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Abstract 

We adopt a Bayesian econometric technique to address issues of endogeneity and 

measurement error when estimating outcomes while also tackling censoring. We 

motivate our study based on the theoretical framework laid out by Dasgupta and Stiglitz 

[1980] to highlight the endogeneity issue by investigating the relationship between 

market structure and innovation. We apply our method to estimate the R&D 

expenditures for Chinese manufacturing firms to highlight the importance of the 

econometric issues. Reduced-form results suggest a nonlinear relationship between 

market concentration and R&D expenditures, while our approach suggests a strictly 

positive relationship consistent with canonical theoretical models built on oligopolistic 

competition.  
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1. Introduction 

 

Estimating outcomes using ordinary least squares (OLS) in the presence of endogeneity 

and/or measurement error can result in biased and inaccurate findings. For example, 

industrial economists have long considered the relationship between incentives to 

innovate and market structure in trying to determine market conditions that encourage 

research and development (R&D) activity. Understanding this relationship is important 

as R&D by firms leads to innovation, from which companies can obtain economic 

rents.1 Schumpeter [1942] hypothesized that large firms in concentrated markets are 

likely to innovate. Many researchers have since studied this relationship—now known 

as the Schumpeterian hypothesis.2 

 One takeaway from this research is that there is still a need to account for issues 

of simultaneity between market structure and R&D. For example, Cohen [2010] noted 

“an area where this literature on the tie between R&D and firm size is relatively mute 

is the endogeneity of firm size with respect to R&D and innovation.” Further, as 

mentioned by Aghion et al. [2005], accurately accounting for the number of competitors 

is also challenging and can lead to measurement error. Empiricists have documented 

(using Wu-Hausman tests) that, in such instances, orthogonality conditions required for 

OLS estimation do not hold.3 In a recent paper, Li et al. [2021] also mention the bias 

in OLS estimators. This could be exacerbated when using a sample of survey data to 

construct variables to control for agglomeration or market concentration ratios where 

least squares estimation may be inappropriate and richer econometric strategies are 

needed. 

Hence, in this paper, we adopt an alternative approach based on econometric 

techniques developed by Schennach [2005, 2014] that addresses endogeneity and 

measurement error while paying attention to censoring issues (for example, when firms 

do not invest in any R&D efforts). Thus, our econometric contribution is twofold in the 

sense that we (i) deal with measurement error in critical variables of the model, and (ii) 

deal with endogeneity—in this case, of rivals’ R&D, market concentration, and the 

 
1R&D efforts can focus on either reducing the cost of producing a product (R&D related to process 

innovations) or on improving the end-product, as well as introducing new products (R&D related to 

product innovations) by building directly upon existing products or by introducing new varieties. 
2 Cohen [2010] recapped empirical research that has considered hypotheses in the Schumpeterian 

tradition, updating his previous surveys (Cohen and Levin [1989] as well as Cohen [1995]). In addition, 

Gilbert [2006] surveyed literature specifically related to the Schumpeterian hypotheses around market 

structure and firm size while Ahuja et al. [2008] surveyed related research in the management literature. 
3See, for example, Levin and Reiss [1984] as well as Levin et al. [1985]. 
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number of rival firms. We use a coherent and unified framework by combining Entropic 

Latent Variable Integration via Simulation (ELVIS) (which deals with measurement 

error in nonlinear regressors) with Bayesian Exponentially Tilted Empirical Likelihood 

(BETEL) (which deals generically with moment conditions using instruments) which 

we organize in a general formulation that can, in turn, be estimated using fast Markov 

Chain Monte Carlo-based (MCMC) methods.  

Considering the literature on R&D, the common approaches researchers have 

adopted—recognizing the potential simultaneity between innovative efforts and market 

concentration—include instrumenting for concentration or estimating multi-equation 

models that treat concentration and R&D as endogenous. 4  Blundell et al. [1999] 

proposed an approach for addressing the endogeneity issue concerning market structure 

and R&D by using lagged variables in panel data. They found that concentrated 

industries produce fewer innovations though, within an industry, larger firms generate 

more innovations. One challenge with this approach is that researchers may have access 

to limited data (for example, a panel of data might span only a couple of years) which 

might preclude the ability to use lagged variables.  

We apply our estimator to Chinese firm-level data for which a short panel exists 

so constructing lagged variables removes important observations. The focus of our 

research is on inputs or efforts—R&D expenditures—and not on output or productivity 

of R&D (for example, patents per dollar of R&D spending). Our data is firm-level and 

firms are assigned to industries at the four-digit level under the Standard Industrial 

Classification (SIC) codes. 5  Reduced-form (OLS) results suggest a nonlinear 

relationship between measures of market concentration and R&D expenditures. This 

finding is consistent with those of the literature, though we apply this approach to a new 

data set.  

Estimating analogous models using our hybrid results leads to similar estimates 

for a number of covariates that are plausibly exogenous.  However, our hybrid 

Bayesian approach leads to very different results for the factors that we argue are 

endogenous or plagued by measurement error like measures of market concentration. 

 
4As an example of the former, Levin et al. [1985] instrumented for market concentration (four-firm 

concentration ratio) in estimating the effect of market structure on R&D intensity. For the latter, Levin 

and Reiss [1984, 1988] as well as Connolly and Hirschey [1984] used a four-equation system specifying 

relationships between profits, R&D, advertising, and concentration, allowing for nonlinearities. 
5As detailed in the survey by Cohen [2010], data collection on R&D efforts and output measures in the 

United States is often not disaggregated enough to consider. Instead, research has focused on data from 

Canada and Europe (for example, Community Innovation Survey data) primarily. 
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Specifically, our approach suggests a strictly positive relationship exists in our data—

the more concentrated the industry, the more expenditures on R&D. A positive 

relationship is consistent with canonical theoretical models built on oligopolistic 

competition such as that of Dasgupta and Stiglitz [1980] and offers support of 

Schumpeter’s hypothesis. Further, we follow our estimation results by shutting down 

elements of our approach and by performing MCMC exercises which encourage 

confidence in our approach when issues of endogeneity and measurement error are 

present in the data. 

Our hybrid approach addresses a number of issues: censoring, measurement 

error in explanatory variables, and endogeneity. The latter two challenges are 

particularly important as measurement errors can result not only from poor data but 

when variables are constructed using a subset of all firms while endogeneity is prevalent 

in similar applications. For example, one firm’s R&D expenditures might depend on 

the R&D expenditures of rival firms. However, that aggregate value can also be plagued 

by measurement error if all firms are not observed or if firms are not correctly classified 

into industries. This issue could be exacerbated, especially if they participate in multiple 

industries but variable construction is built around only their primary industry.  

We acknowledge that endogeneity can be dealt with in a generalized method of 

moments (GMM) framework using moment conditions. However, there is increasing 

evidence that GMM can behave erratically in finite samples (see the initial work of 

Hansen et al. [1996] for example) and its behavior is not ideal when instruments are 

weak or invalid.  Hence, our hybrid approach that is based on the BETEL of 

Schennach [2005] can be thought of as a Bayesian version of GMM which addresses 

the shortcomings of a GMM strategy. In this framework, although we cannot entirely 

solve the general problem of weak or invalid instruments, we have, at least, a principled 

way to test these assumptions. In our application, we use MCMC methods to provide 

access to the posterior implied by moment conditions, as suitable instruments are 

available.  

Measurement errors complicate the analysis considerably. There is no standard 

approach to the problem, though Lewbel [1997] proposed one solution in which 

functions of the data can be used as instruments in multiple-stage least-squares 

regression using higher moments of the data. We use the ELVIS method of Schennach 

[2014] and specialized MCMC algorithms based on Girolami and Calderhead [2011] 

to access the posterior of the model. ELVIS deals explicitly with measurement error 
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problems and can be embedded into BETEL, allowing us to address these issues by 

employing an estimator (from the classical perspective) that has both good asymptotic 

and finite-sample properties.  

Our paper is structured as follows: in Section 2, we appeal to a simple theoretical 

model which highlights the simultaneity between market structure and R&D investment 

choices. That model motivates our econometric concerns and allows us to demonstrate 

the inadequacy of OLS. In Section 3, we discuss firm-level panel data which we 

summarize, noting interesting R&D investment patterns and relationships. We initially 

ignore our econometric concerns by formally estimating empirical models in Section 4 

using standard techniques including instrumental variables (IV) method to establish 

baseline results.  Our hybrid Bayesian estimation strategy, meant to address the 

concerns around censoring, measurement error, and simultaneity, is articulated and 

estimated in Section 5 where we find important differences in the main takeaways. In 

Section 6, we present simulation evidence that allows us to compare our approach with 

nested models which include OLS as well as specifications which account for just 

measurement error or only endogeneity. Lastly, In Section 7, we summarize and 

conclude our research.  

 

2. Conceptual framework 

In this section, we simplify the classic Dasgupta and Stiglitz [1980] model based on 

Cournot competition, in which R&D expenditures are explicitly a part of firms’ 

strategies.  Consider an industry with 𝑛 identical firms.  Firm 𝑖 chooses its output 

level 𝑞𝑖 ≥ 0 and an amount to spend on R&D, 𝑥𝑖 ≥ 0. R&D investments are costly 

but reduce the firm’s unit cost of producing output. That is, firm 𝑖’s marginal cost 𝑐𝑖 =

𝑐(𝑥𝑖) where 𝑐′(𝑥𝑖) < 0. Profit for firm 𝑖 can be expressed as  

𝜋𝑖(𝑞𝑖, 𝑥𝑖; 𝑄−𝑖) = 𝑝(𝑄)𝑞𝑖 − 𝑐(𝑥𝑖)𝑞𝑖 − 𝑥𝑖 

where 𝑄 = ∑ 𝑞𝑖
𝑛
𝑖=1  is aggregate output in the industry, 𝑄−𝑖 = 𝑄 − 𝑞𝑖 corresponds to 

the output of firm 𝑖 ’s rivals which 𝑖  takes as given, and 𝑝(𝑄) = 𝑎 − 𝑏𝑄  is the 

industry demand given aggregate output.  

A Nash equilibrium with free entry and exit 

[𝑛∗, (𝑞1, 𝑥1), (𝑞2, 𝑥2), . . . , (𝑞𝑛∗ , 𝑥𝑛∗)] ensures that no active firm has incentive to change 

its output or R&D investment decision and that no potential entrants (incumbents) have 

incentive to enter (exit) the industry given the decisions of other firms. Assuming 
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symmetry, the first-order conditions for profit maximization equate marginal cost of 

R&D expenditures with the maraginal benefit in the form of a reduced marginal cost of 

production 

 1 = −𝑞∗𝑐′(𝑥∗) (1) 

and    

 
𝑝(𝑄∗) − 𝑐(𝑥∗)

𝑝(𝑄∗)
=

𝜕𝑝(𝑄∗)

𝜕𝑞∗

𝑞∗

𝑝(𝑄∗)
 (2) 

which, letting 𝑠 ≡ 𝑞/𝑄, can be transformed to yield the Lerner Index (LI)  

 
𝑝(𝑄∗) − 𝑐(𝑥∗)

𝑝(𝑄∗)
=

𝑠∗

𝜖(𝑄∗)
 (3) 

where 𝜖(⋅) is the price elasticity of demand.6  

In a model with identical firms, 𝑠∗ = 1/𝑛∗, so equation (3) can be rewritten as  

 𝑝(𝑄∗) (1 −
1

𝜖(𝑄∗)𝑛∗
) = 𝑐(𝑥∗) (4) 

which makes clear that an increase in the number of firms reduces the output of each 

individual firm. However, the marginal benefit of R&D expenditures is proportional to 

the output level of an individual firm as reflected in condition (1). Thus, as the number 

of firms increases, each individual firm reduces output, which reduces the marginal 

benefit from R&D expenditures, meaning R&D spending falls for firms active in the 

industry. The model then suggests that individual firms in industries with more rivals 

will spend less on R&D; the lower the number of competitors (the more concentrated 

the market in our symmetric model), the more firms will individually spend on R&D. 

Moreover, aggregating across firms and using zero profit conditions means 

 
𝑛∗𝑥∗

𝑝(𝑄∗)𝑄∗
=

1

𝑛∗𝜖(𝑄∗)
 (5) 

which relates the amount of R&D spending in an industry to the share of industry sales.  

An important insight of this model is that industrial concentration and research 

intensity are simultaneously determined—measures of market concentration and R&D 

efforts are endogenous. Firm investment decisions are simultaneous in this model, 

which means including variables capturing rivals’ R&D efforts in empirical work will 

imply the variables are correlated with error terms.  

 

 
6This model can be extended to allow for asymmetric firms which differ in their R&D investments and 

hence marginal costs, but the LI can still be derived from the structure of the model. 
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3. Data 

In our application, we use yearly data from The Annual Survey of Industrial Firms 

(ASIF) conducted and maintained by China’s National Bureau of Statistics (NBS) for 

the period of 2005 to 2007.7 The data include firms with annual sales of at least five 

million renminbi (RMB) or approximately $735,000—this accounts for over 85 percent 

of Chinese industrial output. Firms must report their (unique) legal identification 

number as well as the name of the firm, allowing us to track firms that are observed in 

multiple years and exploit the panel structure of our data.  

