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ABSTRACT

Stochastic gradient MCMC (SGMCMC) offers a scalable alternative to traditional MCMC, by con-
structing an unbiased estimate of the gradient of the log-posterior with a small, uniformly-weighted
subsample of the data. While efficient to compute, the resulting gradient estimator may exhibit a
high variance and impact sampler performance. The problem of variance control has been tradi-
tionally addressed by constructing a better stochastic gradient estimator, often using control variates.
We propose to use a discrete, non-uniform probability distribution to preferentially subsample data
points that have a greater impact on the stochastic gradient. In addition, we present a method of
adaptively adjusting the subsample size at each iteration of the algorithm, so that we increase the
subsample size in areas of the sample space where the gradient is harder to estimate. We demon-
strate that such an approach can maintain the same level of accuracy while substantially reducing
the average subsample size that is used.

Keywords Stochastic gradient MCMC · Langevin dynamics · Scalable MCMC · Control variates

1 Introduction

Markov chain Monte Carlo (MCMC) algorithms are a popular family of methods to conduct Bayesian inference.
Unfortunately, running MCMC on large datasets is generally computationally expensive, which often limits the use of
MCMC by practitioners. The Metropolis- Hastings algorithm (Metropolis et al., 1953; Hastings, 1970), in particular,
requires a scan of the full dataset at each iteration to calculate the acceptance probability.

Stochastic gradient Markov chain Monte Carlo (SGMCMC) algorithms are a family of scalable methods, which
aim to address this issue (Welling and Teh, 2011; Nemeth and Fearnhead, 2021). These algorithms aim to leverage
the efficiency of gradient-based MCMC proposals (Roberts and Tweedie, 1996; Neal, 2011). They reduce the per-
iteration computational cost by constructing an unbiased, noisy estimate of the gradient of the log-posterior, using
only a small data subsample. In this paper, we focus on samplers that rely on the overdamped Langevin diffusion
(Roberts and Tweedie, 1996), however, our proposed methodology can be applied more generally to other SGMCMC
algorithms, such as those based on Hamiltonian dynamics (Chen et al., 2014).

The high variance inherently present in the stochastic gradient estimator can degrade sampler performance and lead to
poor convergence. As such, variance control has become an important area of research within the SGMCMC literature,
and is often required to make these algorithms practical (Dubey et al., 2016; Chatterji et al., 2018; Baker et al., 2019;
Chen et al., 2019).

In this paper, we propose a new method designed to reduce the variance in the stochastic gradient. We use a discrete,
non-uniform probability distribution to preferentially subsample data points and to re-weight the stochastic gradient.
In addition, we present a method for adaptively adjusting the size of the subsample chosen at each iteration.
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2 Stochastic gradient MCMC

Let θ ∈ R
d be a parameter vector and denote independent observations x = {xi}Ni=1 (N ≫ 1). The probability

density of the i-th observation, given parameter θ, is p(xi|θ) and the prior density for the parameters is p(θ). In a

Bayesian context, the target of interest is the posterior density, π(θ) := p(θ|x) ∝ p(θ)
∏N

i=1 p(xi|θ).
For convenience, we define fi(θ) = − log p(xi|θ) for i = 1, . . . , N , with f0(θ) = − log p(θ) and f(θ) = f0(θ) +
∑N

i=1 fi(θ). In this setting, the posterior density can be rewritten as, π(θ) ∝ exp(−f(θ)).

2.1 The Langevin diffusion

The Langevin diffusion, θ(t), is defined by the stochastic differential equation,

dθ(t) = −1

2
∇f(θ(t))dt + dBt, (1)

where∇f(θ(t))dt is a drift term and Bt denotes a d-dimensional Wiener process. Under certain regularity conditions,
the stationary distribution of this diffusion is the posterior π (Roberts and Tweedie, 1996). In practice, we need to
discretise Eq. (1) in order to simulate from it and this introduces error. For a small step-size ǫ > 0, the Langevin
diffusion can be approximated by

θ(t+1) = θ(t) − ǫ

2
∇f
(
θ(t)
)
+
√
ǫ η(t), (2)

where the noise η(t) ∼ Nd(0, Id×d) is drawn independently at each update. The dynamics implied by Eq. (2) provide a
simple way to sample from the Langevin diffusion. The level of discretisation error in the approximation is controlled
by the size of ǫ and we can achieve any required degree of accuracy if we choose ǫ small enough.

The unadjusted Langevin algorithm (ULA) (Parisi, 1981) is a simple sampler that simulates from Eq. (2) but does
not use a Metropolis-Hastings correction (Metropolis et al., 1953; Hastings, 1970). Thus, the samples obtained from
ULA produce a biased approximation of π. The per-iteration computational cost of ULA is smaller than that of
the Metropolis-adjusted Langevin algorithm (Roberts and Rosenthal, 1998) due to the removal of the Metropolis-
Hastings step. However, the computational bottleneck for ULA lies in the O(N) calculation of the full data gradient

∇f
(
θ(t)
)
= ∇f0

(
θ(t)
)
+
∑N

i=1∇fi
(
θ(t)
)

at every iteration. This calculation can be problematic if N is large.

2.2 Stochastic gradient Langevin dynamics

The stochastic gradient Langevin dynamics (SGLD) algorithm attempts to improve the per-iteration computational
burden of ULA by replacing the full-data gradient with an unbiased estimate (Welling and Teh, 2011). Let the full-
data gradient of f(θ) be given by

g(t) = ∇f
(
θ(t)
)
= ∇f0

(
θ(t)
)
+

N∑

i=1

∇fi
(
θ(t)
)
.

The unbiased estimate of g(t) proposed by Welling and Teh (2011) takes the form

ĝ(t) = ∇f0
(
θ(t)
)
+

N

n

∑

i∈St

∇fi
(
θ(t)
)
, (3)

where St is a subset of {1, . . . , N} and |St| = n (n ≪ N ) is the subsample size. A single update of SGLD is thus
given by,

θ(t+1) ← θ(t) − ǫ(t)

2
· ĝ(t) + ξ(t), (4)

where ξ(t) ∼ Nd(0, ǫ
(t)Id×d) and {ǫ(t)} corresponds to a schedule of step-sizes which may be fixed (Vollmer et al.,

2016) or decreasing (Teh et al., 2016). The full SGLD pseudocode is provided in Algorithm 1.

Welling and Teh (2011) note that if the step-size ǫ(t) → 0 as t → ∞, then the Gaussian noise (generated by ξ(t))
dominates the noise in the stochastic gradient term. For large t, the algorithm approximately samples from the posterior
using an increasingly accurate discretisation of the Langevin diffusion. In practice, SGLD does not mix well when the
step-size is decreased to zero and so a small fixed step-size ǫ is typically used instead.
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Algorithm 1 SGLD

1: Input: initialise θ(1), batch size n, step-sizes {ǫ(t)}.
2: for t = 1, 2, . . . , T do
3: Sample indices St ⊂ {1, . . . , N} with or without replacement.

