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Abstract: 23 

Real-time and non-destructive nitrogen (N) status diagnosis is needed to support in-24 

season N management decision-making for modern wheat production. For this purpose, 25 

satellite sensor imaging can act as an effective tool for collecting crop growth 26 

information across large areas, but they can be challenging to calibrate with ground 27 

reference data. This research aimed to calibrate satellite remote sensing-derived models 28 

for crop growth estimation and N status diagnosis based on fine-resolution unmanned 29 

aerial vehicle (UAV) images, thus, map wheat growth and N status at the county scale. 30 

Seven wheat field experiments involving multi cultivars and different N applications 31 

were conducted at four farms of Xinghua county from 2017 to 2021. A fixed-wing UAV 32 

sensing system and the Sentinel 2 (S2) satellite were used to collect wheat canopy 33 

multispectral images; three growth variables (plant dry matter (PDM), plant N 34 

accumulation (PNA) and N nutrition index (NNI)) and weather data, synchronized with 35 

spectral imagery, were obtained at the jointing and booting stages. The farm- scale PDM 36 

(UAV-PDM) and PNA (UAV-PNA) maps can be derived from the UAV images at the 37 

four farms, which were further upscaled to grids to match the S2 image resolution using 38 

pixel aggregation method. Then, satellite- based prediction models were constructed by 39 

fitting four machine learning algorithms to the relationships be-tween satellite spectral 40 

indices, upscaled PDM (PNA) and weather data. Amongst the four methods tested, the 41 

random forest (RF) achieved the greatest prediction accuracy for PDM (R2 = 0.69–0.93) 42 

and PNA (R2 = 0.60–0.77). Meanwhile, an indirect diagnosis method was used to 43 

calculate the NNI. The results indicated that the model derived from the S2 imagery 44 
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performed well for predicting NNI (R2 = 0.46–0.54) at the jointing and booting stages. 45 

Thereby, the NNI was used to map winter wheat N nutrition status at the county scale. 46 

In summary, this research demonstrated and evaluated an approach to combine UAV 47 

and satellite sensor images to diagnose wheat growth and N status across large areas.   48 

Key words: N diagnosis, pixel aggregation, vegetation index, random forest, large 49 

areas 50 

1. Introduction 51 

Wheat is one of the important crops that widely cultivated in the world, which 52 

plays a vital role in ensuring the world food security. The area covered by wheat in 53 

China is the fourth with 11% proportion of the global plantation area, while the wheat 54 

yield accounts for appropriate 18% of the total yield in the world (Li et al., 2016; Wu 55 

et al., 2022). Nitrogen (N) has a significant effect in enhancing crop growth and 56 

improving grain yield formation (Miao et al., 2011). A precision N management 57 

strategy (PNMS) can be used to optimize N fertilizer inputs and maximize the economic 58 

benefits for producers. Such a PNMS re-quires non-destructive and effective tools for 59 

crop growth prediction and N status diagnosis (Diacono et al., 2013). 60 

Traditional N diagnosis methods such as leaf color-based judgement and chemical 61 

analysis based for measured plant sample were relatively empirical or time-consuming 62 

for evaluating the plant N nutrition status, which may not be sufficient to support 63 

making in-season real-time N management decisions in modern crop production 64 

(Padilla et al., 2018). At the same time, remote sensing technologies provide a non-65 

destructive approach for real-time diagnosis of crop growth and N status (Moya, 2005; 66 
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Dong et al., 2019). Ground sensing based on proximal sensors has been used to predict 67 

plant biomass and N accumulation for various crops, including rice, wheat and maize 68 

(Xia et al., 2016; Jiang et al., 2020; Zhang et al., 2020). However, the small sampling 69 

area of ground sensors makes this approach laborious for crop growth estimation and 70 

N diagnosis at regional scales. Satellite remote sensing can perform spectral sampling 71 

for crop N status estimation over large areas, and is likely to be more suitable for 72 

guiding regional crop N management (Magney et al., 2017). Common satellite missions 73 

were classified according to the spatial resolution: coarse spatial resolution satellite 74 

sensors such as MODIS (spatial resolution ≥ 250 m) have been used for monitoring 75 

vegetation productivity and mapping foliar N in forests at broad scales (Guay et al., 76 

2014; Lepine et al., 2016). However, images with coarse resolution are insufficient to 77 

detect field heterogeneity due to the lack of pure pixels during the crop growth period 78 

(Lepine et al., 2016). Rapideye and IKONOS satellite sensors can produce images with 79 

a fine spatial resolution of 1 m, which have been used for academic research and 80 

agricultural production when combined with easy access to compute resource (Rinaldi 81 

et al., 2010; Magney et al., 2017). Wang et al. (2019) indicated that vegetation indices 82 

such as normalised difference vegetation index (NDVI) and normalised difference red 83 

edge (NDRE) derived from RapidEye images achieved good precision (R2 >0.6) for 84 

predicting wheat grain N uptake during the grain filling stage. However, the cost of 85 

fine-resolution images has limited their practical application in modern crop production. 86 

Freely available medium-to-fine resolution satellite sensor images from Sentinel-2 (S2) 87 

have been more popular with researchers conducting regional studies for crop N 88 
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management. Meanwhile, the revisit period of 5 days of S2 makes it suitable for real-89 

time estimation and diagnosis of crop growth and N status. There-fore, the advantages 90 

of free-access and high revisit rate from the S2 satellite sensor imagery were more 91 

beneficial for facilitating the practical agricultural production. Sharifi (2020) indicated 92 

that the simple ratio red-edge (SRRE) index derived from the S2 satellite sensor image 93 

has a good performance for estimating maize N uptake with R2 of 0.91 and RMSE of 94 

11.34 kg ha−1 at the peak greenness date. Additionally, the normalized difference red 95 

edge index (NDRE) and transformed chlorophyll absorption ratio index (TCARI) from 96 

the S2 images were demonstrated a good linear estimates for maize NNI (R2 = 0.79) 97 

and durum wheat NNI (R2 = 0.61), respectively (Crema et al., 2020). Therefore, it is 98 

necessary to further evaluate the utility of spectral information derived from the S2 99 

satellite sensor images with medium-to-fine resolution for wheat growth estimation and 100 

