kt+1

)]
+ ϵt+1

= 1 + γ

(
It
Kt

)
+ bϕ

(
It
Kt

− Πt

Kt

)
. (OA 1.7)
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OA 2 Evidence based on industry-level data

Following the strand of literature that relates adjustment costs to the productivity growth,

we adopt the approach of Bessen (2002) and estimate the trend of adjustment costs with

4-digit SIC code industry-level data from NBER-CES Manufacturing Industry Database for

period 1977-2011. The adjustment cost is defined as the deviation of the actual output

from potential output. For each industry j, the actual output is Yt = Y ∗
t (1 − Gt), with

potential output being equal to Y ∗
t = AtK

αK,t

t M
αM,t

t L
αL,t

t . Here, At denotes productivity

shock, Mt (Lt) is material (labor) input, αK,t (αM,t, αL,t) is the elasticity of output with

respect to capital (material, labor). Gt = γIt−1/Kt−1 is the adjustment cost per unit of

potential output, which is linearly related to the lagged investment-to-capital ratio. 1−Gt is

analogous to the speed of adjustment (SOA), as in the partial adjustment model of Lintner

(1956). For the industry j at time t, we transform levels into logarithms, take the differences

and rearrange Yjt = Y ∗
jt(1−Gjt) to obtain (̂. denotes a log change):

Ẑjt ≡ Ŷjt − αK,jtK̂jt − αM,jtM̂jt − αL,jtL̂jt = Âjt − γ∆
Ijt−1

Kjt−1

. (OA 2.1)

Parameter γ can be estimated by regressing Ẑjt on the lagged change of investment-to-capital

ratio, ∆(Ij,t−1/Kj,t−1). In order to infer the time-series pattern of adjustment costs, we

include the period trend variable T which equals 1 for 1977-1981, 2 for 1982-1987 and so on.

Table OA1 presents the regression output for the pattern of adjustment costs. The coefficient

of T ×∆(Ij,t−1/Kj,t−1) shows that the adjustment cost parameter increases by 0.053 (0.052

with industry fixed effects) in each period when time fixed effects are not included and by
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TABLE OA1
Adjustment to the potential output level

Regression output based on data from NBER-CES Manufacturing Industry Database covering
periods between 1977 and 2011. The dependent variable is productivity residual growth Ẑjt as
described in Bessen (2002). The explanatory variables are lagged change of investment-to-capital

ratio ∆
Ij,t−1

Kj,t−1
, interaction term between period trend variable T , lagged change of investment-capital

ratio and, depending on specification, industry and year fixed effects (FE). Period trend variable
is defined as 1 in 1977-1981 and 2 in 1982-1986 and so forth. Standard errors are clustered in
industry level and reported in the parentheses. Adjusted R2 (R2

a) is also reported. The number of
observations is 15,953. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% level, respectively.

Variables Dependent variable is Ẑjt

∆
Ij,t−1

Kj,t−1
−0.094 −0.099 −0.196∗∗

(0.085) (0.098) (0.087)

T ×∆
Ij,t−1

Kj,t−1
−0.053∗∗ −0.052∗∗∗ −0.015

(0.019) (0.021) (0.019)
Industry FE N Y Y
Year FE N N Y
R2

a 0.015 0.014 0.127

0.015 (although not statistically significant at standard levels) once they are added. Even

though the upward trend of adjustment costs is less pronounced when aggregate shocks are

controlled for, the coefficient of T ×∆(Ij,t−1/Kj,t−1) has the expected sign, consistent with

an increase in adjustment costs.

OA 3 Firm-level data cross-sectional evidence

To provide an additional set of tests, we exploit the cross-sectional variation in the level

of knowledge capital stock as the foundation for capital adjustment costs. Specifically, we

perform the analysis along the lines of Moshirian et al. (2017), who investigate differences in I-

CF sensitivity patterns between developing and developed economies, as well as compare the

trends of I-CF sensitivity between high-tech and non high-tech industries. To the extent that
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increasing capital adjustment costs can be a consequence of knowledge capital accumulation,

we expect that countries that are more equipped to adopt the new technology (i.e., developed

countries) or industries that rely more on advanced technology (i.e., high-tech industries)

exhibit a more pronouced rise in capital adjustment costs and thereby a stronger decline in

I-CF sensitivity.