4: Calculate ĝ(t) using Eq. (3).
5: Update parameters according to Eq. (4).
6: end for
7: return θ(T+1)

2.3 Control variates for SGLD

The naive stochastic gradient proposed by Welling and Teh (2011) may exhibit a relatively high variance for small
subsamples of data. The more faithful a stochastic gradient estimator is to the full-data gradient, the better we can
expect SGLD to perform. Therefore, it is natural to consider alternatives to the estimator given in Eq. (3) which
minimise the variance.

Let θ̂ be a fixed value of the parameter, typically chosen to be close to the mode of the target posterior density. The
control variate gradient estimator proposed by Baker et al. (2019) takes the form,

ĝ(t)cv =
[
∇f(θ̂) +∇f0

(
θ(t)
)
−∇f0(θ̂)

]
+ (5)

N

n

∑

i∈St

[
∇fi

(
θ(t)
)
−∇fi(θ̂)

]
.

When θ(t) is close to θ̂, the variance of the gradient estimator will be small. This is shown formally in Lemma 1 of
Baker et al. (2019).

The SGLD-CV algorithm is the same as SGLD given in Algorithm 1, except with ĝ
(t)
cv substituted in place of ĝ(t).

Implementing the SGLD-CV estimator involves a one-off pre-processing step to find θ̂, which is typically done using

stochastic gradient descent (SGD) (Bottou et al., 2018; Baker et al., 2019). The gradient terms ∇fi
(
θ̂) are calculated

and stored. While these steps are both O(N) in computational cost, the optimisation step to find the mode can replace
the typical burn-in phase of the SGLD chain. The MCMC chain can then be initialised at the posterior mode itself.
The full pseudocode for SGLD-CV is provided in Algorithm 3 within Appendix B.

3 Preferential data subsampling

Let S be a subsample of size n generated with replacement, such that the probability that the i-th data point, xi, appears
in S is pi. The expected number of times xi is drawn from the dataset is npi. A standard implementation of SGLD
would assume uniform subsampling, i.e. that pi =

1
N

for all i. However, if the observations vary in their information
about the parameters, then assigning a larger probability to the more informative observations would be advantageous.
Preferential subsampling assigns a strictly-positive, user-chosen weight to each data point, such that we minimise the
variance of the estimator of the gradient.

We need to construct a discrete probability distribution p(t) = (pt1, . . . , p
t
N)T (where p

(t)
i > 0 for all i and

∑

i p
t
i = 1)

that can be used to draw subsamples of size n at each iteration t and to reweight the stochastic gradient accordingly.

If p(t) is time-invariant (i.e. p
(t)
i = pi for all i), the preferential subsampling scheme is static. Otherwise, the

subsampling weights will be dynamic or state-dependent.

For a given stochastic gradient g̃, the noise term associated with g̃ is given by ξ(t) = g̃(t) − g(t). Taking expectations

over p(t), a simple scalar summary of the variance of the noise ξ(t) can be found by evaluating:

E

(
∥
∥ξ(t)

∥
∥
2
)

= tr

(

Cov
(
g̃(t)
)
)

. (6)

We will refer to Eq. (6) as the pseudo-variance† of g̃(t), V
(
g̃(t)
)
, from now on. We intend to use the pseudo-variance

as a proxy for the variance of the stochastic gradient.‡ In all further analysis, ‖ · ‖ refers to the Euclidean norm.

†See Appendix A.1 for a full derivation of the pseudo-variance.
‡Note that g̃ is a d-dimensional random vector (where typically d > 1). Eq. (6) is the sum of the variances of the elements of g̃.

The term “pseudo-variance" allows us to easily distinguish between Eq. (6) and the variance-covariance matrix of g̃.

3
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In order to minimise the pseudo-variance, we need to find a preferential subsampling distribution p∗ which minimises
the following problem:

min
p(t), pt

i
∈[0,1],

∑
i
pt
i
=1

V
(
g̃(t)
)
. (7)

Existing non-asymptotic convergence results for SGLD-type methods§ demonstrate the importance in controlling the
variance of the stochastic gradient. These results give the error of SGLD in terms of bounds on the (bias and) variance
of the estimator of the gradient of the log posterior. Therefore, constructing a better stochastic gradient estimator - for
instance via preferential subsampling - will lead to a reduction in the error bound of the underlying SGLD method.

3.1 SGLD with preferential subsampling

An alternative gradient estimator for SGLD can be given by reweighting the simple estimator defined in Eq. (3)
(Welling and Teh, 2011),

g̃(t) = ∇f0
(
θ(t)
)
+

1

n

∑

i∈St

1

pti
∇fi

(
θ(t)
)
, (8)

where St ⊂ {1, . . . , N} is selected according to p(t) and |St| = n (n ≪ N). The pseudocode for the SGLD with
preferential subsampling (SGLD-PS) algorithm is outlined in Algorithm 4 within Appendix B.

As we correct for the non-uniform subsampling of data points by reweighting each gradient term, it follows that
the stochastic gradient estimator given in Eq. (8) is unbiased. This is synonymous with the standard properties of
importance sampling estimators (Robert and Casella, 2004). We note that there is an extra O(n) computational cost
associated with reweighting the stochastic gradient in this manner at each iteration.

The following result obtains the optimal solution to Problem (7).

Lemma 3.1. For the unbiased SGLD-PS gradient estimator in Eq. (8), minimising Problem (7) is equivalent to min-
imising the following

min
p(t)

1

n

N∑

i=1

1

pti

∥
∥∇fi

(
θ(t)
)∥
∥
2
. (9)

The optimal weights which minimise the pseudo-variance are thus given by

pti =
‖∇fi

(
θ(t)
)
‖

∑N
k=1 ‖∇fk

(
θ(t)
)
‖

for i = 1, . . . , N. (10)

Although a solution to Eq. (9) can be found, the resulting sampling algorithm would not be practical, as the optimal

weights depend on the current state θ(t). Therefore the subsampling distribution given in Eq. (10) requires N gradient
calculations per iteration. For large datasets, these weights would be very expensive to store and calculate at each
iteration, making the algorithm impractical.

We can instead approximate the optimal weights given in Eq. (10), such that they are not state-dependent and therefore
do not need to be updated at each iteration. These approximate weights can be calculated as an initial pre-processing
step before the main sampling algorithm is run.

A fairly simple approximation of the optimal weights given in Eq. (10) for SGLD-PS would require substituting the

current state θ(t) with some alternative fixed point. The posterior mode, θ̂, is a sensible choice as it represents the most
probable estimate of the parameters in a Bayesian paradigm. In this case, the approximate subsampling scheme would
be given by,

pi =
‖∇fi

(
θ̂
)
‖

∑N
k=1 ‖∇fk

(
θ̂
)
‖

for i = 1, . . . , N. (11)

As with SGLD-CV, the posterior mode could be estimated using SGD and the MCMC chain could then be initialised
at the posterior mode.

