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A New Approach to the Treatment of Separatrix Chaos
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We review an approach to separatrix chaos that has allowed us to solve some significant
problems by: (i) finding analytically the maximum width of the chaotic layer, a problem
that lay unsolved for 40 years, and showing that the maximum may be much larger

than had previously been assumed; (ii) describing the drastic facilitation of the onset of
global chaos between neighbouring separatrices, a phenomenon discovered 8 years ago.

1. Introduction

In this section, we first introduce the concept of separatrix chaos and demonstrate

that it constitutes the seed of any chaos in time-periodically perturbed 1D Hamil-

tonian systems. We then describe some of the problems that stimulated the de-

velopment of our new approach to separatrix chaos and, finally, explain why it is

difficult to use earlier approaches to solve these and related problems.

1.1. Separatrix chaos

Hamiltonian dynamics is described by equations of the type:
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Fig. 1. Pendulum: (a) potential, (b) separatrix in the phase plane.

dqi
dt

=
∂H

∂pi
,

dpi
dt

= −∂H

∂qi
, (1)

i = 1, 2, 3, ... H ≡ H(q1, q2, ..., p1, p2, ..., t).

The simplest case is a one-dimensional (1D) Hamiltonian H = H(q, p), where H is

an integral of motion (the energy E) and any finite motion is periodic in time:

q(t+ T ) = q(t), p(t+ T ) = p(t), T ≡ T (E), ω ≡ 2π

T
≡ ω(E). (2)

An important notion is that of a separatrix. Suppose the phase space of the

system possesses a saddle, i.e. an unstable stationary point of the hyperbolic type,

which two trajectories approach and from which two trajectories depart, exponen-

tially slowly. These four trajectories form the separatrix. As the energy approaches

that of the separatrix Es, the period of oscillation logarithmically diverges:

ω−1(E) ∝ T (E) ∝ ln(1/|E − Es|), E ≈ Es. (3)

The separatrix typically separates trajectories of different topology. An archetypal

example is a pendulum (Fig. 1): H = p2/2 + U(q), where U(q) = − cos(q).

For higher-dimensional Hamiltonians, the motion is typically much more com-

plicated. In this review, we consider the simplest case: D= 3
2 , i.e. a 1D Hamiltonian

with a time-dependent perturbation. Moreover, we restrict ourselves to the most

characteristic case – a weak time-periodic perturbation.

In the 1950s and 60s, Kolmogorov, Arnold and Moser developed a theory (KAM-

theory) which says that a majority of perturbed trajectories remain regular: invari-

ant tori are slightly deformed rather than destroyed i.e. the perturbation does not

modify the topology of a trajectory in a stroboscopic Poincaré section [1].

However there are two characteristic regions where the KAM theory is inappli-

cable, so that some of the corresponding trajectories are irregular. The first one

relates to the separatrix of the unperturbed system. Due to the divergence of T (E),

even a small change of energy caused by the perturbation results in a strong change

of the system coordinate after a given interval of time. This causes the separatrix

to be replaced by a chaotic layer (Fig. 2), where regions of regular and irregular

motion are mixed in a complicated manner. The chaotic layer is a very complicated

object: it has been studied in hundreds of papers, starting from [2] in 1967.
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Fig. 2. Stroboscopic Poincare section for the Hamiltonian H = p2/2− cos(q) + 0.01q cos(t).

The second region where the motion may be irregular relates to resonances i.e.

to regions where

E ≈ E(n), nω(E(n)) = ωf , n = 1, 2, 3, ... (4)

The slow dynamics of the deviation of action from that at the resonance energy,

and of the related slow angle, are governed by the auxiliary (or nonlinear reso-

nance) Hamiltonian, which is typically taken as being pendulum-like [3]. The phase

plane of this auxiliary Hamiltonian necessarily possesses a separatrix, but the fast

oscillations (neglected in a leading-order analysis of the slow dynamics) destroy it,

replacing it with a narrow chaotic layer.

Thus, separatrix chaos plays a key role in the onset of any chaos in a periodically

perturbed Hamiltonian system.

1.2. Stimulating problems

The development of our approach was stimulated in particular by the following

open questions concerning separatrix chaos:

1. How can one describe theoretically the maximal (over the perturbation

frequency) width of the separatrix chaotic layer? Neither physicists [4] nor

mathematicians [5] had cracked this problem during the 40 years following

the pioneering work by Zaslavsky and Filonenko [6].

