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Abstract: 

Plant productivity varies due to environmental heterogeneity, and theory suggests that plant 

diversity can reduce this variation. While there is strong evidence of diversity effects on temporal 

variability of productivity, whether this mechanism extends to variability across space remains 

elusive. Here we determine the relationship between plant diversity and spatial variability of 

productivity in 83 grasslands, and quantify the effect of experimentally increased spatial 

heterogeneity in environmental conditions on this relationship. We found that communities with 

higher plant species richness (alpha and gamma diversity) have lower spatial variability of 

productivity as reduced abundance of some species can be compensated for by increased abundance

of other species. In contrast, high species dissimilarity among local communities (beta diversity) is 

positively associated with spatial variability of productivity, suggesting that changes in species 

3

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80



composition can scale up to affect productivity. Experimentally increased spatial environmental 

heterogeneity weakens the effect of plant alpha and gamma diversity, and reveals that beta diversity

can simultaneously decrease and increase spatial variability of productivity. Our findings unveil the 

generality of the diversity-stability theory across space, and suggest that reduced local diversity and 

biotic homogenization can affect the spatial reliability of key ecosystem functions. 
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Introduction:

Understanding the mechanisms linking biodiversity with ecosystem stability is essential to 

anticipate the consequences of species loss for the sustainable delivery of critical ecosystem 

services1–5. Theory and empirical tests have demonstrated that plant biodiversity can stabilize 

primary productivity of communities through time4, and a variety of mechanisms have been 

proposed to explain this effect6. These mechanisms range from simple statistical relationships, such 

as the portfolio effect (i.e., statistical averaging of the independent and random fluctuations in the 

performance or abundance of different species7), to niche-based models like overyielding (i.e., 

increase of the mean productivity, relative to its variance, when a mixture exceeds the expected 

productivity based on monocultures8). Previous studies, nevertheless, identified asynchronous 

species responses to environmental fluctuations as the major underlying mechanism9–12. That is, 

biodiversity buffers productivity against environmental fluctuations, because reduced abundance of 

some species can be compensated for by increased abundance of other species10,13. Although this 

“insurance effect” is usually considered over time13, theory suggests that it should also apply across 

space13,14, because a larger species pool will be more likely to contain species that can grow well 

under different environmental conditions in space, decreasing the variability of productivity (i.e., 

increasing stability) across space13,15. Although the potential effect of biodiversity on the spatial 

variability of productivity has found some support in experimentally assembled communities15–17 

and natural systems14, whether these results can be generalized is unknown and, to our knowledge, 

support for the different potentially involved mechanisms has not been evaluated empirically13. 

Similar to its temporal counterpart, the spatial version of the insurance hypothesis15,18 

proposes stronger effects of plant biodiversity in heterogeneous environments compared to 

homogeneous environments18,19 (see Fig. 1). This is because the greater the number of species 

present (i.e. either alpha or gamma diversity), the higher the probability of including the set of best-

5

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111



performing species under different environmental conditions18 (Fig. 1B). Despite these clear 

predictions for alpha and gamma diversity, the potential relationship between the spatial turnover in

species composition (i.e. beta diversity) and the spatial variability of productivity is harder to 

anticipate. Following the arguments above, as spatial turnover in species composition can emerge 

from (compensatory) changes among species under heterogeneous environmental conditions, 

increased beta diversity may reduce spatial variability of productivity (Fig. 1C). However, changes 

in species composition can scale up to affect aggregate ecosystem properties, such as productivity20 

(especially if different species imply different functional traits). Under the spatial insurance 

theory21, systems with high beta diversity are expected to have high spatial variability in 

productivity across different patches at a given time, stabilizing productivity through time at larger 

spatial scales (that integrate all patches)21–24. This positive effect of beta diversity on the spatial 

variability of productivity may be especially important when patches are environmentally 

similar21,25,26 (see Fig. 1C). Thus, the opposite predictions for the potential effect of beta diversity on

spatial variability of productivity can be reconciled if the outcome is context dependent. Under low 

environmental heterogeneity, beta diversity may mainly act as a destabilizing factor, because 

communities with different species compositions can respond differently to the common 

environment21,27. Under high environmental heterogeneity, in contrast, beta diversity may act as a 

stabilizing factor, because different species may perform better under different environmental 

conditions (Fig. 1C). Biodiversity loss at different scales5 is an important consequence of 

anthropogenic activities that also impacts the functioning of ecosystems. While biodiversity-

functioning research has predominantly focused on temporal stability of biomass, less is known 
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about spatial stability13. However, if biodiversity can buffer environmental change and stabilize 

spatial ecosystem functions and services, then biodiversity restoration and conservation will 

concurrently maximize functioning and spatial reliability3 in changing conditions. 