In practice, the subsampling weights in Eq. (11) are calculated only once with an O(N) preprocessing step and then
used statically (i.e without update). The resulting SGLD-PS algorithm would calculate the stochastic gradient given
in Eq. (8) using these fixed weights.

§Theorem 4 of Dalalyan and Karagulyan (2019) and Theorem 1 of Baker et al. (2019) are two such examples.
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3.2 SGLD-CV with preferential subsampling

The control-variates gradient estimator can be modified to accommodate a preferential subsampling scheme in a similar
manner. In this case, we would obtain

g̃(t) =
[
∇f(θ̂) +∇f0

(
θ(t)
)
−∇f0(θ̂)

]
+ (12)

1

n

∑

i∈St

1

pti

[
∇fi

(
θ(t)
)
−∇fi(θ̂)

]
.

The pseudocode for the modified SGLD-CV algorithm (SGLD-CV-PS) is given in Algorithm 5 within Appendix B.
The following result provides the optimal solution to Problem (7).

Lemma 3.2. For the unbiased SGLD-CV-PS gradient estimator in Eq. (12), minimising Problem (7) is equivalent to
minimising the following

min
p(t)

1

n

N∑

i=1

1

pti

∥
∥∇fi

(
θ(t)
)
−∇fi(θ̂)

∥
∥
2
. (13)

The optimal weights which minimise the pseudo-variance are thus given by

pti =
‖∇fi

(
θ(t)
)
−∇fi(θ̂))‖

∑N

k=1 ‖∇fk
(
θ(t)
)
−∇fk(θ̂)‖

(14)

for i = 1, . . . , N .

As in Section 3.1, we can derive a solution to Eq. (13). However, the resulting sampling algorithm would once again

depend on the current state of the chain θ(t). The process of finding a suitable approximation to the optimal weights
given in Eq. (14) for the control-variate gradient estimator is non-trivial. Our approach will be to choose a set of
subsampling weights that could be used for all iterations of the MCMC chain.

We consider an alternative minimisation problem

min
p(t), pt

i
∈[0,1],

∑
i
pt
i
=1

Eθ

[

V
(
g̃(t)
)
]

, (15)

where the outer expectation is taken with respect to the posterior distribution. Due to the linearity of expectation, Eq.
(15) is equivalent to solving the following problem:

min
p(t)

Eθ

[
1

n

N∑

i=1

1

pti

∥
∥∇fi

(
θ(t)
)
−∇fi(θ̂)

∥
∥
2
]

.

This can easily be shown by using a modified version of the argument given for Lemmas 3.1 and 3.2. The optimal
subsampling weights in Eq. (14) can be approximated by

pi ∝
√

tr

(

∇2fi(θ̂) Σ̂∇2fi(θ̂)T
)

for i = 1, . . . , N, (16)

where∇2fi(·) is the Hessian matrix of fi(·) and Σ̂ is the covariance matrix of the Gaussian approximation to the target
posterior centred at the mode.

See Appendix A.4 for a full discussion of how these weights can be obtained analytically and Appendix D for an
assessment of the computational cost associated with calculating them as a preprocessing step. The computational
cost required to calculate the Hessian matrix means that this approach can be computationally expensive for high-
dimensional parameters.

3.3 Adaptive subsampling

In this section, we present a method for adaptively adjusting the size of the subsample chosen at each iteration. We do
this by first finding an upper bound for the pseudo-variance of the stochastic gradient estimator given in Eq. (12) and
then by rearranging the result to find a lower bound on the subsample size.

Let us begin by placing a Lipschitz condition on each of the likelihood terms.
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Assumption 1. (Lipschitz continuity of gradients)
There exists constants L0, . . . , LN such that

‖∇fi(θ)−∇fi(θ′)‖ ≤ Li‖θ − θ′‖ (17)

for i = 0, . . . , N .

We can then obtain the following result using Assumption 1.

Lemma 3.3. Under Assumptions 1, the pseudo-variance of the stochastic gradient estimator defined in Eq. (12) can
be bounded above by

V(g̃) ≤ 1

n
‖θ(t) − θ̂‖2

( N∑

i=1

L2
i

pti

)

. (18)

where p(t) = (pt1, . . . , p
t
N )T is a set of user-defined discrete weights.

We can minimise the upper bound provided in Eq. (18) if we plug in the optimal weights given in Eq. (14). In practice,
however, it is advantageous to choose the preferential subsampling scheme based on its ease of computation.

The bound provided in Lemma 3.3 can still be used more generally to control the size of the pseudo-variance of the
stochastic gradient estimator given in Eq. (12). If we want to set the upper threshold of the pseudo-variance to be some
fixed value V0 > 0, we need to ensure that

1

n
‖θ(t) − θ̂‖2

( N∑

i=1

L2
i

pti

)

< V0,

for all iterations t = 1, . . . , T . We can rearrange the inequality above to obtain the following lower bound on the
subsample size,

n >
1

V0
‖θ(t) − θ̂‖2

( N∑

i=1

L2
i

pti

)

. (19)

For a given preferential subsampling scheme p(t), we can control the noise of the stochastic gradient estimator given

in Eq. (12) by choosing the subsample size n ∝ ‖θ(t) − θ̂‖2. This means that the subsample size can be set adaptively
according to the current state of the chain.

Our proposed algorithm is provided in Algorithm 2. The subsample size at iteration t, n(t), will be updated using the
lower bound obtained in Eq. (19). For a fixed noise threshold V0, it will be possible to decrease or increase the size of

n(t) depending on how far or close θ(t) is to the posterior mode, θ̂.

This method is suitable for use on models that satisfy Assumption 1. Appendix C provides a selection of examples
where the Lipschitz constants can be calculated exactly.

Algorithm 2 Adaptive SGLD-CV with preferential subsampling (ASGLD-CV-PS)

1: Input: initialise θ(1) close to θ̂, gradients∇fi
(
θ̂), weights p(1), step-size ǫ, noise threshold V0, Lipschitz constants

{Li}Ni=1.
2: for t = 1, 2, . . . , T do
3: Update p(t).

4: Find smallest possible n(t) using Eq. (19).

5: Sample n(t) indices St according to p(t) with replacement.

6: Calculate g̃(t) using Eq. (12)
7: Update parameters according to Eq. (4).
8: end for
9: return θ(T+1)

4 Related work

The idea of using a non-uniform discrete distribution to draw subsamples and reweight a gradient estimator has been
well-explored within the stochastic optimisation literature. Typically, the aim of these methods is to control the vari-
ance of the gradient estimator, in order to improve the speed of convergence of the algorithm.
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Various papers explore the use of a static or time-invariant subsampling schemes. Zhao and Zhang (2014b, 2015) and
Kern and Gyorgy (2016) propose the use of an importance sampling approach for SGD-type algorithms, where the
subsampling weights are chosen according to the Lipschitz smoothness constants of N individual cost functions, i.e.

pi =
Li∑

N
j=1 Lj

. Zhao and Zhang (2014a) consider a stratified sampling approach, where data points are assigned the

the same weight if they belong to the same strata or cluster. Zhang et al. (2017) propose the use of determinantal point
processes to diversify the subsamples selected for SGD, constructing a soft similarity measure to reweight data points.