2. How can one describe theoretically the involvement of resonant mo-

tion in separatrix chaos? This problem became topical with the work of

Shevchenko in 1998 [7] although it had been implicit since much earlier [3].

We now describe these problems in more detail. The chaotic layer’s energy width

depends on the ratio ωf between the perturbation frequency and frequency of small

oscillations of the unperturbed system. The three characteristic ranges of ωf are –

(i) ωf ≫ 1: the width is exponentially small [4, 5].

(ii) ωf → 0: in the adiabatic limit, the width is typicallya small [9,10], namely

aIn ac-driven spatially periodic systems, the upper energy in the layer diverges as ωf → 0 [8]. We
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of the order of the perturbation amplitude h.

(iii) ωf ∼ 1: for the intermediate range qualitative estimates [4, 5] suggested a

width of ∼ h. The range of moderately small frequencies remained almost

unexplored (perhaps because it was assumed to be uninteresting), with one

exception [7] where it was considered heuristically.

Thus, most theoretical estimates suggested that the maximum should occur at

ωf ∼ 1 where it would have a value of order h.

However, numerical studies (e.g. [7]) revealed a different picture: typically, many

peaks were seen in the range ωf . 1, with heights substantially exceeding h, sug-

gesting that high peaks actually represent the dominant feature of the dependence

of the layer width on the perturbation frequency. The authors of the numerical

studies intuitively associated them with nonlinear resonances and an approximate

heuristic theory was developed [7] to estimate their positions and maxima. But the

mechanism of the involvement of nonlinear resonances in separatrix chaos remained

unclear, and a consistent theory of the peaks and a general analysis were lacking.

1.3. Earlier approaches

Of the many criteria for chaos, two of those most widely used are:

1. The existence of a positive Lyapunov exponent [11], implying exponential

growth in some direction in the separation between initially close trajecto-

ries, leading in turn to irregular transport.

2. Destruction of invariant tori (KAM-theory) [4, 5], leading in particular to

the replacement in the Poincaré section of regular trajectories (lines i.e. 1D

objects) by layers (2D objects) where regions with regular and irregular

dynamics are mixed in a complicated manner.

Usually, however, Lyapunov exponents have to be found numerically, it being hard

to calculate them analytically [11]; and KAM-theory is difficult to apply in the

relevant ranges of parameters, where resonances play a crucial role [1, 12].

2. Our approach to separatrix chaos

2.1. Our initial tool: the separatrix map

The separatrix map was introduced in [6] and rederived rigorously in [13]. As an

illustration, consider as an example the ac-driven double-well potential system:

H = H0 − hq cos(ωf t), H0 = p2/2 + U(q), U(q) = −q2 + q4. (5)

For the sake of convenience, we refer to H0(q, p) ≡ E as the “energy”. Differen-

tiating E with respect to time and using the Hamiltonian equations, we obtain

dE/dt = h cos(ωf t) dq/dt ∝ dq/dt. Thus, energy changes relatively fast only when

the velocity dq/dt is relatively large. If E is close to the barrier value, then the

do not consider this case. For such models, we consider only the lower energy in the layer.
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system spends most of its time near the saddle, where the velocity is near zero, i.e.

short pulses of significant velocity are separated by long intervals at almost zero

velocity. The duration of a long interval is related to the period of the unperturbed

system with the energy possessed by the perturbed system during the interval.

Introducing the angle of the perturbation φ ≡ ωf t and the sign of the velocity

σ, one can map E and σ at the beginning of a given pulse, and φ in its middle,

onto their values in the next pulse: (Ei, φi, σi) → (Ei+1, φi+1, σi+1). This map is

called the separatrix map (SM). For our model, it is

Ei+1 = Ei + σihϵ sin(φi), (6)

φi+1 = φi +
ωfπ(3− sign(Ei+1 − Es))

2ω(Ei+1)
,

σi+1 = σi sign(Es − Ei+1),

where the Melnikov integral ϵ ≡ ϵ(ωf ) ∼ 1 for the relevant range of ωf [4, 11].