N status diagnosis. 101 

Previous studies calibrated satellite-based models for crop growth estimation 102 

mainly through single or multiple field measurements, which are laborious and difficult 103 

to upscale to the same spatial resolution as the satellite sensor images (Huang et al., 104 

2017). UAV-based remote sensing systems can be operated with ease and have been 105 

demonstrated to be excellent tools for diagnosing crop N status (Zhao et al., 2019). 106 

Furthermore, the fine-resolution images from UAVs can detect field heterogeneity and 107 

can be aggregated to grids with any desired resolution. Thus, UAVs offer an opportunity 108 

to close the gap between field measurements and satellite sensor data. Revill et al. (2020) 109 

coupled S2 and UAV observations to bridge the scaling gap between field data and 110 
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satellite sensor images, and the results indicated this method achieved an accurate 111 

retrieval for wheat leaf area index across a large farm. Similarly, the fractional cover 112 

(FCover) of tundra vegetation derived from a fine-resolution UAV RGB image was 113 

aggregated to corresponding grids with same spatial resolution as Planet (3 m), S2 (10 114 

m, 20 m) and Landsat 8 (30 m) images. Therefore, the FCover prediction model based 115 

on satellite imagery can be constructed using the relationship between UAV-FCover 116 

and satellite vegetation indices (Deviance explained =89% at best) over larger extents 117 

(Riihima¨ki et al., 2019). To date, little research has been performed on the integration 118 

of fixed-wing UAVs and satellite sensor images to diagnose the growth and N status of 119 

winter wheat at the county scale. Therefore, the objectives of this study were: (1) to 120 

bridge the scale gap between field observed wheat growth parameters and satellite 121 

sensor data based on fine-resolution UAV images; (2) to construct wheat growth 122 

estimation and N diagnosis models using S2 satellite sensor images and (3) to map 123 

wheat growth and N status temporally and spatially at the county scale.  124 

2. Materials and methods 125 

2.1. Experimental design 126 

This study was conducted at the Xinghua experimental station in Jiangsu Province 127 

of East China (Fig. 1). Experiment 1–3 were conducted using ‘Yangmai 23′ and 128 

‘Yangmai 25′ cultivar at the Diaoyu farm from 2017 to 2020. Experiment 4 was 129 

conducted using ‘Nongmai 88′ cultivar at the Daiyao farm in 2019–2020. Experiment 130 

5 and 6 were conducted using ‘Yangmai 25′ at the Daduo and Zhouzhuang farm, 131 
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respectively, in 2019–2020. Experiment 7 was conducted based on the local cultivar 132 

such as ‘Yangmai 23′, ‘Yangmai 25′ and ‘Nongmai 88′ across the Xinghua county in 133 

2020–2021. The fertilizer treatments of experiment 1–7 fol-lowed the local farmer’ 134 

conventional approach, which were showed in Table S1 of the Supplymentary file. 135 

Wheat plants in experiments 1–7 were grown at a local standard density of 2.25 million 136 

seedlings per hectare. Irrigation application was applied one time to ensure the seeds 137 

germinated securely at the sowing stage if there was no natural rainfall. The weather 138 

data was collected from the local weather station, the Fig. 2 showed the accumulated 139 

precipitation, daily average temperature and accumulated radiation with days after 140 

sowing during the whole wheat growing season from 2017 to 2021. No significant 141 

insects, weeds and water stress were observed through the whole growing season. 142 

Details of the seven wheat experiments were shown in Table 1. 143 
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 144 

Fig. 1. The four study sites. The green areas and black points indicate the wheat growing 145 

area and sampling points, respectively, in each farm. 146 

 147 

Fig. 2. Accumulated precipitation, daily average temperature and accumulated radiation 148 

with days after sowing during the whole wheat growing season of (a) 2017–2018, (b) 149 

2018–2019, (c) 2019–2020, (d) 2020–2021 in Xinghua experimental station.150 
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Table 1 Basic information describing the seven field experiments conducted in this study. 151 

Experiment No. 
Year 

Location 
Cultivar UAV image 

acquisition time 
S2 image 

acquisition time 
Plant sampling 

date 
Sowing 

date 
Harvest 

date 

Experiment 1 
2017-2018 

Diaoyu farm  
(33.08°N, 119.98°E) 

YM 23 22-March (JS) 
16-April (BS) 

23-March (JS) None 9 Nov. 3 June 

Experiment 2 
2018-2019 

Diaoyu farm  
(33.08°N, 119.98°E) 

YM 25 6-March (JS) 
2-April (BS) 

6-March (JS) 
30-March (BS) 

None 2 Nov. 29 May 

Experiment 3 
2019-2020 

Diaoyu farm  
(33.08°N, 119.98°E) 

YM 25 16-March (JS) 
2-April (BS) 

17-March (JS) 
3-April (BS) 

None 9 Nov. 2 June 

Experiment 4 
2019-2020 

Daiyao farm 
(32.96°N, 120.17°E) 

NM 88 19-March (JS) 
6-April (BS) 

24-March (JS) 
8-April (BS) 

None 5 Nov. 1 June 

Experiment 5 
2019-2020 

Daduo farm 
(32.85°N, 120.02°E) 

YM 25 20-March (JS) 
7-April (BS) 

24-March (JS) 
8-April (BS) 

None 4 Nov. 1 June 

Experiment 6 
2019-2020 

Zhouzhuang farm 
(32.69°N, 119.95°E) 

YM 25 20-March (JS) 
6-April (BS) 

24-March (JS) 
8-April (BS) 

None 6 Nov. 2 June 

Experiment 7 
2020-2021 

Xinghua county 
(32.65-33.25°N, 

119.60-120.32°E) 

YM 23, 
YM 25, 
NM 88 

None 14-March (JS) 
8-April (BS) 

12(14)-March (JS) 
8-April (BS) 

31-May to 2-June 
(HS) 