According to the classifications of the NBS, the data comprise three types of 

firms: (1) privately owned enterprises; (2) foreign multinationals operating in China; 

(3) state-owned enterprises. Further, firms are divided into three main categories of 

industries: mining, manufacturing, and production and distribution of electricity, gas 

and water. In our study, we concentrate only on the subsample of manufacturing firms 

during the years 2005–2007, which is when the ASIF included firm-specific R&D 

investments. Focusing our sample on this data yields 739,212 observations—

specifically, we observe 217,653, 245,094, and 276,465 manufacturing firms during 

years 2005, 2006, and 2007 respectively. Lu and Tao [2009] noted that this upward 

trend in manufacturing firms is due to the rapid growth in manufacturing sectors during 

the sample period, increasing the number of firms with annual sales which exceed the 

five million RMB threshold for inclusion in the ASIF dataset.  

In addition to information on the total expenditures on R&D, the data include 

information on production activities (employment, capital, intermediate inputs, sales), 

balance sheet statements (current and total assets, liabilities, inventories, financing 

costs, taxes paid, operating costs, profits), and firm characteristics (industry 

classification for primary and secondary products, location, ownership type). 

Moreover, the ASIF data contain firm-level trade data which allow us to distinguish 

exporters from non-exporters. We define the variables which we work with in Table 

A.1 and present pairwise correlations in Table A.2, in the Appendix A.  

For each firm in the ASIF data set, the location information details its address 

as well as the name of city, district, and province where it is located. Naturally, the 

more precise information on a firm’s location allows for more accurate construction of 

agglomeration and other geographic-based variables; see, for example, Rosenthal and 

 
7These data were also used by Bai et al. [2006], Cai and Liu [2009], as well as Lu and Tao [2009]. 
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Strange [2003]. We define geographic units to be at the 2010 zip-code level which is 

matched with each firm address in the data and identifies 31,046 areas where 

manufacturing firms are located.8 We also have information on each firm’s primary 

industry code at the four-digit SIC level, for which we see 525 different industries 

represented in our data. This is important as empirical researchers in this literature have 

found that industry fixed effects explain a large share of variance in R&D-related 

dependent variables; for example, see Scherer [1967] and Wilson [1977]. Geroski 

[1990] even found that his fundamental result of a positive relationship between 

competition and innovation was reversed if industry effects were not included.  

In our approach, we go beyond this by controlling not just for industry effects 

but, because we have a panel of data, for firm-level fixed effects. Moreover, for a given 

firm, we construct industrial agglomeration measures not only at the zip code level, but 

within a given SIC code for each zip code for a given year. Note however, that while 

this is an important link between theoretical and empirical work, the potential for 

measurement error is now much greater for two reasons: (i) variable construction is at 

the industry level; (ii) only a subset of potential rivals are observed. The former stems 

from firms being classified in the data as participating in a primary industry, which is 

certainly convenient for empirical work, but also difficult to think about for multi-

product firms who are then omitted from other industries in which they may be active.9 

The latter stems from smaller firms not being included in the data, and hence never 

included in variables concerning rivals’ behavior that are computed from the raw data. 

We view both of these issues as important sources of measurement error.  

In Figure 1 we map total R&D expenditures within each district in China in 

2005 (Panel A) and 2007 (Panel B), respectively. Comparing the two maps 

demonstrates substantial growth in innovative efforts across these two years in our data. 

Both figures make clear that the bulk of R&D investments occur along the coast and 

eastern parts of China, consistent with where most of the economic activity occurs. The 

maps demonstrate both increased efforts within a number of districts that were already 

 
8Due to growth in China, its administrative boundaries of cities, zip codes, counties, or even provinces 

have experienced changes in the last thirty years. We geo-code each address at the 2010 zip code level 

which is when boundaries are most disaggregated. Fixing these geographic units maintains the same area 

definitions during our analysis. 
9One element of a dataset that could help address this concern from the raw data is if R&D expenditures 

were disaggregated and somehow associated with the various products a firm produces so that R&D 

investments could be “allocated” towards the different industries. This is not the case in our data nor 

most R&D-based datasets with which we are familiar. 
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active in R&D spending, as well as the proliferation of these efforts to new districts 

which see R&D investments from its constituent firms from 2005–2007. Still, a number 

of districts, particularly in central and western China see little R&D activity; these 

districts are often geographically much larger, but house few manufacturing firms. In 

Figure 2, we plot the locations of all firms in our data which meet the requirements 

discussed previously and are used in our forthcoming analysis.  

In Table 1, we report summary statistics for important variables in our data. 

Specifically, we report the average and standard deviation (below and in parentheses) 

for select variables. There are 525 four-digit SIC industries within the manufacturing 

sector. Comprising these industries are 324,463 unique firms appearing at least once in 

our data. On average, these firms spend about 269.6 million RMB on R&D. These firms 

on average enjoy profits of 14,348 million RMB deriving from average sales of 82,856 

million RMB. As in Aghion et al. [2005], we construct a LI to represent product market 

competition as follows: 

  

 LI𝑖𝑡 =
𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑝𝑟𝑜𝑓𝑖𝑡𝑖𝑡 − 𝑓𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙 𝑐𝑜𝑠𝑡𝑖𝑡

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑎𝑙𝑒𝑠𝑖𝑡
. (6) 

 

The LI is firm- and time-specific and has several advantages over indicators such as 

market share, firm concentration ratios, or the Herfindahl-Hirschman Index (HHI). 

These other measures rely more directly on precise definitions of geographic and 

product markets (Aghion et al. [2005]). While we know the SIC code that a firm 

operates in (allowing us to understand their output market), it can be difficult to define 

a specific geographic area relevant for their competition as more than 23% of firms 

operate in international markets (the dummy variable Exporter takes a value of one if 

the firm exports product outside of China, and zero otherwise). One challenge with 

constructing the LI via (9) is that some firms report negative operating profits in a given 

year. In Table 1, we provide summary statistics for both the relevant sample given 

considerations previously noted, as well as for the restricted sample in which we only 

consider observations with nonnegative operating profits so that the LI measure is 

properly characterized. 

 In Figure 3, we plot the log of R&D expenditures (using the right-hand axis) 

against the LI measure. The LI, which is bound between zero and one, takes on an 

average value of 0.202 and the median value is 0.046 conveying that many markets are 
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quite competitive, though the average is being brought up by a few very concentrated 

industries. This observation is made clear by a second depiction within this figure which 

plots a histogram over the LI measure to give a better sense of this distribution (using 

the left-hand axis). Given there is substantial mass near the boundaries, the confidence 

interval on the log of R&D expenditures is widest in the middle. The inverted-U shape 

depicted in Figure 3 is consistent with what others in the literature have found (see, for 

example, Levin et al. [1985]) and matches the trend that Aghion et al. [2005] observed 

at the industry level. The inverted-U relationship suggests that R&D expenditures are 

highest in modestly concentrated industries—on average, there are 2–3 firms in 

industries where the inverted-U obtains its maximum suggesting these industries can 

best be characterized by oligopoly.  

Given the prevalence of firms with much lower LI, perhaps unsurprisingly, 

firms in our data compete in industries with higher competition—a firm faces on 

average about 5.8 rivals in our data. These firms have about 200 employees and have 

been in business for over eight years on average. About a quarter of all firms produce 

two outputs, but less than 10% produce three or more different products. In our analysis, 

we consider the firm to compete in the industry that corresponds with the four-digit SIC 

code of its primary output.10 

With these data in mind, we apply empirical models that are consistent in spirit 

with past work in this literature and discuss estimation results in the next section. This 

allows us to establish some benchmark findings which can be contrasted with results 

from our hybrid Bayesian estimation strategy which we offer in Section 5.  

 

4. Descriptive Regression Results 

Given the trends presented in the previous section, we seek to evaluate the relationship 

between market power, competition, and R&D efforts as measured by expenditures. 

Specifically, we first model these relationships as  

 

log (R&D𝑖𝑗𝑙𝑡) = 𝑓(LI𝑖𝑗𝑡) + 𝑔(competition𝑖𝑗𝑙𝑡)

+ 𝛼log (rivals´ R&D𝑖𝑗𝑙𝑡) + 𝛽𝑋𝑖𝑡 + 𝛾𝑊𝑙𝑡

+ 𝛿𝑖 + 𝜏𝑡 + 𝜀𝑖𝑗𝑙𝑡. 

(7) 

 
10 In considering Chinese firms, one may wonder about the ownership of these enterprises. About 94% 

of firms in our data have no governmental ownership; the Chinese government has a minority stake in 

1.2% of firms, and a majority stake in 4.8% of firms. We account for this structure in our empirical work 

going forward. 
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In these specifications, we recognize that the R&D investments of a given firm may 

depend on factors that are firm-, industry-, location-, and time-specific.  We derived 

the LI from our theoretical model in equation (3) and presented its empirical counterpart 

to this measure in (6).  We proxy for competition by counting the number of firms 

operating in the same industry, in the same geographic location (zip code), during the 

same year. We model 𝑓(⋅)  and 𝑔(⋅)  as cubic polynomials of their respective 

arguments to allow for richer relationships and given the inverted-U pattern observed 

in Figure 3.11 As suggested by the theoretical model presented earlier, we also consider 

that firms may be investing in R&D strategically in equilibrium and so these decisions 

may depend on the R&D investments of rivals—firms operating in the same industry 

𝑗 as firm 𝑖 within a given location 𝑙 at time 𝑡. Industry 𝑗 is specified at the four-

digit SIC code, location 𝑙 corresponds with a zip code, and time 𝑡 to a year in the 

data.  

The theory presented highlights that there are endogeneity concerns with respect 

to the regressors related to the Lerner Index (LI), number of rivals, and rivals’ average 

R&D. These variables are simultaneously determined with a firm’s own R&D 

expenditures in the motivating theoretical structure.   

Beyond this, we include covariates that are either specific to a firm and observed 

to vary over time (for example, the number of employees at a firm, age of the firm, 

exporter status, type of ownership, whether the firm is a multi-product firm; these are 

contained in 𝑋𝑖𝑡) or to a given location at a point in time (for example, the number of 

national and provincial universities in a region; these are contained in 𝑊𝑙𝑡).
12 These 

variables are exogenous regressors potentially important in explaining variance in 

firms’ own R&D choices.  In our models we also include firm (𝛿𝑖) and time (𝜏𝑡) fixed 

effects. The inclusion of firm fixed effects implies that identification of the model is 

driven by changes within a firm across years in the data. Since each firm is assigned to 

only one industry (that of their primary output) and industry does not change over our 

sample, these firm effects capture industry effects which are critical to account for.  

The term 𝜀𝑖𝑗𝑙𝑡 represents an independently distributed error term that is firm-, rivals-, 

 
11 A cubic specification nests a quadratic one, thereby flexibly allowing for such a relationship to arise 

without imposing it. This practice is common when modeling potential inverse-U relationships; see, for 

example, Grossman and Krueger [1995], De Silva et al. [2016], and De Silva et al. [2021] who all 

adopt this approach in modeling the environmental Kuznets curve. 
12 Belderbos et al. [2021] also showed that proximity of central R&D units are important orchestrators 

of research collaboration with universities. 
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location-, and time-specific reflecting influences on (log) R&D𝑖𝑗𝑙𝑡  from factors not 

included in our model.13 All of these variables are included in all models we estimate. 

We present baseline estimates in Table 2, which provides OLS coefficient 

estimates from six different specifications nested by the empirical model presented in 

equation (7). In the first column, we focus primarily on the relationship between LI and 

R&D expenditures, controlling for a firm’s rivals’ spending as well as the firm’s size, 

age, and exporter status. Given we represent the LI by a polynomial, interpreting a given 

coefficient directly is somewhat difficult. As such, we depict the estimates from column 

(6) in Figure 4, Panel A which confirms a nonlinear relationship with an interior peak. 

Given our log-log specification concerning rivals’ average R&D expenditures, that 

coefficient can be interpreted as an elasticity which suggests that if the average of a 

firm’s rivals’ R&D spending increases by 1%, a firm’s own R&D investments would 

increase 6.6% in column (1). The larger a firm, as measured by the number of 

employees, the more a firm invests in R&D—a 1% increase in employment corresponds 

with an 11.1% increase in R&D expenditures. Age is not significant but being an 

exporter means R&D spending is nearly 10% higher than non-exporters.  

In the column (2), we present estimates from a model in which we omit our LI 

measure, but include a cubic relationship concerning the logarithm of the number of 

rivals in the market as a measure of competition. Plotting the estimates shows the 

relationship between the number of rivals and the logarithm of a firm’s R&D spending 

is nearly linear—as the number of rivals increases by one firm, log(R&D) spending 

decreases by 0.0012. The effects of other covariates are nearly identical to those 

detailed above. In fact, the estimates in column (3) suggest inclusion of both our LI 

measure and the competition measure with the same set of covariates leaves our 

estimates, and their statistical significance, essentially unchanged. Pushing harder on 

this, if we include controls for multi-product firms and the number of higher education 

schools in a zip code (as a proxy for how many researchers may live in the area), all 

results remain, as reflected by the estimates in column (4). Given we consider Chinese 

data in which the government occasionally holds an ownership stake in some firms, we 

wanted to make sure that our results are robust to this structure. In column (5), we 

 
13  This is an important assumption needed for this approach. Of course, our focus of issues on 

endogeneity (via simultaneity) means there is correlation between 𝜀𝑖𝑗𝑙𝑡  and those variables in our model 

which is likely aggravated by the measurement error concerns we have raised. Remember that we are 

estimating this model primarily to establish baseline results for comparison. 
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consider a model in which we include directly the share of government ownership in 

the firm. That covariate is not significant and our earlier discussion continues to apply. 