OA 3.1 Cross-country regression results

Moshirian et al. (2017) examine the difference in I-CF sensitivities between firms from devel-

oped economies and those from developing countries. They demonstrate that the decrease

in I-CF sensitivity is quite substantial for the former group and only moderate for the latter.

It is argued that the declining importance of the productivity of tangible assets combined

with a reduction in income predicability leads to the decreasing pattern of I-CF sensitiv-

ity in the “new economy”. We replicate the OLS analysis of Moshirian et al. (2017) and

complement it with the GMM5 approach. As in Moshirian et al. (2017), we estimate the

time-series trend of I-CF sensitivity for developed countries (excluding the U.S.) and emerg-

ing economies (excluding China and India).1 The level of a country’s economic development

is defined according to the MSCI classification. We estimate coefficients of investment on

cash flow over a rolling window of 5 years for both sets of economies. As q is more likely

to be measured with error for this international sample, we apply an additional filter and

remove the observations where its magnitude exceeds 100 or is below 0. We begin from year

1995 to ensure that there are at least 200 observations each year for each developing country.

1The exclusion of China and India is motivated by Moshirian et al. (2017) as driven by their fast pace
of adopting new technologies, which makes them less comparable with other developing countries.
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FIGURE OA1
Investment-cash flow sensitivity of developed economies vs. developing countries

OLS GMM5

I-CF sensitivity estimates based on the ordinary least squares (OLS), and Erickson-Whited error-
corrected estimator (GMM5). The solid black line shows the estimates for developed economies
excluding the U.S. and the dashed blue line shows the estimates of I-CF sensitivity for emerging
countries excluding China and India. Shaded areas represent confidence intervals at the 95% level.

We present the rolling-window estimated coefficients in Figure OA1.

The decline of I-CF sensitivity for developing countries is less steep than for developed

economies. Based on the OLS analysis, we conclude that I-CF sensitivity is declining over

time in advanced economies but remains flat and does not drop until the most recent periods

in developing countries. The decreasing trend of I-CF sensitivity for developed economies

and the absence of such a clear decline for less developed economies are still visible when

the error-corrected estimator GMM5 is used (the right panel of Figure OA1). The estimated

I-CF sensitivity in developed economies starts from 0.07 in 1995-2000 and drops to near zero

in 2010-2018 for GMM5 estimator. The estimate of I-CF sensitivity for the GMM5 estimator

in less developed economies fluctuates around 0.10 until almost 2003 before it experiences a

slight reduction.
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We provide an alternative to Moshirian et al.’s (2017) explanation for the observed dif-

ference in I-CF sensitivities between developed economies and developing economies based

on the implications of capital adjustment costs. Firms in developed countries are faster in

adopting knowledge capital and hence should experience a more rapid increase in their cap-

ital adjustment costs year on year. Therefore, their I-CF sensitivities decline substantially,

also when the productivity of physical capital, as proxied by q, is fully controlled for and

the measurement error in q is corrected for. Firms in the developing economies, however,

face a more moderate pace of technological change and, hence, a slower increase in their

capital adjustment costs. Therefore, their I-CF sensitivities decline at a lower pace or face

no decline at all, at least until recently.

OA 3.2 Cross-industry regression results

In the second part of the cross-sectional analysis, we classify manufacturing firms into belong-

ing to either non-high-tech or high-tech industries. According to Chen and Chen’s (2012),

high-tech firms are those with SIC codes 3840-3849, 3820-3829, 3670-3679, 3660-3669, 3570-

3579, and 2830-2839. Within each industry group, we run the baseline regression (1) for 9

periods from 1977-1981 to 2017-2019. As high-tech firms are likely to accumulate knowledge

capital more quickly compared to non high-tech groups, we expect that the former experi-

ence a more rapid increase in capital adjustment costs over time and, therefore, a steeper

decline in I-CF sensitivity.