25 Oct.-
10 Nov. 

29 May-
10 June 

Note: the YM23, YM25 and NM 88 represent the Yangmai 23, Yangmai 25 and Nongmai 88 cultivars, respectively. JS, BS and HS represent the 152 

jointing, booting and harvest stages, respectively. The S2 image was not available at the booting stage in experiment 1. 153 
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2.2. Spectral data collection 154 

2.2.1. UAV images collection 155 

The Parrot Sequoia camera (MicaSense, Seattle, WA, USA; Fig. 3) was mounted 156 

on the eBee UAV (senseFly, Cheseaux-Lausanne, Switzerland; Fig. 3) to collect four 157 

multispectral images, including the green (G, 550 ± 40 nm), red (R, 660 ± 40 nm), red 158 

edge (RE, 735 ± 10 nm) and near infrared (NIR, 790 ± 40 nm) bands. The parameter 159 

setting of the UAV flights and pre-processing method of the multispectral images 160 

followed Jiang et al. (2022). UAV flight was conducted at a speed of 8 m s−1 under 161 

stable low wind, cloudless and sunny-sky conditions from 10:00 to 14:00. The overlap 162 

in the flight direction and sidelap were set as 75% for each image. The spatial resolution 163 

of spectral image was 10 cm when the flight height was 100 meters above the wheat 164 

canopy. The radiation calibration and mosaicking of the acquired images were 165 

performed in the Pix4Dmapper Ag software (Pix4D SA, Prilly, Switzerland). Several 166 

ground control points (GCPs) were located using a Trimble GeoXH6000, which were 167 

then used to geo-rectify the UAV orthographic image for each farm. Details of UAV 168 

image acquisition times were shown in Table 1.  169 
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 170 

Fig. 3. The eBee fixed-wing UAV used in this study. 171 

2.2.2. Sentinel 2 images acquisition 172 

The satellite sensor imagery was acquired as close as possible to the UAV flights, 173 

with a screening criteria of five days adjacent to the UAV campaign. Sentinel 2 images 174 

can be downloaded from the official website (https://scihub.copernicus.eu/) as Level-175 

1C geometrically corrected, top-of-atmosphere reflectance products. The atmospheric 176 

correction was carried out using the Sen2Cor version 02.08.00 to produce the Level-2A 177 

product. The plug-in of ‘SuperResolution’ in Sentinel Application Platform (SNAP) 178 

version 4.0.2 was used to downscale the Level-2A image bands with 20 m spatial 179 

resolution to 10 m resolution. Each S2 image include 13 bands (Table 2) with 290 km 180 

orbital swath width: three bands were designed for monitoring atmospheric conditions 181 

with 60 m spatial resolution (B1, B10, B11), which were not considered in this research. 182 

Meanwhile, the red edge (RE) band b5 was selected among the three RE bands, the 183 

Narrow NIR band b9 was selected between the two NIR bands and the SWIR band b12 184 

was selected between the two SWIR bands. The six selected bands were used to 185 

calculate the spectral indices in Table 3. 186 
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Table 2 The 13 spectral bands from the S2 satellite sensor image. 187 

Bands Central wavelength 
( ) 

Bandwidth 
( ) 

Spatial resolution 
( ) Band 1 Coastal aerosol 443 20 60 

Band 2 Blue 490 65 10 

Band 3 Green 560 35 10 

Band 4 Red 665 30 10 

Band 5 Red edge 705 15 20 

Band 6 Red edge 740 15 20 

Band 7 Red edge 783 20 20 

Band 8 NIR 842 115 10 

Band 9 Narrow NIR 865 20 20 

Band 10 Water vapor 945 20 60 

Band 11 SWIR-Cirrus 1380 30 60 

Band 12 SWIR 1610 90 20 

Band 13 SWIR 2190 180 20 

Table 3 The vegetation indices used in this research.188 
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  189 

Index name Formula S2 UAV Reference 
Normalised difference red edge (NDRE)  (NIR - RE)/(NIR + RE) √ √ (Barnes et al., 2000) 

Red edge soil-adjusted vegetation index (RESAVI)  1.5*(NIR - RE)/(NIR + RE + 0.5) √ √ (Sripada et al., 2005) 

Red edge chlorophyll index (CIRE) (NIR / RE) - 1 √ √ (Sripada et al., 2005) 
DATT (NIR - RE) / (NIR - Red) √ √ (Datt and B., 2010) 

Modified chlorophyll absorption in reflectance index 
(MCARI1) 

[(NIR - RE) − 0.2(NIR - G)] 
*(NIR / RE) 

√ √ (Gitelson et al., 2005) 

Ratio water index (RWI) NIR / SWIR √  (Fernandes et al., 2003) 
Normalized difference water index (NDWI) (NIR - SWIR) / (NIR + SWIR) √  (Gao, 1995) 

Ratio blue index (RBI) NIR / B √  (This study, modified from 
Pearson and Miller, 1972) 

Normalised difference blue index (NDBI) (NIR - B) / (NIR + B) √  (This study, modified from 
Tucker, 1979) 

Green soil adjusted vegetation index (GSAVI) 1.5*(NIR - G)/(NIR + G + 0.5) √ √ (Sripada et al., 2005) 
Soil adjusted vegetation index (SAVI) 1.5*(NIR - Red)/(NIR + Red + 0.5) √  (Huete, 1988) 

Normalised difference vegetation index (NDVI)  (NIR - Red)/(NIR + Red) √ √ (Tucker, 1979) 
Ratio vegetation index (RVI) NIR / Red √  (Pearson and Miller, 1972) 

Note: √ represents the vegetation indices calculated based on the satellite and UAV images. 190 
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2.3. Agronomic and weather data collection 191 

The GPS coordinates of each sampling point was determined by a Trimble 192 

GeoXH6000 (Trimble, CA, USA). Then, 20 plants were selected randomly and 193 

sampled within a range of 10*10 m centered around the sampling point. The plants 194 

were separated into the stem and leaf, which were oven dried at 105° for 30 minutes 195 

and then dried at 70° to a constant weight to measure the stem dry matter (SDM) and 196 

leaf dry matter (LDM). The plant dry matter (PDM) was calculated by equation 1.  197 