Lastly, in column (6), we include two dummy variables to capture whether the 

government is a minority or majority owner (with no government ownership, which 

represents the case for 94% of the firms in our data, as the omitted category). While 

there is weak evidence that when the government owns a minority stake in the firm, 

there is an increase in R&D expenditures by 8.7% (significant at the 10% level), all of 

the other effects (those of which we are primarily interested in) remain unchanged.  

As our simple theoretic model based off Dasgupta and Stiglitz [1980] showed, 

R&D and market structure are determined simultaneously in equilibrium. Our reduced-

form approach does not address these endogeneity concerns as covariates are likely to 

be correlated with the error term 𝜀𝑖𝑗𝑙𝑡 in equation (7) due to strategic behavior, as our 

model presented earlier highlighted. Additionally, variables like the LI and number of 

employees are likely to be endogenous. A common approach to addressing endogeneity 

would to to adopt an IV regression model.  To gauge the importance of endogeneity 

within a comparable framework, we instrument for market concentration, competition, 

and rivals’ R&D.  

The set of instruments that we use can be partitioned into two categories: those 

that are included and those that are excluded.  The exogenous regressors used in the 

reduced-form model (firm’s age, status as an exporter, variables capturing the number 

of products the firm manufactures, its’ ownership structure, as well as the variables 

accounting for the number of (regional and national) universities in the same area, along 

with firm fixed effects) are considered to be included instruments.  When it comes to 

excluded instruments, practitioners might use something like lagged versions of the 

independent variables (e.g., Arellano-Bond, which is not ideal given our short panel), 

or introduce new variables that can serve as instruments.  For example, in our 

application, one might consider local/county tax rates or the distance to the nearest port.  

However, again because we have a short panel, taxes are time invariant and variables 

like distance are already being captured by firm fixed effects.  As such, we create 

excluded instruments by constructing functions of the included instruments that are 

non-binary variables.  Specifically, we square a firm’s age, share of ownership, and 

the number of national and provincial universities.  In addition, we interact these 

squares with all other exogenous binary regressors.  These variables are 
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transformations of the covariates included in the OLS regression except for the main 

“problematic” variables (viz. rivals’ R&D, LI, number of rivals).  This follows from 

standard GMM practice where if a variable in an equation of interest is exogenous, 

functions of it can be used as a valid instrument.  Constructing functions of the 

exogenous regressors to use as instruments has precedent; see, for example, Atkinson 

and Tsionas [2016] and Atkinson, Primont, and Tsionas [2018]. In our model we have 

endogeneity concerns surrounding seven regressors. We therefore require at least seven 

excluded instruments to identify the model.  The variables created by squaring and 

interacting with each other easily exceeds seven (the number of included endogenous 

variables) leading to a model that is overidentified. 

We estimate an IV regression that corresponds to model (6) using GMM and 

present the coefficient results in column (7) of Table 2.14  Additionally, for easier 

comparison to the OLS estimates, Figure 4A depicts the estimated polynomials of the 

LI on the log of R&D expenditures under both approaches.  The polynomial again 

suggests a nonlinear relationship between the measure of market concentration and 

R&D expenditures, though many of the coefficients themselves lose significance in the 

IV framework.  Regardless, our primary point is that accounting for endogeneity 

seems to suggest very different relationships between market structure and R&D 

expenditures.  

Of course, our reduced-form approach is in and of itself somewhat misspecified 

given the potential for fitted values to be negative. A strategy to deal with this in a 

reduced-form spirit would be to consider censored regression models such as this Tobit-

like model:  

log (R&D𝑖𝑗𝑙𝑡) =

{
0, if 𝑅&𝐷𝑖𝑗𝑙𝑡  is not available,

𝑓(LI𝑖𝑗𝑡) + 𝑔(competition𝑖𝑗𝑙𝑡) + 𝛼log (rivals´ R&D𝑖𝑗𝑙𝑡) + 𝛽𝑋𝑖𝑡 + 𝛾𝑊𝑙𝑡 + 𝛿𝑖 + 𝜏𝑡 + 𝜀𝑖𝑗𝑙𝑡 , otherwise.
   

           (8) 

Alternatively, a reduced-form approach might employ something like the Poisson 

pseudo maximum likelihood (PPML) approach suggested by Santos Silva and Tenreyro 

[2006] who apply the estimator to trade flow data. We opted to use firm fixed effects 

 
14 One concern readers might have relates to the validity of the instruments we employ.  Hence, we 

also estimate our regressions using traditional IV regression, which provides F-statistics for the first stage 

regression. These statistics are substantially higher than the the Stock-Yogo F-test critical value of 20.74 

(for a 5% level of bias relative to OLS).  Hence, we have sufficient statistical evidence to reject the null 

hypothesis that the instruments are weak.  We provide these results in Table 3. 
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in these specifications, which would be computationally difficult when considering 

PPML or a censored specification. Regardless, we recognize the censoring issue and 

address it in our Bayesian strategy.15  

In addition, R&D expenditures of rival firms is, clearly, a noisy variable perhaps 

measured with error given we do not observe all rival firms (only firms with annual 

sales of at least five million RMB). The measurement error problem is attenuated by 

the fact that the specification we (and the literature) consider is nonlinear in the 

variables.  Our main contribution is to adopt an alternative estimation strategy based 

on recent advancements in econometrics aimed at dealing with measurement error and 

endogenous regressors. We apply this alternative and estimate a corresponding model 

in the next section which can be compared with the baseline regression results from 

Table 2.  

 

5. Bayesian Estimation Strategy 

In this section, we adopt a framework which integrates a strategy for dealing with 

measurement error concerns (ELVIS) with a Bayesian version of GMM (BETEL) to 

deal with endogeneity issues. To take account of measurement error in nonlinear 

variables (like the polynomials involving the LI and rivals’ R&D as well as the number 

of rivals) which also have endogeneity issues, we adapt two strategies proposed by 

Schennach [2005, 2014].  ELVIS is a general method to convert a model defined by 

moment conditions that involve both observed and unobserved variables into equivalent 

moment conditions that involve only observable variables allowing us to address 

measurement error concerns.  BETEL uses these moment conditions and establishes 

the correct Bayesian posterior that should be used along with these moment conditions 

using instruments.   

As such, our contribution is twofold, in the sense that we (i) deal with 

measurement error in critical variables of the model, 16  and (ii) we deal with 

endogeneity of rivals’ R&D. We use a coherent and unified framework organized by 

combining ELVIS with BETEL in a general formulation which, in turn, can be 

 
15All our Bayesian techniques go through using the likelihood function of (8) and flat priors for the 

parameters. We take account of measurent error in the non-zero observations but we assume the left 

censoring values at zero are correct. This assumption is not restrictive as zero means the firm did not 

disclose information which, in effect, means that these variables are truly zero. 
16For example, measurement error may exist in the raw data or computation of the number of unique 

industries, the number of unique firms, the R&D data itself, operating profit, financial cost, sales, LI, 

number of rivals or rivals’ R&D, the number of employees, or age of the firm. 
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estimated using fast MCMC-based methods.  Remember, we also require addressing 

the challenge that our dependent variable is censored.  To understand how our 

integrated framework tackles each of these issues, we continue by discussing each of 

these in more detail to provide an overview of our empirical strategy.  We expand on 

this summary in Appendix B where we provide technical characterizations of ELVIS 

and BETEL. 

 

Step 1:  

The model in (8) is a censored regression model of the form  

 𝑦𝑖
∗ = 𝑥′

𝑖𝛽 + 𝜀𝑖, 𝜀𝑖|𝑥𝑖 ∼ i. i. d 𝒩(0, 𝜎2), 𝑖 = 1,… ,𝑁, (9) 

where, in the interest of simplicity, we have omitted multiple subscripts and 

nonlinearities.  In this expression, 𝑦𝑖 = max (0, 𝑦𝑖
∗), 𝑥𝑖 is a vector of regressors (for 

which we assume, momentarily that they are not measured with error), 𝛽  is a 

parameter vector, and 𝜀𝑖 is an error term, normally distributed with zero mean and 

standard deviation 𝜎. Here, 𝑦𝑖  is observed and, for simplicity but without loss of 

generality, 𝑦𝑖 > 0 (i.e. log R&D is positive when R&D is observed). Suppose, again 

without loss of generality, that 𝑦∗ = [𝑦1, … , 𝑦𝑛, 𝑦𝑛+1
∗ , … , 𝑦𝑁

∗ ]′ so that the first 𝑛 < 𝑁 

observations contain data for which R&D is available.  

If we knew the complete data in 𝑦∗,  inference on 𝛽  and 𝜎  would be 

straightforward, as we have a standard normal linear regression model.  The 

unobserved data 𝑦𝑛+1
∗ , … , 𝑦𝑁

∗  are also generated by (9) but they are subject to the 

restriction  

 𝑦𝑖
∗|𝑥𝑖, 𝛽, 𝜎 ∼ 𝒩(𝑥′

𝑖𝛽, 𝜎2),  s. t.  𝑦𝑖
∗ < 0, 𝑖 = 𝑛 + 1,… ,𝑁. (10) 

Given 𝑥𝑖 , 𝛽  and 𝜎 , the missing values 𝑦𝑖
∗  can be generated from a normal 

distribution 𝒩(𝑥′
𝑖𝛽, 𝜎2), subject to the restriction that the outcome is negative. This 

characterization corresponds to the Gibbs sampler data augmentation scheme (see, for 

example, Chib [1992]). The Gibbs sampler draws, successively from the so-called full 

conditional posterior distribution of 𝛽|𝑦∗ , 𝜎|𝑦∗  and, of course, 𝑦𝑖
∗|𝛽, 𝜎 . This 

generates a MCMC sample which converges to the posterior of the model. So, the 

crucial step of censoring can be easily dealt with using Gibbs sampling with data 

augmentation.  

 

Step 2:  
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As some regressors may be measured with error we write  

 𝑦𝑖
∗ = 𝑥𝑖

∗′
𝛽1 + 𝑧′

𝑖𝛽2 + 𝜀𝑖, 𝜀𝑖|𝑧𝑖 ∼ i. i. d 𝒩(0, 𝜎2), 𝑖 = 1,… ,𝑁, (11) 

where 𝑧𝑖  is a vector of exogenous regressors. Specifically, in our case the 𝑧𝑖s are 

firm’s age, exporter status, indicators for the number of products a firm manufactures, 

share of the firm owned by the government, and the number of universities. The vector 

of variables 𝑥𝑖
∗ is measured with error, say  

𝑥𝑖 = 𝑥𝑖
∗ + 𝑈𝑖, 𝑖 = 1,… ,𝑁, 

where 𝑥𝑖
∗ is the actual value, 𝑥𝑖 is the observed value, and 𝑈𝑖 is an error. Let 𝑤𝑖 =

[𝑦′
𝑖
, 𝑥′

𝑖]
′.  

Moment conditions have the general form:  

 𝔼[𝑔(𝑈, 𝑦, 𝜃)] = 0 (12) 

where 𝑔 is a 𝑑𝑔-dimensional vector of nonlinear measurable functions depending on 

the parameter 𝜃 ∈ Θ ⊆ ℜ𝑘. In this general notation, the unobserved random vector 𝑈 

takes values in 𝒰 ⊆ ℜ𝑑𝑢  and the observed random vector takes value in 𝒴 ⊆ ℜ𝑚. 

Intuitively, the unobservables 𝑈 can be eliminated from the moment condition by 

averaging the function 𝑔(𝑈, 𝑌, 𝜃) over 𝑈. ELVIS is a method to convert a model 

defined by moment conditions that involve both observed and unobserved variables 

into equivalent moment conditions that involve only observable variables by 

“integrating out” the unobservables.  

In our case, the function 𝑔(⋅) from (12) would be 

  

 𝑔(𝑈, 𝑦, 𝜃) =

[
 
 
 
 
 
 
 

𝑥𝑖 − 𝑈𝑖

𝑦𝑖
∗ − 𝑈′

𝑖𝛽1 − 𝑧′
𝑖𝛽2

𝑈𝑖 ⊗ (𝑥𝑖 − 𝑈𝑖)

𝑈𝑖 ⊗ (𝑦𝑖
∗ − 𝑈′

𝑖𝛽1 − 𝑧′
𝑖𝛽2)

(𝑥𝑖 − 𝑈𝑖) ⊗ (𝑦𝑖
∗ − 𝑈′

𝑖𝛽1 − 𝑧′
𝑖𝛽2)

𝑧𝑖 ⊗ (𝑦𝑖
∗ − 𝑈′

𝑖𝛽1 − 𝑧′
𝑖𝛽2)

𝑧𝑖 ⊗ (𝑥𝑖 − 𝑈𝑖) ]
 
 
 
 
 
 
 

, (13) 

 

see Schennach [2014]. The only difference relative to Schennach [2014] is that (i) we 

have the additional, plausibly exogenous variables 𝑧𝑖 that can act as instruments, and 

(ii) these instruments are orthogonal to measurement errors 𝑈𝑖 in 𝑥𝑖.   