Here, we explore the relationship between different scales of plant species diversity and 

spatial variability of productivity, measured as standing biomass, across 83 grasslands worldwide 

(see Fig. 2; Supplementary Table 1) that are part of the Nutrient Network distributed experiment 

(NutNet; http://www.nutnet.org28). Using sets of 10 unmanipulated plots (25 m2) arranged in blocks 

(250 m2) from these grasslands, we first analyzed whether local plot diversity (alpha diversity), 

larger site-scale diversity (gamma diversity), and among-plot variability in species composition 

(beta diversity) are associated with the spatial variability of productivity, defined as the coefficient 

of variation (i.e. standard deviation/mean)13,14 of aboveground standing biomass among plots. We 

also tested whether these associations are driven by two previously proposed niche-based 

mechanisms: (1) overyielding, or enhancing productivity (see ref29 for a temporal analog); and (2) 

insurance provided by spatial compensation between species13. Second, we tested how the 

association between different scales of diversity and spatial variability of productivity is affected by

imposed spatial environmental heterogeneity. For this second objective, we used a subset of 42 

grasslands that implemented a factorial nutrient addition and herbivore exclusion experiment28 (see 

Fig. 2; Supplementary Table 1). This experimental approach (see Methods section) represents a set 

of local plots (25 m2), with different resource supply, collectively representing a larger scale (an 

arrangement of 10 of those local plots resulting in 250 m2) with spatial heterogeneity in 

environmental conditions (sampling methods and spatial scales are the same than for the previously 
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described sampling; see Methods section). According to niche dimensionality theory30,31, differences

in resource supply and associated nutrient ratios should create patches with different niches and 

niche dimensions (i.e. different number of growth-limiting factors), increasing the spatial variability

of productivity. Sites with high species diversity may have a greater probability of including the set 

of best-performing species in different patches (i.e. under different resource availability ratios), 

decreasing spatial variability of productivity32. Thus, environmental heterogeneity may increase 

variability of productivity across space and, in theory, alpha, beta and gamma diversity may 

decrease this variability.   

Results

Global patterns of biodiversity-spatial variability of productivity relationships

Using unmanipulated (i.e., pre-treatment) data from the 83 grasslands, we found that alpha 

(linear mixed-effects models, χ2= 17.41; P < 0.001) and gamma (χ2= 5.59, P < 0.05) diversity were 

both negatively associated with spatial variability of productivity (Fig. 3A, B), whereas beta 

diversity was positively associated with spatial variability of productivity (χ2= 9.77, P < 0.005, Fig. 

3C). We found no significant relationship between the different scales of biodiversity and the two 

separate components of spatial variability (i.e., µ, the mean plot biomass; alpha: χ2= 0.52; beta: χ2= 

0.74; gamma: χ2= 0.04; all P> 0.05; Supplementary Fig. 1; and σ, the standard deviation of plot 

biomass; alpha: χ2= 0.03; beta: χ2= 0.81; gamma: χ2= 1.29; all P> 0.05; Supplementary Fig. 1). The 

patterns were consistent when modeled with type II regression (Supplementary Fig. 2) and for 

different diversity indices (Supplementary Table 2; Supplementary Fig. 3). The patterns also 

persisted after accounting for differences in site environmental conditions, such as precipitation, 

temperature and seasonality (Supplementary Table 3; Supplementary Table 4). Both alpha and 

gamma diversity were negatively associated with species covariation, a spatial analog of species 
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synchrony that (inversely) measures the degree of spatial biomass compensation between species 

(alpha: χ2= 33.43, P< 0.001; gamma: χ2= 28.56, P< 0.001; Fig. 3D, E). Species covariation was, in 

turn, strongly associated with spatial variability (χ2= 247.83, P< 0.0001; Fig. 3G). However, we 

found no significant relationship between beta diversity and species covariation (χ2= 2.31, P= 0.13; 

Fig. 3F).  

Direct and indirect effects of biodiversity on the spatial variability of productivity 

To explicitly evaluate overyielding and compensatory changes between species13 as 

mechanisms by which increased biodiversity could decrease spatial variability of biomass, we 

constructed a Structural Equation Model (SEM). The final model showed a good fit (Fisher's C= 

8.82, df= 6, P= 0.2) and explained a high proportion of the total variance of spatial variability of 

productivity (marginal R2= 0.66; conditional R2= 0.90). Spatial variability of productivity was 

influenced primarily (and negatively) by species covariation (Fig. 3H). Higher alpha diversity 

contributed to lower spatial variability through lower species covariation (Fig. 3H). Higher gamma 

diversity also contributed to lower spatial variability, but this effect was mainly because of a strong 

correlation with alpha diversity (Fig. 3H). The indirect negative effect of gamma diversity on spatial

variability (through alpha diversity) was partially offset by a direct positive effect (Fig. 3H). Higher 

beta diversity, in contrast, contributed to spatial variability via two processes. First, beta diversity 

positively contributed to spatial variability (Fig. 3H). Second, this positive effect was partially 

offset by a negative contribution of beta diversity to spatial variability through lower species 

covariation (Fig. 3H). The model did not include pathways from any level of diversity to spatial 

variability mediated by biomass production (Fig. 3H), confirming the absence of overyielding in 

contributing to spatial variability seen in bivariate relationships. After refitting the SEM using a 

smaller set of sites (54 sites in which soil samples were collected to include an estimation of spatial 

environmental heterogeneity), we found a positive direct effect of edaphic spatial heterogeneity on 
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beta diversity but global model remained qualitatively unchanged  (Supplementary Fig. 4). 