PDM (kg ∙ ha−1) = SDM (kg ∙ ha−1) + LDM (kg ∙ ha−1)         (1)  198 

The sub-samples of stem and leaf were later ground into a fine powder to 199 

determine the stem (SNC) and leaf (LNC) N concentration using the Kjeldahl digestion 200 

method (Bremner and Mulvaney, 1982). The PNA was then calculated by equation 2. 201 

The plant N concentration (Na) can be calculated as the ratio of PNA and PDM. 202 

PNA(kg ∙ ha−1) = SDM(kg ∙ ha−1) × SNC(%) + LDM(kg ∙ ha−1) × LNC(%)  (2) 203 

The NNI (equation 3) can be calculated using actual plant N concentration (Na) divided 204 

by critical value, while the critical N concentration (Nc) can be calculated using the 205 

critical N dilution curve (CNDC; equation 4) developed by Jiang et al. (2020). 206 

 NNI= Na Nc⁄                              (3) 207 

Nc=4.17*W-0.39                           (4) 208 

where W is the plant biomass.  209 

The grain yield was collected by manually measuring 1 m2 three times at each 210 
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sampling points in the harvest stage, and the observed value was standardized to 14% 211 

grain moisture content. 212 

Previous studies indicated that weather status would influence crop growth and the 213 

physiological process, and so should be included to increase prediction accuracy during 214 

model construction (Wang et al., 2020; Nonhebel, 1994; Verma et al., 2003). In this 215 

study, average daily temperature (Tave), average daily minimum temperature (Tmin), 216 

average daily maximum temperature (Tmax), accumulated daily average temperature 217 

(Tsum), accumulated precipitation (Prepsum), accumulated radiation (Radsum) of 30 days 218 

before measurement date, and accumulated growing degree day (AGDD) from sowing 219 

to measurement date were used as model inputs to calibrate the growth and N status 220 

diagnosis model. 221 

2.4. Data analysis 222 

The workflow for estimation model construction and evaluation was shown in 223 

figure 4: when the UAV orthographic images were collected (Fig. 4a), the PDM and 224 

PNA estimation models based on the UAV data from Jiang et al. (2022) were used to 225 

derive the wheat PDM (UAV-PDM) and PNA (UAV-PNA) maps at each farm for 226 

experiments 1-6 (Fig. 4b). Following the method from Riihimäkia et al. (2019), the 227 

UAV-PDM and UAV-PNA maps were upscaled to the same spatial resolution as the S2 228 

images (10 m) using the pixel aggregation function of ArcGIS 10.2 software (Fig. 4c). 229 

In order to avoid the influence of mixing pixels from the water, road and other objects 230 

for model construction, the sampling points of 57, 52, 53, and 43 that involving the pure 231 
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pixel inner the wheat field were determined randomly at the Diaoyu, Daiyao, Daduo, 232 

and Zhouzhang farm, respectively, to extract the upscaled PDM and PNA values (Fig. 233 

4c). Meanwhile, the S2 images from each farm of experiment 1-6 were obtained (Fig. 234 

4d), and the vegetation indices at the corresponding sampling points were extracted 235 

from the S2 imagery (Fig. 4e). Therefore, the data from experiments 1-6 and 10-fold 236 

cross-validation were used to select the optimal machine learning (ML) modeling 237 

method to integrate the S2 spectral indices, weather data (Fig. 4f), and upscaled PDM 238 

(PNA) to construct the estimation models (Fig. 4g). The methods considered were the 239 

Random Forest (RF), Lasso, artificial neural network (ANN) and partial least squares 240 

regression (PLSR). The optimal modelling method with the larger R2 and smaller root 241 

mean square error (RMSE; equation 5) and relative error (RE; equation 6) was selected 242 

to establish the optimal satellite models for PDM and PNA prediction. Therefore, the 243 

satellite prediction models with best modeling method were established based on the 244 

data from experiments 1-6 (Fig. 4h). Independent ground sampling data from the 245 

experiment 7 was used to further validate the optimum PDM and PNA estimation 246 

models. 247 

RMSE=�1
n

×∑ (Pi-Oi)2n
i=1                             (5) 248 

RE(%)=100×�1
n

×∑ �Pi-Oi
Oi
�

2
n
i=1                          (6) 249 

where n represents the number of samples, Oi and Pi represent the observed and 250 

predicted values, respectively. 251 

An indirect strategy (Fig. 4i) was used to estimate the NNI in this study: when the PDM 252 
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and PNA were predicted, the PDM was input to the CNDC to calculate the Nc, then the 253 

PNAc can be calculated as the product of predicted PDM and Nc. Therefore, the NNI 254 

was calculated as ratio of predicted PNA and PNAc (equation 7; Jiang et al., 2022; Zha 255 

et al., 2020; Xia et al., 2016). Three N status categories of N deficient, N optimal, and 256 

N excessive can be divided using the predicted NNI according to the optimal NNI 257 

diagnosis interval: 0.92-1.04 and 0.97-1.15 at the jointing and booting stage (Jiang et 258 

al., 2022), respectively. Therefore, the wheat N diagnosis status at the Xinghua county 259 

can be evaluated based on the indirect NNI diagnosis model and in-season S2 imagery 260 

(Fig. 4j). 261 

NNI = Predicted PNA (Predicted PDM ∗ N𝑐𝑐)⁄                (7) 262 

The packages of ‘randomForest’, ‘glmnet’, ‘nnet’ and ‘pls’ from R software were 263 

used during the process of model construction and validation. The determination of 264 

wheat growing area at the Xinghua county referenced the research results from Yang et 265 

al. (2022). The ArcGIS 10.2 software was used to generate the growth and N status 266 

maps in each farm and for Xinghua county. The correlation map and scatter diagram in 267 

this study were plotted in the Origin 2021 software. 268 
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 269 