Table OA2 shows a decreasing pattern of I-CF sensitivity regardless of the industry group

the firms belong to. It also demonstrates that I-CF sensitivity for the high-tech industries
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TABLE OA2
Estimation across industry groups

Estimation results for the baseline I-CF regression for two industry groups. Columns 2 and 4 (3 and
5) report coefficients β1 of q (β2 of cash flow) for two industry groups: high-tech and non high-tech,
respectively. The p value for the null hypothesis that the coefficients are the same between the first
period and the last period is reported below. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and
10% level, respectively.

High-tech: Non high-tech:
Period β1 β2 β1 β2

1977-1981 0.032∗∗∗ 0.276∗∗∗ 0.015∗∗∗ 0.268∗∗∗

1982-1986 0.022∗∗∗ 0.113∗∗∗ 0.021∗∗∗ 0.144∗∗∗

1987-1991 0.017∗∗∗ 0.054∗∗∗ 0.013∗∗∗ 0.062∗∗∗

1992-1996 0.011∗∗∗ 0.044∗∗∗ 0.010∗∗∗ 0.049∗∗∗

1997-2001 0.006∗∗∗ 0.013∗ 0.011∗∗∗ 0.036∗∗∗

2002-2006 0.006∗∗∗ −0.001 0.007∗∗∗ 0.017∗

2007-2011 0.006∗∗∗ −0.002 0.008∗∗∗ 0.001
2012-2016 0.004∗∗∗ −0.006 0.004∗∗∗ 0.009
2017-2019 0.002∗∗∗ −0.007 0.005 0.010
p value 0.000 0.000 0.000 0.000

has declined in 2000s more rapidly than for other industries. For the former group, I-CF

sensitivity starts to disappear and becomes statistically not significant in 2002-2006. It also

remains lower in the most recent sample periods compared to the non high-tech group. In

order to quantify the magnitude of the difference in the decline of I-CF sensitivity between

high-tech and non high-tech industries, we estimate β2 by year and regress it on the natural

logarithm of the year trend variable T , which is equal to 1 for 1977, 2 for 1978 and so

on. Table OA3 shows that I-CF sensitivity drops by on average 8.6% every year for the

high-tech group whereas it decreases by only 7% for the non high-tech group. The reported

t-statistics and the corresponding p-values for the null hypothesis that the declining trend

of β2 is the same for high-tech and non high-tech groups indicate that the declining trend of

β2 is significantly more prominent for the high-tech firms than that for their non high-tech

counterparts.
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TABLE OA3
Comparison of the trend in β2 across industry groups

Estimates of the declining trend for β2 across both industry groups, i.e., high-tech and non high-
tech. The model is estimated by regressing β2 on the natural log of year trend variable T , which
is equal to 1 for 1977, 2 for 1978 and so on. Standard errors are shown in parentheses. t-statistics
and corresponding p-values for the null hypothesis that the declining trend is the same between
high-tech and non high-tech sectors are reported. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%,
5%, and 10% level, respectively.

β2 high-tech β2 non high-tech

log(T ) −0.086∗∗∗ −0.070∗∗∗

(0.004) (0.003)
H0: Coeff. high-tech = coeff. non high-tech

t-stat.: −3.005 p-value: 0.000

The comparison of the declining trends is further illustrated in Figure OA2 with scatter

plots and exponential curve fitting. It shows that high-tech firms have experienced a more

substantial decline in their I-CF sensitivities, which is consistent with the view that they

are more affected by the increasing costs of capital adjustment due to their higher pace of

knowledge capital accumulation.
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FIGURE OA2
Investment-cash flow sensitivity across groups by year (fitted with an exponential curve)

High-tech vs. non high-tech
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Scatter plots of investment-cash flow sensitivities estimated for firms in high-tech (solid blue) vs.
non high-tech (dashed red) industries fitted with an exponential curve.
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