The effect of increased environmental heterogeneity

Next, we evaluated the effect of increased environmental heterogeneity on the relationship 

between spatial variability of productivity and species diversity using data from a subset of 42 

grasslands (Fig. 2A) that experimentally enhanced environmental heterogeneity via nutrient and 

fencing treatments. Enhanced environmental heterogeneity increased the spatial standard deviation 

and the spatial variability of productivity, as well as beta diversity (Supplementary Fig. 5). As 

experimental manipulation implied nutrient additions in most plots, it also increased µ, the mean 

plot biomass and decreased alpha diversity (Supplementary Fig. 5). However, enhanced 

environmental heterogeneity did not affect species covariation or gamma diversity (Supplementary 

Fig. 5). In addition, experimentally enhanced environmental heterogeneity flattened the 

relationships between the three scales of diversity and spatial variability (diversity*heterogeneity 

interaction, alpha: χ2= 23.41; beta: χ2= 3.89; gamma: χ2= 14.92; all P< 0.01; Fig. 4A-C; see also 

Supplementary Fig. 6 for an analysis including an intermediate level of heterogeneity).  

Finally, using the data from the subset of grasslands that experimentally enhanced 

environmental heterogeneity, we refitted the SEM analysis, including experimentally increased 

spatial heterogeneity as a factor. Results identified two major changes in the pathways, compared to

the model using data from unmanipulated (i.e. pre-treatment) plots, in which increased spatial 

environmental heterogeneity weakened the diversity-variability relationship for the three scales of 

diversity (i.e., there were two paths that varied between pre- and post-treatment; Fig. 4D,E). First, 

the negative relationship between alpha diversity and species covariation under ambient conditions 

became non-significant under increased heterogeneity (Fig. 4D,E). Second, the neutral relationship 

between beta diversity and species covariation under ambient conditions became negative under 

increased heterogeneity.
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Discussion

Greater plant diversity is known to contribute to decreased temporal variability of 

community productivity through higher asynchronous temporal dynamics among species in 

response to environmental fluctuations (species asynchrony13). Adding to this theory, we 

demonstrate that these same processes also occur through space. Across a wide range of global 

grasslands, spatial variability of site productivity declines with increasing plant diversity because of 

compensatory species responses to spatial heterogeneity (i.e., reduced species covariation across 

space). An obvious alternative explanation is that spatial environmental heterogeneity drives both 

spatial variability of productivity and biodiversity, but basic community theory predicts that more 

spatially variable environments should have higher biodiversity at both site (gamma) and local 

(alpha) scales due to niche partitioning (increasing heterogeneity in environmental conditions 

promote species diversity by adding different niches)33 and spatial mass effects (sink-source 

dynamics in which local species diversity can be enriched by species from the heterogeneous 

surrounding areas)34. Thus, this explanation would predict a positive association between 

biodiversity and spatial variability of productivity, contrary to the negative association we observed.

In contrast to the observed decline in spatial variability of productivity with increasing alpha and 

gamma diversity, greater beta diversity was positively associated with spatial variability of 

productivity. These contrasting associations have been suggested by theoretical metacommunity 

studies (i.e. the spatial insurance theory)21 that postulate that beta diversity plays a key role in the 

temporal stability of productivity at regional scales, as it involves higher variation in temporal 

dynamics among local communities (spatial asynchrony), implying high spatial variability of 

productivity at a given time13,21. To our knowledge, nevertheless, this is the first study to provide 

empirical evidence. Finally, we demonstrate that spatial environmental heterogeneity, 

experimentally created by the addition of multiple types and combinations of nutrients and 
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herbivore exclusions, increases (as expected) the spatial variability of productivity but weakens the 

relationships between different scales of plant diversity and this spatial variability.

The negative association of alpha and gamma diversity with spatial variability of 

productivity can result from a combination of processes6. For instance, higher plant diversity often 

increases productivity (overyielding35). If this increase in the mean is not compensated by a 

proportional increase in its standard deviation, high diversity sites should have lower spatial 

variability of productivity8. In contrast, as the effect of diversity on productivity may change along 

productivity gradients (shifting from positive in low-productivity communities to neutral or 

negative in high-productivity communities), diversity may decrease spatial variability by 

maintaining community productivity at intermediate levels (thus decreasing its standard 

deviation)14. In the present study, both the bivariate relationships and the SEM analysis showed no 

significant direct relationship between diversity and the mean or the standard deviation of 

productivity when individually analyzed. But, when analyzing the spatial variability of productivity 

as a composite variable (i.e. coefficient of variation), our results suggest a combined effect on the 

two components (i.e., the ratio between standard deviation and mean productivity is a relative 

measure of variability that removes the impact of mean productivity). Results further suggest that 

the main underlying mechanism by which alpha and gamma diversity decrease spatial variability of 

productivity is by decreasing species covariation (see also Fig. S4). Different species can present 

non-correlated or negatively correlated changes in biomass production in different patches; thus, 

highly diverse systems have lower spatial variability in aggregate productivity. Our results thus 

highlight the importance of compensatory species responses to environmental variation, as a general

stabilizing mechanism for ecosystem function, not only in the temporal4,23,36, but also in the spatial 

dimension as recently suggested13.