The key is that ELVIS delivers a new, equivalent set of moment conditions 

based on observables alone, say  
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𝔼�̃�(𝑦, 𝜃, 𝛾) = 0, 

that do not contain the 𝑈𝑖 s although they may contain new (nuisance) parameters 

denoted by 𝛾. As Schennach [2014] mentioned: “Although the unobservables have 

been ‘integrated out’ from the original moment conditions, the resulting averaged 

moment conditions are formally equivalent to the original moment conditions, in the 

sense that the values of parameters that solve the averaged moment conditions are the 

same as the values that solve the original moment conditions.”  In fact, Schennach 

[2014] describes the measurement error case in her Example 1.5. The method requires 

specifying a (dominating conditional) measure for the distribution of the unobservables 

given the observables. The exact choice has no effect on the results as long as it satisfies 

basic properties stated in Definition 2.2 and Proposition 2.1 of Schennach [2014]. Using 

a measure in the exponential family satisfies the so-called “least favorable” property 

which roughly says that the dominating measure is not simpler compared to the actual 

distribution of the unobservables given the observed variables.  This averaging of the 

moment functions over unobservables should employ a least-favorable distribution 

which is obtained through an entropy maximization procedure which can be carried out 

through simulations, avoiding the need to make distributional assumptions about 𝑈𝑖. 

Technical details of this ELVIS procedure are explained in Appendix B.1.  

 

Step 3:  

Given the new moment conditions 𝔼�̃�(𝑦, 𝜃, 𝛾) = 0, one can use a number of different 

empirical strategies.  One approach to estimating such models would be to employ 

GMM as developed by Hansen [1982].  However, a GMM-based approach may 

behave erratically in finite samples (see, for example, Li and Zhang [2009] and Barbosa 

et al. [2022]).  Alternatively, estimating the parameters of interest and certain other 

nuisance parameters can be implemented through a variety of standard techniques like 

empirical likelihood (EL) or exponentially tilted empirical likelihood (ETEL), which 

provide more efficient estimates with reduced small-sample bias (Newey and Smith 

[2004], Schennach [2007]); see also Kitamura [2001], Kitamura et al. [2012], and 

Canay [2010].  However, if prior information is available and we want to condition on 

the observed data, then a Bayesian approach has appeal.   

BETEL is essentially a nonparametric Bayesian version of GMM and it is, 

conceptually, closely related to EL and similar techniques where a sister likelihood 
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function allows for inference but does not require distributional assumptions.  EL 

approaches reweight the sample so as to satisfy moment conditions exactly.  BETEL 

employs a noninformative prior on the space of distributions, then uses moment 

conditions to establish the correct Bayesian posterior that should be used along with 

these moment conditions.  This Bayesian procedure admits an EL-type representation 

where probability weights are selected via exponential tilting.  Its implementation is 

computationally convenient and involves use of MCMC techniques which provide 

access to the posterior implied by moment conditions, as suitable instruments are 

available in our case.  Thus, as Schennach [2005] noted, BETEL has the advantage of 

adapting to the “shape” of the data, unlike approaches based on the assumption of 

asymptotic normality.  Technical details of this BETEL procedure are explained in 

Appendix B.2. 

 

5.3. Bayesian Empirical Results 

 

We implement our estimation strategy in Fortran 77 using the netlib and GNU 

Scientific Library subroutines. Our overall hybrid algorithm uses 150,000 iterations in 

all of our MCMC runs with a burn-in phase of 50,000 to mitigate the possible impact 

of starting values which are taken from least-squares dummy variables (LSDV) 

estimation. Standard Metropolis–Hastings algorithms may be quite inefficient 

computationally and the approach suggested by Schennach [2014] involves 

considerable tuning.17 Therefore, we prefer to use the Girolami and Calderhead [2011] 

method described in Appendix B.3. The technique is reliable, requires almost no tuning 

and the MCMC draws it provides have considerable less autocorrelation compared to 

other MCMC algorithms.  

We estimate models of the form provided in equation (7) under the 

specifications in Table 2, we provide analogous results in Table 4. Comparing the 

coefficient estimates in Tables 2 and 4 shows stark differences. The effect of rivals’ 

average R&D, the size of the firm (as proxied by employment), exporter status, and the 

effect from being a multi-product firm are all reasonably similar. However, and 

importantly, the factors we’ve argued suffer from endogeneity have changed 

substantially. As an example, consider the polynomial representation of the LI measure. 

 
17This is due to very high autocorrelations produced by the algorithm in most of its versions—for 

example, independence or random walk samplers. 
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Again, because polynomial coefficients are not very convenient to interpret, we depict 

the fitted polynomials under the Bayesian estimates in Figure 4, Panel B. The Bayesian 

estimate suggests the more market power a firm has, the more it invests in R&D—a 

trend supportive of Schumpeter’s hypothesis, the theoretical model we presented 

earlier, and contrasting the nonlinear relationships suggested by our reduced form 

results (as well as those of researchers in this literature) presented in Figure 4, Panel A. 

To support our creation of instruments using transformations of the included 

exogenous variables and in the spirit of computing a J-statistic, we consider the Hansen-

Sargan criterion within our hybrid (BETEL-based rather than traditional GMM) 

approach for each model involving these instruments. 18   To be clear, J-statistics 

cannot be directly computed within our hybrid approach.  As such, consider the 

following: 

Suppose we have the moment conditions  

 𝐠(θ)
(M×1)

=(nT)−1 ∑∑git

T

t=1

n

i=1

(𝛉), 1 ≤ t ≤ T,  

and the GMM criterion  

 J(𝛉) = 𝐠(𝛉)′𝕎(𝛉)𝐠(𝛉),  

where 𝕎(𝛉) is the optimal weight GMM matrix as used in the Continuously Updated 

Estimator of GMM. For MCMC draw 𝛉(s) (1 ≤ s ≤ S), we can compute the criterion 

J(𝛉(s)) ((1 ≤ s ≤ S).  Asymptotically in T, J(𝛉) follows a chi-squared distribution 

with degrees of freedom df = M − dθ, where M is the number of moment conditions 

and dθ the number of unknown parameters.  For the moment conditions to hold it is 

necessary that the posterior distribution of J(𝛉) , which can be obtained from the 

posterior mean of J(𝛉(s)) ((1 ≤ s ≤ S) as, say p(J(𝛉)|D), where D is the entire data.  

Therefore, we need to test that H: J(𝛉) = 0.  In turn, we compute 𝑝-values for the 

Hansen-Sargan criterion for each model we consider (these 𝑝-values correspond to the 

asymptotic chi-squared distribution of the test statistic). We fail to reject the null 

hypothesis that the overidentifying restrictions are valid at the standard (5%) level for 

every model. 

 

 
18We include the same instruments employed in the GMM approach discussed earlier (results in column 

(7) of Table 2) as well as interactions of those instruments with firm dummies. Convergence diagnostics 

are available on request. 
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6. The Importance of Measurement Error and Endogeneity 

 

While our empirical strategy sought to comprehensively address econometric 

challenges, it would be helpful to know the importance of measurement error and 

endogeneity on their own.  In this section we do three things: we first address these 

issues individually by ignoring one step of our approach which shows that measurement 

error is most critical in our data; we then consider Monte Carlo simulations which 

deepen our understanding of these issues; lastly, we consider some robustness 

exercises. 

 

6.1. Ignoring Measurement Error or Endogeneity 

 

Our hybrid approach sought to address multiple issues at the same time.  It’s likely 

that both measurement error and endogeneity are at play, and perhaps compound each 

other.  Regardless, to guage the relative importance of these issues and to help 

understand whether differences in our estimates relative to the reduced form results 

stem from measurement error or endogeneity, we consider ignoring one of these issues 

by shutting down one element of our hybrid approach.  In Table 5, we present our 

baseline regression results from our OLS and GMM estimates in columns (1) and (2), 

respectively.  In column (3), we ignore measurement error and address only 

endogeneity by adopting a BETEL approach that does not use the ELVIS-modified 

moment conditions.  In column (4), we present estimates from using only ELVIS but 

ignoring endogeneity.  In column (5), we present our full hybrid estimates.  We have 

also included the polynomial fit from the BETEL-only and ELVIS-only models in 

Panel B of Figure 4, alongside the hybrid approach.  In both the figure and in looking 

at the point estimates with respect to the LI-related terms, BETEL appears closer to our 

hybrid approach.  However, the Bayes factors in the bottom of Table 5 offer relatively 

more support for ELVIS than BETEL (of course the full hybrid model has by far the 

most support) when considering the overall fit of the model.  To investigate this, we 

consider some Monte Carlo and robustness exercises. 

 

6.2. Monte Carlo Simulations 

 

To help readers understand the important complications characterizing the environment 
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we study, we complement our estimates with Monte Carlo simulations motivated by 

our empirical specifications. We draw observations from our data to construct newly 

simulated datasets that we then estimate by imposing (or not imposing) various moment 

restrictions when using our hybrid estimation strategy. Conceptually, this is attractive 

as our full-blown estimation strategy essentially nests OLS which obtains when certain 

moment conditions are not imposed; likewise, we can impose a subset of the moment 

conditions to partially address issues like endogeneity or measurement error which 

helps shed light on the important complications that OLS neglects. 

 We generate data for a number of firms (𝑛) and years (𝑇) and we take the 𝑋 

matrix from the data by sampling data for 𝑛 randomly selected firms. We assume 

competition is not contaminated with noise and we generate a contaminated version by 

adding a normal random variable with zero mean and standard deviation equal to its 

observed value (16.78 is the standard deviation on the number of rivals variable from 

Table 1). We have firm and year effects in all cases and we assume that the functional 

form of 𝑓(⋅) and 𝑔(⋅) in (7) is unknown but can be approximated using ℎ(𝑥, 𝑧) =

∑ ∑ 𝑏𝑖𝑗
𝑞
𝑗=1

𝑝
𝑖=1 𝑥𝑖𝑧𝑗 , where 𝑥 is LI, 𝑧 is log number of rivals, 𝑝, 𝑞 are the orders of 

the polynomial, and 𝑏𝑖𝑗 are unknown coefficients. In fact, we have ℎ(𝑥, 𝑧) = 𝑓(𝑥) +

𝑔(𝑧) where 𝑓(⋅) and 𝑔(⋅) are second-order polynomials whose coefficients, like the 

coefficients of all other covariates, we take from column (6) of Table 4. In our Monte 

Carlo experiment the true polynomial orders (𝑝, 𝑞) are unknown and we assume that 

𝑝, 𝑞 ∈ {1,… ,5}. In turn, we generate the 𝑦s using the coefficient estimates from the 

Bayesian results (again, column (6) of Table 4), and adding a normal error with zero 

mean and standard deviation equal to the standard deviation of the Bayesian residuals.  

To minimize computational costs, we use 60,000 MCMC iterations and we omit 

the first 10,000 to mitigate start up effects, if any. We are interested in whether we can 

find the truth about the functional forms 𝑓(⋅) and 𝑔(⋅).  

It turns out that ELVIS works even when measurement error is substantial 

which is reassuring as this is one of the potential problems present in our data set. When 

the true model (𝑝 = 𝑞 = 2) is not selected, the models most often selected are “over-

fitted models” where 𝑝 and/or 𝑞 exceeds 2. This tendency disappears as sample size 

increases. We present summary results for various sample sizes concerning the number 

of firms and years in the simulated data in Table 6. Specifically, these results show the 

average root mean-squared error (ARMSE) and average absolute error (AAE) both fall 
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and the true model is selected more often, as the sample size increases.19 In the same 

vein, Bayes factors (BF) increasingly select the correct model as sample size 

increases—either by increasing 𝑛 or 𝑇.  

To compare these results with OLS, as noted, we can apply ELVIS when we 

drop moment conditions that correspond to accounting for measurement error and/or 

endogeneity and then contrast ARMSE and AAE measures to the Bayesian results and 

recompute Bayes factors, essentially, allowing for model comparisons. The OLS results 

are reported in Table 7.20 To compute these results, we use BETEL but drop the 

moment conditions corresponding to accounting for measurement error and 

endogeneity. The Bayes factors are quite large, thus favoring the ELVIS version with 

explicit account of measurement error and endogeneity, while the biases of ignoring 

them are quite substantial relative to the true values.  

To make sense of these numbers consider the simple model 𝑦 = 𝛽𝑥∗ + 𝑢 

where 𝑥 = 𝑥∗ + 𝑣 and we only observe 𝑥 instead of 𝑥∗. Suppose 𝑥 ⊥ 𝑢. It can be 

shown easily that plim
𝛽𝑂𝐿𝑆−𝛽

𝛽
= −

𝜎𝑣
2

𝜎𝑥
2 . When, as in our case, 𝜎𝑣 = 𝜎𝑥  we would 

expect a downward bias roughly equal to 100%. As ELVIS is a highly nonlinear 

technique this cannot hold exactly but we see it is roughly correct, but at least helpful 

in giving context. Similarly, in Table 8 and Table 9, we shut down (drop/ignore) only 

the measurement error or endogeneity moment condition, respectively, and replicate 

the estimation process. While correcting for one of these concerns alone improves 

estimates, important biases remain if both issues are not addressed.  