Fig. 4. The research methodology. NNI: N nutrition index; PDM: plant dry matter; PNA: 270 

plant N accumulation; S2: Sentinel 2; ML: machine learning; CNDC: critical N dilution 271 

curve; Tave, Tmin, Tmax, Tsum, Prepsum and Radsum represent the average daily temperature, 272 

average daily minimum temperature, average daily maximum temperature, 273 

accumulated daily average temperature, accumulated precipitation and accumulated 274 

radiation, respectively, of the 30 days before the measurement date. AGDD represents 275 

the accumulated growing degree day from sowing to the measurement date. Fig. 4b and 276 

c represent the PNA maps that used as an example. The x1, x2 in Fig. 4e represent the 277 

sampling points for the extraction of vegetation indices from the S2 imagery, while the 278 

y1, y2 in Fig. 4c represent the sampling points for the extraction of upscaled PNA from 279 

the upscaled PNA maps. 280 

3. Results 281 
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3.1. The correlation of spectral data between UAV and S2 images 282 

The UAV images with 10 cm spatial resolution from experiments 1-6 were 283 

resampled (pixel aggregation) to grids that matched the S2 image resolution. Then, the 284 

band reflectance derived from the UAV and satellite sensor images were used to 285 

calculate the spectral indices in Table 3. A correlation analysis (Fig. 5a) between 286 

spectral data derived from the UAV images and the S2 images was performed at the 287 

jointing stage. The results showed that the G band from the UAV images, SWIR1 band 288 

and DATT vegetation index from the S2 images produced a relatively small correlation 289 

(r < 0.50), while most spectral bands and vegetation indices achieved a larger 290 

correlation between UAV and S2 spectral data (r > 0.60). The correlation between the 291 

UAV and S2 spectral data across the booting stage was generally smaller than that at 292 

the jointing stage. However, most vegetation indices produced a well correlation 293 

between the UAV and S2 spectral data at the booting stage (Fig. 5b). As a result, the 294 

relatively large correlation between the UAV and satellite sensor images can be the 295 

basis for the integration of UAV and S2 data. 296 

 297 
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Fig. 5. The correlation (r) of spectral data: between UAV and S2 images at the jointing 298 

(a) and booting (b) stages across experiments 1-6. Note: * means a significant difference 299 

at the 0.05 probability level. The ‘Spectral band_UAV’ and ‘Vegetation index_UAV’ 300 

represent the spectral band and vegetation index, respectively, derived from the UAV 301 

imagery. The ‘Spectral band_S2’ and ‘Vegetation index_S2’ represent the spectral band 302 

and vegetation index, respectively, derived from the Sentinel-2 sensor imagery. 303 

3.2. Upscaling the PDM and PNA maps based on pixel aggregation 304 

Diaoyu farm in experiment 3 was used as an example. Seven vegetation indices 305 

(Table 3) were calculated using the reflectance from the UAV multispectral images. Fig. 306 

6(a) shows the NDRE (0.11-0.55) maps at the UAV image resolution (10 cm), revealing 307 

a large variance in wheat growth across the whole farm. According to the UAV model 308 

for PDM and PNA estimation from Jiang et al. (2022), the PDM (Fig. 6b; UAV-PDM) 309 

and PNA (Fig. 6c; UAV-PNA) maps with 10 cm resolution were calculated based on 310 

the seven vegetation indices extracted from the UAV images, which had a range of 0.64-311 

7.14 t ha-1 and 17.71-263.70 kg ha-1, respectively, at the jointing stage across Diaoyu 312 

farm. Then, the UAV-PDM (UAV-PNA) maps were upscaled to grids with the same 313 

spatial resolution as S2 images (10 m) based on the pixel aggregation. The upscaled 314 

PDM (Fig. 6d) and PNA (Fig. 6e) maps had a range of 1.19-5.96 t ha-1 and 28.70-216.41 315 

kg ha-1, respectively. Then, 57 sampling points were determined randomly to extract 316 

the upscaled PDM and PNA values for calibrating the satellite estimation models. 317 
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 318 

Fig. 6. The NDRE map with (a) UAV (10 cm) image resolution; the PDM maps with 319 

(b) UAV (10 cm) and (d) S2 (10 m) image resolution; and the PNA maps with (c) UAV 320 

(10 cm) and (e) S2 (10 m) image resolution for Diaoyu farm in experiment 3 at the 321 

jointing stage. Note: the green points in Fig. 6(e) represent the randomly determined 322 

sampling points. 323 

The statistical analysis was performed for the upscaled PDM and upscaled PNA at 324 

the jointing and booting stages in experiment 1-6. The results from the table 4 showed 325 

the upscaled PDM and upscaled PNA varied greatly across six experiments. The 326 

upscaled PDM ranged from 1.05 to 5.71 with the coefficient of variation (CV) of 46.05% 327 

at the jointing stage, and from 2.99 to 6.08 with the CV of 18.59% at the booting stage. 328 

Similarly, the upscaled PNA ranged from 24.93 to 136.39 with the CV of 40.18% at the 329 

jointing stage, and from 55.32 to 164.89 with the CV of 29.27% at the booting stage. 330 

The large variability in the upscaled PDM and PNA renders the dataset suitable to 331 
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evaluate the performance of using satellite remote sensing information to diagnose 332 

winter wheat N status. 333 

Table 4 Descriptive statistics of upscaled plant dry matter (PDM) and plant N 334 

accumulation (PNA) at the jointing and booting stages across experiments 1-6. 335 

Parameter Growth stage N Min. Max. SDa CVb (%) 
Upscaled PDM 

(t ha-1) 
Jointing  277 1.05 5.71 1.69 46.05 
Booting  240 2.99 6.08 0.92 18.59 

Upscaled PNA 
(kg ha-1) 

Jointing  277 24.93 136.39 34.22 40.18 
Booting 240 55.32 164.89 32.20 29.27 

Note: SDa indicates standard deviation of the mean; CVb indicates coefficient of variation (%). 336 

3.3. PDM and PNA estimation based on the S2 satellite sensor images 337 

The PDM and PNA values were extracted from the upscaled PDM and PNA maps, 338 

respectively. Meanwhile, 13 vegetation indices (Table 3) were calculated based on the 339 

reflectance derived from the S2 images. Four ML methods were fitted to the 340 

relationship between the upscaled PDM, weather data and 13 spectral indices in the 341 

jointing and booting stages. The results from 10-fold cross-validation (Table 5) 342 

indicated that the RF method predicted PDM with a high accuracy among the four ML 343 

methods. The RF model based on the S2 images achieved an R2 of 0.93 and 0.69, RMSE 344 

of 0.43 and 0.51 t ha-1, and RE of 17.02% and 12.33% in the jointing and booting stage, 345 

respectively. Therefore, the RF method was selected as the PDM prediction model 346 

across experiments 1-6. Independent data from experiment 7 were used to validate the 347 