Inspired by active learning methods, Salehi et al. (2017) create a multi-armed bandit (MAB) framework to dynamically
update the subsampling weights over several iterations of the SGD algorithm. Feedback is collected via the most recent
stochastic gradients and passed into the MAB at each iteration. Liu et al. (2020) adapts the work of Salehi et al. and
extends it to the minibatch setting for the ADAM algorithm (Kingma and Ba, 2016).

There have only been a handful of papers considering similar ideas within the stochastic gradient MCMC literature.
Fu and Zhang (2017) extend the stratified sampling methodology of Zhao and Zhang (2014a) to the general class of
SGMCMC algorithms. Li et al. (2021) meanwhile propose an exponentially weighted stochastic gradient method,
which can be combined with other variance reduction techniques.

5 Numerical experiments

In the experiments to follow, we compare our proposed preferential subsampling approaches in a number of different
scenarios. Our aim here is to demonstrate the value of preferential subsampling as a variance control measure. To
communicate the idea succinctly, we only include the benchmark methods SGLD and SGLD-CV in our results.

We evaluate the performance of our proposed methods on both real and synthetic data. Please refer to Appendix C for
detailed information about the datasets considered.

A fixed step-size scheme for ǫ is used throughout, as suggested by Vollmer et al. (2016). To ensure a fair comparison,
all samplers were run with the same step-size (with ǫ ≈ 1

N
). This allowed us to control for discretisation error and

to independently assess the performance benefits offered by preferential subsampling. See Appendix E for further
details.

For samplers where the burn-in phase is replaced by an optimiser, we have opted to use an off-the-shelf implementation
of ADAM (Kingma and Ba, 2016) to find the posterior mode. Unless stated otherwise, all samplers are implemented
using sampling with replacement.

Computing environment We used the jax autograd module to implement the SGMCMC methods. Our results were
obtained on a four-core 3.00GHz Intel Xeon(R) Gold virtual desktop. The code for this paper is hosted on GitHub¶.

5.1 Models

We compare sampler performance on the following three models: (i) bivariate Gaussian, (ii) binary logistic regression
and (iii) linear regression. Full model details (including the derivation gradients and Lipschitz constants) are provided
in Appendix C.

The examples have been deliberately chosen to be simple and our reasons for doing so are threefold. Firstly, our
proposed methods rely upon being able to estimate the posterior mode well and as such, we are prioritising models
where the mode is easy to find. Secondly, the Lipschitz constants for these models are known and this allows us
to test our adaptive subsampling approach. And lastly, the SGLD-CV-PS subsampling scheme outlined in Eq. (16)
requires the Hessian matrix,∇2fi(·), to be computed for all data points and this is a costly preprocessing step for large
parameter spaces||.

5.1.1 Bivariate Gaussian

We simulate independent data from Xi|θ ∼ N2(θ,Σx) for i = 1, . . . , N. It is assumed that θ is unknown and
Σx is known. The conjugate prior for θ is set to be θ ∼ N2(µ0,Λ0). The prior hyperparameters of the prior are
µ0 = (0, 0)T and Λ0 = diag(1 × 103, 2). The target posterior is a non-isotropic Gaussian with negatively correlated
parameters.

5.1.2 Binary logistic regression

Suppose we have data x1, . . . , xN of dimension d taking values in R
d, where each xi = (1, xi1, . . . , xip)

T (where
d = p+ 1). Let us suppose that we also have the corresponding response variables y1, . . . , yN taking values in {0, 1}.

¶Repository: https://github.com/srshtiputcha/sgmcmc_preferential_subsampling
||We have provided an extended discussion of the preprocessing costs associated with SGLD-CV-PS in Appendix D.
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Then a logistic regression model with parameters θ = (β0, β1, . . . , βp) will have the following density function

p(yi|xi, θ) =

(
1

1 + e−θTxi

)yi
(

1− 1

1 + e−θTxi

)1−yi

.

The prior for θ is set to be θ ∼ Nd(µ0,Λ0). The hyperparameters of the prior are µ0 = (0, . . . , 0)T and Λ0 =
diag(10, d).

5.1.3 Linear regression

Suppose we have data x1, . . . , xN of dimension d taking values in R
d, where each xi = (1, xi1, . . . , xip)

T (d = p+1).
Let us suppose that we also have the corresponding response variables y1, . . . , yN taking values on the real line.

We define the following linear regression model,

yi = xT
i θ + ηi, ηi ∼ N (0, 1),

with parameters θ = (β0, β1, . . . , βp). The prior for θ is the same as above.

5.2 Metrics

We assess the performance of our samplers using the following metrics.

5.2.1 Kullbeck-Leibler (KL) divergence

The KL divergence is a measure of difference between two probability distributions with densities p(·) and q(·) and is
given by,

DKL(p||q) =
∫

p(θ) log
p(θ)

q(θ)
dθ.

In the case of our bivariate Gaussian model, we know that the target posterior is conjugate and the KL divergence
between two Gaussians can be written analytically. We use the KL divergence to measure the difference between the
target posterior and our generated samples in Figure 4(a).

5.2.2 Log-loss

The log-loss is a popular metric for assessing the predictive accuracy of the logistic regression model on a test dataset,
T ∗. For binary classification, the log-loss is given by

l(θ, T ∗) = − 1

|T ∗|
∑

i∈|T ∗|

log p(y∗i |x∗
i , θ).

We compute the log-loss for our logistic regression example in Figure 2(b)(ii).

5.2.3 Kernel Stein discrepancy

We measure the sample quality of our MCMC chains using the kernel Stein discrepancy (KSD). The KSD assesses the
discrepancy between the target posterior π and the empirical distribution π̃K formed by SGMCMC samples {θ}Kk=1
(Liu et al., 2016; Gorham and Mackey, 2017). A key benefit of the KSD is that it penalises the bias present in our
MCMC chains. We can define the KSD as,

KSD(π̃K , π) =

d∑

j=1

√
√
√
√

K∑

k,k′=1

k0j (θk, θk′)

K2
, (20)

where the Stein kernel for j ∈ {1, . . . , d} is given by,

k0j (θ, θ
′) =

1

π(θ)π(θ′)
∇θj∇θ′

j

(
π(θ)K(θ, θ′)π(θ′)

)
(21)

andK(·, ·) is a valid kernel function. Gorham and Mackey (2017) recommend using the inverse multi-quadratic kernel,

K(θ, θ′) =
(
c2 + ‖θ − θ′‖22

)β
, which detects non-convergence for c > 0 and β ∈ (−1, 0). In practice, the full-data

gradients in Eq. (21) can be replaced by noisy, unbiased estimates. We compute the KSD for our linear and logistic
regression examples in Figures 2(a) - (b)(i), 3(a), 4(b) and 5(a).
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Figure 1: Empirical pseudo-variance against proportion of data in a subsample, n
N

. (a) bivariate Gaussian, (b) balanced
logistic regression, (c) imbalanced logistic regression

5.3 Numerical results

5.3.1 Evaluating the quality of the stochastic gradients

In this experiment, our objective was to compare the pseudo-variance of our proposed gradient estimators against the
proportion of data used in a subsample, n

N
. We consider three scenarios: (a) bivariate Gaussian (b) balanced bivariate

logistic regression, and (c) imbalanced bivariate logistic regression. For ease of computation, a synthetic dataset of
size N = 103 was used for all models.