The stabilizing mechanism of compensatory changes between species, contributing to more 

consistent biomass6,13 may involve shifts in relative species abundances rather than abrupt 
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compositional changes (i.e. species turnover), as our results show that large changes in species 

composition (i.e. high beta diversity) are related to increases in the spatial variability of 

productivity. This pattern can arise because changes in species composition and spatial variability 

of productivity (or other aggregate functions) are both related to spatial heterogeneity in 

environmental conditions. The SEM analysis, nevertheless, only detected an indirect path between 

spatial environmental heterogeneity and spatial variability, a path that was mediated by beta 

diversity. This suggests that at least part of the observed relationship between beta diversity and 

spatial variability cannot be explained by its simultaneous correlation with environmental 

heterogeneity. 

Experimentally imposed environmental heterogeneity weakened the bivariate negative 

relationship between spatial variability and both alpha and gamma diversity on the one hand, and 

the bivariate positive relationship with beta diversity on the other hand. Our SEM model suggests 

that this effect is due to a weaker relationship between alpha diversity and species covariation. 

Thus, under experimentally increased environmental heterogeneity, biomass production of different 

species was no longer negatively correlated, i.e., they may have more coupled responses to spatial 

environmental variation, disabling the potential compensation between them. Our experimental 

design, in addition to the intended increased environmental heterogeneity (through varying 

combinations of nutrient additions), also led to higher mean plot biomass, and lower alpha diversity 

as a consequence of increased mean nutrient inputs37. However, these effects should mostly affect 

variability rather than the relationships between diversity and variability as observed. Our SEM 

analysis also suggests that, under increased environmental heterogeneity, the weaker relationship 

between beta diversity and spatial variability resulted from an enhanced negative contribution of 

beta diversity to species covariation. Although of lower magnitude, this path was also detected 

using the full set of observational sites, but it was overcome by the stronger and positive direct path 

between beta diversity and spatial variability. If different species are able to respond differently to 
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environmental heterogeneity, higher dissimilarity in species composition among communities may 

decrease species covariation13. As this indirect path had a similar magnitude but opposite sign 

compared to the direct positive path, the two paths canceled each other out. Our results support 

theoretical work suggesting that beta diversity acts as a destabilizing factor, as changes in species 

composition can involve shifts in functional traits that scale up to affect community 

production20,21,26. At the same time, beta diversity can also act as a stabilizing factor, because 

different species may perform better under different environmental conditions32. When 

environmental variability is large enough, high contrast in environmental conditions drives coupled 

biomass covariation of shared species, but species divergence may partially offset this effect 

decreasing the spatial variability of productivity (Fig. 1C).

The most likely driver of spatial heterogeneity at the spatial scale of our study design (i.e. 

hundreds of meters) is plot-scale variability of biotic or abiotic conditions. Spatial heterogeneity in 

environmental conditions is usually the result of concurrent, superimposed gradients occurring at 

multiple spatial scales, or multiple disturbances interacting with each other38. Biomass production 

often varies in response to this combination of coarse and fine-scale heterogeneity. Results of 

studies evaluating the effect of biodiversity on ecosystem function are often scale-dependent. For 

example, small-scale studies are more likely to be at the spatial scales at which niche-partitioning 

and competitive exclusion operate. Large-scale studies, on the other hand, are likely to detect the 

effects of site-scale factors (e.g., climate, herbivory) that may covary with diversity, thereby 

reducing the ability to detect niche partitioning and competition39. At larger spatial scales, the 

importance of alpha diversity may decrease (niche partitioning becomes less important relative to 

extrinsic factors). Concurrently, the importance of beta diversity may increase (as different species 

are filtered into environmental conditions where their traits most efficiently convert resources into 

biomass)40. Thus, even among the largest patches, diversity may continue to have an additional 

buffering effect on spatial variability in biomass production41. This natural spatial heterogeneity 
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(even at small-scale) also contrasts with our experimentally increased heterogeneity, because our 

experimental landscape was characterized by high-contrast patches with sharp boundaries (i.e. 

clearly delimited experimental plots presenting within-plot homogeneous nutrient conditions and 

contrasting nutrient conditions among-plots). Perhaps the most clear natural analogy takes place in 

some grazed systems, where a combination of abiotic (salinity, fire frequency, nutrients, water 

content) and biotic variables (grazer density, bioturbation, nutrient cycling) creates distinct patches 

of contrasting plant height, biomass and composition42–44. Those characteristics are also common 

features of some anthropogenic biomes (heterogeneous landscape mosaics, combining a variety of 

different land uses or land use histories45,46) and similar to the management-driven landscape 

heterogeneity implemented to restore ecosystem complexity and diversity47–50. Thus, although the 

application of spatially variable management tools (such as patch-burning, patch-grazing, and land-

use diversification) can increase spatial heterogeneity and restore diversity, they can potentially 

disrupt biodiversity-spatial variability relations. 