PDM prediction model based on the RF method. The results show that the PDM model 348 

based on the S2 images produced an R2 of 0.65 and 0.42, RMSE of 0.71 and 0.59 t ha-349 
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1, and RE of 33.85% and 11.65% in the jointing and booting stage, respectively (Table 350 

6). 351 

Similarly, the four ML methods were fitted to the relationships between the 352 

upscaled PNA, weather data and spectral indices derived from the S2 images. The 10-353 

fold cross-validation shows that the RF method achieved accurate prediction of PNA 354 

among the four ML methods (Table 5). The RF model had an R2 of 0.77 and 0.60, 355 

RMSE of 16.35 kg ha-1 and 20.41 kg ha-1, and RE of 24.52% and 20.69% in the jointing 356 

and booting stage, respectively. Therefore, the RF method was selected as the PNA 357 

prediction model across experiments 1-6. Independent data from experiment 7 were 358 

used to validate the PNA prediction model using the RF algorithm. The results show 359 

that PNA model based on the S2 images had an R2 of 0.72 and 0.70, RMSE of 13.40 360 

and 19.05 kg ha-1, and RE of 31.54% and 15.15% at the jointing and booting stage, 361 

respectively (Table 6). 362 

Based on the criterion of InNodePurity from the RF model, the relative importance 363 

of each input parameter for PDM and PNA estimation can be evaluated (Fig. 7). 364 

Generally, the spectral indices have a relatively higher importance than the weather 365 

variables for predicting the PDM and PNA. The Radsum, Tave and AGDD were more 366 

important variables for PDM estimation among seven weather parameters at the 367 

jointing and booting stages. The variables of Tmax and AGDD performed a relatively 368 

higher importance than other weather parameters for PNA estimation at the jointing and 369 

booting stages.  370 
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Table 5 The 10-fold cross-validation results across experiments 1-6 using the four ML 371 

algorithms at the jointing and booting stages: for the relationship between PDM, 372 

weather data and 13 vegetation indices from S2 images; and for relationship between 373 

PNA, weather data and 13 vegetation indices from S2 images. 374 

Parameter Method Jointing stage Booting stage 
R2 RMSE RE (%) R2 RMSE RE (%) 

PDM 
(t ha-1) 

RF 0.93 0.43 17.02 0.69 0.51 12.33 
Lasso 0.93 0.44 17.1 0.67 0.53 12.64 
ANN 0.92 0.51 19.3 0.56 0.71 16.45 
PLSR 0.83 0.69 36.85 0.36 0.74 18.64 

PNA 
(kg ha-1) 

RF 0.77 16.35 24.52 0.60 20.41 20.69 
Lasso 0.72 18.11 27.31 0.52 22.31 22.27 
ANN 0.63 23.05 30.74 0.42 23.90 25.95 
PLSR 0.61 21.38 35.67 0.34 25.93 26.06 

Table 6 Independent validation results of optimal PDM and PNA prediction model 375 

using the field data from experiment 7 at the jointing and booting stages.  376 

Parameter Jointing stage Booting stage 
R2 RMSE RE (%) R2 RMSE RE (%) 

PDM (t ha-1) 0.65 0.71 33.85 0.42 0.59 11.65 
PNA (kg ha-1) 0.72 13.40 31.54 0.70 19.05 15.15 
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 377 

Fig. 7. The importance (InNodePurity) value of each input parameter from the RF 378 

model for PDM estimation at the (a) jointing and (b) booting stages; for PNA prediction 379 

at the (c) jointing and (d) booting stages. 380 

The above analysis showed the model based on the S2 satellite images performed 381 

an accurate prediction for wheat PDM and PNA. Therefore, the S2 estimation model 382 

was used to estimate the PDM and PNA at the county scale. The Fig. 8 showed the 383 

wheat PDM value had a range of 1.51-4.35 and 3.77-5.85 t ha-1 in the jointing (Fig. 8a) 384 

and booting (Fig. 8b) stage, respectively; while the PNA value had a range of 34.45-385 

120.86 and 68.18-154.33 kg ha-1 in the jointing (Fig. 8c) and booting (Fig. 8d) stage, 386 

respectively, across the Xinghua county in 2020-2021.387 
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 388 

 389 

Fig. 8. Maps of PDM at the (a) jointing and (b) booting stages and PNA at the (c) 390 

jointing and (d) booting stages based on S2 images in 2020-2021 across Xinghua county. 391 

3.4. N nutrition diagnosis based on NNI at the county scale 392 

After the PDM and PNA were predicted, PNAc was calculated from the predicted 393 

PDM and Nc. Then, the NNI was derived as predicted PNA/PNAc. Compared to the 394 

observed values of NNI from experiment 7, the results show the NNI estimation model 395 

based on the S2 images had an R2 of 0.54 and 0.46, RMSE of 0.12 and 0.13, and RE of 396 

11.80% and 11.85% in the jointing (Fig. 9a) and booting (Fig. 9b) stage, respectively. 397 
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The model based on the S2 images was used to predict the NNI at the county scale. 398 

According to the optimal NNI diagnosis interval of 0.92-1.04 and 0.97-1.15 in the 399 

jointing and booting stage, respectively. Fig. 10a shows that the wheat N status had 400 

areas of 21.14%, 42.58%, and 36.28% in the N deficient, optimal and excessive 401 

categories, respectively, at the jointing stage; while the proportions of N deficient, 402 

optimal and excessive category were 34.35%, 53.87% and 11.78%, respectively, at the 403 

booting stage (Fig. 10b) for Xinghua county in 2020-2021. 404 

 405 

Fig. 9. Independent validation results of NNI prediction model using the field data from 406 

experiment 7 at the jointing (a) and booting (b) stages. Note: the blue line in the figure 407 

indicates the regression line. 408 
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 409 