In each scenario, we generated ten candidate draws of θ and calculated an empirical estimate of the pseudo-variance at
each. The candidate draws were sampled either from the posterior (for scenario (a)) or from a normal approximation
to the posterior (for scenarios (b) and (c)). We plot the mean empirical estimate of the pseudo-variance for various
subsample sizes.

Figure 1(a) compares the stochastic gradients for SGLD with and without replacement (WR and WOR respectively)
and for SGLD-PS with exact and approximate subsampling schemes. Figures 1(b) and (c) additionally compare the
gradient estimators of SGLD-CV and those of SGLD-CV-PS with exact and approximate subsampling schemes.**

SGLD and SGLD-CV with replacement offer the best variance reduction for larger subsamples, as n
N

tends towards
1. For more reasonable subsample sizes of n ≤ 0.2N , however, there is no major benefit in generating subsamples
without replacement. Figure 1 illustrates that there is a marked reduction in the pseudo-variance when a preferential
subsampling scheme is used.

SGLD-PS and SGLD-CV-PS consistently outperform their vanilla counterparts and there seems to be very little differ-
ence between the exact and approximate schemes for SGLD-PS. Whereas, there is a difference in performance between
the exact and approximate subsampling schemes for SGLD-CV-PS. This difference is noticeable in Figure 1(c) for the
synthetic imbalanced logistic regression data. Practically, it is not feasible to use the exact subsampling weights, but
as illustrated here, using approximate preferential weights is always better than using uniform weights.

5.3.2 Performance with varying subsample size

In Figure 2, we compare the sampler performance of SGLD, SGLD-CV, SGLD-PS and SGLD-CV-PS for a subsample
size of 0.1% of the dataset size over 10 passes of the data. We have run ten MCMC chains allowing for an equal
number of iterations for both burn-in and sampling.

Figure 2(a) plots the KSD results for the linear regression model fitted on the CASP dataset. The CASP dataset has
been obtained from the UCI Machine Learning repository and contains 45,730 instances and 9 features.

**In the case of a Gaussian posterior, the SGLD-CV stochastic gradient offers optimal variance reduction, with optimal weights
pi =

1

N
. For this reason, there is no extra improvement gain to be obtained here by implementing SGLD-CV-PS
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Furthermore, Figure 2(b) plots the results of fitting the logistic regression model to the covertype dataset
(Blackard and Dean, 1998). The covertype dataset contains 581,012 instances and 54 features. The KSD results are
shown in Figure 2(b)(i) and the log-loss (evaluated every 10 iterations) is computed on the test set in Figure 2(b)(ii).

In addition, we separately compare the sampler performance of SGLD and SGLD-PS in Figure 4 (see Appendix F)
for subsample sizes of 1%, 5% and 10% of the dataset size, over 500 passes of the data. As before, ten MCMC chains
were run for each subsample size tested, allowing for an equal number of iterations for both burn-in and sampling

Figure 4(a) plots the KL divergence for the bivariate Gaussian model fitted on synthetic data of size N = 104. Fig-
ure 4(b) plots the KSD for the logistic regression model fitted on the covertype dataset (Blackard and Dean, 1998).

We can see that SGLD-CV-PS exhibits the best performance overall. More generally, we find that there is a benefit
in implementing preferential subsampling for vanilla SGLD as well. In practice, we find that the largest performance
gains are found for preferential subsampling when the subsampling size is reasonably small.
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Figure 2: Sampler performance of SGLD, SGLD-CV, SGLD-PS and SGLD-CV-PS for 0.1% subsample size over 10
passes through the data. (a) linear regression model on the CASP data (y-axis: KSD); (b) logistic regression on the
covertype data (y-axis: (i) KSD, (ii) log-loss).

5.3.3 Performance of adaptive subsampling

We are interested in assessing the sampler performance of ASGLD-CV and ASGLD-CV-PS over 104 iterations. In
this experiment, we considered two scenarios: (i) the logistic regression model on balanced synthetic data of size
N = 104; and (ii) the linear regression model on the CASP data. The results for scenario (i) are plotted in Figure 3.
Please refer to Figure 5 in Appendix F for the results of scenario (ii). Both models satisfy Assumption 1.

In order to implement the adaptive subsampling methods, we had to first pick a suitable pseudo-variance threshold, V0.
We generated ten chains of SGLD-CV and SGLD-CV-PS for a fixed subsample of size 0.1% of the dataset size. For
each chain, we then:

1. calculated the squared Euclidean distances between the mode and the samples, ‖θ − θ̂‖2,

2. found the 95-th percentile of the array of squared distances, and

3. calculated a proposal for V0 using the bound in Eq. (18).

We set V0 to be the largest proposal amongst the ten chains.

Figure 3(a) plots the KSD for all four methods and Figure 3(b) displays the adaptive subsample sizes selected along one
chain of ASGLD-CV-PS. Figure 3(c) compares the number of passes through the data considered by fixed subsampling
versus ASGLD-CV-PS over 104 iterations.

Overall, we see that the performance of ASGLD-CV-PS is somewhat better than that of ASGLD-CV. We cannot always
presume that the adaptive subsampling methods will outperform their fixed subsampling counterparts (see Figure 5(a)
for instance) in terms of sample quality. However, it is clear that the adaptive subsampling methods successfully
process far less of the data over 104 iterations with no significant reduction in statistical accuracy.

6 Conclusion

We have used preferential subsampling to reduce the variance of the stochastic gradient estimator for both SGLD and
SGLD-CV. In addition, we have extended SGLD-CV to allow for adaptive subsampling.
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Figure 3: A logistic regression model fitted on balanced synthetic data of size N = 104. (a) KSD comparison of SGLD-
CV, SGLD-CV-PS, ASGLD-CV and ASGLD-CV-PS over 104 iterations; (b) adaptive subsample sizes selected along
one ASGLD-CV-PS chain; (c) the number of passes through the data considered by fixed versus adaptive subsampling.

We have empirically studied the impact of preferential subsampling on a range of synthetic and real-world datasets.
Our numerical experiments successfully demonstrate the performance improvement from both preferential subsam-
pling and adaptively selecting the subsample size.

Future work in this area could explore the potential for using multi-armed bandits to preferentially select data subsam-
ples for SGMCMC. These concepts have only been previously considered within the context of stochastic optimisation
(Salehi et al., 2017; Liu et al., 2020).