Large-scale human impacts on ecosystems, such as land use intensification, N deposition or 

species invasions, have been driving biotic homogenization, including losses in beta diversity51–54. 

Our results suggest that those losses may lead to lower spatial variability in ecosystem-scale 

processes. The spatial homogenization in species composition may also imply higher spatial 

correlations in ecosystem temporal dynamics21,23,25,55, increasing temporal variability of ecosystem 

functions at the landscape scale21,23,56. In addition, most of the drivers of biotic homogenization (e.g. 

eutrophication and trophic simplification37) also lead to reductions in alpha diversity (but see ref57). 

Thus, the potential loss of species at a local scale may still cause increased spatial (our results) and 

temporal23,58 variability of ecosystem function, even in this biologically homogenized scenario. 

Biodiversity is thus a necessary prerequisite to ensure greater stability of key ecosystem functions in

the face of an ever expanding human footprint on environmental heterogeneity. 
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Methods: 

To explore the relationship between different scales of plant biodiversity and spatial 

variability of productivity, we used observational (i.e. pre-treatment) data from 83 natural and semi-

natural grassland ecosystems in 18 countries across 6 continents (see Fig. 2; Supplementary Table 

1) that are part of the Nutrient Network collaborative experiment (NutNet)28. All sites are dominated

by herbaceous species, and together cover a wide range of grassland habitats that range from alpine 

grassland, to prairie, pasture, shrub steppe, savanna and old field. These grasslands also cover a 

wide range in elevation (0 to 4400 masl), mean annual precipitation (192 to 2566 mm yr-1), mean 

annual temperature (-7 to 27° C), latitude (52 degrees S to 69 degrees N), and aboveground 

productivity (0.5 to 1445 g m-2 yr-1; Fig. 2B). Study sites contained three replicate blocks each 

composed of ten 5 m × 5 m plots (see Supplementary Table 1 for exceptions). Here, we consider 

each plot as a “patch”, and the block of 10 plots as the “larger scale”23. Thus, each “larger scale” is 

composed of 10 “patches” (but see Supplementary Table 1 for exceptions) and there are at least 3 

“larger scales” per site, for a total of 83 sites, 271 “larger scales”, and 2700 “patches”. We defined 

alpha diversity as species richness at the “patch” level, gamma diversity as species richness at the 

“larger scale” level, and beta diversity as the dissimilarity in species composition across the 10 

“patches” within each “larger scale” (see details below).

To evaluate the effect of increased environmental heterogeneity on the relationship between 

spatial variability of productivity and species diversity, we used data from 42 of those sites (Fig. 

2A) that implemented, for at least 4 years, an experiment with three nutrient addition treatments 

(Nitrogen (N), Phosphorus (P), Potassium plus micronutrients (Kμ)) and vertebrate herbivore 

exclusion. At most sites plots were arranged in 3 blocks, each block containing the 10 focal 

treatments: control (unfenced and unfertilized), +N, +P, +Kμ, +NP, +NKμ, +PKμ, +NPKμ, fenced 

(unfertilized), and fenced +NPKμ. Thus, each “larger scale” was composed of 10 “patches” with 

different environmental conditions, that include variations in the availability of the most important 
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limiting nutrients and variations in herbivory pressure. Here we used data from the 4th year of 

treatments. Nitrogen, P and K were applied annually to experimental plots while micronutrients 

were applied just once, at the start of the experiment, to avoid toxic levels from over-application. 

Nutrient addition rates and sources were: 10 g N m-2 yr-1 as timed-release urea ((NH2) 2CO), 10 g P 

m-2 yr-1 as triple-super phosphate (Ca(H2PO4) 2), 10 g K m-2 yr-1 as potassium sulphate (K2SO4) and 

100 g m-2 yr-1 of a micronutrient mix of Fe (15%), S (14%), Mg (1.5%), Mn (2.5%), Cu (1%), Zn 

(1%), B (0.2%) and Mo (0.05%). Fences were 2.1 m tall and excluded aboveground, non-climbing, 

vertebrate herbivores. The lower 0.9 m was composed of 10 mm woven wire mesh with a 0.3 m 

outward-facing flange stapled to the ground to exclude digging animals. The top 1.2 m was 

composed of five rows of wire. Minor variations in fence design are described by 28. Each plot was 

separated by at least 1.5 m from neighboring plots (1 m walkway and 0.5 m within-plot buffer), 

which served to minimize indirect effects of treatments in one plot on adjacent plots (for example, 

nutrient leaching, shading or mycelial networks). Although different sites started the experiment in 

different years, we used data from the 4th year of treatment implementation. Thus, sites have the 

same length of treatment years.  