Fig. 10. The N diagnosis maps based on S2 images at the (a) jointing and (b) booting 410 

stages across the Xinghua county scale in 2020-2021. 411 

To further evaluate the performance of the satellite-based models and NNI 412 

diagnosis maps in experiment 7, a linear relationship was established between grain 413 

yield and predicted NNI derived from the NNI estimation model and N diagnosis map 414 

of Xinghua county (Fig. 11). The results indicated that the correlation between wheat 415 

yield and predicted NNI has R2 of 0.43 and 0.47 in the jointing (Fig. 11a) and booting 416 

(Fig. 11b) stage, respectively.  417 

 418 
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Fig. 11. The linear relationship between wheat yield and predicted NNI from the N 419 

diagnosis maps of the Xinghua county at the jointing (a) and booting (b) stage in 2020-420 

2021. 421 

4. Discussion 422 

4.1. Closing the gap between the field observation and satellite data based on the 423 

fine resolution UAV images 424 

Crop growth observation is relatively simple at the field scale, but the laborious 425 

plant measurement across large areas is more challenging. Therefore, satellite remote 426 

sensing can play a significant role for sampling crop information across large areas 427 

(Guay et al., 2014). Single or multiple field measurement methods are commonly 428 

used to calibrate satellite-based models for crop growth monitoring, which is time-429 

consuming in terms of non-destructive plant sampling. Meanwhile, it is difficult to 430 

match the satellite sensor images and field observations at the same spatial resolution 431 

(Huang et al., 2017). Fine-resolution UAV images offer the possibility for producing 432 

crop growth maps at multiple scales, hence providing a much needed link between 433 

field and satellite sensor data. Previous studies showed that tundra vegetation can be 434 

classified based on UAV RGB ortho-mosaics in the arctic, which were further 435 

converted to Planet (3 m), S2 (10 m, 20 m) and Landsat 8 (30 m) image grids to train 436 

satellite-based models for vegetation cover monitoring (Riihimäki et al., 2019). The 437 

UAV model of Jiang et al. (2022) achieved a high accuracy for predicting wheat PDM 438 

(R2 = 0.69-0.93) and PNA (R2 = 0.83-0.84) at the farm scale. Therefore, the PDM 439 
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(0.64-7.17 t ha-1) and PNA (17.71-263.70 kg ha-1) values at Diaoyu farm of 440 

experiment 3 can be derived from the UAV prediction model (Fig. 6b and 6c, 441 

respectively), showing visually the large variability of wheat growth across the whole 442 

farm. Furthermore, the PDM maps (0.64 -7.17 t ha-1) with UAV image resolution 443 

were upscaled to the S2 image resolution, while the range of PDM decreased with an 444 

increase in pixel size, as expected. The upscaled PDM maps with 10 m resolution had 445 

values of 1.19-5.96 t ha-1. This aggregation effect arises as part of the well-known 446 

Modifiable Areal Unit Problem (MAUP). Previous studies indicated that the 447 

phenomenon will arise when finer resolution data are aggregated to coarser spatial 448 

resolution (Dark and Bram, 2007), and similar results were demonstrated by 449 

Riihimäki et al. (2019). The UAV-PDM (PNA) values with large variability over the 450 

farm can be used as reference data for satellite-based model construction. Revill et al. 451 

(2020) derived wheat LAI maps from the UAV model, which were then upscaled to 452 

S2 grids to train satellite-based estimation models, similar to this study. The co-453 

registration error caused by the GPS deviation between the UAV-derived maps and 454 

satellite sensor images should be considered during the analysis process. Therefore, 455 

a certain number of control points were set at each farm to calibrate the UAV ortho-456 

mosaics to ensure the accuracy of geographic location. Additionally, more UAV and 457 

satellite sensor images from different cultivars and eco-sites should be collected to 458 

construct robust models for crop growth prediction and N diagnosis. 459 

4.2. Wheat growth prediction and N diagnosis models based on satellite multi-460 

spectral information and weather variables 461 
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Previous studies demonstrated that multi-source information based on spectral 462 

indices can increase the accuracy of crop growth and N status prediction, while ML has 463 

been found highly suitable for integrating multi-source data (Wang et al., 2021). In this 464 

research, four ML methods were used to combine satellite spectral indices and weather 465 

data. The RF performed most accurately for predicting PDM (R2 = 0.42-0.65) and PNA 466 

(R2 = 0.70-0.72), which are comparable to the results of Jiang et al. (2022) who also 467 

increased the accuracy of PDM (R2 = 0.52-0.68) and PNA (R2 = 0.67-0.82) prediction 468 

with the integration of UAV spectral indices, weather and field management data based 469 

on the RF method. Nevertheless, the field management data such as N application rates 470 

were not considered in this research due to the difficulty of determining it in the 471 

different fields over large areas. Although the weather variables play a relatively low 472 

importance for PDM and PNA estimation (Fig. 7). However, the changes for radiation 473 

and precipitation were reported to affect the crop growth and N nutrition status through 474 

adjusting ambient conditions such as air humidity and temperature, which can influence 475 

plant stomatal conductance, water status and other physiological functions that control 476 

the plant root N absorption and transfer (Naylor et al., 2020; Nonhebel, 1994). 477 

Temperature information like AGDD performed a relatively high importance for PDM 478 

and PNA estimation (Fig. 7), which may due to the AGDD represent the heat 479 

accumulation during the crop growth period, and directly affect to plant growth rate and 480 

phenological process (Santos et al., 2021; Zhou et al., 2020). Similar research was 481 

conducted by Wang et al., 2021 who integrate the ground sensing information and 482 

weather variables such as accumulated precipitation and growing degree day for 483 
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accurately monitoring the maize NNI and grain yield at V8-V9 growth stage. 484 

Additionally, six bands (B, G, R, RE, NIR and SWIR) extracted from the S2 images 485 

were used to construct the prediction model in this study. Abundant spectral information 486 

was demonstrated to be more representative for characterizing crop growth and N 487 

nutrition (Verrelst et al., 2012; 2015). Li et al. (2021) also indicated the integration of 488 

multi-source information from S2 images increased the accuracy of chlorophyll 489 

prediction across typical lakes in China, similar with those presented in this study. 490 