 

6.3. Robustness checks 

Other researchers have noted that a firm’s age or exporting status are also affected by a 

firm’s productivity; see, for example, Olley and Pakes [1996] and De Loecker and 

Warzynski [2012].  Given we do not control for firm productivity directly (it is 

unobserved and thus omitted), one may be concerned about using age and exporting 

status as (exogenous) included instruments.21  Therefore, we reconsider our empirical 

specification without age or exporting status included (they then become exluded 

 
19In all of our Monte Carlo results, for parameters 𝛽1, … , 𝛽𝑘 (denoting their true values) and posterior 

mean estimates �̂�1, … , �̂�𝑘, 𝐴𝑅𝑀𝑆𝐸 = √𝑘−1 ∑ (𝑘
𝑗=1 �̂�𝑗 − 𝛽𝑗)

2 while 𝐴𝐴𝐸 = 𝑘−1 ∑ |𝑘
𝑗=1 �̂�𝑗 − 𝛽𝑗|. 

20Corresponding point estimates for the Monte Carlo simulations are available upon request. 
21 Note that a firm’s markup (LI𝑖𝑗𝑡), by construction, is a function of firm costs which depend on firm-

level productivity.  Thus, firm productivity is accounted for indirectly in our approach. 
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instruments).  In Table 10, we present estimation results for these models under the 

various empirical strategies we have considered.  Qualitatively, the results are the 

same to the corresponding OLS, IV-GMM, and hybrid approach presented earlier, in 

Tables 2 and 4.  Thus, we are not concerned about the validity of our proposed 

instruments. 

A specification test that we can consider is to investigate whether 𝑓 and 𝑔 are 

separable in equation (7) instead of a more general model, say 

ℎ(𝐿𝐼𝑖𝑗𝑡, competition𝑖𝑗𝑡). One way to do this, is assume that ℎ can be approximated by 

using neural networks and then check the Bayes factors. The other alternative is to 

maintain the null hypothesis as the one in which 𝑓 and 𝑔 are separable polynomials 

of degree two, and use the test formalized by Horowitz [2006].  

To understand this test, suppose 𝑔(𝑥) is a general non-parametric functional 

form and 𝐺(𝑥, 𝜃) is a parametric model with 𝜃 ∈ Θ. The null hypothesis of the test is 

𝐻0: 𝑔(𝑥) = 𝐺(𝑥, 𝜃), for some 𝜃 ∈ Θ and almost all 𝑥, and the alternative states that 

there does not exist a 𝜃 ∈ Θ  such that 𝑔(𝑥) = 𝐺(𝑥, 𝜃)  for almost every 𝑥 . The 

model is 𝑌 = 𝑔(𝑥)  and we assume that identification is achieved by 𝔼[𝑌 −

𝑔(𝑋)|𝑊] = 0, where 𝑊 is an instrument for 𝑋. Therefore, we can rewrite the model 

as: 𝑌 = 𝑔(𝑋, 𝑍) + 𝑈 , where 𝔼(𝑈|𝑍,𝑊) = 0 . We assume 𝑋,𝑊  are supported in 

[0,1]𝑝 and 𝑍 is supported in [0,1]𝑟  (𝑟 ≥ 0). Here, 𝑋 and 𝑍 are endogenous and 

exogenous explanatory variables, respectively. Then, we need to test 𝐻0: 𝑔(𝑥, 𝑧) =

𝐺(𝑥, 𝑧, 𝜃), for known function 𝐺, some 𝜃 ∈ Θ and almost every 𝑥, 𝑧. Suppose 𝑓𝑋𝑍𝑊 

denotes the joint density of random variables 𝑋, 𝑍,𝑊, 𝑓𝑧 is the marginal density of 𝑍 

and 𝜈 is some twice continuously differentiable function in [0,1]𝑝+𝑟. We define a 

twice continuously differentiable operator such that  

 

𝑇𝑧𝜈(𝑥, 𝑧) = ∫ 𝑡𝑧 (𝜉, 𝑥)𝜈(𝜉, 𝑧)𝑑𝜉, 

 

where 𝑡𝑧(𝑥1, 𝑥2) = ∫ 𝑓𝑋𝑍𝑊 (𝑥1, 𝑧, 𝑤)𝑓𝑋𝑍𝑊(𝑥2, 𝑧, 𝑤)𝑑𝑤. Then 𝐻0 is equivalent to  

 

𝑆(𝑥, 𝑧) ≡ 𝑇𝑧[𝑔(⋅,⋅) − 𝐺(⋅,⋅, 𝜃)](𝑥, 𝑧) = 0, 

 

for some 𝜃 ∈ Θ and almost every 𝑥, 𝑧. Suppose 𝑙(𝑧1, 𝑧2) is the kernel of an operator 
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𝐿 in [0,1]𝑟 if 𝑟 > 0, defined by 𝐿𝜈(𝑧) = ∫ 𝑙 (𝜁, 𝜈)𝜈(𝜁)𝑑𝜁. If 𝑟 = 0 then 𝐿 is the 

identity operator. The purpose of the operator is to carry out a smoothing step because 

when 𝑟 > 0 , the rate of convergence of the sample analogue of ∫𝑆 (𝑥, 𝑧)2𝑑𝑥𝑑𝑧 

would be slower than 𝑁−1/2  where 𝑁  is the sample size. Under 𝐻0, the sample 

analogue of ∫ 𝑆 (𝑥, 𝑧)2𝑑𝑥𝑑𝑧 can be constructed based on the observation that 

  

𝑇[𝑔 − 𝐺(⋅,⋅, 𝜃)](𝑥, 𝑧) = 𝐸{(𝑌 − 𝐺(𝑋, 𝑍, 𝜃)}𝑓𝑋𝑊(𝑥, 𝑧,𝑊)𝑙(𝑍, 𝑧). 

 

In turn, if we define 𝑉𝑖 = (𝑋𝑖, 𝑍𝑖 ,𝑊𝑖), and 𝑓𝑋𝑍𝑊
(−𝑖)

(𝑣) denotes a leave-observation-𝑖-out 

kernel estimator of 𝑓𝑋𝑍𝑊 , and 𝜅 is a kernel in ℝ2𝑝+𝑟, viz. 

  

 𝑓𝑋𝑍𝑊
(−𝑖)

(𝑣) =
1

𝑛ℎ2𝑝+𝑟
∑ 𝜅

𝑁

𝑗=1,𝑗≠𝑖
(
𝑣 − 𝑉𝑖

ℎ
), (14) 

 

for bandwidth parameter ℎ. Then we can construct the sample analogue as  

 

 �̂�(𝑥, 𝑧) = 𝑛−1/2 ∑[𝑌𝑖 − 𝐺(𝑋𝑖, 𝑍𝑖 , 𝜃)]

𝑁

𝑖=1

𝑓𝑋𝑍𝑊
(−𝑖)

(𝑥, 𝑍𝑖 ,𝑊𝑖)𝑙(𝑍𝑖, 𝑧), (15) 

 

where 𝜃 is a consistent estimator of 𝜃. The test statistic is: 

  

 𝜏 = ∫ �̂� (𝑥, 𝑧)2𝑑𝑥𝑑𝑧, (16) 

 

and 𝐻0 is rejected when 𝜏 is large. To obtain asymptotic critical values, Horowitz 

[2006] shows that the asymptotic distribution is a mixture of 𝜒2 distributions, where 

the weights depend on the eigenvalues of a certain integral operator.  

This test is important and has power against local alternatives whose distance 

from the null-hypothesis model is 𝑂(𝑁−1/2)  where 𝑁  is the sample size. We 

implement these tests by randomly sampling 10,000 firms at a time and we do this 1,000 

times. We use 60,000 MCMC iterations and we omit the first 10,000 to mitigate 

possible start up effects. We use the same instruments as in our empirical application 

to keep things consistent and inform our empirical model specification. The results are 
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reported in Table 11. From the Bayes factors in favor of model (7) as well as the 

Horowitz [2006] test, it turns out that the specification in column (6) of Table 4 passes 

the diagnostic tests. We apply the tests to different sub-samples to investigate whether 

there is some form of misspecification.  

From these results it does not seem that the specification in column (6) of Table 

4 has substantial problems. A standard criticism of the Bayes factor is that it depends 

too much on the prior and it does not work well with improper priors. For this reason, 

we use the Hyvärinen [2005] score as implemented in Shao et al. [2019]. The results 

are reported in Table 12. The large values of the Hyvärinen [2005] score suggest that 

the model is, indeed, better compared to the other specifications.  

 

7. Conclusion 

In this paper, we adopt a hybrid approach to address censoring, measurement errors, 

and endogeneity jointly. We apply our econometric approach to examine the 

connections between firm size, market structure, and R&D efforts, where these 

relationships have been of interest to economists since (at least) Schumpeter [1942]. 

Researchers have long recognized that these relationships are difficult to disentangle 

because of endogeneity concerns. We motivate our setting by adapting a simple 

theoretical model based on Dasgupta and Stiglitz [1980] work where determinants of 

R&D investment decisions, market structure, and the number of firms active in a market 

are simultaneously decided. In addition, measurement error is likely a concern as there 

is a correlation between explanatory variables and the error term in econometric 

models. To these points, Aghion et al. [2014] noted “Moreover, clean and direct 

measures of innovation and competition are usually not available in field data, which 

can lead to the additional problem of measurement error.”  

We apply our econometric approach to Chinese manufacturing data that has 

been widely used in the literature. As we do not employ field data nor observe all firms 

in the population, our measures of rival firms’ expenditures on R&D suffer from 

mismeasurement. Further, compounding these issues is the fact that the underlying 

relationships are likely nonlinear. Indeed, our OLS estimates suggest a nonlinear 

relationship between market structure (as measured by a LI) and the amount a firm 

spends on R&D.  This finding is consistent with what other researchers have found 

using data from different time periods, countries, and industries. When we estimate the 

same model under our hybrid approach, we get a coherent and unified framework 
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organized around BETEL combined with ELVIS in a general formulation estimated 

using fast MCMC-based techniques. We find that there is a positive relationship 

between market concentration and R&D expenditures, suggesting that firms in more 

concentrated industries invest more in R&D. Our finding is consistent with 

Schumpeter’s original hypothesis as well as with the simple theoretic model we use to 

highlight issues of simultaneity. We provide Monte Carlo evidence that supports our 

approach and emphasizes the presence of both measurement error and endogeneity in 

the data and helps explain why OLS is ill-suited for estimation in this setting.  

The natural direction for future research would be to consider this hybrid 

Bayesian framework we have suggested for other types of problems or in other data 

sets. The differences in the estimates obtained under a traditional strategy and one that 

corrects for the issues we’ve highlighted suggests that concerns around simultaneity 

and measurement error are nontrivial, meaning previous findings may be worth 

revisiting. The R&D literature usually focuses on one of two things—efforts (often 

measured by expenditures as we have done) and output (often measured by patents or 

innovations). Our approach could be extended to outcome-based models and measures 

where endogeneity concerns remain, and variables are likely to be even more plagued 

by measurement error. More generally, we think this approach will be helpful in 

addressing environments with interdependencies amongst decision makers.  For 

example, if players in a game maximize expected payoffs but there is an unobservable 

disturbance (seen by players but not the econometrician) that enters expected payoffs 

in nonlinear and even nonmonotone ways, our approach can be extended.  We’ve 

considered that here with a focus on R&D, but other traditional examples include price-

setting games, firm advertising decisions, product differentiation models, or tariff 

setting.  While many researchers often use a strategy that requires lagged variables in 

addressing these concerns, we feel our approach is particularly attractive for short panel 

data with a large cross section of observations.
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Panel A: 2005 

 
Panel B: 2007 

 
Figure 1: Total R&D Expenditures by District 
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Figure 2. Manufacturing Firm Locations in Sample 

 

 

 
Figure 3. Histogram of LI Measure and Plot Against Log(R&D Expenditures) 
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Panel A: Polynomial Estimates from OLS and IV-GMM 

Note that IV results are plotted in the secondary y-axis. 