The methods outlined in this paper are not limited to Langevin dynamics and can be applied to other SGMCMC
samplers. Furthermore, it would be worth considering how preferential subsampling could be extended for other
variance control methods, such as SAGA-LD or SVRG-LD (Dubey et al., 2016). This could potentially be done by
adapting the ideas presented in Schmidt et al. (2015), Kern and Gyorgy (2016) and Schmidt et al. (2017). Arguments
that mirror those presented in Lemmas 3.1 and 3.2 could be used to obtain the optimal preferential subsampling scheme
in each new case.
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A Results from Section 3

A.1 Full derivation of the pseudo-variance

The pseudo-variance g̃(t) is given by:

V
(
g̃(t)
)
= E

(
∥
∥g̃(t) − g(t)

∥
∥
2
)

(22)

= E

(
(
g̃(t) − g(t)

)T (
g̃(t) − g(t)

)
)

(23)

=

d∑

j=1

E

(
(
g̃
(t)
j − g

(t)
j

)2
)

(decompose expectation over d parameters) (24)

=

d∑

j=1

E

(
(
g̃
(t)
j − E

[
g̃
(t)
j

])2
)

(25)

=

d∑

j=1

Var
(
g̃
(t)
j

)
(26)

= tr

(

Cov
(
g̃(t)
)
)

. (27)

A.2 Proof of Lemma 3.1

Proof. From Section A.1, we know that

V
(
g̃(t)
)
= E

[

∥
∥g̃(t) − g(t)

∥
∥
2

]

=
d∑

j=1

Var
(
g̃
(t)
j

)
. (28)

Taking expectations with respect to p(t), we know that the j-th component of the sum in Eq. (28) is given by:

Var
(
g̃
(t)
j

)
= Var

(

∇jf0
(
θ(t)
)
+

1

n

∑

i∈St

1

pti
∇jfi

(
θ(t)
)
)
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(
1

n

∑

i∈St

1

pti
∇jfi

(
θ(t)
)
)

.

Given that all stochastic gradient estimators are unbiased with the same mean, we know that minimis-

ing V
(
g̃(t)
)

with respect to p(t) is equivalent to minimising the component-wise sum of second moments,

∑d
j=1 E

((

1
n

∑

i∈St
1
pt
i
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(
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)
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.

So, for j = 1, . . . , d, we consider

E
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where Cj is a constant that does not depend on p(t). Adding up over all components, we see that,
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Therefore,

min
p(t), pt
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The minimisation problem of interest is
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We know that via the Cauchy-Schwarz inequality††,
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The equality is only obtained when there exists a constant c ∈ R such that
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Under this constraint, Problem (13) is minimised. We can therefore conclude that the optimal weights which minimise
the pseudo-variance are,
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for i = 1, . . . , N.

A.3 Proof of Lemma 3.2

Proof. By the similar argument to that used for Lemma 3.1, we can show that
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Once again, using the Cauchy-Schwarz inequality allows us to see that the optimal weights which minimise the pseudo-
variance are,
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††The Cauchy-Schwarz inequality states that for d-dimensional real vectors u,v ∈ R
d, of all inner product space it is true that

|〈u,v〉| ≤ 〈u,u〉 · 〈v,v〉

Furthermore, the equality holds only when either u or v is a multiple of the other.
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A.4 Deriving approximate weights for the control variates gradient

The minimisation problem of interest is

min
p(t), pt

i
∈[0,1],

∑
i
pt
i
=1

Eθ

[
1

n

N∑

i=1

1

pti

∥
∥∇fi

(
θ(t)
)
−∇fi(θ̂)

∥
∥
2
]

.

So,

Eθ

[
1

n

N∑

i=1

1

pti

∥
∥∇fi

(
θ(t)
)
−∇fi(θ̂)

∥
∥
2
]

=
1

n

N∑

i=1

1

pti
Eθ

[
∥
∥∇fi

(
θ(t)
)
−∇fi(θ̂)

∥
∥
2
]

(linearity of Eθ)

=

(
1

n

)( N∑

i=1

1

pti
Eθ

[
∥
∥∇fi

(
θ(t)
)
−∇fi(θ̂)

∥
∥
2
])( N∑

i=1

pti

)

≥ 1

n

( N∑

i=1

√

1

pti
Eθ

[
∥
∥∇fi

(
θ(t)
)
−∇fi(θ̂)

∥
∥
2
]

pti

)

(Cauchy-Schwarz)

=
1

n

( N∑

i=1

√

Eθ

[
∥
∥∇fi

(
θ(t)
)
−∇fi(θ̂)

∥
∥
2
] )2

.

The problem is minimised when

pti ∝
√

Eθ

[
∥
∥∇fi

(
θ(t)
)
−∇fi(θ̂)

∥
∥
2
]

for i = 1, . . . , N.

Let’s assume that θ ∼̇ N (θ̂, Σ̂) at stationarity, where Σ̂ = −H(θ̂)−1. Using a first-order Taylor expansion about θ̂,
∥
∥∇fi

(
θ(t)
)
−∇fi(θ̂)

∥
∥
2 ≈ ‖∇fi(θ̂) +∇2fi(θ̂)(θ

(t) − θ̂)−∇fi(θ̂)
∥
∥
2
=
∥
∥∇2fi(θ̂)(θ

(t) − θ̂)
∥
∥
2
.

We know that (θ − θ̂) ∼̇ N (0, Σ̂). So,

∇2fi(θ̂)(θ
(t) − θ̂) ∼̇ N

(
0,∇2fi(θ̂)Σ̂∇2fi(θ̂)

T
)
.

Then,

Eθ

[
∥
∥∇fi

(
θ(t)
)
−∇fi(θ̂)

∥
∥
2
]

≈ Eθ

[
∥
∥∇2fi(θ̂)(θ

(t) − θ̂)
∥
∥
2
]

= tr

(

Cov

(

∇2fi(θ̂)
(
θ(t) − θ̂

)
))

≈ tr

(

∇2fi(θ̂) Σ̂∇2fi(θ̂)
T

)

.

So, we can set

pi ∝
√

tr

(

∇2fi(θ̂) Σ̂∇2fi(θ̂)T
)

for i = 1, . . . , N.

A.5 Proof of Lemma 3.3

Proof. We know that the pseudo-variance can be decomposed into

V(g̃) = E [‖g̃ − g‖2]

=
1

n

N∑

i=1

1

pti
‖∇fi

(
θ(t)
)
−∇fi(θ̂)‖2 −

1

n

∥
∥
∥
∥

N∑

i=1

[
∇jfi

(
θ(t)
)
−∇jfi(θ̂)

]
∥
∥
∥
∥

2

︸ ︷︷ ︸

≥0

≤ 1

n

N∑

i=1

1

pti
‖∇fi

(
θ(t)
)
−∇fi(θ̂)‖2.