There are both heuristic [4,11] and rigorous [5] criteria for the onset of chaos but

almost all of them miss the relevant range of moderately small ωf . The one exception

[7] appreciated the role of nonlinear resonances, but the resultant calculations led

to values of the maxima that were quantitatively incorrect in the asymptotic h → 0

limit. The nature of the connections between nonlinear resonances and separatrix

chaos remained unclear as did also the question of the generality of the results.

Our new approach [14–16] has allowed us to solve consistently both these and

some related problems.

2.2. Basic elements of the approach

2.2.1. Decorrelation of angle

If the system gets onto the separatrix at the (i+1)th step i.e. Ei+1 = Es, then the

change in angle at this step, φi+1−φi, diverges due to the divergence of ω−1(Ei+1)

(see Eq. (3)). This decorrelation of angle leads, in turn, to a decorrelation of the

energy since Ei+1 − Ei ∝ sin(φi) while sin(φi) may take any value between ±1.

Similarly, σ is also decorrelated. Obviously, if all variables of the map change ran-

domly at some step, such a trajectory cannot be regular. Thus, a decorrelation of

all variables at some step of an area-preserving map is a sufficient condition for

chaos in the map; in the SM, such a decorrelation is provided by the decorrelation

of angle. We hope and surmise that such a condition can be shown to satisfy earlier

definitions of chaos, in particular the existence of a positive Lyapunov exponent.

2.2.2. Involvement of a resonant motion into the separatrix chaos

It might at first appear that a resonant dynamics is impossible near the separatrix

because of the divergence of dω/dE ∝ 1/|E − Es|, given that resonant dynamics

requires an approximate constancy of ω(E). Paradoxically, however, it is possible
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due to the slowness of the logarithmic divergence: if x is small, then ln(1/x) remains

almost constant even at a rather large variation of x.

The energy at some step of the chaotic trajectory takes the value Es: En = Es,

while φn and σn may be arbitrary. Consider changes of energy at the next step

which have one and the same sign: let it be positive for example. Then En+1 −
Es ∼ h| sin(φn)|. The properties of the logarithmic function mean that ω(En+1) ≃
ω(Es+h) for almost all values of φn (except in the near multiples of π). Moreover,

ω(E) remains approximately constant for rather large further variation of E − Es

of the same sign. Thus, if ωf ≈ ω(Es +h), a resonant dynamics should be relevant.

By reducing the discrete map equations to the differential equations of motion

for the resonance Hamiltonian, we were able to prove the above intuitive ideas

explicitly within the relevant range of energies.

2.2.3. Resonant dynamics near the separatrix

The conventional approximation by which resonant dynamics is described by an

auxiliary pendulum-like (Chirikov) Hamiltonian [3, 4, 7, 11] is valid only if |dω/dE|
is approximately constant within the relevant range of energy. This is not the case

near the separatrix, where |dω/dE| ∝ 1/|E−Es| varies rapidly. We have developed

the first analytic description of the resonant dynamics near the separatrix.

From the quantitative point of view, this part of our approach is of particular

importance because resonant dynamics provides the leading term of our asymptotic

theory describing the boundaries of the chaotic layers and related quantities in the

relevant range of the perturbation frequency.

3. Application to the single-separatrix layer

As an illustrative example, we use the paradigmatic case of an ac-driven pendulum

H = p2/2−cos(q)+hq cos(ωf t), comparing numerical results with earlier estimates

and with our theory. Consider the deviation of the lowest energy in the layer El

from the separatrix value Es. Fig. 3 presents numerical calculations of the deviation

∆E(−) ≡ (Es − El) normalized by the perturbation amplitude, as a function of

frequency, for different values of h. One can see a clear growth of the maximum

as h decreases. The inset compares these results with earlier estimates, with which

they clearly disagree. In contrast, our asymptotic theory [15] fits the numerical data

well, as shown in Fig. 4: the paper also classified all systems in the context of the

functional dependence of the width on h and considered characteristic examples.

Note also that our theory describes well, not only the width of the layer, but also

its boundaries in the Poincaré section.