 

 
Panel B: Polynomial Estimates from Bayesian Approach 

 

Figure 4: R&D and LI 
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Table 1: Summary statistics 
Variables  Data   

 Sample  𝜋𝑖𝑡 ≥ 0   

Number of unique industries (at 4–digits)  525  525   

   

Number of unique firms  324,463  319,609   

   

R & Da  269.613  274.539   

 (7,909.756)  (8,054.781)   

Operating profita  14,347.950  14,877.160   

 (192,159.380)  (195,954.100)   

Financial costa  875.231  761.099   

 (9,665.995)  (8,557.175)   

Current salesa  82,856.520  83,678.310   

 (616,128.400)  (625,723.400)   

LI  0.202  0.210   

 (0.335)  (0.340)   

Number of rivals  5.795  5.830   

 (16.780)  (16.778)   

Rivals’ R & Da  135.827  136.759   

 (4,422.454)  (4,489.228)   

Number of employees  201.020  200.240   

 (634.795)  (639.677)   

Age  8.235  8.174   

 (9.165)  (9.090)   

Exporter  0.238  0.238   

 (0.426)  (0.426)   

Producing two outputs  0.240  0.239   

 (0.427)  (0.427)   

Producing three or more outputs  0.092  0.091   

 (0.289)  (0.288)   

Share of government ownership  0.049  0.048   

 (0.207)  (0.204)   

Share of government ownership: = 0  0.940  0.941   

 (0.238)  (0.235)   

Share of government ownership: > 0 – 0.50  0.012  0.012   

 (0.110)  (0.109)   

Share of government ownership: > 0.50  0.048  0.047   

 (0.214)  (0.211)   

Number of national universities in the same zip code  0.017  0.0170   

 (0.227)  (0.229)   

Number of provincial universities in the same zip code  0.214  0.213   

 (.730)  (0.730)   

Standard deviations are in parentheses. a: In millions of renminbi (RMB). 
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Table 2: Regression Results for R&D Spending when profits ≥ 0 

Variables  Log of R & D𝑖𝑗𝑙𝑡    

 OLS IV-GMM 

 (1)  (2)  (3)  (4)  (5)  (6)   (7) 
LI𝑖𝑗𝑡  0.258   0.256  0.257  0.257  0.257   -7.035 

 (0.127)   (0.127)  (0.127)  (0.127)  (0.127)   (28.292) 

LI𝑖𝑗𝑡
2   -0.680   -0.674  -0.678  -0.677  -0.679   -20.325 

 (0.385)   (0.385)  (0.385)  (0.385)  (0.385)   (119.505) 

LI𝑖𝑗𝑡
3   0.416   0.412  0.414  0.414  0.415   27.613 

 (0.277)   (0.277)  (0.278)  (0.278)  (0.278)   (96.126) 

Log number of rivals𝑖𝑗𝑙𝑡   -0.087  -0.087  -0.086  -0.086  -0.086   1.521 

  (0.027)  (0.027)  (0.027)  (0.027)  (0.027)   (4.863) 

Log number of rivals𝑖𝑗𝑙𝑡
2    0.038  0.038  0.038  0.038  0.038   -1.209 

  (0.018)  (0.018)  (0.018)  (0.018)  (0.018)   (3.085) 

Log number of rivals𝑖𝑗𝑙𝑡
3    -0.006  -0.006  -0.006  -0.006  -0.006   0.267 

  (0.003)  (0.003)  (0.003)  (0.003)  (0.003)   (0.413) 

Log of rivals’ average R & D𝑖𝑗𝑙𝑡  0.066  0.068  0.068  0.068  0.068  0.068   0.681 

 (0.008)  (0.008)  (0.008)  (0.008)  (0.008)  (0.008)   (0.341) 

Log number of employees𝑖𝑡  0.111  0.112  0.112  0.111  0.111  0.111   0.082 

 (0.010)  (0.011)  (0.010)  (0.010)  (0.010)  (0.010)   (0.057) 

Log of age𝑖𝑡  -0.005  -0.003  -0.003  -0.003  -0.003  -0.003   -0.044 

 (0.014)  (0.014)  (0.014)  (0.014)  (0.014)  (0.014)   (0.033) 

Exporter𝑖𝑡  0.099  0.099  0.099  0.099  0.099  0.099   0.024 

 (0.019)  (0.019)  (0.019)  (0.019)  (0.019)  (0.019)   (0.031) 

Producing two outputs𝑖𝑡     0.014  0.014  0.014   0.121 

    (0.021)  (0.021)  (0.021)   (0.063) 

Producing three or more outputs𝑖𝑡     -0.005  -0.005  -0.005   -0.038 

    (0.032)  (0.032)  (0.032)   (0.042) 

Share of government ownership𝑖𝑡      -0.034    

     (0.047)    

Share of government ownership𝑖𝑡: >0 – 0.50       0.087   0.095 

      (0.049)   (0.051) 

Share of government ownership𝑖𝑡: > 0.50       -0.032   -0.049 

      (0.043)   (0.048) 

Log number of national universities𝑙𝑡     -0.204  -0.204  -0.204   -0.526 

    (0.242)  (0.242)  (0.242)   (0.230) 

Log number of provincial universities𝑙𝑡     -0.074  -0.074  -0.074   -0.251 

    (0.061)  (0.061)  (0.061)   (0.110) 

Firm effects  Yes  Yes  Yes  Yes  Yes  Yes   Yes 

Year effects  Yes  Yes  Yes  Yes  Yes  Yes   Yes 

Observations  710,639  710,639  710,639  710,639  710,639  710,639   710,639 

R2 0.794  0.794  0.794  0.794  0.794  0.794    

Hansen's J-statistic χ2: p-value       0.1273 

Robust standard errors clustered by industry are in parentheses.      

  

  
Table 3: First-Stage IV Regression Statistics 

Variable First stage F-statistic 

LI𝑖𝑗𝑡  266.92 

LI𝑖𝑗𝑡
2   266.54 

LI𝑖𝑗𝑡
3   263.52 

Log number of rivals𝑖𝑗𝑙𝑡   404.20 

Log number of rivals𝑖𝑗𝑙𝑡
2   448.80 

Log number of rivals𝑖𝑗𝑙𝑡
3  461.45 

Log of rivals’ average R & D𝑖𝑗𝑙𝑡 126.07 

F(10,710617) 
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Table 4: Bayesian Regression Results for Research and Development Spending when profits ≥ 0 

Variables  Log of R & D𝑖𝑗𝑙𝑡   

 (1)  (2)  (3)  (4)  (5)  (6)   
LI𝑖𝑗𝑡  0.133   0.181  0.201  0.183  0.203   

 (0.0071)   (0.0045)  (0.0350)  (0.0044)  (0.0230)   

LI𝑖𝑗𝑡
2   -0.230   -0.189  -0.233  -0.184  -0.230   

 (0.0070)   (0.0036)  (0.0071)  (0.0035)  (0.0071)   

LI𝑖𝑗𝑡
3   0.255   0.317  0.289  0.314  0.287   

 (0.0140)   (0.0210)  (0.0160)  (0.0250)  (0.0140)   

Log number of rivals𝑖𝑗𝑙𝑡   -0.014  -0.044  -0.032  -0.034  -0.034   

  (0.0032)  (0.0019)  (0.0022)  (0.0016)  (0.0025)   

Log number of rivals𝑖𝑗𝑙𝑡
2    0.021  0.030  0.028  0.027  0.023   

  (0.0044)  (0.0120)  (0.0035)  (0.0130)  (0.0032)   

Log number of rivals𝑖𝑗𝑙𝑡
3    -0.0033  -0.0028  -0.0030  -0.0024  -0.003   

  (0.0010)  (0.0003)  (0.0005)  (0.0002)  (0.0040)   

Log of rivals’ average R & D𝑖𝑗𝑙𝑡  0.044  0.052  0.045  0.033  0.043  0.034   

 (0.0032)  (0.0130)  (0.017)  (0.0090)  (0.0120)  (0.0040)   

Log number of employees𝑖𝑡  0.092  0.177  0.181  0.144  0.181  0.130   

 (0.0130)  (0.0320)  (0.0170)  (0.0150)  (0.0120)  (0.0011)   

Log of age𝑖𝑡  0.012  0.014  0.013  0.019  0.013  0.012   

 (0.0032)  (0.0016)  (0.0021)  (0.0011)  (0.0020)  (0.0013)   

Exporter𝑖𝑡  0.111  0.093  0.103  0.115  0.116  0.119   

 (0.0034)  (0.0140)  (0.0045)  (0.0051)  (0.0032)  (0.0023)   

Producing two outputs𝑖𝑡     0.021  0.023  0.020   

    (0.0035)  (0.0035)  (0.0014)   

Producing three or more outputs𝑖𝑡     0.083  0.071  0.073   

    (0.0140)  (0.014)  (0.0070)   

Share of government ownership𝑖𝑡      -0.0031   

     (0.0018)   

Share of government ownership𝑖𝑡: >0 – 0.50       0.020   

      (0.0014)   

Share of government ownership𝑖𝑡: > 0.50       -0.016   

      (0.0021)   

Log number of national universities𝑙𝑡     0.045  0.030  0.035   

    (0.0017)  (0.0022)  (0.0017)   

Log number of provincial universities𝑙𝑡     0.071  0.044  0.073   

    (0.0130)  (0.016)  (0.0070)   

Firm effects  Yes  Yes  Yes  Yes  Yes  Yes   

Year effects  Yes  Yes  Yes  Yes  Yes  Yes   

Observations  710,639  710,639  710,639  710,639  710,639  710,639   

R2  0.710  0.713  0.727  0.832  0.727  0.830   
Bayes factor  1.000  1.616  4.183  41.630  1.202  52.833   
Posterior standard deviations are in parentheses. Bayes factor has to been re-normalized to 1 using specification in Column 1.   
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Table 5: Regression Results for R&D Spending when profits ≥ 0 
Variables Log of R & D𝑖𝑗𝑙𝑡  

 OLS IV-GMM  BETEL  ELVIS  Hybrid 

 (1)  (2)  (3)  (4)  (5)  

LI𝑖𝑗𝑡  0.257 -7.035 0.189 0.0013 0.203 

 (0.127) (28.292) (0.0012) (0.0020) (0.0230) 

LI𝑖𝑗𝑡
2   -0.679 -20.325 0.0032 0.015 -0.230 

 (0.385) (119.505) (0.0011) (0.013) (0.0071) 

LI𝑖𝑗𝑡
3   0.415 27.613 0.0034 0.0017 0.287 

 (0.278) (96.126) (0.0053) (0.0032) (0.0140) 

Log number of rivals𝑖𝑗𝑙𝑡  -0.086 1.521 0.003 -0.0027 -0.034 

 (0.027) (4.863) (0.0021) (0.0005) (0.0025) 

Log number of rivals𝑖𝑗𝑙𝑡
2   0.038 -1.209 0.0045 0.0032 0.023 

 (0.018) (3.085) (0.0012) (0.0012) (0.0032) 

Log number of rivals𝑖𝑗𝑙𝑡
3   -0.006 0.267 0.0013 0.0032 -0.003 

 (0.003) (0.413) (0.0010) (0.0012) (0.0040) 

Log of rivals’ average R & D𝑖𝑗𝑙𝑡  0.068 0.681 -0.0052 -0.0043 0.034 

 (0.008) (0.341) (0.0010) (0.0040) (0.0040) 

Log number of employees𝑖𝑡  0.111 0.082 0.144 0.053 0.130 

 (0.010) (0.057) (0.0013) (0.065) (0.0011) 

Log of age𝑖𝑡  -0.003 -0.044 0.0024 0.0015 0.012 

 (0.014) (0.033) (0.0023) (0.0017) (0.0013) 

Exporter𝑖𝑡  0.099 0.024 0.0044 -0.0040 0.119 

 (0.019) (0.031) (0.0030) (0.0012) (0.0023) 

Producing two outputs𝑖𝑡  0.014 0.121 0.0050 0.001 0.020 

 (0.021) (0.063) (0.0034) (0.0027) (0.0014) 

Producing three or more outputs𝑖𝑡  -0.005 -0.038 -0.0032 -0.003 0.073 

 (0.032) (0.042) (0.0004) (0.0082) (0.0070) 

Share of government ownership𝑖𝑡: >0 – 0.50  0.087 0.095 0.006 0.0020 0.020 

 (0.049) (0.051) (0.0012) (0.0032) (0.0014) 

Share of government ownership𝑖𝑡: > 0.50  -0.032 -0.049 -0.004 -0.004 -0.016 

 (0.043) (0.048) (0.0001) (0.0045) (0.0021) 

Log number of national universities𝑙𝑡  -0.204 -0.526 0.0012 0.0045 0.035 

 (0.242) (0.230) (0.0002) (0.0024) (0.0017) 

Log number of provincial universities𝑙𝑡  -0.074 -0.251 0.003 0.003 0.073 

 (0.061) (0.110) (0.0001) (0.0050) (0.0070) 

Firm effects  Yes Yes Yes Yes Yes 

Year effects  Yes Yes Yes Yes Yes 

Observations  710,639   710,639 710,639   710,639   710,639   

R2 0.794    0.533   0.599   0.830   

Bayes factor   2.323 7.226   52.833   

Hansen's J-statistic χ2: p-value  0.1273    
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Table 6: Monte Carlo Results: Bayesian 
n and T % true model selected by BF  ARMSE  AAE  AM  

𝑛 = 500, 𝑇 = 10  32  0.0322  0.0316  (𝑝, 𝑞) = (3,3)  

𝑛 = 1000, 𝑇 = 10  75  0.0124  0.0120  (𝑝, 𝑞) = (3,2)  

𝑛 = 10,000, 𝑇 = 10  93  0.0073  0.0072  (𝑝, 𝑞) = (2,3)  

𝑛 = 500, 𝑇 = 20  82  0.0120  0.0121  (𝑝, 𝑞) = (3,3)  

𝑛 = 1000, 𝑇 = 20  88  0.0093  0.0095  (𝑝, 𝑞) = (3,3)  

𝑛 = 10,000, 𝑇 = 20  94  0.0054  0.0051  (𝑝, 𝑞) = (3,2)  

Notes: The true model is second-order polynomials for f and g in (7). ARMSE and AM are computed as 

noted in footnote 6 of the main text. AM stands for “alternative model” and corresponds to model selected 

most often when the true model is not selected. 

 

Table 7: Monte Carlo Results: OLS 
n and T BF  OLS % ARMSE  % OLS AAE  

𝑛 = 500, 𝑇 = 10  3.32×104  130.5%  139.2%  

𝑛 = 1000, 𝑇 = 10  1.87×105  116.3%  122.3%  

𝑛 = 10,000, 𝑇 = 10  2.44×107  114.2%  114.3%  

𝑛 = 500, 𝑇 = 20  2.81×104  114.5%  114.0%  

𝑛 = 1000, 𝑇 = 20  4.50×105  114.2%  114.4%  

𝑛 = 10,000, 𝑇 = 20  1.17×106  114.2%  114.4%  

Notes: The true model is second-order polynomials for f and g in (7). ARMSE and AM are computed as 

noted in footnote 6 of the main text. AM stands for “alternative model” and corresponds to model selected 

most often when the true model is not selected. 