Under Assumption 1, we know that

V(g̃) ≤ 1

n
‖θ(t) − θ̂‖2

( N∑

i=1

L2
i

pti

)

.

16



Preferential Subsampling for Stochastic Gradient Langevin Dynamics

B Pseudocode for algorithms

Algorithm 3 SGLD-CV

1: Input: initialise θ(1) = θ̂, gradients∇fi
(
θ̂), batch size n, step-size ǫ.

2: for t = 1, 2, . . . , T do
3: Sample indices St ⊂ {1, . . . , N} with or without replacement.

4: Calculate ĝ
(t)
cv in Eq. (5).

5: Update parameters according to Eq. (4).
6: end for
7: return θ(T+1)

Algorithm 4 SGLD with preferential subsampling (SGLD-PS)

1: Input: initialise θ(1), weights p(1), batch size n, step-size ǫ.
2: for t = 1, 2, . . . , T do
3: Update p(t).

4: Sample indices St according to p(t) with replacement.

5: Calculate g̃(t) using Eq. (8).

6: Update parameters θ(t+1) ← θ(t) − ǫ
2 · g̃(t) +Nd(0, ǫtId×d)

7: end for
8: return θ(T+1)

Algorithm 5 SGLD-CV with preferential subsampling (SGLD-CV-PS)

1: Input: initialise θ(1) close to the mode θ̂, gradients∇fi
(
θ̂), weights p(1), batch size n, step-size ǫ.

2: for t = 1, 2, . . . , T do
3: Update p(t).

4: Sample indices St according to p(t) with replacement.

5: Calculate g̃(t) using Eq. (12).

6: Update parameters θ(t+1) ← θ(t) − ǫ
2 · g̃(t) +Nd(0, ǫtId×d)

7: end for
8: return θ(T+1)

C Model details

C.1 Bivariate Gaussian

C.1.1 Model specification

We want to simulate independent data from:

Xi|θ ∼ N2(θ,Σx) for i = 1, . . . , N.

It is assumed that that θ is unknown and Σx is known. The likelihood for a single observation is given by:

p(xi|θ) =
1

√

(2π)2|Σx|
exp

(

− 1

2
(xi − θ)TΣ−1

x (xi − θ)

)

.

The likelihood function for N observations is

p(x|θ) =
N∏

i=1

1
√

(2π)2|Σx|
exp

(

− 1

2
(xi − θ)TΣ−1

x (xi − θ)

)

∝ |Σx|−
N
2 exp

(

− 1

2

N∑

i=1

(xi − θ)TΣ−1
x (xi − θ)

)

.
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The log-likelihood is a quadratic form in θ, and therefore the conjugate prior distribution for θ is the multivariate
normal distribution. The conjugate prior for θ is set to be

θ ∼ N2(µ0,Λ0).

The conjugate posterior that we are ultimately trying to simulate from using SGLD is known to be:

π(θ|x) ∝ exp

(

− 1

2
(θ − µ1)

TΛ−1
1 (θ − µ1)

)

D
= N2(µ1,Λ1),

where
µ1 = (Λ−1

0 +NΣ−1
x )−1(Λ−1

0 µ0 +NΣ−1
x x̄),

and
Λ−1
1 = Λ−1

0 +NΣ−1
x .

C.1.2 Model gradient

For the prior,

log p(θ) = −1

2
(θ − µ0)

TΛ−1
0 (θ − µ0)

Therefore,

∇f0(θ) = −∇ log p(θ) = Λ−1
0 (θ − µ0).

We know that for i ∈ {1, . . . , N},

fi(θ) = − log p(xi|θ) =
1

2
(xi − θ)TΣ−1

x (xi − θ) + constant

Therefore,
∇fi(θ) = Σ−1

x (θ − xi) and ∇2fi(θ) = Σ−1
x .

C.1.3 Synthetic data

To generate the synthetic data, N data points are drawn from the model with θ =

(
0
1

)

and Σx =
(
1× 105 6× 104

6× 104 2× 105

)

. The hyperparameters of the prior are µ0 =

(
0
0

)

and Λ0 =

(
1× 103 0

0 1× 103

)

. Synthetic

datasets of sizes N = 103 and N = 104 were generated for use in Figures 1(a) and 4(a) respectively.

C.2 Logistic regression

C.2.1 Model specification

Suppose we have data x1, . . . , xN of dimension d taking values in R
d, where each xi = (1, xi1, . . . , xip)

T (d = p+1).
Let us suppose that we also have the corresponding response variables y1, . . . , yN taking values in {0, 1}. Then, a
logistic regression model with parameters θ = (β0, β1, . . . , βp) representing the coefficients βj for j = 1, . . . , p and
bias β0 will have likelihood

p(X, y|θ) =
N∏

i=1

[
1

1 + e−θTxi

]yi
[

1− 1

1 + e−θTxi

]1−yi

The prior for θ is set to be θ ∼ Nd(µ0,Λ0). The hyperparameters of the prior are µ0 = (0, . . . , 0)T and Λ0 =
diag(10, d).

C.2.2 Model gradient and Hessian

For the prior,

log p(θ) = −1

2
(θ − µ0)

TΛ−1
0 (θ − µ0) = −

1

2
θTΛ−1

0 θ.

Therefore,

∇f0(θ) = − log p(θ) = Λ−1
0 θ.
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We know that i ∈ {1, . . . , N}, the log-density

log p(yi|xi, θ) = yi log

(
1

1 + exp(−θTxi)

)

+ (1 − yi) log

(

1− 1

1 + exp(−θTxi)

)

= yi log

(
1

1 + exp(−θTxi)

)

+ (1 − yi) log

(
exp(−θTxi)

1 + exp(−θTxi)

)

= yi log

(
1

1 + exp(−θTxi)
· 1 + exp(−θTxi)

exp(−θTxi)

)

+ log

(
exp(−θTxi)

1 + exp(−θTxi)

)

= yi log(exp(θ
Txi)) + log

(
1

1 + exp(θTxi)

)

= yiθ
Txi − log(1 + exp(θTxi))

Therefore,

fi(θ) = − log p(yi|xi, θ) = log(1 + exp(θTxi))− yiθ
Txi,

and the corresponding gradient vector is

∇fi(θ) =
exp(θTxi)

1 + exp(θTxi)
· xi − yi · xi =

1

1 + exp(−θTxi)
· xi − yi · xi

The corresponding Hessian is

∇2fi(θ) =
exp(−θTxi)

(1 + exp(−θTxi))2
· xix

T
i .

We know that for the function h(a) = log(1 + exp(−a)), h′′(a) = exp(−a)
(1+exp(−a))2 ≤ 1

4 . Therefore,

∇2fi(θ) =
exp(−θTxi)

(1 + exp(−θTxi))2
· xix

T
i �

1

4
xix

T
i .

Using results from Durmus and Moulines (2019) and Dwivedi et al. (2018), we know that fi(θ) is Li-continuous with
Li =

1
4λmax(xix

T
i ).