4. Application to global chaos between separatrices

If an unperturbed system possesses two or more separatrices, then a sufficiently

large periodic perturbation gives rise to dynamic (chaotic) transport connecting
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Fig. 3. Deviation of the lowest energy in the layer from the separatrix value, normalized by h,
as function of frequency, for different h. The inset (note the logarithmic ordinate) compares the

same results (full curves) with earlier predictions (dashed [4, 10] and dotted [17] lines).
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Fig. 4. Comparison of our theory (solid line) and numerical data (circles): (a) ∆E(−)/h as function
of ωf for h = 10−6; (b) position of the first maximum as function of h; (c) value of the first

maximum as function of h.

neighbouring separatrices, a phenomenon that is important in many physical appli-

cations. Conventionally, the scenario for onset is as follows. For small perturbation

amplitude h, the separatrices are replaced by thin chaotic layers. As the amplitude

grows, the layers widen and, at some critical value hcr, they merge, marking the

onset of global chaos. Typically, hcr is of the order of the difference of energies at

the separatrices. However, it was discovered in 2003 [18] that hcr may be much

lower if the perturbation frequency ωf is close to particular values. We show this

using as an example the unperturbed model illustrated in Fig. 5:

H0 = p2/2 + U(q), U(q) = (Φ− sin(q))2/2, Φ = 0.2. (7)

Fig. 6(a) shows a bifurcation diagram of the system with H = H0 + hq sin(ωf t) in

the plane of the perturbation parameters. The shaded area indicates the parameter

range for which global chaos exists. Its lower boundary, representing the function

hcr(ωf ), possesses deep minima (spikes). Their existence can be explained as follows.

The dependence of the eigenfrequency on energy ω(E) (Fig. 5(c)) is very flat (in

the asymptotic limit Φ → 0, it approaches a rectangular shape). If ωf is close

to the local maximum ωm of the function ω(E), then even a weak perturbation

remains approximately resonant with eigenoscillations over almost the whole range
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Fig. 5. (a) Potential of Eq. (7). (b) Separatrices in the phase plane. (c) Oscillation frequency as
function of energy.
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Fig. 6. (a) Bifurcation diagram for H = H0 +hq sin(ωf t); (b) the first minimum (shaded) and our

theory: dashed line - the leading-order theory, solid line - the theory with higher-order corrections

of energies between the separatrices, so that resonant dynamics may be involved

in the separatrix chaos related to each of them, thus providing transport between

them. Using our new approach, we developed a consistent asymptotic theory [14]

which nicely describes the spikes over a wide vicinity of their minima (Fig. 6(b)).

5. Some examples of applications and relevant problems

We can summarise the present status of the new method as follows –

I. The approach itself:

– Evaluates the boundaries of separatrix chaotic layers, including their

energy width, for a diversity of perturbed systems with separatrices.

– Promises to be useful for the analysis of transport within the region

of the separatrix chaos.

II. Results on the thin single-separatrix layer may:

– Be generalized to describe a wide variety of systems with separatrices.

– Provide for a method [15] to facilitate the overlap of resonances of

different orders, in turn facilitating the onset of global chaos.

III. Inter-separatrix transport is likely to be important in, for example:

– Spinning pendula [19] and, in some cases, electron gas in magnetic

superlattice [20,21], both being descibed by the model (7).

– Partial stochastic webs, arising if the resonance is approximate rather

than exact [4]: there are many separatrices and, the more separatrices

are linked by chaotic transport, the larger the web [22] becomes; it is
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relevant to quantum electron transport in semiconductor superlattices

in magnetic and electric fields [22,23] when the scattering is very weak.

– Meandering flows [24] e.g. the Gulf Stream [25], where “cross-jet”

(inter-separatrix) transport retards transport along the jet.

– Cold atoms in optical lattices [26] can model a variety of potential

systems with practically zero dissipation. So, they could model double-

or multi-barrier potentials with barriers of different heights.

– Billiards, which may possess more than one separatrix [27].

– Plasma physics [28].

6. Conclusions

Our approach to the treatment of separatrix chaos includes three basic elements:

a new criterion for chaos in the separatrix map, i.e. decorrelation of angle; involve-

ment of resonant dynamics into separatrix chaos, explained by the matching of the

separatrix map and continuous resonant dynamics; explicit analysis of the resonant

dynamics near the separatrix. It has enabled us to solve a long-standing problem

related to the maximum width of the separatrix chaotic layer and to describe the

drastic facilitation of the onset of global chaos between separatrices for a charac-

teristic example. There are many potential applications of these results.
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