Data acquisition and calculations

The variables described in this section were calculated separately for the pre-treatment and 

post-treatment (4th year of treatment implementation) sampling. Thus, we created two datasets, one 

based on pre-treatment (natural) conditions from 83 grasslands, and one with increased 

environmental heterogeneity from a subset of 42 grasslands.  

We used aboveground live biomass as a surrogate measure of primary productivity. 

Aboveground live biomass was estimated destructively each year, at peak standing biomass, by 

clipping all aboveground biomass of individual plants rooted within two 0.1 m2 (10 cm x 100 cm) 

quadrats at ground level. Biomass was sorted into current (live and recently senescent material) and 
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previous year's growth. For shrubs and subshrubs, all leaves and the current year’s stems were 

collected. All biomass was dried to a constant mass at 60°C prior to weighing to the nearest 0.01 g. 

Cover of each species was estimated non-destructively at a permanent 1 m x 1 m subplot within 

each plot. Plant species cover was recorded to the nearest 1% for each species in the plot. Cover 

was estimated independently for each species so that total summed cover can exceed 100% for 

multilayer canopies. During pre-treatment sampling, soil samples were collected from each plot 

(three 25 mm diameter cores to 100 mm depth); because of missing samples, this dataset includes a 

subset of 54 of the 83 sites. Soils were air dried to constant mass, weighed, and analyzed for pH, 

total carbon (C in %), total N (in %), P (ppm), and K (ppm) concentrations. C and N analyses were 

done at the University of Minnesota and the University of Nebraska via dry combustion GC 

analysis (COSTECH ESC 4010 Element Analyzer) using cross-calibrated machines. Data also were

generated on soil phosphorus, potassium, and micronutrients, soil pH, organic matter, and texture 

from each sample (A&L Analytical Laboratory, Memphis, TN, USA). Full details of Nutrient 

Network methods can be found in Borer et al. (2014)28. 

We estimated alpha, beta and gamma diversity separately for each block, using the approach 

described in56. Alpha diversity was estimated as the mean plant species richness per plot across all 

plots within a block, whereas gamma diversity was estimated as the total plant species richness 

within each block (i.e., block richness 56). Beta diversity was estimated as the Jaccard Dissimilarity 

Index across the 10 plots within each block56; we calculated this index using the function ‘vegdist’ 

from the ‘vegan’ package59 in R and then calculated the mean multivariate distance between the 10 

plots and their centroid using the function ‘betadisper’ (also from the ‘vegan’ package). We used 

these diversity indexes because they are all based on presence/absence. However, we evaluated if 

our results still hold using other common biodiversity indexes, such as the Shannon Entropy index, 

Inverse Simpson index and the Effective Number of Species (ENS) needed to reach the observed 

Probability of Interspecific Encounter (SPIE)60 for alpha and gamma diversity as well as Whittaker´s 
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multiplicative (i.e. alpha/gamma), additive (i.e. gamma-alpha) beta diversity61 and abundance-based

multivariate beta diversity (Supplementary Table 2; Supplementary Fig. 3). 

Stability is a multifaceted concept62 that is commonly empirically measured as the inverse of 

variability (i.e. invariability)63; the mean of an ecosystem property or function divided by its 

standard deviation. However, the term “stability” has a temporal connotation so, to avoid confusion,

we defined spatial variability as the coefficient of variation (i.e., standard deviation divided by 

mean)13,14. Spatial variability of productivity was defined for each larger scale (i.e. block) as σ/µ, 

where σ is the spatial standard deviation of total live biomass, and µ is the spatial mean among the 

10 plots of each larger scale. We estimated species covariation across space as a spatial analog of 

species synchrony (insurance effects may emerge from asynchronous species fluctuations10,13,22). It 

was measured for each block as:

σ 2/(∑
i=1

S

σ i)
2

where σ2 is the variance in total plot live biomass, and σi
 is the standard deviation of species i 

live biomass in a block with S species. Thus, if all species respond equally to spatial environmental 

variability, species covariation approaches 1, but if different species are capable of differently 

responding to this variability, species complement each other and species covariation approaches 0. 

As we do not have per-species biomass data, we used species’ relative cover as a proxy. Cover of 

each species across the whole plot was multiplied by the total living biomass for the plot36.