 

Table 8: Monte Carlo Results: Correction for Endogeneity but not Measurement Error 
n and T % true model selected by BF  ARMSE  AAE  AM  

𝑛 = 500, 𝑇 = 10  3.3  46.18%  45.12%  (𝑝, 𝑞) = (2,2)  

𝑛 = 1000, 𝑇 = 10  3.5  48.21%  48.00%  (𝑝, 𝑞) = (2,3)  

𝑛 = 10,000, 𝑇 = 10  3.7  47.33%  47.30%  (𝑝, 𝑞) = (2,2)  

𝑛 = 500, 𝑇 = 20  4.1  47.23%  47.25%  (𝑝, 𝑞) = (1,2)  

𝑛 = 1000, 𝑇 = 20  4.5  48.25%  48.10%  (𝑝, 𝑞) = (1,2)  

𝑛 = 10,000, 𝑇 = 20  5.6  48.21%  48.15%  (𝑝, 𝑞) = (2,2)  
Notes: The true model is second-order polynomials for f and g in (7). ARMSE and AM are computed as 

noted in footnote 6 of the main text. AM stands for “alternative model” and corresponds to model selected 

most often when the true model is not selected. 

 

Table 9: Monte Carlo Results: Correction for Measurement Error but not Endogeneity 
n and T % true model selected by BF  ARMSE  AAE  AM  

𝑛 = 500, 𝑇 = 10  37.29%  28.32%  28.30%  (𝑝, 𝑞) = (2,1)  

𝑛 = 1000, 𝑇 = 10  39.40%  26.44%  26.40%  (𝑝, 𝑞) = (2,2)  

𝑛 = 10,000, 𝑇 = 10  43.20%  22.10%  22.15%  (𝑝, 𝑞) = (2,1)  

𝑛 = 500, 𝑇 = 20  32.30%  34.12%  34.19%  (𝑝, 𝑞) = (2,1)  

𝑛 = 1000, 𝑇 = 20  41.20%  24.30%  24.20%  (𝑝, 𝑞) = (2,1)  

𝑛 = 10,000, 𝑇 = 20  45.00%  20.44%  20.32%  (𝑝, 𝑞) = (2,1)  
Notes: The true model is second-order polynomials for f and g (7). ARMSE and AM are computed as 

noted in footnote 6 of the main text. AM stands for “alternative model” and corresponds to model selected 

most often when the true model is not selected. 
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Table 10: Regression Results for R&D Spending when profits ≥ 0, alternate specification 
Variables  Log of R & D𝑖𝑗𝑙𝑡  

 OLS IV-GMM  Hybrid 

 (1)  (2)  (3) 

LI𝑖𝑗𝑡  0.248 5.375 0.213 

 (0.127) (34.619) (0.0240) 

LI𝑖𝑗𝑡
2   -0.664 -112.669 -0.234 

 (0.385) (134.794) (0.0069) 

LI𝑖𝑗𝑡
3   0.410 109.966 0.280 

 (0.278) (104.254) (0.0150) 

Log number of rivals𝑖𝑗𝑙𝑡  -0.085 5.617 -0.032 

 (0.027) (5.493) (0.0021) 

Log number of rivals𝑖𝑗𝑙𝑡
2   0.036 -3.916 0.025 

 (0.018) (3.364) (0.0030) 

Log number of rivals𝑖𝑗𝑙𝑡
3   -0.006 0.634 -0.004 

 (0.003) (0.444) (0.0020) 

Log of rivals’ average R & D𝑖𝑗𝑙𝑡  0.068 0.376 0.030 

 (0.008) (0.430) (0.0027) 

Log number of employees𝑖𝑡  0.114 0.053 0.127 

 (0.011) (0.071) (0.0010) 

Producing two outputs𝑖𝑡  0.014 0.146 0.017 

 (0.021) (0.083) (0.0012) 

Producing three or more outputs𝑖𝑡  -0.005 -0.074 0.070 

 (0.032) (0.048) (0.0081) 

Share of government ownership𝑖𝑡: >0 – 0.50  0.087 0.130 0.017 

 (0.049) (0.062) (0.0012) 

Share of government ownership𝑖𝑡: > 0.50  -0.032 -0.006 -0.018 

 (0.043) (0.056) (0.0017) 

Log number of national universities𝑙𝑡  -0.206 -0.600 0.032 

 (0.242) (0.311) (0.0014) 

Log number of provincial universities𝑙𝑡  -0.074 -0.312 0.069 

 (0.061) (0.095) (0.0062) 

Firm effects  Yes Yes Yes 

Year effects  Yes Yes Yes 

Observations  710,639   710,639 710,639   

R2 0.794    0.800   

Bayes factor   46.325 

Hansen's J-statistic χ2: p-value  0.1453  

 
 

  



41 
 

 

 

 

Table 11: Robustness checks 

Sample BF in favor of model in (7)(1)  

10,000 randomly selected firms(3)  87.43 (44.55–151.3)(2) 0.225 (0.073–0.377)(2) 

Entire data set  125.12 0.280 

First half of data set   93.40 0.115 

Second half of data set  144,32 0.192 

Lower 10% of rivals  104.71 0.117 

Upper 10% of rivals  120.40 0.166 

Lower 25% of rivals  130.21 0.170 

Upper 25% of rivals  118.16 0.116 

Notes: (1)Against a general neural network formulation whose number of nodes is determined by the BF. 
(2) Median value and 99% confidence interval. For the Horowitz [2006] we test we use the same moment 

conditions as in our implementation of ELVIS. (3)We implement these tests by randomly sampling 10,000 

firms at a time and we do this 1,000 times. We use 60,000 MCMC iterations and we omit the first 10,000 

to mitigate possible start up effects.  

 

Table 12: Robustness checks (H score) 

Sample Hyvärinen score in favor of model in (7)(1) 

10,000 randomly selected firms(3)  17.55 (4.12–44.2)(2) 

Entire data set  12.37  

First half of data set  13.21  

Second half of data set  11.40  

Lower 10% of rivals  12.32  

Upper 10% of rivals  12.45  

Lower 25% of rivals  14.32  

Upper 25% of rivals  14.20  

Notes: (1)Against a general neural network formulation whose number of nodes is determined by the BF. 
(2)Median value and 99% confidence interval. For the Horowitz [2006] we use the same moment 

conditions as in our implementation of ELVIS. (3)We implement these tests by randomly sampling 10,000 

firms at a time and we do this 1,000 times. We use 60,000 MCMC iterations and we omit the first 10,000 

to mitigate possible start up effects.  
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Appendix A 

Table A.1: Variable definitions 
Variable  Description and construction of the independent variables  

R & D spending  

(in millions of RMB)  

Firm’s research and development expenditure. We take the log value of current sales when 

estimating empirical models  
 

Number of employees  This is the total number of employees in a firm. We take the log value of the number of employees 

when estimating empirical models. Note that we have deleted observations when the number of 
employees is reported as zero.   

 

Employee size 1 ( <= 50)  This dummy variable identifies the number of employees for a given firm is at least 50. This also 
represents the first quartile (0 - 25) of the employee distribution and control for firm size.  

 

Employee size 2 (> 50 & <= 95)  This dummy variable identifies the number of employees for a given firm is more than 50 and at 
least 95. This also represents the second quartile (25-50) of the employee distribution and control 

for firm size.  

 
Employee size 3 (> 95 & <= 198)  This dummy variable identifies the number of employees for a given firm is more than 95 and at 

least 198. This also represents the third quartile (50-75) of the employee distribution and control 

for firm size.  
 

Employee size 4 (> 198)  This dummy variable identifies the number of employees for a given firm is more than 198 and it 

represents the forth quartile (75-100) of the employee distribution and control for firm size.  
 

Current Sales  

(RMB million)  

This is the firm’s total sales in current values (in millions of RMB.) We take the log value of 

current sales when estimating empirical models. Note that China’s National Bureau of Statistics 
(NBS) survey includes private firms that have sales of over five million RMB. There are no such 

restrictions on state-owned firms included in the survey. Therefore, we drop all firms with less 

than five million RMB in sales. We lose 21 observations in this process.   
 

Sales size 1 (<= 17487)  This dummy variable identifies current sales for a given firm is at least 8120 RMB. This also 

represents the first quartile (0 - 25) of the sales distribution and control for firm size.  
 

Sales size 2 (> 8120 & <= 17487)  This dummy variable identifies current sales for a given firm is more than 8120 RMB and at least 

17487 RMB. This also represents the second quartile (25 - 50) of the sales distribution and control 
for firm size.  

 

Sales size 3 (> 17487 & <= 43690)  This dummy variable identifies current sales for a given firm is more than 17487 RMB and at least 

43690 RMB. This also represents the third quartile (50 - 75) of the sales distribution and control 

for firm size.  

 
Sales size 4 (> 43690)  This dummy variable identifies current sales for a given firm is more than 43690 RMB. This also 

represents the forth quartile (75 - 100) of the sales distribution and control for firm size.  

 
SIC code (4 digits)  This is the four-digit Standard Industry Classification codes for China.  

  

Number of rival firms  This is the number of rival firms operating in a four-digit SIC code. We take the log value of the 
number of rival firms [log(number of rivals + 1)] when estimating empirical models  

 

Total profit  
(in millions of RMB)  

We compute each firm’s profits by subtracting total intermediate inputs, financial charges, gross 
wages, amount of current depreciation, and value-added tax from the firm’s gross output. A 

similar method to calculate a firm’s corporate profit has been used by Cai and Liu (2009.)  
 

Profit per employee  This is constructed by dividing profits by the number of employees.  

 
Product 1  This dummy variable identifies firms that produce one output.  

 

Product 2  This dummy variable identifies firms that produce two outputs.  
 

Product 3  This dummy variable identifies firms that produce three or more outputs.  

 
Revenue subsidies  

(in millions of RMB)  

A portion of revenue is subsidized by the state government. We take the log value of revenues 

subsidized [log(revenue subsidized + 1)] when estimating empirical models  
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Table A.2: Correlations of regression variables  

Variable name  Variable  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15   

Log of R & D𝑖𝑗𝑙𝑡  1  1.000                

LI𝑖𝑗𝑡  2  -0.012  1.000               

LI𝑖𝑗𝑡
2   3  -0.024  0.988  1.000              

LI𝑖𝑗𝑡
3   4  -0.029  0.976  0.998  1.000             

Log number of rivals𝑖𝑗𝑙𝑡   5  -0.045  -0.094  -0.093  -0.090  1.000            

Log number of rivals𝑖𝑗𝑙𝑡
2   6  -0.042  -0.090  -0.089  -0.086  0.926  1.000           

Log number of rivals𝑖𝑗𝑙𝑡
3   7  -0.036  -0.081  -0.080  -0.078  0.821  0.971  1.000          

Log of rivals’ average R & D𝑖𝑗𝑙𝑡  8  0.173  -0.023  0.028  -0.025  0.374  0.333  0.292  1.000         

Log number of employees𝑖𝑡   9  0.227  0.034  0.057  0.026  0.040  0.033  0.027  0.049  1.000        

Log of age𝑖𝑡   10  0.098  0.056  0.011  0.055  -0.048  -0.038  -0.028  0.016  0.198  1.000       

Exporter𝑖𝑡   11  0.116  0.006  0.026  0.012  0.106  0.103  0.095  0.072  0.273  0.077  1.000      

Producing two outputs𝑖𝑡  12  0.103  0.023  0.021  0.025  -0.073  -0.066  -0.057  0.032  0.093  0.094  0.051  1.000     

Producing three or more outputs𝑖𝑡   13  0.108  0.021  0.021  0.019  -0.053  -0.046  -0.039  0.031  0.086  0.079  0.049  0.556  1.000    

Log number of national universities𝑙𝑡   14  0.087  0.025  0.022  0.019  -0.022  -0.023  -0.021  0.061  -0.011  0.028  -0.003  0.038  0.045  1.000   

Log number of provincial universities𝑙𝑡  15  0.054  0.056  0.058  0.056  -0.007  -0.005  0.000  0.044  0.029  0.036  0.000  0.064  0.048  0.090  1.000   
Pearson correlation coefficients 
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Appendix B 

 

B.1. ELVIS 

To explain this method, we define  

 

 �̃�(𝑦, 𝜃, 𝛾) ≡
∫𝑔 (𝑢, 𝑦, 𝜃) 𝑒𝑥𝑝 {𝛾′𝑔(𝑢, 𝑦, 𝜃)} 𝑑𝜌(𝑢|𝑦, 𝜃)

∫ 𝑒𝑥𝑝 {𝛾′𝑔(𝑢, 𝑦, 𝜃)} 𝑑𝜌(𝑢|𝑦, 𝜃)
 (B1) 

 

where 𝜌(𝑢|𝑦, 𝜃) is a user-specified conditional probability measure whose support is 

𝒰 for all 𝑦 and 𝜃, and a certain regularity condition is satisfied (Definition 2.2 of 

Schennach [2014]). The econometrician must specify the measure 𝜌(⋅) as input, but 

any such choice is suitable so long as its support matches the potential support of 

unobservables and a moment generating function exists and is twice differentiable.22 

Such measures can be independent of 𝜃  if stochastic dominance conditions are 

satisfied for the function 𝑔(𝑢, 𝑦, 𝜃) . Then, the infinite-dimensional problem of 

establishing the existence of some measure that solves the original moment conditions 

is equivalent to the simpler problem of establishing that a finite-dimensional parameter 

𝛾 solves the following modified moment condition:  

 

 inf
𝛾∈ℜ𝑑𝑔

:   ||𝔼𝜋�̃�(𝑦, 𝜃, 𝛾)|| = 0, (B2) 

 

where 𝜋 denotes that the expectation is with respect to the probability measure of the 

observable variables. The function �̃�(𝑦, 𝜃, 𝛾) is an average of the original moment 

condition 𝑔(𝑈, 𝑌, 𝜃)  with respect to some distribution of the unobservables that 

belong to a specific exponential family. It is worth noting that these results require no 

assumptions, other than measurability, regarding 𝑔(𝑢, 𝑦, 𝜃).  