C.2.3 Synthetic data

We used the Python module sklearn to produce our synthetic classification data with four features (d = 5). We have
generated N training data points and Ntest = 0.5N test data points.

Two types of synthetic data were generated:

1. Balanced classification data, where 50% of instances have yi = 1. Synthetic datasets of sizes N = 103 and
N = 104 were used for Figures 1(b) and 3 respectively.

2. Highly imbalanced classification data, where 95% of the instances have yi = 1. Synthetic data of size
N = 103 was used for Figure 1(c).

C.2.4 Real data

We used the covertype dataset (Blackard and Dean, 1998) for Figures 2(b)-(c) and 4(b). The covertype dataset contains
581,012 instances and 54 features. In particular, we have used a transformed version of this dataset that is available via
the LIBSVM repository‡‡. We split the covertype dataset into training and test sets with 75% and 25% of the instances
respectively.

C.3 Linear regression

C.3.1 Model specification

Suppose we have data x1, . . . , xN of dimension d taking values in R
d, where each xi = (1, xi1, . . . , xip)

T (d = p+1).
Let us suppose that we also have the corresponding response variables y1, . . . , yN taking values on the real line.

‡‡https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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We define the following linear regression model,

yi = xT
i θ + ηi, ηi ∼ N (0, 1)

with parameters θ = (β0, β1, . . . , βp) representing the coefficients βj for j = 1, . . . , p and bias β0. The regression
model will thus have likelihood

p(X, y|θ) =
N∏

i=1

[
1√
2π

exp

(

− 1

2
(yi − xT

i θ)
2

)]

.

The prior for θ is set to be θ ∼ Nd(µ0,Λ0). The hyperparameters of the prior are µ0 = (0, . . . , 0)T and Λ0 =
diag(10, d).

C.3.2 Model gradient and Hessian

log p(θ) = −1

2
(θ − µ0)

TΛ−1
0 (θ − µ0) = −

1

2
θTΛ−1

0 θ.

Therefore,

∇f0(θ) = −∇ log p(θ) = Λ−1
0 θ.

We know that i ∈ {1, . . . , N}, the log-density

log p(yi|xi, θ) = −
1

2
(yi − xT

i θ)
2 − 1

2
log(2π)

Therefore,

fi(θ) = − log p(yi|xi, θ) =
1

2
(yi − xT

i θ)
2 +

1

2
log(2π)

and the corresponding gradient vector is

∇fi(θ) = −(yi − xT
i θ) · xi.

The corresponding Hessian is

∇2fi(θ) = xix
T
i .

Using results from Dwivedi et al. (2018), we know that fi(θ) is Li-continuous with Li = λmax(xix
T
i ).

C.3.3 Real data

We used the CASP§§ dataset from the UCI Machine Learning repository for Figures 2(a) and 5. The CASP dataset
contains 45,730 instances and 9 features.

D Computational costs for the SGLD-CV-PS approximate subsampling weights

Recall that the optimal subsampling weights in Eq. (14) can be approximated by the following scheme,

pi ∝
√

tr

(

∇2fi(θ̂) Σ̂∇2fi(θ̂)T
)

for i = 1, . . . , N.

Here,∇2fi(·) is the Hessian matrix of fi(·) and Σ̂ is the covariance matrix of the Gaussian approximation to the target
posterior centred at the mode.

In practice, these weights should be evaluated as a one-off preprocessing step before the SGLD-CV-PS chain is run.
We now assess the total computational cost associated with this preprocessing step.

• The hessians of each fi(·) need to evaluated at the mode. For each log-density function, this step costs O(d2).

• The covariance matrix of the Gaussian approximation of the posterior needs to calculated once. This involves
inverting the observed information matrix at a cost of O(d3).

§§https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+Tertiary+Structure
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• The cost of multiplying three d× d square matrices is O(d3)

• The cost of calculating the trace of a d× d matrix is O(d).

• The cost of calculating the square root of a scalar is O(1).

Therefore, the cost of calculating these weights for all N data points is O(Nd3). As such, we recognise that there
will be limits to where the SGLD-CV-PS algorithm can be used. The SGLD-CV-PS has been implemented with
success on the covertype dataset Blackard and Dean (1998) (with 54 features and 581,012 instances and 54 features)
in Section 5.3.2. We recommend that this method is not implemented for models with more than d > 60 parameters
in practice.

E Numerical experiment set-up

E.1 Step-size selection

SGLD-type algorithms do not mix well when the step-size is decreased to zero. It is therefore common (and in practice
easier) to implement SGLD with a fixed step-size, as suggested by Vollmer et al. (2016). For Figures 2 - 5, all samplers
were run with the same step-size (with ǫ ≈ 1

N
). This allowed us to control for discretisation error and to independently

assess the performance benefits offered by preferential subsampling. We list the step-sizes used for each experiment
in Table 1 below.

Table 1: Step-size selection

FIGURE DATA SIZE OF DATA STEP-SIZE

4(a) synthetic bivariate Gaussian 10, 000 1× 10−4

4(b) synthetic balanced logistic regression 10, 000 1× 10−4

2(b)-(c), 3 covertype 581, 012 1× 10−6

2(a), 5 CASP 45, 730 1× 10−5

E.2 Initialisation

Throughout our experiments, we were consistent in how we picked our initial start values, θ(0), for SGLD and the

ADAM optimiser. We sampled θ(0) from the prior for the bivariate Gaussian model. Whereas, we set θ(0) = 0 for the
linear and logistic regression models.

F Additional experiments

F.1 Performance comparison of SGLD and SGLD-PS

0 00

p

0.5

1.0

1.5

2.0

2.5

K
L
 d

iv
e
rg

e
n
c
e

(a)

0 100 200 300 400 500
Number of passes

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

+,
-
./
0
1
4

(b)

Figure 4: Sampler performance of SGLD and SGLD-PS for 1%, 5% and 10% subsample sizes over 500 passes
through the data. (a) bivariate Gaussian model on synthetic data of size N = 104 (y-axis: KL divergence); (b) logistic
regression on the covertype data (y-axis: KSD).
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F.2 Performance of adaptive subsampling

0 2000 4000 5789 8000 10000
Iterations

2

3

4

5

:;
<
=>
?
@
A

(a)

0 2000 4000 BCDE 8000 10000
Iterations

0

2

4

6

8

10

N
u
m

b
e
r 

o
f 

p
a
s
s
e
s

(b)

0 2000 4000 FGHJ 8000 10000
Iterations

0

2

4

6

8

10

N
u
m

b
e
r 

o
f 

p
a
s
s
e
s

(c)

Figure 5: The linear regression model fitted on the CASP data. (a) KSD comparison of SGLD-CV, SGLD-CV-PS,
ASGLD-CV and ASGLD-CV-PS over 104 iterations; (b) the number of passes through the data achieved by fixed
subsampling versus ASGLD-CV; (c) the number of passes through the data achieved by fixed subsampling versus
ASGLD-CV-PS.
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