Data analysis

We first explored the relationship between different scales of biodiversity (i.e. alpha, beta and 

gamma diversity) and the spatial variability of productivity using pre-treatment data from the 83 
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grasslands. We modeled these relationships with linear mixed-effects models using the ‘lmer’ 

function in the ‘lme4’ package64 in R version 4.0.5 (R Core Team 2021). To improve normality, 

spatial variability was log-transformed before analysis. We used sites as random effects, allowing 

the intercepts and slopes of the regression to vary between sites if supported by model selection. We

used a model-selection approach based on minimization of BIC following ref 65, in which we 

compared models with and without a given random structure to determine which level of variation 

was required in the model. In all cases, model selection retained only variation among sites in the 

intercept. We also modeled these relationships using type II regression (ranged major axis method)  

using the ‘lmodel2’ package66 in R to take into account the existence of sampling error of both 

predictor and response variables. As this model does not allow the inclusion of random structures 

(i.e. to reflect or multi-level design), we averaged values at the site level (i.e. instead of using 3 

replicates per site, and to avoid pseudoreplication, we used the average value per site). To evaluate 

the two previously proposed niche-based mechanisms (i.e overyielding, which implies increases in 

the spatial mean of productivity as diversity increases versus insurance, which implies decreases in 

species covariation as diversity increases), we also separately explored the relationship between 

biodiversity and each component of variability (i.e., σ and µ) and species covariation, using mixed-

effects models as described above. 

To remove the possible influence of key abiotic factors on the relationship between different 

scales of biodiversity and the spatial variability of productivity, we used a subset of bioclimatic 

variables representing (i) annual trends (mean annual temperature (°C) and precipitation (mm); 

seasonality (mean annual range in temperature (°C), standard deviation in temperature, coefficient 

of variation of precipitation) and (ii) extreme or limiting environmental factors (mean temperature 

during the wettest 4 months (°C)). We performed a multiple regression of spatial variability against 

these climatic variables, kept the residuals, and then modeled the relationship between different 

scales of diversity and the obtained residuals, using type II regression. We also performed a multi-
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model inference (using the ‘MuMIn’ package)67 to select the simplest models that explained the 

most variation (of spatial variability) based on Akaike’s information criterion (AIC). Candidate 

models represented every possible combination of explanatory variables (i.e. the subset of 

bioclimatic variables along with the different scales of diversity) and the interactions between 

bioclimatic variables and the different scales of diversity. 

We then fit a Piecewise Structural Equation Model (Piecewise SEM)68 to infer the direct and 

indirect effects of biodiversity on the spatial variability of productivity. Our model also aimed to 

explicitly evaluate whether increased biodiversity can decrease spatial variability of biomass 

production by the two previously proposed mechanisms (i.e. overyielding and decreased species 

covariation; see Supplementary Table 5). We began with a full conceptual model (see 

Supplementary Fig. 7) and followed a model simplification process in which non-significant paths 

were iteratively removed until only significant paths remained69 and/or model fit was higher (i.e. 

minimization of BIC) than with further path removals. We incorporated site as a random effect in 

individual models68 and model fit was assessed using Shipley’s test of d-separation, which yields a 

Fisher’s C statistic that is χ2 distributed68. In order to include an estimation of spatial environmental 

heterogeneity, we repeated the SEM analysis using the subset of 54 sites in which soil chemistry 

was measured. Environmental heterogeneity was estimated as the average Euclidean distance using 

the ‘vegan’ package59 in R for standardized soil parameters (soil C, N, P and K contents, and pH) 

and ambient light56 among the 10 plots within each block.        

Lastly, we explored the effect of increased environmental heterogeneity using data from the 

42 sites with experimental nutrient addition (see Supplementary table 1). We first evaluated whether

increased environmental heterogeneity affects the observed bivariate relationships between different

scales of biodiversity and spatial variability of productivity, and then fitted the same SEM described

above. For comparisons we re-fit pre-treatment models for the subset of 42 experimental sites, and 

then performed a multigroup analysis to evaluate differences in path coefficients between pre- and 
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post-treatment models using the ‘multigroup’ function from the ‘piecewiseSEM’ package68 in R. In 

short, this analysis implements a model-wide interaction in which every term in the model interacts 

with the grouping variable (i.e. pre- versus post-treatment). If the interaction is significant, then the 

path is free to vary by group; if not, then the path is constrained and takes on the estimate from the 

global dataset.

Data availability: All data and code for these analyses will be published and publicly available via 

EDI after this paper is accepted. Currently, the raw data that support these findings are available via

GitHub (https://gith  ub.com/juanalberti/spatial_variability  ).

Code availability: The complete R code supporting the findings of this study has been

archived online (https://github.com/juanalberti/spatial_variability).
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Fig. 1

Figure 1. Conceptual figure illustrating the effect of different scales of biodiversity on the 

spatial variability of aggregate ecosystem functions. The insurance hypothesis postulates that 

biodiversity buffers aggregate ecosystem functions (e.g., biomass production) against 

environmental fluctuations, resulting in less variation within more diverse systems. This hypothesis 

was originally postulated for environmental fluctuations over time, but may also apply to spatial 

heterogeneity. a When environmental conditions are homogeneous, niche differences among 

species are non-important, and the variability of an aggregate ecosystem function is unaffected by 

alpha or gamma diversity. b In contrast, in heterogeneous environments, different environmental 

conditions provide an array of niches. In this scenario, a species may be functionally insignificant 

under some environmental conditions, but more abundant or functionally important under other 
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conditions. Thus, a highly diverse system may exhibit decreased variability of an aggregated 

ecosystem function compared to low diversity systems. In this scenario, a negative relationship is 