To evaluate (B1), given a sample {𝑢(𝑠)}𝑠=1

𝑆
 from a distribution proportional to  

 

exp {𝛾′𝑔(𝑢, 𝑦, 𝜃)} 𝑑𝜌(𝑢|𝑦, 𝜃) 

 

 
22The choice of 𝜌(⋅) has no effect on her results so long as certain properties are satisfied concerning 

its support and differentiability. Moreover, Schennach [2014] provided a way of constructing 𝜌(𝑢|𝑦, 𝜃) 

automatically to ensure the regularity condition is satisfied; see Proposition 2.1 of her paper. 
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we use  

 �̂�(𝑦, 𝜃, 𝛾) = 𝑆−1 ∑ 𝑔

𝑆

𝑠=1

(𝑢(𝑠), 𝑦, 𝜃). (B3) 

 

Moreover, if the Metropolis–Hastings algorithm is used to obtain the sample, the 

integrating constant in (B1) need not be known. To construct an average that is a smooth 

function of 𝜃 or 𝛾, Schennach [2014] proposed constructing  

 

�̃�(𝑦, 𝜃, 𝛾)

=
∫𝑔 (𝑢, 𝑦, 𝜃) 𝑒𝑥𝑝 {𝛾′𝑔(𝑢, 𝑦, 𝜃) − 𝛾𝑜

′𝑔(𝑢, 𝑦, 𝜃𝑜)} 𝑟(𝑢|𝑦, 𝜃𝑜, 𝛾𝑜)𝑑𝜌(𝑢|𝑦, 𝜃𝑜)

∫ 𝑒𝑥𝑝 {𝛾′𝑔(𝑢, 𝑦, 𝜃) − 𝛾𝑜
′𝑔(𝑢, 𝑦, 𝜃𝑜)} 𝑟(𝑢|𝑦, 𝜃𝑜, 𝛾𝑜)𝑑𝜌(𝑢|𝑦, 𝜃𝑜)

, 
(B4) 

 

where 

 

 𝑟(𝑢|𝑦, 𝜃𝑜 , 𝛾𝑜) =
𝑒𝑥𝑝 {𝛾𝑜

′𝑔(𝑢, 𝑦, 𝜃𝑜)}

∫ 𝑒𝑥𝑝 {𝛾𝑜
′𝑔(𝑢, 𝑦, 𝜃𝑜)} 𝑑𝜌(𝑢|𝑦, 𝜃𝑜)

, (B5) 

 

for certain fixed 𝜃𝑜 and 𝛾𝑜. Then, computing the ratio of averages 

  

 𝑔(𝑦, 𝜃, 𝛾) =
𝑆−1 ∑ 𝑔𝑆

𝑠=1 (𝑢(𝑠), 𝑦, 𝜃) 𝑒𝑥𝑝 {𝛾′𝑔(𝑢, 𝑦, 𝜃) − 𝛾𝑜
′𝑔(𝑢, 𝑦, 𝜃𝑜)}

𝑆−1 ∑ 𝑒𝑥𝑝 {𝛾′𝑔(𝑢, 𝑦, 𝜃) − 𝛾𝑜
′𝑔(𝑢, 𝑦, 𝜃𝑜)}

𝑆
𝑠=1

. (B6) 

 

For given 𝛾𝑜 and 𝜃𝑜 one can evaluate �̃�(𝑦, 𝜃, 𝛾) for all 𝜃 and 𝛾 by drawing 𝑢(𝑠) 

from a distribution with density proportional to exp {𝛾𝑜
′𝑔(𝑢, 𝑦, 𝜃𝑜)} 𝑑𝜌(𝑢|𝑦, 𝜃𝑜). In 

turn, averaging over the unobservables then provides us with conventional moment 

conditions of the form  

 

 𝔼�̃�(𝑦, 𝜃, 𝛾) = 0. (B7) 

   

B.2. BETEL 

Averaging over the unobservables then provides us with conventional moment 

conditions that involve only observable variables. A viable alternative to fully 

parametric Bayesian methods, Schennach [2005] suggested BETEL.  

To consider this method, suppose we have moment conditions {𝔼[𝐺(𝑦𝑖, 𝜃)] =
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0}𝑖=1
𝑛 . Then, the Bayesian posterior corresponding to BETEL is  

 

 𝑝(𝜃|𝑌) ∝ 𝑝(𝜃)∏𝑤𝑖
∗

𝑛

𝑖=1

(𝜃), (B8) 

 

where 𝑝(𝜃) is a prior and {𝑤𝑖
∗(𝜃)}𝑖=1

𝑛  are solutions to the problem  

 

 max
{𝑤𝑖}𝑖=1

𝑛
: − ∑𝑤𝑖

𝑛

𝑖=1

log 𝑤𝑖, (B9) 

 

subject to the conditions  

 

 ∑𝑤𝑖

𝑛

𝑖=1

= 1 (B10) 

 

and  

 ∑𝑤𝑖

𝑛

𝑖=1

𝐺(𝑦𝑖, 𝜃) = 0, (B11) 

 

provided the interior of the convex hull of ⋃ {𝑛
𝑖=1 𝑔(𝑦𝑖, 𝜃)} contains the origin. The 

substantial numerical problem is that specifying 𝛾𝑜 and 𝜃𝑜 is not easy, although trial 

and error can be used. Evaluation of (B1) involves computing  

 

 

𝑔(𝑦, 𝜃, 𝛾)

≃
𝑆−1 ∑ 𝑔𝑆

𝑠=1 (𝑢(𝑠), 𝑦, 𝜃) 𝑒𝑥𝑝 {𝛾′𝑔(𝑢(𝑠), 𝑦, 𝜃) − 𝑞(𝑢(𝑠)|𝑦, 𝛼)} 𝑑𝜌(𝑢(𝑠)|𝑦, 𝜃)

𝑆−1 ∑ 𝑒𝑥𝑝 {𝛾′𝑔(𝑢(𝑠), 𝑦, 𝜃) − 𝑞(𝑢(𝑠)|𝑦, 𝛼)}𝑆
𝑠=1 𝑑𝜌(𝑢(𝑠)|𝑦, 𝜃)

, 
(B12) 

 

provided we can determine an importance density  

 

 𝜑(𝑢|𝑦, 𝛼) = exp {𝑄(𝑢|𝑦, 𝛼)}, (B13) 

 

which is “close” to  
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 𝜛(𝑢|𝜃, 𝛾) =
𝑒𝑥𝑝 {𝛾′𝑔(𝑢, 𝑦, 𝜃)} 𝑑𝜌(𝑢|𝑦, 𝜃)

∫ 𝑒𝑥𝑝 {𝛾′𝑔(𝑢, 𝑦, 𝜃)}
𝒰

𝑑𝜌(𝑢|𝑦, 𝜃)
, (B14) 

 

from which a sample {𝑢(𝑠)}𝑠=1
𝑆  can be obtained. If  

 

𝑊(𝑠) ≡ exp {𝛾′𝑔(𝑢(𝑠), 𝑦, 𝜃) − 𝑄(𝑢(𝑠)|𝑦, 𝛼)} 𝑑𝜌(𝑢(𝑠)|𝑦, 𝜃), 

 

it is clear that (B6) reduces to:  

 

 

�̂�(𝑦, 𝜃, 𝛾) ≃
𝑆−1 ∑ 𝑔𝑆

𝑠=1 (𝑢(𝑠), 𝑦, 𝜃)𝑊(𝑠)

𝑆−1 ∑ 𝑊(𝑠)𝑆
𝑠=1

:

= 𝑆−1 ∑𝑔

𝑆

𝑠=1

(𝑢(𝑠), 𝑦, 𝜃)𝑤(𝑠), 

(B15) 

 

where 𝑤(𝑠) =
𝑊(𝑠)

𝑆−1 ∑ 𝑊(𝑠′)𝑆
𝑠′=1

,  𝑠 = 1,… , 𝑆 , which is trivial to compute. What is not 

trivial is to determine an importance density 𝜑(𝑢|𝑦, 𝛼), which by choice of parameters 

𝛼 ∈ 𝒜 ⊆ ℜ𝑑𝛼  can approximate (B14) across all values of 𝑢, 𝜃 and 𝛾; see Danielsson 

and Richard [1993].  

 

B.3. Markov Chain Monte Carlo  

We used the algorithm proposed by Girolami and Calderhead [2011] (GC) to update 

draws for 𝜽. The algorithm uses local information about both the gradient and the 

Hessian of the log-posterior distribution conditional on 𝜽 at the existing draw. A 

Metropolis test is used for accepting the candidate generated, but the GC algorithm 

moves considerably faster relative to alternatives. The GC algorithm is started at the 

first-stage GMM estimator and MCMC is run until convergence. Depending on the 

model and the subsample this takes 5,000 to 10,000 iterations. For safety we run 10,000 

iterations. Then we run another 150,000 MCMC iterations omitting the first 50,000 

iterations to obtain final results for posterior moments, densities of parameters, and 

functions of interest. It has been found that the GC algorithm performs vastly superior 

relative to the standard Metropolis–Hastings algorithm and autocorrelations are much 

smaller.  
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For convenience, let 𝐿(𝜽) = log 𝑝 (𝜽|𝑿) denote the log posterior of 𝜽. Moreover, 

define  

 

 𝑮(𝜽) ≡ est. cov
𝜕

𝜕𝜽
log 𝑝 (𝑿|𝜽) (B16) 

 

to be the empirical counterpart of  

 

 𝑮𝑜(𝜽) = −𝐸𝑌|𝜽

𝜕2

𝜕𝜽𝜕𝜽′
log 𝑝 (𝑿|𝜽). (B17) 

 

The Langevin diffusion is given by the following stochastic differential equation 

  

 𝑑𝜽(𝑡) =
1

2
�̃�𝜽𝐿{𝜽(𝑡)}𝑑𝑡 + 𝑑𝑩(𝑡) (B18) 

 

where  

 �̃�𝜽𝐿{𝜽(𝑡)} = −𝑮−1{𝜽(𝑡)} ⋅ �̃�𝜽ℒ{𝜽(𝑡)} (B19) 

 

is the so called “natural gradient” of the Riemann manifold generated by the log 

posterior.  

The elements of the Brownian motion are  

 

 

 

𝑮−1{𝜽(𝑡)}𝑑𝑩𝑖(𝑡)

= |𝑮{𝜽(𝑡)}|−
1
2 ∑

𝜕

𝜕𝜽
[𝑮−1{𝜽(𝑡)}𝑖𝑗|𝑮{𝜽(𝑡)}|

1
2]

𝐾𝛽

𝑗=1

𝑑𝑡

+ [√𝑮{𝜽(𝑡)}𝑑𝑩(𝑡)]
𝑖
. 

 

(B20) 

 

The discrete form of the stochastic differential equation provides a proposal as follows:  

 

�̃�𝑖 = 𝜽𝑖
𝑜 +

𝜀2

2
{𝑮−1(𝜽𝑜)𝛻𝜽𝐿(𝜽𝑜)}𝑖

+
𝜀2

2
∑ {𝑮−1(𝜽𝑜)}𝑖𝑗

𝐾𝜃

𝑗=1
tr {𝑮−1(𝜽𝑜)

𝜕𝑮(𝒂𝑜)

𝜕𝜽𝑗
} 

− 𝜀2 ∑ {𝑮−1(𝜽𝑜)
𝜕𝑮(𝜽𝑜)

𝜕𝜽𝑗
𝑮−1(𝜽𝑜)}

𝑖𝑗

𝐾𝜃

𝑗=1

+ {𝜀√𝑮−1(𝜽𝑜)𝝃𝑜}
𝑖
 

 

 

= 𝝁(𝜽𝑜 , 𝜀)𝑖 + {𝜀√𝑮−1(𝜽𝑜)𝝃𝑜}
𝑖
 

 

where 𝜷𝑜 is the current draw. The proposal density is 

  

 𝑞(�̃�|𝜽𝑜) = 𝑁𝐾𝜃
(�̃�, 𝜀2𝑮−1(𝜽𝑜)) (B21) 
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and convergence to the invariant distribution is ensured by using the standard form 

Metropolis–Hastings probability  

 

 min {1,
𝑝(�̃�| ⋅, 𝑌)𝑞(𝜽𝑜|�̃�)

𝑝(𝜽𝑜| ⋅, 𝑌)𝑞(�̃�|𝒂𝑜)
}. (B22) 

 

Finally, 𝜺 is selected so that the acceptance rate of the algorithm is not too small or 

large. We determined 𝜺 using a target acceptance rate of, approximately, 25%. 