Several studies indicated RF method exhibits a significant performance to integrate the 491 

multi variables for predicting plant biomass, leaf area index, and N concentration in 492 

wheat, rice, and soybean crops (Muharam et al., 2021; Liang et al., 2018; Maimaitijian 493 

et al., 2020). During the RF model construction, multiple sample sub-sets can be 494 

obtained from the original sample sets using the bootstrap re-sampling method, while 495 

each sample subset was used to construct an independent decision tree for model 496 

prediction. Therefore, the fusion of predictions from multiple decision trees was used 497 

as the final results of RF models. The specificity of re-sampling and multiple decision 498 

trees was demonstrated to well process the outliers during the model construction and 499 

improve the model prediction accuracy (Svetnik et al., 2003). 500 

The PDM and PNA prediction accuracies at the booting stage (R2 = 0.34-0.69) 501 

were lower than at the jointing stage (R2 = 0.61-0.93), which may be due to the influence 502 

of wheat canopy closure at the later growth stages (Cao et al., 2015). At the booting 503 

stage, the winter wheat grows strongly and all leaves are grown out from the plant. 504 

Meanwhile, the top leaves shelter the lower leaves and stem, which limits detection of 505 
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the whole plant using spectral sensors. Other researchers also demonstrated this similar 506 

phenomenon when estimating aboveground biomass and N uptake of rice and wheat 507 

leaf area index during the later growth stages (Cao et al., 2013; Zhang et al., 2019). The 508 

harvest yield validation for the NNI prediction model and N diagnosis maps achieved 509 

a comparable result at the jointing (R2 = 0.43) and booting (R2 = 0.47) stages, which 510 

was similar with results from Crema et al. (2020) who demonstrated a relationship 511 

between S2 image-derived NNI and maize yield with a correlation coefficient r of 0.6. 512 

During the practical production, more factors affected the crop growth and yield 513 

formation, including fertilizers other than N, water status, soil nutrition, and insect pests 514 

and weeds, etc. These useful information should also be considered in model 515 

construction to increase the diagnosis accuracy in future study. 516 

4.3. The potential for Sentinel 2 to diagnose crop N status across large areas 517 

Satellite remote sensing has great potential for predicting crop growth across large 518 

areas due to the larger sampling extent than ground-based and aerial spectral sensing 519 

systems (Zhang et al., 2020). Previous studies used satellite sensor images for applied 520 

predicting crop LAI, aboveground biomass and N content in wheat at the farm scale (Li 521 

et al., 2019; Fabbri et al., 2020), while not for diagnosing N status across larger areas 522 

such as a county. In this research, S2 images with swath widths of 240 km were 523 

demonstrated to provide large area crop information compared to the small image swath 524 

widths of, for example, the Planet mission (24.6 km; Li et al., 2019). Generally, the fine 525 

spatial resolution images were demonstrated to involve more crop information than at 526 

coarser resolution. However, this also necessitates complex calculations during data 527 
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analysis when used for practical applications. On the other hand, coarse spatial 528 

resolution images such as from Landsat (30 m) cannot detect field heterogeneity, 529 

especially as most of the fields studied here are approximately 40 m wide. Thus, 530 

medium resolution sensors such as Landsat are not suitable for developing crop 531 

management strategies in each field (Huang et al., 2017) . In this regard, it was implicit 532 

that the S2 images with medium-fine resolution were more feasible for characterising 533 

crop N nutrition status and guiding N nutrition management at the county scale. Areas 534 

of 36.28% and 21.14% belong to the N excessive and deficient categories, respectively, 535 

at the jointing stage, which means less and more N demand, respectively, compared to 536 

the optimal N status (Fig. 10a). However, an area of 34.35% of the N deficient category 537 

was found at the booting stage, which may due to inappropriate topdressing N 538 

application by farmers across the whole county (Fig. 10b). Therefore, a suitable N 539 

regulation algorithm should be developed to adjust N topdressing rates on the basis of 540 

farmers’ N management at the jointing stage. Previous studies showed the PNMS 541 

supported by UAV remote sensing data optimized crop growth and improved the NUE 542 

for wheat production (Argento et al., 2021), while the relevant PNMS based on satellite 543 

sensor images should also be developed and applied at the county scale. The crop 544 

growth stage may vary over such a large area, and it is unwise to apply the same 545 

management strategy to crops under different growth stages. As a result, the influence 546 

of the growth stage should be considered for crop N status diagnosis and regulation. 547 

Previous studies demonstrated that the synthetic aperture radar (SAR) and optical time-548 

series data derived from the satellite and UAV remote sensing systems have been used 549 
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for accurately tracking the crop phenological phrase in rice, winter wheat, maize and 550 

soybean (Diao et al., 2021; Liu et al., 2022; Guo et al., 2022; Zhao et al., 2022). 551 

Therefore, the integration of crop phenology estimation technology and N management 552 

strategy may better facilitate to most precisely diagnose the crop N status and determine 553 

the optimal N recommendation rates at the optimal growth stages, which would be 554 

significant for improving the crop growth and increasing the N use efficiency. However, 555 

the difference in growth period for winter wheat was not more than 5 days in Xinghua 556 

county according to the survey. Therefore, the growth stages were regarded as uniform 557 

across the whole county and the influence of growth stage was not considered during 558 

model construction in this study. Nevertheless, it should be considered for larger areas 559 

in future studies. 560 

5. Conclusion 561 

This research demonstrated the farm-scale PDM (UAV-PDM) and PNA (UAV-562 

PNA) maps derived from fine-resolution UAV images can be aggregated to grids that 563 

match the S2 satellite image resolution to calibrate satellite-based models for wheat 564 

growth and N status estimation. Meanwhile, the results indicated that the S2 imagery-565 

derived model based on the RF algorithm produced a high accuracy for predicting the 566 

PDM, PNA and NNI in the jointing and booting stages. Thereby, wheat growth and N 567 

nutrition status were mapped across Xinghua county, China. We conclude that the 568 

combination of UAV and satellite images can be used to diagnose and map wheat 569 

growth and N status across wide areas (the county scale). 570 
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