expected between alpha or gamma diversity and the spatial variability of the function. c The net 

effect of beta diversity on spatial variability of an aggregated ecosystem function may be context 

dependent. When environmental heterogeneity is low, beta diversity (that can be the result of 

priority effect or other stochastic processes) may act as a destabilizing factor as it can imply shifts 

in functional traits that scale up to affect community production. In contrast, when environmental 

heterogeneity is high, beta diversity may act as a stabilizing factor because of niche 

complementarity. 
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Fig. 2

Fig. 2. Geographic and climatic distribution of grassland sites. a Global map showing the 

locations of the 83 grassland sites included in this study. All sites were used to analyze diversity-

variability relationships under ambient spatial environmental heterogeneity (pre-treatment 

conditions). Triangles denote the 42 sites that implemented the experimental protocol used to 

evaluate the effect of increased environmental heterogeneity on diversity-variability relationships. b

The grassland sites span a wide range of mean annual productivity, mean annual temperature 

(MAT), and mean annual precipitation (MAP). Site color key shows the color assignment to each 

site, which is consistent in all figures.  
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Fig. 3

Figure 3. The relationships between plant species diversity and spatial variability of 

productivity across 83 globally distributed grasslands sites of the Nutrient Network. Both a 

alpha (slope and 95% CIs= -0.026 (-0.038 to -0.015)) and b gamma (-0.007 (-0.013 to -0.001)) 

diversity were negatively associated with the spatial variability. c Beta diversity, in contrast, was 

positively associated with spatial variability (1.57 (0.59 to 2.54)); d Alpha (-0.06 (-0.08 to -0.04)) 

and e gamma (-0.03 (-0.04 to -0.02)) diversity were negatively associated with species covariation. f

Beta diversity, in contrast, was not associated with species covariation (-1.27 (-2.92 to 0.38)). g 

Species covariation, in turn, was positively associated with spatial variability of productivity (0.48 

(0.44 to 0.53)). For panels a-g, different colors represent different sites (See Fig 2 for site color key 
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assignment), major lines (in turquoise) represent the fixed-effect linear regression slopes among 

sites and small colored lines show patterns within sites. h Structural equation model (SEM) analysis

showing the direct and indirect pathways through which different scales of diversity determine 

spatial variability of biomass. Solid blue arrows and solid orange arrows represent significant (P ≤ 

0.05) positive and negative paths, respectively, and light gray arrows represent non-significant paths

that were included in the initial model. Bidirectional arrows represent paths that were modeled as 

correlated errors (i.e., bidirectional relationships instead of causal and unidirectional relationships). 

Numbers next to the arrows are averaged effect sizes as standardized path coefficients; arrow 

widths reflect these standardized effect sizes. For spatial variability of biomass and species 

covariation, the marginal (i.e., explained by the fixed factors alone) and conditional (i.e., explained 

by both the fixed and the random factors; in parentheses) percent of variance explained is shown 

below and to the right of the variable name.        
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Fig. 4

Figure 4. Experimentally increased heterogeneity weakened the diversity-spatial variability 

relationships. a Alpha diversity (diversity*heterogeneity interaction slopes and 95% confidence 

intervals: 0.0046 (0.0077 to 0.0108)). b Gamma diversity (0.0029 (0.0015 to 0.0043)). c Beta 

diversity (-0.309 (-0.617 to -0.002)). Different colors represent different sites (see Fig 2 for site 

color key assignment), major lines represent the fixed-effect linear regression slopes among sites 

and small colored lines show patterns within sites. Comparison of SEM models with c ambient and 

d experimentally increased spatial heterogeneity, using the subset of 42 sites that implemented the 

experimental protocol, identified two major changes (red numbers; P ≤ 0.05 in multigroup analysis) 

in the pathways whereby increased heterogeneity weakened the three diversity-variability 

relationships: (1) the negative relationship between alpha diversity and species covariation under 

ambient conditions was neutral under increased spatial heterogeneity; (2) the neutral relationship 
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between beta diversity and species covariation under ambient conditions became negative under 

increased heterogeneity. Solid blue arrows and solid orange arrows represent significant (P ≤ 0.05) 

positive and negative paths, respectively, and light gray arrows represent non-significant paths that 

were included in the initial model, bidirectional arrows represent paths that were modeled as 

correlated errors (i.e. bidirectional relations instead of causal and unidirectional relations). Numbers

next to the arrows are averaged effect sizes as standardized path coefficients. Path coefficients that 

have been constrained (multigroup analysis; P >0.05) are the same between the two models and are 

followed by a (C) (path coefficients are globally estimated, but standardized coefficients differ 

because the variance differs between groups, and thus the standardization). Numbers within 

brackets show bidirectional path coefficients estimated for the global model (i.e., as if they were 

conditional). Width of arrows reflects standardized effect sizes. The marginal (i.e. explained by the 

fixed factors alone) and conditional (i.e. explained by both the fixed and the random factors) 

percent variance of endogenous variables (R2) are shown next to them (marginal between brackets).
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